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CHAPTER �

INTRODUCTION

Finite element methods are widely used for approximating elliptic boundary value

problems� Usually the accuracy of such numerical methods depend on both the

smoothness of the exact solution and on the order of complete polynomials in the

�nite element space� To be speci�c� consider the Dirichlet problem for the Poisson

equation

�u � f in ��

u � 	 on ���

����

where � is a bounded polygonal domain in R� 
so that the �nite element space can

be constructed without error in approximating the boundary� and f is some given

function� The standard �nite element method for 
���� consists of constructing a one�

parameter family of continuous piecewise polynomials subspaces 
Vh of the Hilbert

space 
H�
�� and using the Ritz�Galerkin method to compute an approximation

uh � 
Vh� The standard error estimate gives

ku� uhk��� � C inf
v��Vh

ku� vk��� � Chmin�k�r���kukr��� 
����

where k � kr�� is the norm on Hilbert space Hr
�� and k is the order of complete

polynomials in the �nite element space 
Vh� In order for the �nite element solution

to achieve the optimal convergence rate� the exact solution u must be su�ciently

regular� Namely� if r � k � �� then 
���� will result in an O
hk� order convergence

rate� which is best possible for the degree of polynomials used� Otherwise a loss of

accuracy will occur�

In practice� it often happens that r � k��� For example� when � is a nonconvex

polygon� the exact solution will generally have corner singularities� and one cannot



�

expect u to be in H�
��� So no matter how high the order of the �nite element space


Vh is� the �nite element approximation does not even achieve �rst order convergence�

The situation is even worse for the plane elasticity problem� described by a second

order vector elliptic equation� In this case� the solution may not be in H�
�� even

if � is a convex polygon ���� 
under some boundary conditions�� We also note that

there are other important situations when the exact solution is singular or nearly so�

even when the boundary is smooth� for example� in singular perturbation problems

or problems with concentrated loads�

In the examples mentioned above� the exact solution is smooth in a large part of

the domain and the singularity is a local phenomenon� Therefore� it is natural to

ask whether uh approximates u better where u is smoother� Interior error estimates

address this question�

Interior error estimates for �nite element discretizations were �rst introduced by

Nitsche and Schatz ���� for second order scalar elliptic equations in ����� They

proved that for h su�ciently small

ku� uhk���� � C
�
inf
v��Vh

ku� vk���� � ku� uhk�p���
�
� 
����

for �� b �� b � 
here A b B means that �A � B� and any nonnegative integer p�

Here C is a constant that is independent of u� uh� and h� This estimate says that

the local accuracy of the �nite element approximation is bounded in terms of two

factors� the local approximability of the exact solution by the �nite element space

and the global approximability measured in an arbitrarily weak Sobolev norm on

a slightly larger domain� The usual way to estimate ku � uhk�p��� is to use the

fact that ku�uhk�p��� � ku�uhk�p��� for which the estimate is available by using

Nitsche�s duality technique� The signi�cance of the negative norm is that� under

some very important circumstances� one can prove higher rates of convergence in
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the negative norm than that in the energy norm� Therefore� better convergence rates

may be obtained in the interior domain� But it does not imply that one can always

recover the optimal convergence rate� For example� as a direct application of 
����

and the standard convergence theory of the �nite element method� it is easy to see

that if linear Lagrange elements are used for the Poisson equation on an L�shaped

domain with a smooth forcing function� then ku�uhk���� is of O
h� for any interior

region ��� However� if quadratic Lagrange elements are used for the same problem�

ku�uhk���� is only of order O
h����� which is less than the optimal O
h�� rate 
but

better than the O
h���� global rate�� This phenomenon is called the pollution e�ect

of the boundary singularity�

In ����� Schatz and Wahlbin extended the idea of ���� and established interior

estimates in the maximum norm ���� for second order elliptic equations� They proved

that

ku� uhk���� � C
�

ln

�

h
�
	r

inf
v��Vh

ku� vk���� � ku� uhk�p���
�
� 
����

where k � k���� represents the usual maximum norm and �r � � for linear elements

in R�� �r � 	� otherwise� This was later generalized to allow �� to intersect the

boundary of ��

Interior error estimates are important for other reasons as well� In some cases�

mesh re�nement and post�processing schemes to improve the initial approximation

can be designed by using the information obtained from a local analysis� In ����

Schatz and Wahlbin ����� based on 
����� gave a systematic mesh re�nement proce�

dure for the �nite element method for second order elliptic equations on polygonal

domains and showed that optimal global convergence rates could be obtained� In

����� they studied in detail the approximation of the standard �nite element method

for the singular perturbed second order elliptic equation� where a strong boundary
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layer e�ect exists ����� again utilizing the interior convergence theory� In ���� Eriks�

son ����� ���� applied the local analysis method to the second order elliptic equations

with singular forcing functions and designed an adaptive mesh re�nement scheme to

obtain optimal convergence rates� They also generalized such methods to some time

dependent problems �����

Interior error estimates have also been used successfully to study a posteriori

estimators� In ���� Eriksson and Johnson ���� introduced two a posteriori error

estimators based on local di�erence quotients of the numerical solution� Their anal�

ysis was based on the interior convergence theory in ����� Zhu and Zienkiewicz

����� ���� proposed several adaptive procedures for �nite element methods based on

smoothing techniques� In ����� Babu�ska and Rodr��guez ��� gave a complete study

of these estimators by using the interior estimate results of Bramble and Schatz �����

In ����� Dur�an ����� ���� proved the asymptotic exactness of several a posteriori er�

ror estimators by Bank and Weisser ��	� by applying the interior superconvergence

results of Whiteman and Wheeler �����

The interior convergence theory is reasonably well understood for standard �nite

element methods� For a comprehensive review� see ����� But there are only few

results in this area for mixed �nite element methods� The di�culty in obtaining

interior estimates for mixed methods can be understood by considering how an

interior estimate is usually obtained� �rst the exact solution is restricted to a local

domain and its projection is constructed� then the di�erence between the global �nite

element solution and the local projection of the exact solution is estimated via duality

and energy arguments� For the interior analysis of a mixed method� there are two

new aspects compared to that for a standard one� the coupling of local projections

and the balancing of two di�erent norms� The resolution of these problems depends

on the speci�c mixed formulation� In ���� Douglas and Milner ��	� adapted the
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Nitsche�Schatz approach to the Raviart�Thomas mixed method for scalar second

order elliptic problems� Their work took advantage of the so called !commuting

diagram property" ���� between the two discrete spaces� Recently� Gastaldi ����

obtained interior error estimates for some �nite element methods for the Reissner 

Mindlin plate model� Her work is similar in spirit to that of Chapter �� However

it is for the Brezzi�Bathe�Fortin family of elements for the Reissner�Mindlin plate

����� for which the variational formulation is di�erent� The !commuting diagram

property" plays an important role in Gastaldi�s work� but does not enter here�

In this thesis we establish interior estimates for some nonconforming and mixed

�nite element methods� Our primary goal is the interior error analysis for the the

Arnold�Falk element for the Reissner�Mindlin plate model ���� Via the Helmholtz

decomposition� the Reissner�Mindlin system can be transformed into an uncoupled

system of two Poisson equations and a singularly perturbed variant of the Stokes

system� Using a discrete Helmholtz decomposition theorem� the Arnold�Falk element

can be viewed as combination of nonconforming linear elements for the Poisson

equations and the MINI element ��� for the Stokes�like system� Therefore the interior

analysis of the Arnold�Falk element requires analysis of the nonconforming piecewise

linear �nite element for the Poisson equation and of the MINI element for the Stokes�

like system� and so we consider those problems� which are also of interest in their

own right� �rst�

The thesis is organized as follows� Chapter � de�nes with some notation and

derives interior estimates for the linear nonconforming �nite element method for the

Poisson equation� This result will be used later in Chapter � in the interior estimate

of the Arnold�Falk element for the Reissner�Mindlin plate model� Because of the

relative simplicity of this chapter� it also serves to review the standard procedure

for obtaining interior error estimates� Chapter � gives interior error estimates in the
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energy norm for a wide class of �nite element methods for the Stokes equations� In

Chapter � we study the interior error estimate of the Arnold�Falk element for the

Reissner�Mindlin plate model� First by adapting the theory of Chapter �� we obtain

the interior estimate for the Stokes�like system� This is later used to prove that the

Arnold�Falk element achieves 
almost� �rst order convergence rate uniformly in the

plate thickness t in any interior region� Note that �rst order convergence cannot

be achieved globally 
for the soft simply supported plate�� due to the existence of

a boundary layer in the exact solution� This problem does not arise for the hard

clamped boundary conditions considered in ���� since in that case the boundary

layer is weaker� and global �rst order convergence is achieved� Numerical results

are given� which con�rm the theoretical prediction�

Finally� in the Appendices� we prove two technical results� one about approxima�

tion property of linear �nite elements and the other about the regularity of the exact

solution of the Stokes�like system� They are required in Chapter ��
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CHAPTER �

INTERIOR ESTIMATES FOR

A NONCONFORMING METHOD

��� Introduction

In this chapter� we �rst introduce some standard notations and then take the

Poisson equation as an example to study the interior error estimate for the noncon�

forming �nite element method� The linear element will be the focus of the study

and the result obtained here will be used in Chapter � in the interior estimate of

the Arnold�Falk element for the Reissner�Mindlin plate model� We note that more

general results can be obtained similarly�

The technique used is a combination of those in ���� and ����� Even though the

method of getting interior estimates for �nite element methods is well known 
for a

comprehensive review� see ������ the result proven here� to the author�s knowledge� is

new� We mention that in ���	 Zhan and Wang ���� obtained interior estimates for a

class of 
compensated� nonconforming elements for second order elliptic equations�

However� the method they considered there excludes most standard nonconforming

methods� including the linear element we will study here�

Overall� the structure of this chapter is quite similar to that in ���� for the continu�

ous element� So this chapter can serve to review the standard procedure of obtaining

interior estimates� Some di�erences still exist� 
�� in section ���� additional terms

have to be taken into account due to the discontinuity of �nite element functions

across element edges� 
�� in section ���� the integration by parts technique� which is

essential in Nitsche and Schatz�s treatment for the continuous element ���� section ���
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is not used� Instead� we use a method by Schatz in �����

The remainder of this chapter is organized as follows� Section ��� presents nota�

tions and the model equation� Section ��� gives a brief introduction to the noncon�

forming �nite element space and proves some of its properties� Section ��� derives

an interior duality estimate and section ��� shows the �nal result�

��� Notations and Preliminaries

The notations used in this chapter 
as well as the whole thesis� are quite standard�

For those for Sobolev spaces� cf� Adams ����

Let � � R� be a bounded domain with Lipschitz boundary ��� Lp
�� is the usual

space consisting of p�th power integrable functions� Wm�p
�� will be the standard

Sobolev space of index 
m�p� with norm denoted by k � km�p��� for m � N� The

fractional spaces can be de�ned by interpolation ����� We shall use the usual L��

based Sobolev spaces Hs
�� and Hs
���� s � R� with norms denoted by k � ks��

and k � ks���� respectively� Notation j � js�� denotes the semi�norm of Hs
��� We will

drop � and use Hs to denote Hs
��� with norm k � km� whenever no confusion can

arise� The space 
Hs is the completion of C�� 
�� in Hs�

For s � 	� H�s denotes the closure of C�� 
�� under the norm

kuk�s�� � sup
v��Hs

v �
�


u� v�

kvks��
�

The notation 
� � �� stands for both the L� inner product and its extension to a pairing

of 
Hs andH�s� The notation h� � �i denotes the pairing of Hs
��� andH�s
���� We

use boldface type to denote ��vector�valued functions� operators whose values are

vector�valued functions� and spaces of vector�valued functions� This is illustrated
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in the de�nitions of the following standard di�erential operators�

div� �
���
�x

�
���
�y

� gradp �

�
�p��x

�p��y

�
�

The letter C denotes a generic constant� not necessarily the same in each occurrence�

Consider the boundary value problem

��u � K � divF in �� 
������

u � 	 on ��� 
������

In the above� we include divF on the right hand side since it appears in a reformu�

lation of the Reissner�Mindlin plate equations for which we will study in Chapter ��

This plate model was the original motivation for the current investigation�

The weak variational form is�

Find u � 
H� such that


gradu�gradv� � 
K� v� � 
grad v�F � for all v � 
H�� 
������

From the standard theory on elliptic boundary value problems 
cf� ������ we have�

Lemma ������ For a smooth �� a given K � Hk� and an F � Hk��� there is a

unique solution u satisfying 
������ and 
������� Moreover�

kukk�� � C
�
kKkk � kF kk��

�
� 
������

where C is independent of K� F � and u�

��� The Nonconforming P � Element

The notations and de�nitions for �nite element spaces used here follow closely

those by Ciarlet ����� For simplicity� we will assume that � is a polygonal domain�
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This is just to avoid explaining the construction of curved elements near the bound�

ary ��� The theory of the interior estimate to be developed in this chapter� however�

is independent of this assumption�

By a triangulation of � we mean a set Th of closed triangles such that the inter�

section of any two triangles is either a common edge� a common vertex� or empty�

and such that � �
S
K�Th

K� For any K � Th � let hK be its diameter and �K the

radius of the largest inscribed disk inside K� De�ne h � maxK�Th hK �

We will assume that triangulation Th is quasi�uniform 
cf� ���� page ������ i�e��

there are positive constants �� and �� independent of h such that

hK � ��h�
�K
hK

� ���

for all K � Th� This restriction carries over to the whole thesis unless otherwise

stated�

De�ne

Wh � fw � L� � wjT � P�
T � for all T � Th� w is continuous at midpoints

of element edgesg�

�Wh � fw � L� � wjT � P�
T � for all T � Th� w is continuous at midpoints

of element edges and vanishes at midpoints of boundary edgesg�

Vh � fv � H� � vjT � P�
T � for all T � Th� v is continuous at element

verticesg�

Here P�
T � is the set of linear functions on T � The sets Wh and Vh are the standard

nonconforming linear �nite element space and the conforming linear �nite element

space� respectively� For �� � �� let


Wh
��� � fp �Wh j suppp � ���g� 
Vh
��� � fv � Vh j suppv � ���g�



��

If Gh b � is a union of triangles� let Wh
Gh�� �Wh
Gh�� and Vh
Gh� be de�ned the

same way as Wh� �Wh� and Vh� respectively�

Let G� and G be two concentric open disks with G� b G b �� i�e�� �G� � G and

�G � �� Then there is a positive number h�� such that for h � h�� the following

properties hold�

Superapproximation property� Let � � C�� 
G�� and u � Wh� There exists a

function v � 
Wh
G�� such that

kgradh
�
�u� v�k��G � Ch

�
k� gradh uk��G � kuk��G

�
� 
������

for C � C
G�� G� ��� Here for 	 �Wh� gradh 	 denotes the function with values in

the space of piecewise constants that coincides element�wise with grad	�

Inverse inequality property� Let t be a nonnegative integer� Then there exists a

set Gh� which is a union of triangles and satis�es G� b Gh b G� such that

kukh��Gh
� Ch�t��kuk�t�Gh for all u �Wh� 
������

where the constant C is independent of h and u� Here kukh��Gh
� 
kgradh uk

�
��Gh

�

kuk���Gh
���� for u �Wh�

The above superapproximation property is somewhat di�erent from the one in ����


cf� section ����� This is because a di�erent approach will be used in the step of

!interior error estimates" ���� section �� 
from that for the conforming elements��

We mention that 
������ was �rst proved by Schatz ���� for the continuous linear

element and the same proof can be carried over to the nonconforming element� For

the sake of completeness� we include the proof�

Proof of the superapproximation property� As � � C�� 
G��� for h small enough� we

can �nd a set Gh� a union of triangles� such that G� b Gh b G� By the standard
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approximation theory on �nite element spaces 
cf� ���� page ������ the linear function

vT which interpolates ��u at the midpoints of the edges of T satis�es

kgrad
��u� vT �k��T � CThTkgrad
�
�u�k��T

� CThT 
k� graduk��T � kuk��T ��

for each T � Gh� De�ne v in Wh
Gh� by vjT � vT and extend it outside Gh by zero

so that v � 
Wh
G�� Summing up inequalities of above type for each T and using

the fact that Th is quasi�uniform� we obtain 
������� �

An inverse inequality like 
������ was used in ���� for continuous elements� where

it was stated that it could be obtained by using the inverse inequality kukt�Gh �

Chs�tkuks�Gh� for 	 � s � t� and Green�s formula� It is unlikely that this approach

can be easily adapted for discontinuous elements� In the following we give a proof

that is independent of the speci�c �nite element space�

Proof of the inverse inequality� The proof uses a result by Schatz and Wahlbin ����

Lemma �����

Let t � 	 be an integer� Furthermore� let �j � j � �� � � � � J � be disjoint open sets

with � �
SJ
j
� �j � Then

JX
j
�

kuk��t��j
� kuk��t��� for all u � H�t�

Based on the above inequality and the standard inverse inequality ���� page ����

kukh� � Ch��kuk� for all u �Wh�

it is easily seen that one need only prove

kuk��K � Ch�tkuk�t�K � for all u � P�
K� and K � Th� 
������
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To do so� we apply the scaling argument ����� Let #K be the standard reference

triangle and FK an a�ne mapping from #K into K� For any function v � L�
K��

let #v
#x� � v
x�� where x � FK 
#x�� Under FK � the set Wh
K� will be mapped onto

P�
 #K�� the space of linear polynomials on #K� Using the equivalence of norms on a

�nite dimensional linear space� we obtain

k#uk�� �K � Ck#uk
�t� �K for all #u � P�
 #K�� 
������

with C independent of #u� By de�nition

k#uk
�t� �K � sup

�v��Ht� �K�
�v �
�


#u� #v� �K
k#vkt� �K

� 
������

We have 
cf� ���� page ��	��


#u� #v� �K � Ch��K 
u� v�K 
������

and

k#vkt� �K � Ch��K
� tX
i
�

h�iK jvj
�
i�K

� �
� � Cht��K kvkt�K � 
������

with constant C depending only on the minimum angle of K� Substituting 
������

and 
������ into 
������ yields

k#uk
�t� �K � Ch�t��K sup

v��Ht�K�
v �
�


u� v�

kvkt�K
� Ch�t��K kuk�t�K�

Since

kuk��K � ChKk#uk�� �K

and the mesh is quasi�uniform� inequality 
������ follows� �

The �nite element approximation for 
������ and 
������ is�
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Find a uh � �Wh such that


gradh uh�gradh v� � 
K� v� � 
gradh v�F � for all v � �Wh� 
������

The following convergence theorem is well known� See� for example

��� Lemma �����

Lemma ������ Let K � L� and F �H�� Assume that � is a convex polygon and

u and uh are the solutions of 
������ and 
������� and 
������� respectively� Then�

ku� uhk� � hkgradh
u� uh�k� � Ch�
�
kKk� � kF k�

�
� 
������

The following estimate� which can be found in ����� will play an important role

in our analysis�

Lemma ������ There is a constant C independent of h such that���� X
T�Th

Z
�T

uw � nT

���� � Chkwk� inf
v��H�

kgradh
u� v�k�

for all w �H�� u � �Wh � 
H�� 
�����	�

where nT is the outer normal of each triangle T �

Before we turn to the next section� we de�ne a semi�norm for linear functional L

on 
Wh
G��

kLkG � sup
v��Wh�G�
gradh v �
�

L
v�

kgradh vk��G
�

We also want to point out that the results of this chapter require that the mesh

size h to be su�ciently small 
which is self�evident from the analysis involved��

However� for the sake of simplicity� we may not mention it explicitly�
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��� An Interior Duality Estimate

In this section we will derive an interior duality estimate� The method used here

is parallel to that for the conforming method� but there are some additional terms�

which measure the jumps of the discontinuous �nite elements� to be taken care of�

Let u � H� be some solution to the Poisson equation 
������ and uh �Wh be some

�nite element solution satisfying 
both without regard to the boundary conditions�


gradh uh�gradh v� � 
K� v� � 
gradh v�F � for all v � 
Wh�

Using integration by parts we obtain


gradh
u� uh��gradh v� �
X
T�Th

Z
�T



�u

�n
� F � nT �v for all v � 
Wh� 
������

The interior error analysis only depends on the above interior discretization equation�

Lemma ������ Let L be a linear functional on Wh and assume that u � H� �Wh

satis�es �
gradh u�gradh v

�
� L
v� for all v � 
Vh� 
������

Then for any concentric disks G� b G b � and any nonnegative integer t

kuk��G�
� C

�
hkgradh uk��G � kuk�t�G � kLkG

�
� 
������

Moreover� if L
v� � 	 for all v � 
Vh� then

kuk��G�
� C

�
hkgradh uk��G � kuk�t�G

�
� 
������

Proof� We �rst prove that for any integer s � 	�

kuk�s�G�
� C

�
hkgradh uk��G � kuk�s���G � kLkG

�

������



��

holds for any concentric disks G� b G b � 
not necessarily the same sets as in


�������� Then inequality 
������ can be obtained by iteration�

Find a union of elements Gh� such that G� b Gh b G� Construct a cut�o�

function � � C�� 
Gh� such that � � � on G�� By de�nition

kuk�s�G�
� k�uk�s�G � sup

���Hs�G�
��
�

�
�u� �

�
k�ks�G

� 
������

By Lemma ������ there exists a unique function U � Hs��
G� � 
H�
G�� such that

��U � � in G�

U � 	 on �G�

Moreover�

kUks���G � Ck�ks�G� 
������

For convenience� we extend U by zero outside the disk G� Now� we can estimate the

numerator of the right hand side of 
�������

�
�u� �

�
G
� �

�
�u��U

�
Gh

�
X
T�Gh

��
grad
�u��gradU

�
T
�

Z
�T

�u
�U

�n
ds

�

�
X
T�Gh

��
gradu�grad
�U�

�
T
�
�
ugrad��gradU

�
T

�
�
u�div
U grad��

�
T
�

Z
�T

�
uU

��

�n
� �u

�U

�n

�
ds

�
�

������

where we use the de�nition of U � di�erentiation rules� and integration by parts�

Since supp�U � Gh � G� the continuous piecewise linear interpolant 
�U�I of �U

belongs to � 
Vh
G�� thus

k�U � 
�U�Ik��G � ChkUk��G� 
������



��

So we have


�u� �� �
X
T�Gh

��
gradu�grad
�U � 
�U�I

�
T

�
� L

�

�U�I

�
�

X
T�Gh

��
ugrad��gradU

�
T
�
�
u�div
U grad��

�
T

�
�

X
T�Gh

�Z
�T

uU
��

�n
ds �

Z
�T

�u
�U

�n
ds

�

�� A� L
�

�U�I

�
�B � C� 
�����	�

where we use the fact that
�
gradh u�grad
�U�I

�
� L

�

�U�I

�
� Applying 
�������

Lemma ������ and the Schwarz inequality� we get

jAj � Chkgradh uk��GhkUk��G�

jBj � Ckuk�s���GkUks���G�

jCj � Chkgradh uk��GhkUk��G�

jL
�

�U�I

�
j � CkLkGhkUk��G�


�������

Substituting 
������� into 
�����	�� then using 
������ and 
������ we obtain 
�������

To prove 
������� take a family of concentric disks� G� b G� b � � � Gt � G� Then

applying 
������ with s � 	 and G replaced by G�� we obtain

kuk��G�
� C

�
hkgradh uk��G�

� kuk���G�
� kLkG�

�
�

To bound kuk���G�
� we apply 
������ with G� and G replaced by G� and G�� re�

spectively� and s � �� Thus� we get

kuk��G�
� C

�
hkgradh uk��G�

� kuk���G�
� kLkG�

�
�

Continuing in this fashion� we obtain the 
�������

If L
v� � 	 for all v � 
Vh� we see easily from the above proof that the term kLkG

can be taken away from the right hand side of 
������� �



��

��� The Main Result

In this section� we prove the main result of this chapter� Theorem ������ To be

speci�c� we �rst use a local energy estimate to study the discrete function satisfying


������� This equation is usually satis�ed by the di�erence between the global �nite

element solution and the local projection of the exact solution� Then we combine

it with Lemma ����� to obtain a local version of Theorem ������ The �nal result is

obtained by a covering argument�

Lemma ������ Let L be a linear functional on Wh and assume that u �Wh satis�es


gradh u�gradh v� � L
v� for all v � 
Wh� 
������

Then for any concentric disk G� b G and nonnegative integer t� the following holds

kukh��G�
� C

�
kuk�t�G � kLkG

�
� 
������

Proof� Let G� b G� b G be concentric disks and Gh� G� b Gh b G� be a union of

triangles� Construct a cut�o� function � � C�� 
G�� such that � � � on G�� Then�

kgradh uk
�
��G�

� k� gradh uk
�
��G �

Z
G

�� gradh u � gradh u

�

	Z
G

gradh u � gradh
�
�u�



�

	
�

Z
G

� gradh u � ugrad�



� J� � J��


������

Using the inverse inequality 
cf� �����

hkgradh uk��Gh � Ckuk��Gh� 
������

the Schwarz inequality� 
������� and the arithmetic�geometric mean inequality� we



��

get

j J� j � j

Z
G

gradh u � gradh
�
��u� 
��u�I

�
� L

�

��u�I

�
j

� Ckgradh uk��Ghkgradh
�
��u� 
��u�I

�
kGh � kLkG�

kgradh
�
�u�Ik��G�

� Chkgradh uk��Gh

�
k� gradh uk��G�

� kuk��G�

�
� kLkG�

�
kgradh
�

�u�k��G�
� kgradh

�
��u� 
��u�I

�
k��G�

�
�

�

�
k� gradh uk

�
��G � Ckuk���G�

�CkLk�G� 
������

The estimate on jJ�j is straightforward�

j J� j � Ck� gradh uk��G�
kuk��G�

�
�

�
k� gradh uk

�
��G � Ckuk���G�

�

������

Combining 
������� 
������� and 
������� then taking the square root� we obtain

kgradh uk��G�
� C

�
kuk��G�

� kLkG
�
�

From 
������ and Lemma ������ we have

kuk��G�
� C
hkgradh uk��G � kuk�t�G � kLkG��

Combing the above two inequalities we get

kukh��G�
� C

�
kuk��G�

� hkukh��G � kuk�t�G � kLkG
�
�

Then using Lemma ����� again with G� replaced by G� to bound kuk��G�
on the

right hand side of the above inequality yields

kukh��G�
� C

�
hkukh��G � kuk�t�G � kLkG

�
� 
������

We will now use an iteration method ���� to prove 
�������



�	

Let G� b G� b � � � b Gt�� � G be concentric disks and apply 
������ to each

pair Gj b Gj�� 
with G� and G replaced by Gj and Gj��� respectively� to get

kuk���Gj
� C

�
hkukh��Gj��

� kuk�t�Gj�� � kLkGj��

�
�

Combining inequalities of above type 
for j � 	� �� � � � � we obtain

kukh��G�
� C

�
hkukh��G�

� kuk�t�G�
� kLkG�

�
� � � �

� C
�
ht��kukh��Gt��

� kuk�t�Gt�� � kLkGt��

�
�

By 
������� there is a set Gh� Gt�� b Gh b Gt�� � G� such that

ht��kukh��Gt��
� ht��kukh��Gh

� Ckuk�t�Gh � Ckuk�t�G�

Thus the above two inequalities imply 
������� �

Theorem ������ Let �� b �� b � and assume that K � L� and divF � L��

Assume that F j�� � H�
���� Suppose that u � H� satis�es uj�� � H�
��� and

uh � Wh satis�es 
������� Let t be a nonnegative integer� Then there exists a

constant C depending only on ��� ��� and t� and a positive number h�� such that

for h � 
	� h��

ku� uhk
h
����

� C
�
hkuk���� � hkF k���� � ku� uhk�t���

�
� 
������

ku� uhk���� � C
�
h�kuk���� � h�kF k���� � ku� uhk�t���

�
� 
������

Proof� We �rst prove a local version of 
������� that is�

ku� uhk
h
��G�

� C h
�
kuk��G � kF k��G

�
� Cku� uhk�t�G� 
�����	�



��

for any pair of concentric disks G� b G b �� In order to do so� we �nd a disk G�

such that G� b G� b Gh b G� with Gh a union of triangles� Construct a cut�o�

function � � C�� 
Gh� such that � � � on G�� Use the notation eu � �u and de�ne


eu � �Wh
Gh� by


gradh 
eu�gradh v� � 
gradh eu�gradh v� for all v � �Wh
Gh�� 
�������

This problem is uniquely solvable� Moreover�

keu� 
eukh��Gh
� C inf

v� 	Wh�Gh�
keu� vk��Gh � C hkuk��Gh�

By the triangle inequality�

ku� uhk
h
��G�

� keu� 
eukh��Gh
� k
eu� uhk

h
��G�

� C hkuk��Gh � k
eu� uhk
h
��G�

� 
�������

From 
�������� 
������� and the fact that � � � on G��


gradh

eu� uh��gradh v� � 
gradh
u� uh��gradh v�

�
X
T�Gh

Z
�T



�u

�n
� F � nT �v

�� L
v� for all v � 
Wh
G���

By Lemma ������

jL
v�Gh j � Ch
kuk��Gh � kF k��Gh�kgradh vk��Gh for all v � 
Wh
Gh��

which implies

kLkGh � C h
�
kuk��Gh � kF k��Gh

�
� 
�������



��

Then� applying Lemma ����� with G replaced by G�� we obtain

k
eu� uhk
h
��G�

� C
�
k
eu� uhk�t�G�

� kLkG�
�

� C
k
eu� euk�t�Gh � ku� uhk�t�G�
� kLkGh�

� C h
kF k��G � kuk��G
�
� Cku� uhk�t�G� 
�������

By the triangle inequality� 
�������� and 
�������� inequality 
�����	� is obtained�

In order to prove 
������� we use a covering argument� Let d � d��� where

d� � dist
 ���� ����� Cover ��� with a �nite number of disks G�
xi� � i � �� �� � � � �m

centered at xi � ��� with diamG�
xi� � d� Let G
xi� � i � �� �� � � � � k be correspond�

ing concentric disks with diamG
xi� � �d� Applying 
�����	� to each pair G�
xi�

and G
xi�� and adding inequalities of the form 
�����	�� we obtain the desired result�

To prove 
������� note that

�
gradh

eu� uh��grad v

�
� 	 for all v � 
Vh
G���

By Lemma ������ we obtain

ku� uhk��G�
� C

�
hkgradh
u� uh�k��G�

� ku� uhk�t�G�

�
�

for any disks G� b G�� Then� applying 
�����	� with G� replaced by G� to get

ku� uhk��G�
� C

�
h�kuk��G � h�kF k��G � ku� uhk�t�G

�
�

for any pair of disks G� b G b �� Then a covering argument leads to 
������ �



��

CHAPTER �

INTERIOR ESTIMATES FOR

THE STOKES EQUATIONS

��� Introduction

In this chapter we establish interior error estimates for �nite element approxima�

tions to solutions of the Stokes equations� The theory 
cf� ���� to be developed here

covers a wide range of �nite element methods for the Stokes equations� It is based

on some abstract hypotheses that apply to most stable elements� This is di�erent

than what we did in Chapter �� where we only studied one special element�

The conclusion we obtain here is quite similar to that for the second order elliptic

equation� Namely� we prove that� the approximation error of the �nite element

method in the interior region is bounded above by two terms� the �rst one measures

the local approximability of the exact solution by the �nite element space and the

second one� given in an arbitrary weak Sobolev norm over a slightly larger domain�

represents a global pollution e�ect�

The technique used here is adapted from that for the second order elliptic equation

by Nitche and Schatz ����� Although the general approach is not new� there are a

number of signi�cant di�culties which arise for the Stokes system that are not

present in previous works� The method developed here will also be generalized to

get the interior error estimate of the Arnold�Falk element for the Reissner�Mindlin

plate model in the next chapter�

After the preliminaries of the next section� we set out the hypotheses for the

�nite element spaces in section ���� These assumptions are satis�ed by most stable



��

elements on a locally quasi�uniform mesh� In section ���� we introduce the local

equations and derive some basic properties of their solutions� Section ��� gives the

precise statement of our main result and its proof� In section ���� we apply the

general theory to the MINI element of Arnold�Brezzi�Fortin ��� and show that it

achieves the optimal convergence rate in the energy norm away from the boundary

for a nonconvex polygonal domain� However this optimal convergence cannot be

obtained on the whole domain due to the corner singularity of the exact solution�

��� Notations and Preliminaries

Let � denote a bounded domain in R� and �� its boundary� We de�ne the

gradient of a vector function�

grad� �

�
�����x �����y
�����x �����y

�
�

Let G be an open subset of � and s an integer� If � � Hs
G�� � � H�s
G�� and

� � C�� 
G�� then

j
�����j � Ck�ks�Gk�k�s�G�

with the constant C depending only onG� �� and s� For� �Hs
G��� �H�s��
G�

de�ne

R
������ �
�
�
grad��t�grad�

�
�
�
grad���
grad��t

�
� 
������

Then

jR
�
�����

�
j � Ck�ks�Gk�k�s���G� 
������

If� moreover� � �H�s��� we have the identity

�
grad
����grad�

�
�
�
grad��grad
���

�
�R
�������



��

If X is any subspace of L�� then #X denotes the subspace of elements with average

value zero�

The following lemma states the well�posedness and regularity of the Dirichlet

problem for the generalized Stokes equations on smooth domains� 
Because we are

interested in local estimates we really only need this results when the domain is a

disk�� For the proof see ��	� Chapter I� x ���

Lemma ������ Let G be a smoothly bounded plane domain and m a nonnegative

integer� Then for any given functions F � Hm��
G�� K � Hm
G� � #L�
G�� there

exist uniquely determined functions

� �Hm��
G� � 
H�
G�� p � Hm
G� � #L�
G��

such that

�
grad��grad�

�
�
�
div�� p

�
�
�
F ��

�
for all � � 
H�
G���

div�� q
�
�
�
K� q

�
for all q � #L�
G��

Moreover�

k�km���G � kpkm�G � C
�
kF km���G � kKkm�G

�
�

where the constant C is independent of F and K�

��� Finite Element Spaces

In this section we collect assumptions on the mixed �nite element spaces� As

usual for the interior estimate� we require the superapproximation property of the

�nite element spaces� in addition to the the approximation and stability properties�

Let � � R
� be the bounded open set on which we solve the Stokes equations�

We denote by V h the �nite element subspace of H�� and by Wh the �nite element



��

subspace of L�� For �� � �� de�ne

V h
��� � f�j�� j � � V h g� Wh
��� � f pj�� j p �Wh g�


V h
��� � f� � V h j supp� � ���g� 
Wh
��� � f p �Wh j suppp � ��� g�

Let G� and G be concentric open disks with G� b G b �� We assume that

there exists a positive real number h� and positive integers k� and k�� such that for

h �
�
	� h�

�
� the following properties hold�

A�� Approximation property�


�� If � �Hm
G� for some positive integerm� then there exists a �I � V h such

that

k�� �Ik��G � Chr��� j � jm�G� r� � min
k� � ��m��


�� If p � H l
G� for some nonnegative integer l� then there exists a pI � Wh�

such that

kp� pIk��G � Chr�kpkl�G� r� � min
k� � �� l��

Furthermore� if � and p vanish on Gn �G�� respectively� then �I and pI can be chosen

to vanish on � n �G�

A�� Superapproximation property� Let � � C�� 
G�� � � V h� and p �Wh� Then

there exist � � 
V h
G� and q � 
Wh
G�� such that

k����k��� � Chk�k��G�

k�p� qk��� � Chkpk��G�

where C depends only on G and ��



��

A�� Inverse property� For each h � 
	� h��� there exists a set Gh� G� b Gh b G�

such that for each nonnegative integer m there is a constant C for which

k�k��Gh � Ch���m k�k�m�Gh for all � � V h�

kpk��Gh � Ch�m kpk�m�Gh for all p �Wh�

A�� Stability property� There is a positive constant �� such that for all h � 
	� h��

there is a domain Gh� G� b Gh b G for which

inf
p� �Wh�Gh�

p�
�

sup
���V h�Gh�

��
�

�
div� � p

�
Gh

k�k��Ghkpk��Gh

� �

When Gh � �� property A� is the standard stability condition for Stokes elements�

It will usually hold as long as Gh is chosen to be a union of elements� The standard

stability theory for mixed methods then gives us the following result�

Lemma ������ Let Gh be a subdomain for which the stability inequality in A�

holds� Then for � � 
H�
Gh� and p � L�
Gh�� there exist unique 
� � 
V h
Gh�

and 
p �Wh
Gh� with
R
Gh


p �
R
Gh

p such that

�
grad
� � 
���grad �

�
�
�
div�� p� 
p

�
� 	 for all � � 
V h
Gh���

div
� � 
��� q
�
� 	 for all q �Wh
Gh��

Moreover�

k�� 
�k��Gh � kp� 
pk��Gh � C
�

inf
���V h�Gh�

k���k��Gh � inf
q�Wh�Gh�

kp� qk��Gh

�
�

The approximation properties A� are typical of �nite element spaces V h and

Wh constructed from polynomials of degrees at least k� and k�� respectively� 
It

does not matter that the subdomain G is not a union of elements since � and p



��

can be extended beyond G�� The inverse inequality was proved in section ��� for

general �nite element spaces� The superapproximation property is discussed as

Assumptions ��� and ��� in ����� Many �nite element spaces are known to have the

superapproximation property� In particular� it was veri�ed in ���� for Lagrange and

Hermite elements� To end this section we shall verify the superapproximation for

the MINI element�

Let bT denote the cubic bubble on the triangle T � so on T � bT is the cubic poly�

nomial satisfying bT j�T � 	 and
R
T
bT � �� We extend bT outside T by zero� For a

given triangulation Th let Vh denote the span of the continuous piecewise linear func�

tions and the bubble functions bT � T � Th� The MINI element uses Vh 	 Vh as the

�nite element space for velocities� We wish to show that if � � Vh and � � C�� 
G�

then k����k��G � Chk�k��G for some � � 
Vh
G�� We begin by writing � � �l��b

with �l piecewise linear and �b �
P

T�Th
�T bT for some �T � R�

We know that there exists a piecewise linear function �l supported in G for which

k��l � �lk��� � Chk�lk��G�

Turning to the bubble function term �b de�ne �b �
P

T�G
�T LT ��bT � 
Vh
G�

where LT � � R is the average value of � on T � Now if T intersects supp� then

T � G� at least for h su�ciently small� Hence

k��b � �bk
�
��� �

X
T�G

k��b � �bk
�
��T �

X
T�G

k�T bT 
� �LT ��k
�
��T

�
X
T�G

k� �LT �k
�
L��T �k�T bT k

�
��T � Ch�k�bk

�
��G�



��

where the constant C depends on �� Moreover�

kgrad
��b � �b�k
�
��� �

X
T�G

kgrad
��b � �b�k
�
��T

�
X
T�G

kgrad
�
�T bT 
� �LT ��

�
k���T

�
X
T�G

k�T 
w �LT ��grad bT � �T bT grad
� � LT ��k
�
��T

� C
�
h�

X
T�G

kgrad�k���Tk�T grad bT k
�
��T � kgrad�k���T

X
T�G

k�T bT k
�
��T

�
� Ch�k�bk

�
��G�

where we used the fact that

kbT k��T � C hkbTk��T �

Taking �h � �b � �l � 
Vh
G� we thus have

k��h � �hk��� � C h
�
k�bk��G � k�lk��G

�
�

We complete the proof by showing that k�bk��T �k�lk��T � Ck�b��lk��T for any

triangle T with the constant C depending only on the minimum angle of T � SinceR
T grad�b � grad�l � 	� it su�ces to prove that

k�bk��T � k�lk��T � Ck�b � �lk��T �

If T is the unit triangle this hold by equivalence of all norms on the �nite dimen�

sional space of cubic polynomials� and the extension to an arbitrary triangle is

accomplished by scaling�



�	

��� Interior Duality Estimates

Let 
�� p� �H� 	 L� be some solution to the generalized Stokes equations

���� gradp � F �

div� � K�

Regardless of the boundary conditions used to specify the particular solution� 
�� p�

satis�es

�
grad��grad�

�
�
�
div�� p

�
�
�
F ��

�
for all � � 
H���

div�� q
�
�
�
K� q

�
for all q � L��

Similarly� regardless of the particular boundary conditions� the �nite element solution


�h� ph� � V h 	Wh satis�es

�
grad�h�grad�

�
�
�
div�� ph

�
�
�
F ��

�
for all � � 
V h��

div�h� q
�
�
�
K� q

�
for all q � 
Wh�

Therefore

�
grad
� � �h��grad�

�
�
�
div�� p� ph

�
� 	 for all � � 
V h�


�������
div
� � �h�� q

�
� 	 for all q �Wh�


������

The interior interior error analysis starts from these interior discretization equations�

Theorem ������ Let G� b G be concentric open disks with closures contained in

� and s an arbitrary nonnegative integer� Then there exists a constant C such that



��

if 
�� p� �H� 	 L�� and 
�h� ph� � V h 	Wh satisfy 
������ and 
������� we have

k�� �hk��G�
� kp� phk���G�

� C
�
hk�� �hk��G � hkp� phk��G

� k�� �hk�s�G � kp � phk���s�G
�
�

������

In order to prove the theorem we �rst establish two lemmas�

Lemma ������ Under the hypotheses of Theorem ������ there exists a constant C

for which

kp� phk�s���G�
� C

�
hk�� �hk��G � hkp� phk��G

� k�� �hk�s���G � kp� phk�s���G
�
�

Proof� Choose a function � � C�� 
G� which is identically � on G�� Also choose a

function 
 � C�� 
G�� with integral �� Then

kp� phk�s���G�
� k�
p� ph�k�s���G � sup

g��Hs���G�
g �
�

�
�
p� ph�� g

�
kgks���G

� 
������

Now �
�
p� ph�� g

�
�
�
�
p� ph�� g � 


Z
G

g
�
�
�
�
p� ph�� 


� Z
G

g

and clearly

j
�
�
p� ph�� 


� Z
G

g j� Ckp� phk�s���Gkgk��G�

Since g � 

R
G
g � Hs��
G� � #L�
G� it follows from Lemma ����� that there exist

� �Hs��
G� � 
H�
G� and P � Hs��
G� � #L�
G� such that

�
grad��grad�

�
�
�
div�� P

�
� 	 for all � � 
H�
G�� 
�������

div�� q
�
�
�
g � 


Z
G

g� q
�

for all q � L�
G��

������



��

Furthermore�

k�ks���G � kPks���G � Ckgks���G� 
������

Then� taking q � �
p � ph� in 
������� we obtain

�
g � 


Z
G

g� �
p� ph�
�

�
�
div�� �
p � ph�

�
�
�
div
���� p � ph

�
�
�
grad�� 
p � ph��

�
�
�
div
���I � p � ph

�
�
n�

div���� 
���I �� p� ph
�
�
�
grad�� 
p � ph��

�o
�� A� �B�� 
������

Here the superscript I is the approximation operator speci�ed in property A� of

section ���� Choosing � � 
���I in 
������� we get

A� ��
�
div
���I � p� ph

�
�
�
grad
� ��h��grad
���I

�
�
�
grad
� � �h��grad
���

�
�
�
grad
� � �h��grad�
���I � 
����

�
�
�
grad��
� ��h���grad�

�
�
n
R
�
����� ��h

�
�
�
grad
� � �h��grad�
���I � ���

�o
�� A� �B�� 
������

where R is de�ned in 
������� Next� setting � � �
� � �h� in 
������� we obtain

A� ��
�
grad��
�� �h���grad�

�
�
�
div��
�� �h��� P

�
�
�
div
�� �h�� �P

�
�
�
grad��P 
� � �h�

�
�
�
div
�� �h�� �P � 
�P �I

�
�
�
grad��P 
� � �h�

�
�

where we applied 
������ in the last step�

Applying the approximation property A� and 
������ we get

jB�j � C
�
hk�k��Gkp� phk��G � k�ks���Gkp� phk�s���G

�
�

jB�j � C
�
k�� �hk�s���Gk�ks���G � hk�� �hk��Gk�k��G

�
�

jA�j � C
�
hk�� �hk��GkPk��G � k�� �hk�s��kPks���G

�
�


�����	�



��

Substituting 
������ into 
�����	� and combining the result with 
������� 
������� and


������� we arrive at 
������� �

Now we state the second lemma to be used in the proof of Theorem ������

Lemma ������ Under the hypotheses of Theorem ������ there exists a constant C

for which

k�� �hk�s�G�
� C

�
hk�� �hk��G � hkp� phk��G

� k�� �hk�s���G � kp� phk�s���G
�
�

Proof� Given F �Hs
G�� de�ne � �Hs��
G�� 
H�
G� and P � Hs��
G�� #L�
G�

by

�
grad��grad�

�
�
�
div�� P

�
�
�
F ��

�
for all � � 
H�
G�� 
��������

div �� q
�
� 	 for all q � L�
G�� 
�������

Then� by Lemma ������

k�ks���G � kPks���G � CkF ks�G� C � C
G�� G��

Now

k� � �hk�s�G�
� k�
� � �h�k�s�G � sup

F��Hs�G�
F �
�

�
�
�� ���F

�
kF ks�G

with � as in the proof of the previous lemma� Setting � � �
�
� � �h

�
in 
��������

we get

�
�
� � �h��F

�
�
�
grad��grad��
� ��h��

�
�
�
div��
�� �h��� P

�
�
n�
grad
����grad
� � �h�

�
�
�
div
�� �h�� �P

�o
�
n
R
�
����� ��h

�
�
�
grad��P 
� � �h�

�o
�� E� � F��



��

To estimate E�� we set q � 
�P �I in 
������ and obtain

E� �
�
grad
���I �grad
� � �h�

�
�
n�

div
� � �h�� �P � 
�P �I
�

�
�
grad���� 
���I ��grad
� � �h�

�o
�� E� � F��

Taking � � 
���I in 
������� we arrive at

E� �
�
grad
���I �grad
� ��h�

�
�
�
div
���I � p� ph

�
�
�
div
���� p � ph

�
�
�
div�
���I � 
����� p � ph

�
�
�
grad�� 
p � ph��

�
�
�
div�
���I � 
����� p � ph

�
�

where we applied 
������� in the last step� Applying 
������ and the approximation

property A�� we have

j F� j� C
k���hk�s���Gk�ks���G � k�� �hk�s���GkPks���G��

j F� j � Ch
k�� �hk��GkPk��G � k�� �hk��Gk�k��G��

j E� j � C
�
kp� phk�s���Gk�ks���G � h kp� phk��Gk�k��G

�
�

From these bounds we get the desired result� �

Proof of Theorem ������ Let G� b G� b � � � Gs � G be concentric disks� First

applying Lemma ����� and Lemma ����� with s replaced by 	 and G replaced by

G�� we obtain

k� ��hk��G�
� kp� phk���G�

� C
�
hk�� �hk��G�

� hkp� phk��G�

� k� � �hk���G�
� kp� phk���G�

�
�

To estimate k� � �hk���G�
and kp � phk���G�

� we again apply Lemma ����� and

Lemma ������ this time with G� and G being replaced by G� and G� and s replaced



��

by �� Thus� we get

k� ��hk��G�
� kp� phk���G�

� C
�
hk�� �hk��G�

� hkp� phk��G�

� k� � �hk���G�
� kp� phk���G�

�
�

Continuing in this fashion� we obtain 
������� �

��� Interior Error Estimates

In this section we state and prove the main result of this chapter� Theorem ������

First we obtain in Lemma ����� a bound on solutions of the homogeneous discrete

system� In Lemma ����� this bound is iterated to get a better bound� which is then

used to establish the desired local estimate on disks� Finally Theorem ����� extends

this estimate to arbitrary interior domains�

Lemma ������ Suppose
�
�h� ph

�
� V h 	Wh satis�es

�
grad�h�grad�

�
�
�
div�� ph

�
� 	 for all � � 
V h� 
�������

div�h� q
�
� 	 for all q � 
Wh� 
������

Then for any concentric disks G� b G b �� and any nonnegative integer t� we have

k�hk��G�
�kphk��G�

� C
�
hk�hk��G�hkphk��G�k�hk�t�G�kphk�t���G

�
� 
������

where C � C
t�G�� G��

Proof� Let Gh� G� b Gh b G� be as in Assumption A�� Let G� be another disk

concentric with G� and G� such that G� b G� b Gh� and construct � � C�� 
G��

with � 
 � on G�� Set f�h � ��h � 
H�
G��� fph � �ph � L�
G��� By Lemma ������



��

we may de�ne functions 
f�h � 
V h
Gh� and 
fph �Wh
Gh� by the equations�
grad
f�h � 
f�h��grad� �� � div��fph � 
fph � � 	 for all � � 
V h
Gh��


�������
div
f�h � 
f�h�� q � � 	 for all q � Wh
Gh��


������

together with
R
Gh



fph �fph� � 	� Furthermore� there exists a constant C such that

kf�h � 
f�hk��Gh � kfph � 
fphk��Gh

� C
�

inf
���V h�Gh�

kf�h ��k��Gh � inf
q�Wh�Gh�

kfph � qk��Gh

�
� Ch
k�hk��G� � kphk��G��� 
������

where we have used the superapproximation property in the last step�

To prove 
������� note that

k�hk��G�
� kphk��G�

� kf�hk��Gh � kfphk��Gh

� kf�h � 
f�hk��Gh � kfph � 
fphk��Gh � k
f�hk��Gh � k
fphk��Gh

� Ch
k�hk��G� � kphk��G�� � k
f�hk��Gh � k
fphk��Gh� 
������

Next� we bound k
f�hk��Gh� In 
������ we take � � 
f�h to obtain� for a positive

constant c�

ck
f�hk���Gh
�
�
grad
f�h�grad
f�h �

�
�
gradf�h�grad
f�h �� �div 
f�h�fph � 
fph ��


������

For the �rst term on the right hand side of 
������� we have�
gradf�h�grad
f�h � � �

grad
��h��grad
f�h �
�
�
grad�h�grad
�
f�h� � �R

�
�� 
f�h��h �

�
�
grad�h�grad
�
f�h�I �� n�

grad�h�grad��
f�h � 
�
f�h�I � �
�R

�
�� 
f�h��h �o �� G� �H�� 
������



��

To bound G�� we take � � 
�
f�h�I in 
������ and get

G� �
�
div
�
f�h�I � ph �

�
�
div
�
f�h�� ph �� �

div�
�
f�h�I � �
f�h�� ph �
�
�
div 
f�h� �ph �� �

grad�� ph
f�h �� �
div�
�
f�h�I � �
f�h�� ph �

�
�
div 
f�h�fph �� �

grad�� ph
f�h �� �
div�
�
f�h�I � �
f�h�� ph �

��
�
div 
f�h�fph ��H�� 
�����	�

Combining 
������� 
������� 
������� and 
�����	�� we obtain

ck
f�hk���Gh
�
�
div 
f�h�fph ��H� �H� �

�
div 
f�h�fph � 
fph �

�
�
div 
f�h� 
fph ��H� �H�� 
�������

Taking q � 
fph in 
������� we get�
div 
f�h� 
fph � � �

divf�h� 
fph � � �
div
��h�� 
fph �

�
�
div�h� �
fph �� �

grad�� 
fph�h �
�
�
div�h� �
fph � 
�
fph�I �� �

grad�� 
fph�h � �� H��

�������

where we used 
������ at the last step� Applying the Schwartz inequality� 
�������

and the superapproximation property A�� we get

j H� j� C
�
h k�hk��G� � k�hk��G�

�
k
f�hk��Gh�

j H� j� C
�
kphk���G� � h kphk��G�

�
k
f�hk��Gh�

j H� j� C
�
h k�hk��G� � k�hk��G�

�
k
fphk��Gh �

Combining the above three inequalities with 
������� and 
�������� and using the

arithmetic�geometry mean inequality� we arrive at

k
f�hk���Gh
� C�

�
h�k�hk

�
��G� � k�hk

�
��G� � h�kphk

�
��G� � kphk

�
���G�

�
� C�

�
k�hk��G� � h k�hk��G�

�
k
fphk��Gh� 
�������



��

Next we estimate k
fphk��Gh� By the triangle inequality�

k
fphk��Gh �

�����
fph �
R
Gh


fph
meas
Gh�

�����
��Gh

�meas
Gh�
��

����Z
Gh



fph �fph�����
��Gh

�meas
Gh�
��

����Z
Gh

fph����
��Gh

� 
�������

Notice that the second term on the right hand side of 
������� is bounded above by

the right hand side of 
������� and� for the last term�����Z
Gh

fph����
��Gh

�

����Z
Gh

�ph

����
��Gh

� Ckphk���G� � 
�������

To estimate the �rst term� we use the inf�sup condition������
fph �
R
Gh


fph
meas
Gh�

�����
��Gh

� C sup
���V h�Gh�

� �
�

�
div�� 
fph �Gh

k�k��Gh

� 
�������

To deal with the numerator on the right hand side of 
�������� we apply 
�������

�
div�� 
fph � � �

div��fph �� �
grad
f�h � 
f�h��grad� �

�
�
div�� �ph

�
�
�
grad
f�h � 
f�h��grad� �

�
�
div
���� ph

�
�
�
grad
f�h � 
f�h��grad� �� �

grad�� ph�
�

�
�
div
���I � ph

�
�
�
grad
f�h � 
f�h��grad� �

�
�
div
�� � 
���I�� ph

�
�
�
grad�� ph�

�
� 
�������

We use 
������ to attack
�
div
���I � ph

�
and get

�
div
���I � ph

�
�
�
grad�h�grad
���

I
�

�
�
grad�h�grad
���

�
�
�
grad�h�grad�
���

I � ���
�

�
�
grad
��h��grad�

�
�
�
R
�
�����h

�
�
�
grad�h�grad�
���

I � ���
�


��
�
gradf�h�grad� ��M�� 
�������



��

Combining 
������� and 
�������� we get

�
div�� 
fph � � ��

div
w� � 
w��I�� ph
�
�
�
gradw� ph�

�

�
�
grad
f�h�grad� ��M�

��
�
grad
f�h�grad� ��M� �M�� 
�������

Then applying the superapproximation property� the Schwartz inequality� and 
�������

we arrive at

jM� j� C
�
k�hk��G� � h k�hk��G�

�
k�k��Gh�

jM� j� C
�
h kphk��G� � kphk���G�

�
k�k��Gh�

j
�
grad
f�h�grad� � j� k
f�hk��Ghk�k��Gh�

Combining 
�������� 
������� � 
�������� and 
������� with the above three inequalities�

we obtain

k
fphk��Gh � C
�
h k�hk��G� � k�hk��G� � h kphk��G� � kphk���G� � k
f�hk��Gh

�
�


�����	�

Substituting 
�����	� into 
�������� we obtain

k
f�hk��Gh � C
�
h k�hk��G� � k�hk��G� � h kphk��G� � kphk���G�

�
� 
�������

Thus� substituting 
������� back into 
�����	�� we �nd that k
fphk��Gh is also bounded

above by the right hand side of 
�������� Therefore� from 
������ we obtain

k�hk��G�
� kphk��G�

� C
�
h k�hk��G� � k�hk��G� � h kphk��G� � kphk���G�

�
�

Applying Theorem ����� for the case that � � p � 	 and G� in place of G�� we �nally

arrive at

k�hk��G�
� kphk��G�

� C
�
h k�hk��G � k�hk�t�G � h kphk��G � kphk�t���G

�
� �



�	

Lemma ������ Suppose the conditions of Lemma ����� are satis�ed� Then

k�hk��G�
� kphk��G�

� C
�
k�hk�t�G � kphk�t���G

�
� 
�������

Proof� Let G� b G� b ��� b Gt�� � G be concentric disks and apply Lemma �����

to each pair Gj b Gj�� to get

k�hk��Gj � kphk��Gj

� C
�
hk�hk��Gj�� � hkphk��Gj�� � k�hk�t�Gj�� � kphk�t���Gj��

�
�

�������

Combining these we obtain

k�hk��G�
� kphk��G�

� C
�
ht��k�hk��Gt�� � ht��kphk��Gt��

� k�hk�t�Gt�� � kphk�t���Gt��

�
�


�������

While by A�� we can �nd Gh� Gt�� b Gh b Gt�� � G� such that

ht��k�hk��Gt�� � ht��k�hk��Gh � C k�hk�t�Gh � C k�hk�t�G�

ht��kphk��Gt�� � ht��kphk��Gh � C kphk�t���Gh � C kphk�t���G�

�������

Thus inequality 
������� follows from 
�������� 
�������� and 
�������� �

We now state the main result of the chapter�

Theorem ������ Let �� b �� b � and suppose that 
�� p� � H� 	 L� 	the exact

solution
 satis�es �j�� � H
m
��� and pj�� � H

m��
��� for some integer m � 	�

Suppose that 
�h� ph� � V h	Wh 	the �nite element solution
 is given so that 
������

and 
������ hold� Let t be a nonnegative integer� Then there exists a constant C

depending only on ��� ��� and t� such that

k�� �hks��� � kp� phks����� � C
�
hr��sk�km��� � hr��skpkm�����

� k�� �hk�t��� � kp� phk�t�����
�
� s � 	� �


�������



��

with r� � min
k� � ��m�� r� � min
k� � ��m�� and k�� k� as in A��

The theorem will follow easily from a slightly more localized version�

Theorem ������ Suppose the hypotheses of Theorem ����� are ful�lled and� in

addition� that �� � G� and �� � G� are concentric disks� Then the conclusion of

the theorem holds�

Proof� Let G�� b G� be further concentric disks strictly contained between G� and

G and let Gh be a domain strictly contained between G� and G for which properties

A� and A� hold� Thus

G� b G�� b G� b Gh b G b ��

Take � � C�� 
G�� identically � on G�� and set e� � ��� ep � �p� Let 
 e� � 
V h
G��


ep �Wh
G� be de�ned by

�
grad
 e� � 
 e���grad� ���div�� ep� 
ep � � 	 for all � � 
V h
Gh��


��������
div
 e� � 
 e��� q � � 	 for all q �Wh
Gh��


�������

together with
R
Gh


ep �
R
Gh

ep� Then using Lemma ����� and A� we have

k e�� 
 e�k��Gh � kep� 
epk��Gh

� C
�

inf
���V h�Gh�

k e� ��k��Gh � inf
q�Wh�Gh�

kep � qk��Gh

�
� C

�
hr���k�km�Gh � hr���kpkm���Gh

�
� 
�������

Let us now estimate k���hk��G�
and kp�phk��G�

� First� the triangle inequality



��

gives us

k�� �hk��G�
� kp� phk��G�

� k� � 
 e�k��G�
� kp� 
epk��G�

� k
 e� ��hk��G�
� k
ep� phk��G�

� k e� � 
 e�k��Gh � kep� 
epk��Gh � k
 e� � �hk��G�
� k
ep � phk��G�

� C
�
hr���k�km�Gh � hr���kpkm���Gh

�
� k
 e� ��hk��G�

� k
ep� phk��G�
�


�����	�

From 
�������� 
������� and 
������� 
������ we �nd

�
grad
�h � 
 e���grad� �� �div�� ph � 
ep � � 	 for all � � 
V h
G

�
����

div
�h � 
 e��� q � � 	 for all q � 
Wh
G
�
���

We next apply Lemma ����� to �h � 
 e� and ph � 
ep with G replaced by G��� Then

it follows from 
������� that

k�h � 
 e�k��G�
� kph � 
epk��G�

� C
�
k�h � 
 e�k�t�G�� � kph � 
epk�t���G�� �

� C
�
k� � �hk�t�G�� � kp� phk�t���G�� � k� � 
 e�k�t�G�� � kp� 
epk�t���G�� �

� C
�
k�� �hk�t�G � kp� phk�t���G � ke�� 
 e�k��Gh � kep� 
epk��Gh

�
�

In the light of 
�����	�� 
�������� and the above inequality� we have

k� � �hk��G�
� kp� phk��G�

�
�
hr���k�km�G � hr���kpkm���G

� k� ��hk�t�G � kp� phk�t���G� �

�������

Thus� we have proved the desired result for s � �� For s � 	� we just apply

Theorem ����� to the disks G� and G� and get

k� ��hk��G�
� kp� phk���G�

� C 
hk�� �hk��G� � hkp� phk��G�

� k� � �hk�t�G� � kp� phk�t���G�� �



��

Then� applying 
������� with G� replaced by G�� we obtain the desired result

k�� �hk��G�
� kp� phk���G�

� C
�
hr�k�km�G � hr�kpkm���G

� k�� �hk�t�G � kp� phk�t���G
�
� �

Proof of Theorem ������ The argument here is same as in Theorem ��� of ����� Let

d � d��� where d� � dist
 ���� ����� Cover ��� with a �nite number of disks G�
xi��

i � �� �� � � � �m centered at xi � ��� with diamG�
xi� � d� Let G
xi�� i � �� �� � � � � k

be corresponding concentric disks with diamG
xi� � �d� Applying Theorem ������

we have

k� ��hks�G��xi� � kp� phks���G��xi� � Ci

�
hr��sk�km�G�xi� � hr��skpkm���G�xi�

� k�� �hk�t�G�xi� � kp� phk�t���G�xi�
�
�


�������

Then the inequality 
������� follows by summing 
������� for every i� �

��	 An Example Application

As an example� we apply our general result to the Stokes system when the domain

is a non�convex polygon� in which case the �nite element approximation does not

achieve the optimal convergence rate in the energy norm on the whole domain� due

to the boundary singularity of the exact solution�

Assume that � is a non�convex polygon� Then it is known that the solution of

the Stokes system satis�es

� �Hs�� �H�
� � p � Hs�

� �H�
���� p � H�
���� if �� b ��

for s � s�� where s� is a constant which is determined by the largest interior angle

of � 
cf� ������ For a non�convex polygonal domain we have ��� � s� � �� The



��

value of s� for various angles have been tabulated in ����� For example� for an

L�shaped domain� s� � 	�����

The MINI element was introduced by Arnold� Brezzi and Fortin in ��� as a stable

Stokes element with few degrees of freedom� Here the velocity is approximated

by the space of continuous piecewise linear functions and bubble functions and the

pressure is approximated by the space of continuous piecewise linear functions only�

Globally we have

k�� �hk� � kp� phk� � Chs
�
k�ks�� � kpks

�
�

which re$ects a loss of accuracy due to the singularity of the solutions�

In order to apply Theorem ������ we note that a standard duality argument as in

��� gives us

k�� �hk� � kp� phk�� � Ch�skF k��

Hence� according to Theorem ������ for �� b �� b �� we have

k�� �hk���� � kp� phk���� � C
�
hk�k���� � hkpk���� � h�s kF k�

�
�

Since �s � �� the �nite element approximation achieves the optimal order of conver�

gence rate in the energy norm in interior subdomains�
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CHAPTER �

INTERIOR ESTIMATES FOR

A FINITE ELEMENT METHOD FOR

THE REISSNER
MINDLIN PLATE MODEL

��� Introduction

The Reissner�Mindlin plate model describes deformation of a plate with small to

moderate thickness subject to a transverse load� The �nite element method for this

model was studied extensively 
cf� ����� ��	�� and references therein� and it has been

known for a long time that a direct application of standard �nite element methods

usually leads to unreasonly small solution� as the plate thickness approaches zero�

This is usually called the !locking" phenomenon of the �nite element method for the

Reissner�Mindlin plate ����� ��	��

The reason behind the locking phenomenon is well known� as the plate thickness

becomes very small� the numerical scheme tries to enforce a discrete version of

the Kircho� constraint on the displacement and the rotation �ber normal to the

midplane� If the �nite element spaces for those two quantities are not chosen wisely�

then� together with boundary conditions� the numerical solution reduces to the trivial

solution�

Another di�culty relating to the Reissner�Mindlin plate model is that the solution

possesses boundary layers� having the plate thickness as the singular parameter� As

usual� the strength of the boundary layer is sensitive to the boundary condition� The

structure of the dependence of the solution on the plate thickness was analyzed in

detail by Arnold and Falk ���� ����



��

The purpose of this chapter is to obtain the interior error estimate for the Arnold�

Falk element ��� for the Reissner�Mindlin plate model� This element is the �rst to

achieve a locking�free �rst order 
optimal� convergence for the Reissner�Mindlin plate


under the hard clamped boundary condition�� However� it does not retain the same

order of convergence rate for the plate under the soft simply supported boundary

condition� due to a stronger boundary layer e�ect� By applying the interior estimate

to the soft simply supported plate� we are able to obtain the interior convergence

rate of the Arnold�Falk element and show that it still possesses 
almost� �rst order

convergence rate in the region away from the boundary�

The construction of the Arnold�Falk element is based on an equivalence between

the plate equations and an uncoupled system of two Poisson equations plus a Stokes�

like system ���� Arnold and Falk used the nonconforming linear element for the

Poisson equation and the MINI element for the Stokes�like system� So the 
global

or interior� analysis of the Arnold�Falk element consists of two parts� one for the

nonconforming method for the Poisson equation and another for the MINI element

for the Stokes�like system� Recall that in Chapter � we obtained interior estimates for

the nonconforming element for the Poisson equation� So the task here is essentially

to analyze the interior error estimate of the MINI element for the Stokes�like system�

The organization of chapter is as follows� Section ��� presents the Reissner�

Mindlin plate equations and its reformulation under the Helmholtz decomposition

for the shear stress� The interior regularity of the solution of the singularly per�

turbed system is studied in section ���� The Arnold�Falk element is introduced in

section ���� Section ��� is devoted to the interior duality analysis of the variant of

the Stokes system� In section ��� we �rst obtain the interior estimate of the MINI

element 
Theorem ������ for the Stokes�like system with perturbation and then use

it to get the interior estimate of the Arnold�Falk element for the Reissner�Mindlin



��

plate model 
Theorem ������� which is the main result of the chapter� As an appli�

cation of the general theory we develop� we consider the soft simply supported plate

in section ���� We will show that globally� the Arnold�Falk element only achieves


almost� h��� order convergence for the rotation 
Theorem ������� but away from

the boundary layer� 
almost� optimal order convergence rate can be obtained 
The�

orem ������� Finally� numerical results are shown in section ��� which con�rm the

theoretical predictions�

��� Notations and the Reissner�Mindlin Plate Model

The following operators are standard�

div

�
t�� t��
t�� t��

�
�

�
�t����x � �t����y

�t����x � �t����y

�
�

curl p �

�
��p��y

�p��x

�
� rot� � �����y � �����x�

Let � denote the region in R� occupied by the midsection of the plate� and

denote by w and � the transverse displacement of � and the rotation of the �bers

normal to �� respectively� Under the soft simply supported boundary condition�

the Reissner�Mindlin plate model determines 
w��� as the unique solution to the

following variational problem�

Find 
w��� � 
H� 	H� such that

a
������t��
��gradw���grad	� � 
g� 	� for all 
	��� � 
H�	H�� 
������

Here g is the scaled transverse loading function� t the plate thickness�

� � E���
� � �� with E the Young�s modulus� � the Poisson ratio� and � the



��

shear correction factor� The bilinear form a is

a
���� �
E

��
�� ���

Z
�

�
���
�x

� �
���
�y

�
���
�x

�

�
�
���
�x

�
���
�y

�
���
�y

�
�� �

�

�
���
�y

�
���
�x

��
���
�y

�
���
�x

�

�

Z
�

CE
�� � E
���

Here� E
�� is the symmetric part of the gradient of � and C is a fourth order tensor

de�ned by the bilinear form a�

Following Brezzi and Fortin ����� equation 
������ can be reformulated by using

the Helmholtz Theorem to decompose the shear strain vector

�t��
gradw � �� � grad r � curl p� 
������

with 
r� p� � 
H� 	 #H��

Equation 
������ now becomes

Find 
r��� p� w� � 
H� 	H� 	 #H� 	 
H� such that


grad r�grad	� � 
g� 	� for all 	 � 
H�� 
�������
CE
��� E 
��

�
�
�
curl p��

�
�
�
grad r��

�
for all � �H�� 
������

�
�� curl q� � ���t�
curl p� curl q� � 	 for all q � #H�� 
������


gradw�grad s� � 
� � ���t� grad r�grad s� for all s � 
H�� 
������

Obviously the function r in 
������ is independent of t and the functions �� p� and

w are not� It has been shown in ��� that the transverse displacement w does not

su�er from the boundary layer e�ect under all boundary conditions� However� the

regularity of solution 
�� p� for system 
������ and 
������ depends on the boundary

condition imposed on the plate� For example� under the hard clamped boundary
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condition 
then� � is to be found in space 
H�� rather than H��� the following holds

���

k�k� � kpk� � Ckgk��

with the constant C independent of the plate thickness t� This guarantees the MINI

element to achieve a locking free �rst order convergence rate for the system 
������

and 
������ ����

But the above estimate does not hold for the soft simply supported plate� In this

case� one can only expect that the H��� norm of function � and the H��� norm of

function p to be bounded above� independent of the small parameter t ���� This is

obviously not enough for the �nite element method to achieve �rst order convergence

rate� It is also easy to see that a complete understanding of the dependence of the

regularity of the solution on the small parameter t is of crucial importance for the

convergence analysis of the �nite element method� However� for the purpose of

interior estimates� we need only know the inteiror regularity of the solution of the

Stokes�like system� This will be given in the next section�

In the following� we introduce some notations that will be used in the interior

estimate�

Let G be an open subset of �� � � C�� 
G�� and s an integer� For � � Hs
G��

� �H�s��
G�� P � Hs
G�� and Q � H�s��
G�� de�ne

R
������ �
�
CE
���� E 
��

�
�
�
CE
��� E
���

�
and

R�
�
��P�Q

�
�
�
curl
�P �� curlQ

�
�
�
curlP� curl
�Q�

�
�

Then

jR
�
�����

�
� Ck�kt�Gk�k�t���G 
������
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and

jR�
�
��P�Q

�
� CkPkt�GkQk�t���G� 
������

for non�negative integers t � s�

��� An Interior Regularity Result

In this section we present an interior regularity result for the solution of the

singularly perturbed Stokes�like system under the homogeneous Dirichlet boundary

condition� We will show that the regularity of the solution in the interior region

is not a�ected by the boundary layer� This will be used in section ��� for the the

interior duality analysis of the MINI element�

The proof basically follows that in ��� Theorem ���� for proving the regularity of

the solution of the hard�clamped plate and uses the standard approach for analyzing

interior regularities for solutions of elliptic equations�

Theorem ������ Let F �Hs
G� and K � Hs��
G� � #L�
G�� where integer s � 	

and G is a disk� Then there exists a unique solution 
�� P � �Hs��
G�� 
H�
G�	

Hs��
G� � #L�
G� such that


CE
��� E
��� � 
curl P��� � 
��F � for all � � 
H�
G�� 
������

�
�� curlQ� � ���t�
curlQ� curl P � � 
Q�K� for all Q � H�
G�� 
������

Moreover�

k�k��G � kPk��G � tkPk��G � t�kPk��G � C
�
kF k��G � kKk��G

�
� 
������

k�ks���G�
� kPks���G�

� tkPks���G�
� t�kPks���G�

� C
�
kF ks�G � kKks���G

�
�


������

for an arbitrary disk G� b G�
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Proof� The inequality

k�k��G � kPk��G � tkPk��G � C
�
kF k��G � kKk��G

�
is proved in ��� for K � 	 when a
���� is simpli�ed into 
grad��grad��� i�e��


CE
��� E
��� is replaced by 
grad��grad�� in 
������� By checking the proof

there and using the fact that bilinear form
�
CE
��� E
��

�
is coercive on space 
H��

we can conclude that the same estimate still applies to the current case� What we

will do next is to follow the same proof to show that the estimate is still true for

K �� 	� At the same time� we will prove that t�kPk��G is also bounded above by the

right hand side of 
�������

De�ne 
��� P �� � 
H�
G� 	 #L�
G� as the solution of 
������ and 
������ with t

set equal to zero�


CE
��� E
���� � 
P �� rot�� � 
��F � for all � � 
H�
G��

������

�
rot��� Q� � 
Q�K� for all Q � L�
G��

������

This is a Stokes like system which admits a unique solution� Moreover� the standard

regularity theory gives ��	�

k��k��G � kP �k��G � C
�
kF k��G � kKk��G

�
� 
������

From 
������� 
������� 
������� and 
������� we get�
CE
� ����� E 
��

�
�
�
curl
P � P ����

�
� 	 for all � � 
H�
G���

����� curlQ
�
� ���t�

�
curlP� curlQ

�
� 	 for all Q � H�
G��

which imply�
CE
� ����� E
��

�
�
�
curl
P � P ����

�
�
�
� ���� curlQ

�
� ���t�

�
curl
P � P ��� curlQ

�
� ����t�

�
curlP �� curlQ

�
for all 
�� Q� � 
H�
G� 	H�
G��
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Choosing � � ���� and Q � P � P �� we obtain

k����k���G � t�kP � P �k���G � Ct�kP �k��GkP � P �k��G�

It easily follows that

k����k��G � tkP � P �k��G � CtkP �k��G � Ct
kF k��G � kKk��G�� 
������

Hence also

kPk��G � C
kF k��G � kKk��G��

Applying standard estimates for second�order elliptic problems to 
������� we further

obtain

k�k��G � C
kPk��G � kF k��G� � C
kF k��G � kKk��G�� 
������

Now from 
������ and the de�nition of �� 
i�e�� 
������� we get

���t�
curlP� curlQ� � �
�� curlQ�� 
K�Q� � 
�� ��� curlQ�

for all Q � H�
G��

Thus P is the weak solution of the boundary value problem

��P � �t�� rot
�� ��� in G�
�P

�n
� 	 on �G�

and by standard a priori estimates

kPk��G � Ct��k����k��G � Ct��
kF k��G � kKk��� 
�����	�

and

kPk��G � Ct��k����k��G � Ct��
k�k��G�k��k��G� � Ct��
kF k��G�kKk��G��


�������
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where we apply 
������ in deriving 
�����	�� and 
������� 
������ in deriving 
��������

This completes the proof of 
�������

In order to prove 
������� we take a disk G� such that G� b G� b G� Find a

cut�o� function � � C�� 
G�� with � � � on G�� We will use the notation � � Dx or

Dy� say for example� P � can be either Px or Py� Then� by di�erentiation rules� it is

easy to obtain

�div CE
����� curl
�P �� � �F � � J
������ P � curl�

�� F�� 
�������

� rot
���� � ���t��
�P �� � �K � � curl� ��� � ���t���P �

� ����t� grad� � gradP �

�� K�� 
�������

where

J
����� �� div CE
����� � div CE
����

with

jJ
�����j � Ck��k��G�
�

Obviously� Z
G�

K� �

Z
G�

�
� rot
���� � ���t��
�P ��

�
� �

Z
�G�

�
��� � s � ���t��
�P ����n

�
� 	�

because both � and grad� vanish on �G�� Moreover� we see that 
���� �P ��

satis�es


CE
��� E
������ 
curl
�P ����� � 
��F�� for all � � 
H�
G���

�������

�
���� curlQ� � ���t�
curlQ� curl
�P ��� � 
Q�K�� for all Q � H�
G���

�������
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Thus� 
������ with 
�� P � replaced by 
���� �P ��� G replaced by G�� implies 
 for


� �
R
G�

�P ��

k���k��G�
� k�P � � 
�k��G�

� tk�P � � 
�k��G�
� t�k�P � � 
�k��G�

� C
�
k�F � � J
������ P � curl�k��G�

� k�K � � curl� ��� � ���t���P � � ����t� grad� � gradP �k��G�

�
� C

�
kF k��G � kKk��G

�
�

Since function � � � on G�� inequality 
������ is proved for s � �� Now we are

going to prove 
������ for s � ��

The notation �� now means either Dxx� or Dxy� or Dyy� Applying di�erentiation

rules� we can obtain 
for the same � as in before�

�div CE
������ curl
�P ��� � �F �� � J
������� P �� curl�

�� F�� 
�������

� rot
����� � ���t��
�P ��� � �K �� � curl� ����

� ���t���P �� � ����t� grad� � gradP ��

�� K�� 
�������

with
R
G�

K� � 	� Then� inequality 
������� with 
�� P � replaced by 
����� �P ��� and

G replaced by G�� implies 
for 
� �
R
G�

�P ���

k����k��G�
� k�P �� � 
�k��G�

� tk�P �� � 
�k��G�
� t�k�P �� � 
�k��G�

� C
�
k�F �� � J
������� P �� curl�k��G�

� k�K �� � curl� ���� � ���t���P �� � ����t� grad� � gradP ��k��G�

�
�
�
kF k��G�

� kKk��G�
� k�k��G�

� kPk��G�
� tkPk��G�

� t�kPk��G�

�
� C

�
kF k��G � kKk��G

�
�
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where in the last step we use 
������ with s � � and G� replaced by G�� Since � � �

on G�� so inequality 
������ is proved for s � �� Same arguments� together with an

induction on s could be used to prove 
������ for s � �� �

���� The Arnold
Falk Element

Let Th denote a family of quasi�uniform triangulations of � and Pk
T � the set of

polynomials of degree not greater than k � 	 restricted to T � an arbitrary element

of Th� Consider the following �nite element spaces

Qh � fq � L� � qjT � P�
T �� for all T � Thg�

Ph � fp � H� � pjT � P�
T �� for all T � Thg�

#Ph � Ph � #L��

Wh � fw � L� � wjT � P�
T �� for all T � Th� and w is continuous at midpoints

of element edgesg�

�Wh � fw � L� � wjT � P�
T �� for all T � Th� and w is continuous at midpoints

of element edges and vanishes at midpoints of boundary edgesg

V h � f� �H� � �jT � �P�
T � 
B�
T ���� for all T � Thg�

In the above� B�
T � is the cubic bubble function on T � For �� � �� let

V h
��� � f�j�� j � � V h g� 
V h
��� � f� � V h j supp� � ���g�

Ph
��� � fqj�� j q � Phg� 
Ph
��� � fq � Ph j suppq � ���g�

Wh
��� � fpj�� j p �Whg� 
Wh
��� � fp � Wh j suppp � ���g�

Since Th is quasi�uniform� so the approximation property� superapproximation prop�

erty� and the inverse inequality property introduced in section ��� hold for the above

�nite element spaces� We will not repeat them here�
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Let P �
h be the local L��projection operator onto Qh� Then the �nite element in

the primitive variables of Arnold�Falk 
for the soft simply supported plate� reads as

follows�

Find 
wh��h� � �Wh 	 V h� such that

�
C E
�h�� E
��

�
� �t��

�
P �
h�h � gradh wh�� � gradh 	

�
�
�
g� 	

�
� 
������

for all 
	��� � �Wh 	 V h� Then� under the discrete Helmhotz theorem of Arnold

and Falk ���

�Qh�
� � gradh

�Wh 
 curlPh� 
������

the discrete shear vector can be expressed as

� � �t��
gradh wh � P �
h�h� � gradh rh � curl ph� 
rh� ph� � �Wh 	 #Ph� 
������

Thus� equation 
������ can be written equivalently in the form�

Find 
rh��h� ph� wh� � �Wh 	V h 	 #Ph 	 �Wh such that


gradh rh�gradh 	� � 
g� 	� for all 	 � �Wh� 
������


C E
�h�� E
��� � 
curl ph��� � 
gradh rh��� for all � � V h� 
������

�
�h� curl q� � ���t�
curl ph� curl q� � 	 for all q � #Ph� 
������


gradh wh�gradh s� � 
�h � ���t� gradh rh�gradh s� � for all s � �Wh�

������

The function rh is uniquely determined by 
������� Since the MINI element is

stable ���� i�e�� there is a constant C� such that

sup
��Vh
� �
�


curl p���

k�k�
� sup
���V h
� �
�


curl p���

k�k�
� Ckpk��



��

for all p � #Ph� so 
�h� ph� is uniquely de�ned by equations 
������ and 
������� and

thereafter� wh by equation 
�������

It is important to note that system 
�������
������ is for the purpose of conver�

gence analysis only� Equation 
������ is the one used for the actual computation�

Our interior analysis of the Arnold�Falk element will also be based on the decou�

pled system of Poisson�s equations and the Stokes�like equations� not the original

Mindlin�Reissner plate system 
i�e�� 
�������� Therefore� the interior estimate of the

Arnold�Falk element consists of obtaining the interior estimate for the nonconform�

ing element for the Poisson equation and that for the MINI element for the perturbed

system 
������ and 
������� Since the �rst part is done in Chapter �� we need only

concentrate on the Stokes�like system here�

Before we turn to the next section� we introduce a result on the convergence of

the MINI element for the perturbed Stokes�like system�

Lemma ������ Let Gh a union of triangles� Then for � � 
H�
Gh�� p � H�
Gh��

and F � L�
Gh�� there exist unique functions 
� � 
V h
Gh� and 
p � Ph
Gh� withR
Gh

p �
R
Gh


p� such that

�
CE
� � 
��� E 
��

�
�
�
curl
p� 
p���

�
� 
F ��� for all � � 
V h
Gh��

�
�
� � 
�� curl q

�
� ���t�

�
curl
p � 
p�� curl q

�
� 	 for all q � Ph
Gh��

Moreover�

k�� 
�k��Gh � kp� 
pk��Gh � tk curl
p� 
p�k��Gh

� C
�

inf
q�Ph�Gh�


kp� qk��Gh � tk curl
p � q�k��Gh�

� inf
���V h�Gh�

k� ��k��Gh � kF k��Gh

�
� 
������



��

Proof� The unique existence of solution 

�� 
p� follows from the stability prop�

erty of the MINI element and Brezzi�s Theorem ���� � The estimate 
������ can be

obtained by following the proof in ��� Theorem ����� �

��� Interior Duality Estimates

Let 
w��� � H� 	 H� be some solution to the Reissner�Mindlin plate equa�

tions and 
r� p� � H� 	H� be determined by the Helmholtz decomposition 
�������

Regardless of the boundary conditions used to specify the particular solution�


r��� p� w� satis�es


grad r�grad	� � 
g� 	� for all 	 � 
H���
CE
��� E 
��

�
�
�
curl p��

�
�
�
grad r��

�
for all � � 
H��

�
�� curl q� � ���t�
curl p� curl q� � 	 for all q � 
H��


gradw�grad s� � 
� � ���t� grad r�grad s� for all s � 
H��

Similarly� regardless of the particular boundary conditions� the �nite element solu�

tions 
rh��h� ph� wh� �Wh 	V h 	 Ph 	Wh satis�es


grad rh�grad	� � 
g� 	� for all 	 � 
Wh��
CE
�h�� E
��

�
�
�
curl ph��

�
�
�
gradh rh��

�
for all � � 
V h�

�
�h� curl q� � ���t�
curl ph� curl q� � 	 for all q � 
Ph�


gradwh�gradh s� � 
�h � ���t� grad rh�gradh s� for all s � 
Wh�



��

Then� together with integration by parts� we obtain


gradh
r � rh��gradh 	� �
X
T�Th

Z
�T

�u

�n
v for all 	 � 
Wh� 
������


C E
� � �h�� E 
���� 
curl
p � ph���� � 
gradh
r � rh����

for all � � 
V h� 
������

� 
� � �h� curl q� � ���t�
curl
p � ph�� curl q� � 	 for all q � 
Ph�

������


gradh
w �wh��gradh s� � 
�� �h � ���t� gradh
r � rh��gradh s�

�
X
T�Th

Z
�T


� � nT � ���t�
�r

�n
�s for all s � 
Wh� 
������

As usual� the interior error analysis starts from these interior variational discretiza�

tion equations� They are independent of the boundary conditions�

The interior estimate for r � rh is done in Chapter � 
Theorem ������� However�

we cannot use Theorem ����� directly to obtain the interior estimate for w � wh�

This is caused by the di�erence between 
������ and 
������� But we can still use

the same idea 
as in the proof of Theorem ������ to get the interior estimate for


w � wh�� This will be done in Theorem ������

So it is only necessary to obtain interior estimates for 
� � �h� p � ph� which

satisfy 
������ and 
������� These will be the focus of this and next sections� What

we will do is to use the same two�step approach 
the interior duality estimate and

the interior error estimate� as for the Stokes equations in Chapter �� to obtain the

interior estimate for the MINI element�

Consider functions � �H� and p � H� that satisfy the variational equations


CE
��� E 
��� � 
curl p��� � 	 for all � � 
V h�

������

�
�� curl q� � ���t�
curl q� curl p� � 	 for all q � 
Ph� 
������



�	

We have the following result�

Theorem ������ Assume � � H� and p � H� satisfy 
������ and 
������� Let

G� b G b � be two concentric disks� Then for any integer � � 	� the following

holds

k�k��G�
�kpk���G�

� C
hk�k��G�hkpk��G�htk curl pk��G�k�k���G�kpk�����G��


������

Proof� Find a diskG� such that G� b G� b G and construct a function � � C�� 
G��

with � � � on G�� Then� for any non�negative integer s�

k�k�s�G�
� k��k�s�G � sup

F��Hs�G�
F �
�


���F �

kF ks�G
� 
������

To estimate the right hand side of 
������� we de�ne 
�� P � through 
������ and


������ with K � 	� Then take � � �� in 
������ to obtain

�
���F

�
�
�
CE
���� E
��

�
�
�
��� curlP

�
�
�
CE
��� E 
���

�
�
�
�� curl
�P �

�
�R
������ �

�
curl��P�

�
�
��
CE
��� E 
���I

�
�
�
�� curl
�P �

�

�
��
CE
��� E ���� 
���I �

�
�R
������ �

�
curl��P�

�

�� A� �B�� 
������

Here the superscript I is the approximation operator� Chosing � to be 
���I in



��


������ we get

A� �
�
curl p� 
���I

�
�
�
�� curl
�P �

�
�
�
curl p� ��

�
�
�
�� curl
�P �

�
�
�
curl p� 
���I � ��

�
�
��
curl
�p���

�
�
�
�� curl
�P �

�

�
��
curl�� p�

�
�
�
curl p� 
���I � ��

�

�� A� �B�� 
�����	�

Taking Q � �p in 
������ 
with K � 	�� we obtain

A� � ����t�
�
curl
�p�� curl P

�
�
�
�� curl
�P �

�
� ����t�

�
curl p� curl
�P �

�
�
�
�� curl
�P �

�
� ���t�R�
��P� p�

� �
�
���t�

�
curl p� curl
�P �I

�
�
�
�� curl
�P �

�

�
�
���t�

�
curl p� curl�
�P �I � �P �

�
� ���t�R�
��P� p�



�� A� �B��


�������

Substituting q � 
�P �I in 
������� we have

A� �
�
�� curl
�P �I

�
�
�
�� curl
�P �

�
�
�
�� curl�
�P �I � �P �

�
� 
�������

Combining 
������ through 
�������� we get

�
���F

�
� B� �B� �B� �A�� 
�������

Then applying the approximation property� 
������� 
������� integration by parts� and

the Schwarz inequality� we obtain

j B� j� C
�
hk�k��G�

k�k��G�
� k�k�s���G�


k�ks���G�
� kPks���G�

�
�
�

j B� j� C
�
hkpk��G�

k�k��G�
� kpk�s���G�

k�ks���G�

�
�

j B� j� C
�
ht�k curl pk��G�

kPk��G�
� t�kpk�s���G�

kPks���G�

�
�

j A� j� Chk�k��G�
kPk��G�

�


�������



��

First combining 
�������� 
�������� and 
������� then applying 
������ and 
�������

we obtain

k�k�s�G�
� C

�
hk�k��G � hkpk��G � k�k�s���G � kpk�s���G � htk curl pk��G

�
�


�������

To estimate kpk�s���G�
� �rst �nd a function 
 � C�� 
G�� with

R
G

 � �� Then�

kpk�s���G�
� k�pk�s���G � sup

g��Hs���G�
g �
�


�p� g�

kgks���G
� 
�������

Note that


�p� g� � 
�p� g � 


Z
G

g� � 
�p� 


Z
G

g� 
�������

and

j 
�p� 


Z
G

g� j� Ckpk�s���G � kgk��G� 
�������

In order to estimate the �rst term on the right hand side of 
�������� we de�ne 
�� P �

through 
������ and 
������ with F � 	� K � g � 

R
G
g� Taking Q � �p in 
�������

we have

�
�p� g � 


Z
G

g
�

� �
�
curl
�p���

�
� ���t�

�
curl
�p�� curl P

�
� �

�
curl p� ��

�
� ���t�

�
curl p� curl
�P �

�
�
�
curl�� p�

�
� ���t�R�
��P� p�

� �
��
curl p� 
���I

�
� ���t�

�
curl p� curl
�P �I

�

�
��
curl p� 
���I � ��

�
� ���t�

�
curl p� curl�
�P �I � �P �

�
�
�
curl�� p�

�
� ���t�R�
��P� p�



�� C� �D�� 
�������



��

Applying 
������ and 
������ with � � 
���I and q � 
�P �I � respectively� we get

C� � �
�
CE
��� E 
���I

�
�
�
�� curl
�P �I

�
� �

�
CE
��� E 
���

�
�
�
�� curl
�P �I

�
�
�
CE
��� E �w� � 
���I �

�
� �

��
CE
���� E 
��

�
�
�
�� curl
�P �I

�

�
��
CE
��� E ���� 
���I �

�
�R
������



�� C� �D�� 
�����	�

Taking � � �� in 
������ 
with F � 	�� we obtain

C� � �
�
��� curl P

�
�
�
�� curl
�P �I

�
�
�
�� curl�
�P �I ��P �

�
�
�
curl��P�

�
�


�������

So far� we have


�p� g � 


Z
g� � D� �D� �C��

Then applying 
������� 
������� integration by parts� the approximation property� and

Schwarz inequality� we arrive at

j D� j� C
�
hkpk��G�

k�k��G�
� ht�k curl pk��GkPk��G�

� kpk�s���Gk�ks���G�
� t�kpk�s���GkPks���G�

�
�

j D� j� C
�
hk�k��Gk�k��G�

� k�k�s���G�
k�ks���G�

�
�

j C� j� C
�
hk�k��G�

kPk��G�
� k�k�s���G�

kPks���G�

�
�


�������

Combining 
������� through 
�������� together with 
������ and 
������� we obtain

kpk�s���G�
� C

�
hk�k��G � hkpk��G � k�k�s���G � kpk�s���G � htk curl pk��G

�
�


�������

Finally� 
������ can be obtained by the standard iteration method 
cf� section ����

section ����� �



��

��	 Interior Error Estimates

In this section we �rst obtain the interior estimate of the MINI element for the

Stokes�like equations with perturbation� then we use it to derive the interior estimate

for the Arnold�Falk element 
Theorem ������� To be speci�c� Lemma ����� gives a

bound on functions satisfying a homogeneous discrete Stokes�like equations� It is

then used with Theorem ����� to get the interior estimate for the MINI element for

the Stokes�like system 
Theorem ������� By combining this result with the interior

estimate of the nonconforming element 
Theorem ������� we obtain the interior es�

timate of the Arnold�Falk element 
Theorem ������� This is the main result of this

chapter�

Lemma ��	��� Suppose 
�h� ph� � V h 	 Ph is such that


CE
�h�� E
��� � 
curl ph��� � 	 for all � � 
V h�

������

�
�h� curl q�� ���t�
curl ph� curl q� � 	 for all q � 
Ph�

������

Then� for any two concentric disks G� b G b �� h small enough� � and � any

nonnegative integers� we have

k�hk��G�
� kphk��G�

� tk curl phk��G�

� C
�
t�
k�hk��G � tkphk��G� � k�hk���G � kphk�����G

�
�


������

where C � C
�� ��G�� G��

Proof� Let G� b G� b Gh b G� b G with G� a concentric disk and Gh a union of

elements� Construct � � C�� 
G�� with � 
 � onG�� Set f�h � ��h�fph � �ph� Then



��

f�h � 
H�
Gh�� fph � H�
Gh�� By Lemma ������ 
f�h � 
V h
Gh� and 
fph � Ph
Gh�

can be uniquely determined by the equations

�
CE
f�h � 
f�h�� E
�� � � �

curl
fph � 
fph��� � � 	 for all � � 
V h
Gh��

������

�
� f�h � 
f�h� curl q �� ���t�

�
curl
fph � 
fph�� curl q � � 	 for all q � Ph
Gh��


������

with
R
Gh
fph �

R
Gh


fph� Moreover� we have

kf�h � 
f�hk��Gh � kfph � 
fphk��Gh � tk curl
fph � 
fph�k��Gh

� C
�

inf
���V h�Gh�

kf�h ��k��Gh � inf
q�Ph�Gh�


kfph � qk��Gh � tk curl
fph � q�k��Gh�
�

� Ch
�
k�hk��Gh � kphk��Gh � tkphk��Gh

�
� 
������

where we have used the superapproximation property 
cf� section ���� in the last

step� By the triangle inequality

k�hk��G�
� kphk��G�

� tk curl phk��G�

� kf�hk��Gh � kfphk��Gh � tk curlfphk��Gh

� kf�h � 
f�hk��Gh � kfph � 
fphk��Gh � tk curl
fph � 
fph�k��Gh

� k
f�hk��Gh � k
fphk��Gh � tk curl 
fphk��Gh

� Ch
k�hk��Gh � kphk��Gh � tkphk��Gh�

� k
f�hk��Gh � k
fphk��Gh � tk curl 
fphk��Gh� 
������

We shall consider k
f�hk��Gh �rst� In 
������� we take � � 
f�h to obtain

�
CE

f�h�� E

f�h� � � �

CE
f�h�� E

f�h� �� �
curl
fph � 
fph�� 
f�h �� 
������



��

We have

�
CE
f�h�� E

f�h� � � �

CE
��h�� E

f�h� �
�
�
CE
�h�� E
�
f�h� � �R
�� 
f�h��� � �

CE
�h�� E �
�
f�h�I � �
�
n�
CE
�h�� E ��
f�h � 
�
f�h�I � ��R
�� 
f�h���o

��
�
CE
�h�� E �
�
f�h�I � �� F�� 
������

Taking � � 
�
f�h�I in 
������� we get

�
CE
�h�� E �
�
f�h�I � � � �

curl ph� 
�
f�h�I �
�
�
curl ph� �
f�h �� �

curl ph� 
�
f�h�I � �
f�h �
�
�
curl
�ph�� 
f�h �� n�

curl�� ph
f�h �� �
curl ph� 
�
f�h�I � �
f�h �o

��
�
curlfph� 
f�h �� F�� 
�����	�

Combining 
������ 
�����	� and substituting q � 
fph in 
������� we obtain

�
CE

f�h�� E

f�h� � � �

curl 
fph� 
f�h �� F� � F�

�
� f�h� curl 
fph �� ���t�

�
curl
fph � 
fph�� curl 
fph �� F� � F�

�
�
��h� curl 
fph �� ���t�

�
curl
fph � 
fph�� curl 
fph �� F� � F�

�
�
�h� curl
�
fph� � � �

curl�� 
fph�h �� ���t�
�
curl
fph � 
fph�� curl 
fph �

� F� � F�

�
��
�h� curl
�
fph�I �� ���t�

�
curl
fph � 
fph�� curl 
fph �


�
��
�h� curl��
fph � 
�
fph�I � �� �

curl�� 
fph�h �
� F� � F�

�� E� � F� � F� � F�� 
�������



��

Setting q � 
�
fph�I in 
������� we get

E� � ����t�
�
curl ph� curl
�
fph�I �� ���t�

�
curl
fph � 
fph�� curl 
fph �

� ����t�
�
curl ph� curl
�
fph� �� ���t�

�
curl ph� curl��
fph � 
�
fph�I � �

� ���t�
�
curl
fph � 
fph�� curl 
fph �

� ����t�
curl
�ph�� curl 
fph� � ���t�
�
curl
fph � 
fph�� curl 
fph �

�
�
���t�

�
curl ph� curl��
fph � 
�
fph�I � �� ���t�R�
�� ph� 
fph�


�� ����t�
curl 
fph� curl 
fph� � F�� 
�������

So far� we have

kC
�
� E

f�h�k���Gh

� ���t�k curl 
fphk���Gh
� F� � F� � F� � F�� 
�������

Using the superapproximation properties 
cf� section ����� the Schwarz inequality�

integration by parts� 
������� and 
������� we obtain

j F� j� C
�
hk�hk��Ghk
f�hk��Gh � k�hk��Ghk
f�hk��Gh

�
�

j F� j� C
�
kphk���Ghk


f�hk��Gh � hkphk��Ghk

f�hk��Gh

�
�

j F� j� C
�
hk�hk��Ghk
fphk��Gh � k�hk��Ghk
fphk��Gh

�
�

j F� j� Ct�
�
hk curl phk��Ghk
fphk��Gh � kphk��Ghk
fphk��Gh

�
�

Combining the above inequalities with 
�������� using the inverse inequalities for


fph� �h� and ph� we get

k
f�hk���Gh
� t�k curl 
fphk���Gh

� C
�
hk�hk��Gh � k�hk��Gh � hkphk��Gh � kphk���Gh

�
k
f�hk��Gh

�C
�
hk�hk��Gh � k�hk��Gh � t�kphk��Gh

�
k
fphk��Gh

� C
�
k�hk��Gh � kphk���Gh

�
k
f�hk��Gh �C

�
k�hk��Gh � t�kphk��Gh

�
k
fphk��Gh �


�������



��

To proceed� we need to estimate k
fphk��Gh� By the triangle inequality�

k
fphk��Gh � k
fph � R
Gh


fph
meas
Gh�

k��Gh �
k
R
Gh


fph �fphk��Gh

meas
Gh�
�
k
R
Gh
fphk��Gh

meas
Gh�
�


�������

It is easy to see that the second term on the right hand side of the above inequality

is bounded by the right hand side of 
������� For the last term we have

k

Z
Gh

fphk��Gh � k

Z
Gh

�phk��Gh � Ckphk���Gh�

From that fact that the triangulation Th is quasi�uniform� we have the following

stability condition for the MINI element on set Gh�

k
fph � R
Gh


fph
meas
Gh�

k��Gh � C sup
���V h�Gh�

� �
�

�
curl 
fph�� �Gh

k�k��Gh

� 
�������

Applying 
������� we obtain


curl 
fph��� � �
curlfph�� �� �CE
f�h � 
f�h�� E
�� �

�
�
curl
�ph���

�
�
�
CE
f�h � 
 e��� E
�� �

�
�
curl ph� w�

�
�
�
CE
f�h � 
 e��� E 
�� �� �

curl�� ph�
�

�
n�
curl ph� 
���

I
�
�
�
CE
f�h � 
 e��� E
�� �o

�
��
curl�� ph�

�
�
�
curl ph� �� � 
���I

�

�� G� �H��


�������



��

Setting � � 
���I in 
������� we get

G� �
�
CE
�h�� E
���

I
�
�
�
CE
f�h � 
 e��� E 
�� �

�
�
CE
�h�� E
���

�
�
�
CE
�h�� E �
���

I � ���
�

�
�
CE
f�h � 
 e��� E
�� �

�
n�

CE
��h�� E
��
�
�
�
CE
f�h � 
 e��� E
�� �o

�
�
R
�����h� �

�
CE
�h�� E �
���

I � ���
�


��
�
CE

f�h�� E
�� � �H�� 
�������

Applying the superapproximation property� the Schwarz inequlity� 
������� 
�������

and integration by parts� we have

j H� j� C
�
kphk���Ghk�k��Gh � hkphk��Ghk�k��Gh

�
�

j H� j� C
�
k�hk��Ghk�k��Gh � hk�hk��Ghk�k��Gh

�
�

j 
E

f�h�� E
��� j� k
f�hk��Ghk�k��Gh�

Combining 
������� 
������� 
�������� the above inequalities� and using the inverse

inequalities� we arrive at

k
fphk��Gh

� C
�
hk�hk��Gh � k�hk��Gh � htkphk��Gh � hkphk��Gh � kphk���Gh� � k
f�hk��Gh

� C
�
k�hk��Gh � htkphk��Gh � kphk���Gh

�
� k
f�hk��Gh�


�������

Substituting 
������� into 
������� and using the arithmetic�geometric mean inequal�

ity� we have

k
f�hk��Gh � tk curl 
fphk��Gh � C
�
k�hk��Gh � 
t� � ht�kphk��Gh � kphk���Gh

�
�


�����	�



�	

Substituting 
�����	� back into 
�������� we get

k
fphk��Gh � C
�
k�hk��Gh � kphk���Gh � 
ht� t��kphk��Gh

�
� 
�������

Hence� combining 
�����	� and 
������� with 
������� we obtain

k�hk��G�
� kphk��G�

� tk curl phk��G�

� C
�
k�hk��Gh � kphk���Gh � 
ht� t��kphk��Gh

�
�


�������

Applying Theorem ����� with G� replaced by G� to bound k�hk��G�
and kphk���G�

�

we get

k�hk��G�
� kphk��G�

� tk curl phk��G�

� C
�
hk�hk��G � hkphk��G � t
t� h�kphk��G � k�hk���G � kphk�����G

�
�

Iterating the above inequality � � � times as in section ���� or section ���� but

separating the case h � t with that h � t� we prove 
������� �

Theorem ��	��� Let �� b �� b �� Suppose that 
�� p� � H� 	 H� satis�es

�j�� �H
�
��� and pj�� � H�
���� Suppose that 
�h� ph� � V h	Ph are such that


CE
� � �h�� E
��� � 
curl
p� ph���� � 
F ��� for all � � 
V h�
�������

�
� ��h� curl q�� ���t�
curl
p � ph�� curl q� � 	 for all q � 
Ph�

�������

for some function F in L�� Let � and � be two arbitrary nonnegative integers�

Then� there is a positive number h� such that for h � 
	� h���

k� � �hk���� � kp� phk���� � tk curl
p � ph�k����

� C
�
kF k���� � h
k�k���� � kpk���� � tkpk����� � t�k� ��hk����

� t���kp� phk���� � k�� �hk����� � kp� phk�������
�
�


�������



��

for a constant C depending only on ��� ��� �� and ��

Proof� Let G� b G�� b G� b Gh b G� b G be concentric disks and �nd a � �

C�� 
G�� with � 
 � on G��� Set e� � ��� ep � �p� Then e� � 
H�
Gh�� ep � H�
Gh��

By Lemma ������ 
 e� � 
V h
Gh�� 
ep � Ph
Gh� can be de�ned uniquely by the

following equations�

�
CE
 e� � 
 e��� E 
�� �� �

curl
ep � 
ep��� � � 
F ��� for all � � 
V h
Gh��

�������

�
� e� � 
 e�� curl q �� ���t�

�
curl
ep � 
ep�� curl q � � 	 for all q � Ph
Gh��


�������

with
R
Gh


ep �
R
Gh

ep� Moreover� we have

ke�� 
 e�k��Gh � kep� 
epk��Gh � tk curl
ep� 
ep�k��Gh

� C
�

inf
q�Ph�Gh�


kep� q k ��Gh � tk curl
ep� q�k��Gh� � kF k��Gh

�
� inf
���V h�Gh�

ke���k��Gh

�
� C

�
k�k��G � kpk��G � tkpk��G � kF k��G

�
� 
�������

Let us now estimate k� � �hk��G�
� kp � phk��G�

� and tk curl
p � ph�k��G�
� By the

triangle inequality� we have

k�� �hk��G�
� kp� phk��G�

� tk curl
p� ph�k��G�

� k�� 
 e�k��G�
� kp� 
epk��G�

� k
 e�� �hk��G�
� k
ep� phk��G�

� tk curl
p � 
ep�k��G�
� tk curl

ep� ph�k��G�

� 
�������

Since 
�������� 
������� and 
�������� 
������� hold for any � � 
V h
G����



��

q � 
Ph
G���� respectively� Subtracting the corresponding two equations� we obtain


E 
�h � 
 e��� E
��� � 
curl
ph � 
ep���� � 	 for all � � 
V h
G
�
���


�����	�

�
�h � 
 e�� curl q�� ���t�
curl
ph � 
ep�� curl q� � 	 for all q � 
Ph
G
�
���

�������

Then we apply Lemma ����� to �h � 
 e� and ph � 
ep with G replaced by G�� to

obtain

k�h � 
 e�k��G�
� kph � 
epk��G�

� tk curl
ph � 
ep�k��G�

� C
�
t�k�h � 
 e�k��G�� � t���kph � 
epk��G�� � k�h � 
 e�k���G��

� kph � 
epk�����G�� �
� C

�
t���kp� 
epk��G�� � t���kph � pk��G��

� k� � 
 e�k���G�� � k�h � �k���G��

� t�k�� 
�hk��G�� � t�k�h � �hk��G�� � kp� 
epk
�����G

�

�
� kp� phk�����G��

�
� C

�
ke�� 
 e�k��Gh � kep� 
epk��Gh � tk curl
ep � 
epk��Gh

� t�k�� �hk��G � t���kp� phk��G � k� � �hk���G � kp� phk�����G
�
�

�������

Combining 
�������� 
�������� and 
�������� we obtain

k�� �hk��G�
� kp� phk��G�

� tk curl
p� ph�k��G�

� C
�
kF k��G � k�k��G � kpk��G � tk curl pk��G

� t�k� ��hk��G � t���kp� phk��G � k�� �hk���G � kp� phk�����G
�
�

Since �
�� q�� 
�h � q�� and �
p� q�� 
ph � q�� also satisfy equations 
������� and


������� for any � � 
V h and q � 
Ph� we have

k�� �hk��G�
� kp� phk��G�

� tk curl
p� ph�k��G�

� C
�

inf
���V h

k� ��k��G � inf
q��Ph


kp � qk��G � tk curl
p � q�k��G� � kF k��G

� k� � �hk���G � kp� phk�����G � t�k�� �hk��G � t���kp� phk��G
�
�



��

Then� �rst using the approximation properties of the �nite element spaces and then a

covering argument 
cf� section ��� and section ����� we obtain the desired result� �

We now state the main result of this chapter�

Theorem ��	��� Let �� b �� b � and suppose that 
r��� p� w� � H�	H�	H�	

H� 	the exact solution
 satis�es 
r��� p� w�j�� � H�
��� 	 H�
��� 	 H�
��� 	

H�
���� Suppose that 
rh��h� ph� wh� � Wh 	 V h 	 Ph 	Wh 	the �nite element

solution
 is given so that 
������� 
������� 
������� and 
������ hold� Let �� � be

two nonnegative integers� Then there exists a positive number h� and a constant C

depending only on ��� ��� �� and �� such that for all h � 
	� h��

kr � rhk
h
����

� C
�
hkrk���� � kr � rhk�����

�

�������

k� � �hk���� � kp� phk���� � tk curl
p � ph�k����

� C
�
h
k�k���� � kpk���� � tkpk���� � krk���� � � kr � rhk�����

� k� ��hk����� � kp� phk������� � t�k� � �hk���� � t���kp� phk����
�
�


�������

kw � whk
h
����

�
�
Ch
k�k���� � kpk���� � tkpk���� � krk���� � kwk�����

� kw � whk����� � k� � �hk����� � kr � rhk�����

� kp� phk������� � t�k�� �hk���� � t���kp� phk����
�
� 
�������

Proof� Find a subdomain �� such that �� b �� b ��� Apllying Theorem ����� with

�� replaced by �� yields

kr � rhk
h
���� � C

�
hkrk���� � kr � rhk�����

�
� 
�������

which also implies 
�������� From 
������� 
������� 
�������� and Theorem ����� with



��

�� replaced by ��� we obtain

k�� �hk���� � kp� phk���� � tk curl
p� ph�k����

� C
�
h
k�k���� � kpk���� � tkpk����� � kgradh
r � rh�k����

� k�� �hk����� � kp� phk������� � t���kp� phk���� � t�k� ��hk����
�

� C
�
h
k�k���� � kpk���� � tkpk���� � krk���� � � k�� �hk�����

� kp� phk������� � t�k� � �hk���� � t���kp� phk���� � kr � rhk�����
�
�

This completes 
��������

We now consider the interior estimate for the transverse displacement� Because

of the di�erence between 
������ 
required by Theorem ������� and 
������ 
satis�ed

by 
w � wh��� Theorem ����� cannot be used directly� But we can follow the same

proof to get 
��������

Let G� b G� b G be concentric disks and Gh be a union of triangles which

satis�es G� b Gh b G� Use the notation ew � �w and de�ne 
 ew � �Wh
Gh� by


gradh 
 ew�gradh s� � 
gradh ew�gradh s� for all s � �Wh
Gh��

We have

k ew � 
 ewkh��Gh
� C inf

s� 	Wh�Gh�
k ew � sk��Gh � C hkwk��Gh�

By the triangle inequality�

kw � whk
h
��G�

� k ew � 
 ewkh��Gh
� k
 ew � whk

h
��G�

� Chkwk��Gh � k
 ew � whk
h
��G�

� 
�������

From 
������ and the fact that � � � on G��


gradh

 ew � wh��gradh s� � 
gradh
w � wh��gradh s�

� L
s� for all s � 
Wh
G���

�������



��

where

L
s� �� 
� � �h � ���t� gradh
r � rh��gradh s� �
X
T�Th

Z
�T


� � nT � ���t�
�r

�n
�s�

for all s � 
Wh� By Lemma ������

jL
s�Gh j � C
�
k� � �hk��Gh � kr � rhk

h
��Gh

� h
k�k��Gh � krk��Gh�
�
kgradh sk��Gh for all s � 
Wh
Gh��

which implies

kLkGh � C
�
k�� �hk��Gh � kr � rhk

h
��Gh

� h
k�k��Gh � krk��Gh�
�
�

Under 
������� we apply Lemma ����� with G replaced by G� to obtain

k
 ew � whk
h
��G�

� C
�
k
 ew � whk�t�G�

� kLkG�
�

� C
k
 ew� ewk�t�Gh � kw �whk�t�G�
� kLkGh�

� C
�
k�� �hk��G� � kr � rhk

h
��G� � kw � whk���G

� h
k�k��G � krk��G�
�
�


�������

Using the triangle inequality� 
�������� and 
������� yields

kw � whk
h
��G�

� C
�
k�� �hk��G� � kr � rhk

h
��G� � kw � whk���G

� h
k�k��G � kwk��G � krk��G�
�
�

Applying 
������� and 
������� with �� and �� replaced by G� and G� respectively�

we obtain a local version of 
�������� Then a standard covering argument leads to


�������� �



��

��� The Global and Interior Convergences of the Arnold
Falk Element

As an application of the theory we developed in the last section� we consider the

soft simply supported plate with a smooth forcing function g� Under this boundary

condition 
for a smooth ��� the exact solution of the Reissner�Mindlin plate satis�es


cf� ����

krk� � kwk� � k�k��� � kpk��� � tkpk��� � C�

k�k����� � kpk����� � tkpk����� � C�t
���

k�k� � kpk� � tkpk� � Ct�����


������

for a constant C� that is independent of t and h� and � � 
	� ����� Obviously�

functions � and p are not regular enough to ensure that the MINI element converges

at the optimal rate� uniformly in the plate thickness t�

Thus� we want to use Theorem ����� to obtain the interior convergence rates

of the Arnold�Falk element� To do so� we must estimate kp � phk�� k� � �hk��

kr � rhk����� � k� � �hk����� � kp � phk������� � and kw � whk����� for some

suitable domain �� and integer �� The only way of doing these� as far as we

know� is to use the inequality k � kt��� � k � kt��� Hence� the global convergence of

the nonconforming element for the Poisson equation and that of the MINI element

for the Stokes�like equations must be established� The �rst one is well�known but

the second one is di�cult due to the special structure of the singularly perturbed

Stokes�like equations and the type of the boundary condition imposed� Because of

the di�culty in dealing with the boundary approximation when the boundary layer

exists� we will only work on a polygonal domain� i�e�� we will assume that � is a

convex polygon� Therefore� we need to know the regularity of the exact solution

of the singularly perturbed generalized Stokes�like equations on a convex polygon


under the soft simply supported boundary condition�� But so far we cannot prove



��

the regularity result 
Theorem ������ we need� So we will assume that it is true� We

feel that we have reason to believe it is correct 
possibly with some restriction on

the magnitude of the maximum angle of the polygon�� As a partial justi�cation� we

will prove a similar result for a smooth � in Appendix B�

This section is organized as follows� Theorem ����� presents a technical result on

the approximation property of the continuous piecewise linear functions� Its proof

can be found in Appendix A� Theorem ����� is the assumption we just mentioned�

The global convergence of the Arnold�Falk element is given in Theorem ������ Finally

by combing Theorem ����� and Theorem ����� we get the interior convergence rate

of the Arnold�Falk element for the rotation 
Theorem �������

Theorem ������ Let � be a convex polygon and u � H�� Then there exists an

operator 
h � H� � Ph such that

kp� 
hpk� � C�h
�����kpk������ 
������

kp� 
hpk� � Ch���kpk���� 
������

kp� 
hpk������� � C�h
�����kpk������ 
������

for any 	 � � � ���� Here C is independent of � and C� depends on �� but not h�

Proof� See Theorem ������ Appendix A�

Theorem ������ Let � be a convex polygon and F �H� and K � H� � #L�� Then

there exists a unique solution 
�� P � �H� 	H� � #L� to the equations


CE
��� E
��� � 
�� curlP � � 
F ��� for all � �H��

������

�
�� curlQ� � ���t�
curlQ� curl P � � 
K�Q� for all Q � H��

������



��

Moreover�

k�k����� � kPk����� � tkPk����� � C�t
��
�
kF k� � t���kF k�

�
for K � 	�


������

k�k����� � kPk����� � tkPk����� � C�t
��kKk� for F � 	� 
������

for 	 � � � ����

Proof� See Corollary ���� Appendix B�

Theorem ������ Let � be a convex polygon� Assume that 
r��� p� w� and


rh��h� ph� wh� solve 
�������
������ and 
�������
������� respectively� for some

smooth g� some t � 
	� ��� and a quasi�uniform mesh Th� Then�

k� ��hk� � kp� phk� � tk curl
p� ph�k� � C�h
���t��� 
������

k� ��hk� � kw � whk
h
� � C�ht

��� 
�����	�

tk� ��hk� � t�k curl
p � ph�k� � Ch� 
�������

k� ��hk�� � kp� phk�� � C�ht
��� 
�������

for an arbitrarily small constant ��

Proof� Subtracting 
������ by 
������ and 
������ by 
������� respectively� we obtain�
CE
� � �h�� E 
��

�
�
�
�� curl
p� ph�

�
�
�
grad
r � rh���

�
for all � � V h


�������

�
�
curl q�� � �h

�
� ���t�

�
curl
p� ph�� curl q

�
� 	 for all q � Ph


�������

From 
������� and 
������� 
see also the proof on page ���� of ��� Theorem ������

we have

kC
�
� E
�h ���k

�
� � ���t�k curl
ph � q�k��

�
�
CE
� ���� E
�h ���

�
� ���t�

�
curl
p � q�� curl
ph � q�

�
�
�
curl
p� q���h ��

�
�
�
���� curl
ph � q�

�
�
�
gradh
rh � r���h ��

�
�


�������



��

In the above we choose � to be the Fortin projection of �� that is�


� �
�� curl q� � 	 for all q � Ph�

k��
�k� � Ck���k� for all � � V h�

We see that the fourth term on the right hand side of 
������� is gone� Taking

q � 
hp to be the interpolant of p described in Theorem ����� and using the Schwartz

inequality� integration by parts� and the arithmetic�geometric mean inequality� we

obtain

kC
�
� E
�h �
��k

�
� � ���t�k curl
ph � 
hp�k

�
�

� C
k��
�k�� � t�kp� 
hpk
�
� � kp� 
hpk�k rot
�h �
��k�

� k�h �
�k�kp� 
hpk������� � hk�h �
�k��� 
�������

To estimate k�h�
�k�� we note that theH� norm of the vector function �h�
�

is equivalent to

kE

� ��h�k� � j

Z

� � �hj� j

Z


�� �h� � 
�y� x�j� 
�������

The �rst term in 
������� is already covered by 
�������� To control the other two�

we take q � y and q � x� respectively in 
������� to get

j

Z

� ��h�j � Ct�j

Z
curl
p� ph�j�

which implies

j

Z


�� �h�j � j

Z


� ���j � Ct�k curl
p � ph�k�

� C
�
k� �
�k� � t�k curl
p � 
hp�k� � t�k curl

hp� ph�k�

�
�

�������



�	

To control the third term in 
�������� we take q � Lhq� � Lh
x� � y����� the L�

projection of 
x� � y���� in Ph
�� in 
�������� to obtain

�
� � �h� curl q�

�
�
�
� � �h� curl
q� � Lhq��

�
� ���t�

�
curl
p � ph�� curlLhq�

�
�

Using the fact that

kq� � Lhq�k��� � Ch

and

kLhq�k��� � C�

we obtain

j

Z

� ��h� � 
�y� x�j � C

�
hk�� �hk� � t�j

Z
curl
p� ph�j

�
� 
�������

Therefore�

j

Z


� ��h� � 
�y� x�j

� C
�
k��
�k� � hk
� � �hk� � t�k curl
p � 
hp�k� � t�k curl

hp� ph�k�

�
�


�����	�

Combining 
������� 
�����	� and using the arithmetic�geometric mean inequality� we

get

k�h �
�k� � tk curl
ph � 
hp�k�

� C
�
k��
�k� � tkp� 
hpk� � kp� 
hpk� � kp� 
hpk������� � h

�
�

Applying the approximation property of 
 and Theorem ������ we get

k�h �
�k� � tk curl
ph � 
hp�k�

� C�h
���
�
k�k��� � tkpk��� � kpk����� � h���

�
�



��

which implies

k�� �hk� � tk curl
p� ph�k� � C�h
���t��� 
�������

Moreover�

tk�� �hk� � t�k curl
p � ph�k� � Ct
�
k��
�k� � tkp� 
hpk�

� kp� 
hpk������� � h
�

� Cth
�
k�k� � tkpk� � �

�
� Ch�

To estimate kp�phk�� we simply repeat the proof on page ���� of ��� Theorem �����

By the stability condition� there exits � � 	 independent of h such that for all q � #Wh

there exists a nonzero � � 
V h with

�kqk�kgrad�k� � 
curl q����

Applying this result with q replaced by 
ph �
hp�
R
�

hp�� and again using 
������

and 
������� we have

�kph � 
hp�

Z
�


hpk�kgrad�k� �
�
curl
ph � 
hp���

�
�
�
curl
p � 
hp���

�
�
�
CE
�h � ��� E 
��

�
�
�
gradh
rh � r���

�
� C

�
kp� 
hpk� � kgrad
�h � ��k� � kgradh
rh � r�k�

�
kgrad�k��

so

kph � 
hp �

Z
�


hpk� � C
�
kp� 
hpk� � k�� �hk� � kgradh
r � rh�k�

�
�

By the triangle inequality� we get

kp� phk� � C
�
kpk� � kp� 
hpk� � k� ��hk� � kgradh
r � rh�k�

�
�



��

Since if 
� � �h� p � ph� satis�es 
������� and 
�������� so will

�
� � �� � 
�h � ��� 
p � q� � 
ph � q��� for any 
�� q� � V h 	Wh� Therefore�

together with 
������� and Theorem ������ we get

kp� phk� � C
�
kp� 
hpk� � k�� �hk� � kgradh
r � rh�k�

�
� C�h

���t���

This completes 
������� To bound k� � �hk�� we construct the following duality

problem�

Find 
�� P � �H� 	 #H� such that


CE
��� E
��� � 
�� curlP � � 
�� �h��� for all � �H��

�������

�
curl q��� � ���t�
curl q� curlP � � 	 for all q � H�� 
�������

From Corollary ����� we know that 
�� P � is uniquely de�ned� Moreover�

k�k����� � kPk����� � tkPk����� � C�t
��
�
k�� �hk� � t���k���hk�

�

�������

Following the proof of Theorem ��� on page ���� of ���� we can obtain� for 
q��� �



hP�
��� where 
 is the Fortin projection and 
h the interpolant as described in

Theorem ������

k� ��hk
�
� �

�
CE
� � �h�� E
� �
��

�
�
�
�� �h� curl
P � 
hP �

�
�
�
curl
p � 
hp��� �
�

�
� ���t�

�
curl
p� ph�� curl
P � 
hP �

�
�
�
gradh
r � rh��
�

�
�
�
CE
� � �h�� E
� �
��

�
�
�
rot
� ��h�� P � 
hP

�
� h
� ��h� � s� P � 
hP i�� �

�
p� 
hp� rot
��
��

�
� hp� 
hp� 
� �
�� � si�� � ���t�

�
curl
p � ph�� curl
P � 
hP �

�
�
�
gradh
r � rh��
�

�

�������



��

Using the Schwartz inequality and integration by parts in 
�������� we get

k�� �hk
�
�

� Ck�� �hk�
k��
�k� � kP � 
hPk� � kP � 
hPk��������

� k��
�k�
kp � 
hpk� � kp� 
hpk��������

� t�k curl
p � ph�k�k curl
P � 
hP �k� � kgradh
r � rh�k�k
�k��

�������

If t � h� then by Theorem ������ 
�������� 
�������� and 
������� we obtain

k� � �hk
�
�

� C�ht
��
�
k�k��� � kPk�����

�
� Chk�k���kpk����� � C�hkPk��� � Chk�k�

� C�ht
���

�
k�� �hk� � t���k� ��hk�

�
� C�ht

���
�
k�� �hk� � h�

�
�

which implies

k� ��hk� � C�ht
����

If t � h� using 
������� with � � ��� in 
�������� we obtain

k�� �hk
�
�

� C�h
���t��
k�k� � kPk�� � C�h

���t��k�k� �C�h
���t��kPk� � Chk�k�

� C�h
���t��t����
k� � �hk� � t���k� ��hk�� � Chk���hk��

Since t � h�

k�� �hk
�
� � C�ht

��
k� ��hk� � h���

Hence

k� ��hk� � C�ht
���



��

To analyze w �wh� we follow that in ���Theorem ����� De�ne ��h � �Wh by

�
gradh �wh�gradh s

�
�
�
�� ���t� grad r�gradh s

�
for all s � �Wh�

So

kw � �whk
h
� � Ch

�
k� � t�rk� � kwk�

�
� Ch�

where we use the fact that k�k� � krk� � kwk� � C� with C independent of t� In

addition� we have

�
gradh
 �wh � wh��gradh s

�
�
�
� ��h � ���t� gradh
r � rh��gradh s

�
�

for all s �Wh� Obviously�

k �wh � whk
h
� � C

�
k�� �hk� � t�kgradh
r � rh�k�

�
� C

�
h� k�� �hk�

�
�

which implies

kw � whk
h
��� � kw � �whk

h
� � k �wh � whk

h
� � C
h� k� � �hk�� � C�ht

���

This completes 
�����	��

We will use the duality argument again to estimate kp � phk��� To do so� we

introduce the following auxiliary problem�

Find 
�� P � �H� 	 #H� such that


CE
��� E
��� � 
�� curlP � � 	 for all � �H�� 
�������

�
curl q��� � ���t�
curl q� curlP � � 
K� q� for all q � H�� 
�����	�

for any K � #L�� By Corollary ������ this problem admits a unique solution� and

that

k�k����� � kPk����� � tkPk����� � C�t
��kKk�� 
�������



��

By de�nition�

kp� phk�� � sup
K��H�

K �
�


p � ph�K�

kKk�
� 
�������

In 
�����	�� we take q to be p� ph and apply 
������� 
������� 
������� 
������� and


������� to obtain


p � ph�K� ��
�
��
�� curl
p� ph�

�
� ���t�

�
curl
p � ph�� curl
P � 
hP �

�
�
�
CE
� � �h�� E
� �
��

�
�
�
�� �h� curl

hP � P �

�
�
�
gradh
r � rh��
�

�

�������

Using the Schwartz inequality� Theorem ������ and 
������� in 
�������� we get

j
p� ph�K�j � C�ht
��
�
k�k��� � tkPk��� � kPk�����

�
� 
�������

Combining 
������� 
�������� we arrive at

kp� phk�� � C�ht
����

Similarly� we can prove

k�� �hk�� � C�ht
����

Since � is an arbitrary number� then 
������� is proved� �

Equipped with the above result� we are able to prove the following interior esti�

mate for the Arnold�Falk element for the rotation ��

Theorem ������ Let � be a convex polygon and ��� b � an interior domain� Let g

be a smooth function� Assume that Th is quasi�uniform� Suppose that 
w��� solves


������ and 
wh��h� solves 
������� Then there exists a number h� � 	� such that

for all h � 
	� h���

k� ��hk���� � C� ht
��� 
�������



��

where C� is independent of t and h�

Proof� First choose �� such that �� b �� b �� Then note that k � ks��� � k � ks���

Combining Theorem ����� with Theorem ����� with � � �� � � �� 
������� can be

obtained� �

Because the Brezzi�Fortin element 
cf� ����� is also based on the variational

formulation 
�������
������� we have the following result�

Corollary ������ Assume that the Brezzi�Fortin method ���
 is used to solve 
�������


������� Then� under the same conditions of Theorem ������ Theorem ����� and

Theorem ����� hold�

��� Numerical Results

In this section we give the results of computations of the solutions to the Arnold�

Falk element for the Reissner�Mindlin plate model� Through a model problem� we

show that the Arnold�Falk approximation for rotation � does not achieve the global

�rst order convergence rate in the energy norm for the soft simply supported plate�

but it does have �rst order convergence rate for the transverse displacement w� We

will also show that the Arnold�Falk method obtains the �rst order convergence rate

for the rotation in the region away from the boundary layer� Thereafter� numerical

computations conform to the theoretical predictions�

We will take the domain � to be the unit square� Since we know the exact

solution of the semi�in�nite 
y � 	� Reissner�Mindlin plate when the load function

g
x� y� � cos
x� and the plate is soft simply supported on the boundary y � 	� we

can simply restrict this solution to �� By doing so� we obtain the exact solution of

the unit square plate with the hard clamped boundary condition on the left� upper�

and right edges� and soft simply supported boundary condition on the lower edge



��


	 � x � �� y � 	� 
cf� ����� And the lower edge 
	 � x � �� y � 	� is where the

boundary layer occurs�

We take E � �� � � ���	� and � � ���� Moreover� the mesh is taken to

be uniform� The interior domain is taken to be the upper half of the unit square


since the boundary layer only exists near the lower edge 	 � x � �� y � 	�� All

computations were performed on a Sun SPARCStation � using the Modulef 
INRIA�

package�

A distinguished feature of this test problem is that the exact solution has the

following property� �� � H���
�� and �� � H
��
��� i�e�� �� has a stronger bound�

ary layer than �� does 
cf� ����� The numerical results unmistakenly express this

di�erence�

In each graph 
of Figure ��� Figure ���� the H� norms of the errors on the global

domain and the interior domain� are plotted as functions of the mesh size h� The

values of h are ���� ���� ���� ���� ���	� ����� ����� ���	� and ����� Both axes

have been transformed logarithmically so that the slope of the error curves gives the

apparent rate of convergence as h tends to zero� Absolute errors are shown�

Figures ��� ��� show the approximation errors in H� norm of �� and �� for

t � � and the �rst order optimal convergence rate is as expected� And there is no

di�erence between the rate on the whole domain and that on the upper half unit

square� Figures ��� ��� show the errors in H� norm of �� and �� for t � 	�			�� It

is clear that when t is small� the boundary layer e�ect of �� comes into play and as a

result� we only see a ��� order convergence rate for k����h�k� on the whole domain�

However� away from the boundary layer� the optimal �rst order convergence rate is

recovered�

Figures ��� ��� show the errors in H� norm of the transverse displacement w for

t � � and 	�			�� In all cases� the �rst order convergence rate is observed� because



��

there is no boundary layer in the transverse displacement�

Figures ��� ���� show the errors in L� norm for variables ��� ��� and w� with the

thickness of the plate t � � and t � 	�			�� respectively� We note that in the interior

domain� the optimal convergence rate 
second order� is observed� but this cannot be

proved by the current method� 
Though we did not explicitly state a theorem about

the interior estimate in the L� norm in section ���� it is not di�cult to do so in the

light of Chapter � and Chapter ��� The global convergence rates in the L� norm are

also higher than we actually proved in Section ���� We do not know at the moment

whether they are of the special feature of the test problem or they simply indicate

that the convergence analysis can be improved�
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APPENDIX A

AN APPROXIMATION RESULT

��� Introduction

The purpose of this appendix is to prove Theorem ������ which is due to Arnold ����

This approximation result was used extensively in Chapter � 
as Theorem ������ for

proving the global convergence of the Arnold�Falk element for the Reissner�Mindlin

plate model under the simply supported boundary condition�

Recall that Ph is the space of continuous piecewise linear functions� We shall

start with a result by Scott and Zhang �����

Theorem ������ Assume that � is a convex polygon� Let % � �� and P�
h �

f vj� � v � Ph g � H�
%�� There exists a projection Ih � H� � Ph such that if

uj� � P�
h then Ihuj� � uj�� Moreover

ku� Ihuks � Chl�skukl� for 	 � s � l � �� l � ���� 
������

Using this� we can quickly prove�

Lemma ������ Let w � H� be a function for which wj� � P�
h � De�ne wh � Ph byZ

�

gradwh � gradv �

Z
�

gradw � gradv for all v � 
Ph� wh � w on %�

Then

kw � whk� � C inf
��Ph

�
w on �

kw � �k�� 
������

kw � whk� � Chkw� whk�� 
������

kw �whks � Cht�skwkt� s � 	� �� t � �� �� 
������



��

Proof� The �rst two estimates are completely standard� We take � to be the inter�

polant of Theorem ����� to get the third� �

The outline of this chapter is as follows� Section ��� constructs the approximation

operator and section ��� proves that it has the desired property�

��� The Construction of the Approximation Operator

In this section we study a �nite element method for the nonhomogeneousDirichlet

problem for the Poisson equation� We will prove some of the properties of the �nite

element method here and we will show in the next section that the approximation

operator determined by the �nite element solution is the one we need�

For simplicity� we will use notation j � jt to denote k � kt��� in this chapter 
instead

of its old meaning as the semi�norm on Ht��

Lemma ������ Given p � H�� let g � pj� and let gh be the L�
%��projection of g

into P�
h � De�ne ph � Ph by

Z
�

gradph �grad q �

Z
�

grad p �gradq for all q � 
Ph� ph � gh on %� 
������

Then

kp� phks � Cht�skpkt� 	 � s � �� � � t � ��

Proof� De�ne �ph � H� by

� �ph � � p in �� �ph � gh on %�

Since p� �ph is harmonic� we have

kp� �phk� � Cjg� ghj����� kp� �phk� � Cjg � ghj���� 
������



��

Now using a standard duality argument and standard approximation results for the

L��projection into P�
h together with the trace theorem we get

jg � ghj���� � sup
f�H������

hg � gh� fi

jf j���

� sup
f�H������

hg � gh� f � fI i

jf j���

� Ch���jg � ghj� � Chjgj��� � Chkpk�� 
������

where fI is the L�
%� projection of f on P�
h � Although % is not su�ciently smooth

to de�ne the space H���
%� intrinsically� we can de�ne �H���
%� to be the space

of functions in H�
%� whose restrictions to each edge e of the polygon belong to

H���
e�� and use as the norm

v��� ��

�X
e���

kvk�H����e�

����

�

Then

jg � ghj���� � Ch���jg � ghj� � Ch�jgj��� � Ch�kpk�� 
������

From jg � ghj� � Cjgj� and the inverse inequality we can obtain jg � ghj� � Cjgj��

Then� by the interpolation theorem we get

jg � ghj��� � Cjgj��� � Ckpk�� jg � ghj��� � Chjgj��� � Chkpk�� 
������

Combining 
������ 
������ we get

kp� �phks � Cht�skpkt� s � 	� �� t � �� �� 
������

NowZ
�

grad ph � grad q �

Z
�

grad �ph � grad q for all q � 
Ph� ph � �ph on %�
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Then� using 
������ in the case t � � we obtain

k�ph � phks � Ch��sk�phk�� s � 	� ��

Thus combining the above with 
������ in the case t � � we get

kp� phks � Ch��s
kpk� � k�phk�� � Ch��skpk�� s � 	� ��

where in the last step we use 
������ for s � � and t � ��

Now let Ihp be the usual piecewise linear interpolant of p so that egh �� Ihpj� is

the piecewise linear interpolant of g� and de�ne eph � Ph by

Z
�

grad eph � grad q � Z
�

gradp � grad q for all q � 
Ph� eph � egh on %�

Then

kp� ephk� � C inf
��Ph

�
egh on �

kp� �k� � Ckp� Ihpk� � Chkpk�� 
������

Next� de�ne w � H� by

�w � 	 in �� w � egh � gh on %�

Note that eph � ph � Ph� and

Z
�

grad
eph � ph� � grad q �

Z
�

gradw � grad q � 	 for all q � 
Ph�

eph � ph � w on %�

Then by the Lemma ������ we have keph � phks � Ch��skwk�� for s � 	� �� Since

kwk� � Cjegh � ghj��� � C
jg � eghj��� � jg � ghj���� � Chjgj��� � Chkpk��



��

we get

keph � phks � Ch��skpk��

which� together with 
������ gives kp� phk� � Chkpk��

Finally we use duality to prove that kp�phk� � Chkp�phk�� and thus kp�phk� �

Chkpk�� Namely� we de�ne z by

�� z � p� ph in �� z � 	 on %�

Then kzk� � Ckp� phk�� and

kp� phk
�
� � �

Z
�


p � ph�� z �

Z
�

grad
p� ph� � grad z �

Z
�


g � gh�
�z

�nT

� kp� phk� inf
���Ph

kz � �k� � jg � ghj����

���� �z�nT

����
���

� Chkp� phk�kzk� � Ch�jgj���kzk�

� Ch�kpkkp� phk��

as desired�

This completes the proof for s � 	 and �� and t � � and �� The extension to real

indices follows by interpolation� �

��� The Main Result

For p � H�� let 
hp � ph be the �nite element solution de�ned in Lemma ������

In the following� we shall prove that 
h is what we need� To do so� we should keep

in mind two important properties of 
h� equation 
������ and that 
h preserves P�
h

on the boundary�



�		

Theorem ������ Assume that u � H�� where � is a convex polygon� Then the

operator 
h � H� � Ph constructed in Lemma ����� satis�es

kp� 
hpk� � C�h
�����kpk������ 
������

kp� 
hpk� � Ch���kpk���� 
������

jp� 
hpj���� � C�h
�����kpk������ 
������

for any 	 � � � ���� Here C is independent of � and C� depends on �� but not h�

Proof� Inequality 
������ is already proved in Lemma ������ Inequality 
������ is

also straightforward� since 
hp is the L�
%� projection of p on P�
h � we have

jp� 
hpj���� � Ch���jp� 
hpj� � C�h
�����jpj� � C�h

�����kpk������

where we use the trace theorem in the last step�

We now prove 
������ in three steps� �rst for p � 
H�� then for p such that

pj� � P�
h � and �nally for all p � H��

Using an inverse inequality ����Theorem ����� we obtain

kzhk����� � C�h
������kzhk� for all zh � Ph�

which implies that zh � H������ For all T � Th� applying inequality ����

kuk��s�T � C

kuk��T � 
�s����s�kuk��T �

for u � z � 
hz� 
 � h������ and s � ���� � yields

kz� 
hzk������T � C�
h
�����kz� 
hzk��T � h������kz� 
hzk��T � for all z � H��

Summing up inequalities of above type for all T � � and noting that the second

order derivative of 
hz vanishes� we obtain

kz � 
hzk����� � C�
h
�����kzk� � h������kz � 
hzk�� for all z � H���
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Then applying Lemma ����� for s � � and t � � yields

kz � 
hzk����� � C�h
�����kzk� for all z � H�� 
������

Now if p � 
H� then 
hp � 
Ph� so if both p� z � 
H��


grad
hp�grad z� � 
grad
hp�grad
hz� � 
gradp�grad
hz��

For a given p � 
H�� we will use a duality argument to get 
������� Taking z � H��
H�

with �� z � p�
hp and kzk� � Ckp�
hpk� for 
hz as described in Lemma ������

we get

kp� 
hpk
�
� � 
grad
p � 
hp��grad z� � 
gradp�grad
z � 
hz��

� kgradpk�����kgrad
z � 
hz�k����� � kpk�����kz � 
hzk�����

� C�h
�����kpk�����kzk� � C�h

�����kpk�����kp� 
hpk��

which proves 
������ for p � 
H��

Assume p � H� has the property that pj� � P�
h � Let Ih denote the Scott�Zhang

interpolant ����� Then� since Ihp � p on % and� using what we just proved and the

fact that Ih is bounded in H������ we obtain

kp� 
hpk� � k
p� Ihp� � 
h
p� Ihp�k�

� C�h
�����kp� Ihpk����� � C�h

�����kpk������

This completes the proof of the second case� Finally for the general case of p � H�

we use the same decomposition as in the proof of Lemma ������ Namely we de�ne

�ph � H� by

� �ph � � p in �� �ph � gh on ���

where gh is the L�
%��projection of g � pj� into P�
h � Then

kp� �phk� � jg � ghj���� � C�h
�����jgj� � C�h

�����kpk������
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Also

kp� �phk����� � jg � ghj� � C�jgj� � C�kpk������

Here we have used an inverse inequality to obtain that the L�
����projection is

bounded in H�
���� We thus have

k�phk����� � C�kpk������

Finally we have 
h �ph � 
hp� so

k�ph � 
hpk� � k�ph � 
h�phk� � C�h
�����k�phk����� � C�h

�����kpk������

This completes the proof� �



�	�

APPENDIX B

A REGULARITY RESULT

The purpose of this Appendix is to prove Theorem ��� on the regularity of the

exact solution of the singularly perturbed Stokes�like system under the soft simply

supported boundary condition� This is done assuming that the domain � is smooth�

So far� we cannot prove the same result for a convex polygonal domain�

Theorem 	��� Let � denote a smooth domain� and let F �H� and K � H� � #L��

Then there exists a unique solution 
�� P � �H� 	H� � #L� to the equations


CE
��� E
��� � 
�� curlP � � 
F ��� for all � �H��

����

�
�� curlQ� � ���t�
curlQ� curl P � � 
K�Q� for all Q � H��

����

Moreover�

k�k� � kPk� � tkPk� � C
�
t����
kF k���� � kKk���� � t
kF k� � kKk��

�
�

����

kPk��� � C
�
kF k���� � kKk��� � t
kF k��� � kKk����

�
� 
����

k�k��� � tkPk��� � C
�
kF k���� � kKk��� � t���
kF k� � kKk��

�
� 
����

Proof� We �rst de�ne some notations� Let

Mn� �� n � CE
��n � D

�
��

�n
� n� �

��

�s
� s

�
�

Ms� �� s � CE
��n �
D
� � ��

�

�
��

�n
� s � �

��

�n
� n

�
�



�	�

on ��� where s and n are the unit tangential and outward normal directions� re�

spectively� Then consider a reduced problem�

Find 
��� P�� � H� 	H� � #L� such that

�div CE
���� curlP� � F � 
����

� rot�� � K� 
����

together with boundary conditions

Mn�� � 	� �� � s � 	�

By the standard theory on the elliptic system� we have

k��ks�� � kP�ks � C
kF ks�� � kKks� for all real s � 	� 
����

Now set

�E � � ���� PE � P � P��

In the light of 
����� we need only estimate �E and PE� Actually� we have the

following theorem�

Theorem 	��� Under the same conditions of Theorem ���� there exists a constant

C depending only on the domain � such that

k�Ek� � kPEk� � tkPEk�

� C
�
t���
kF k���� � kKk���� � t���
kF k��� � kKk����

�
� 
����

k�Ek� � tkPEk�

� C
�
t����
kF k���� � kKk���� � t
kF k� � kKk��

�
� 
���	�

We claim the above is enough for our purpose�



�	�

Proof of Theorem ���� Suppose momentarily that Theorem ��� is proved� Then

estimate 
���� can be obtained by combining 
���� 
for kPEk��� 
���	�� and 
�����

Moreover�

k�Ek���� � Ck�Ek�k�
Ek�

� C
�
t���
kF k���� � kKk���� � t���
kF k��� � kKk����

�
�
�
t����
kF k���� � kKk���� � t
kF k� � kKk��

�
� C
kF k����� � kKk���� � t�kF k���� � t�kKk���� � t�kF k�� � t�kKk�

�
� C

�
kF k����� � kKk���� � t�kF k�� � t�kKk��

�
�

where we use the fact that

kF k��� � C
t���kF k� � t��kF k������ kKk��� � C
t���kKk� � t��kKk�����

So

k�Ek��� � C
�
kF k���� � kKk��� � t���
kF k� � kKk��

�
�

Similarly

kPEk��� � C
�
kF k���� � kKk��� � t
kF k��� � kKk����

�
�

and

kPEk��� � C
�
t��
kF k���� � kKk���� � t���
kF k� � kKk��

�
�

Combining these estimates on �E and PE with the estimates in 
���� for �� and

P� then gives 
���� and 
����� �

Therefore it remains to prove Theorem ���� From the de�nitions we get


C E
�E�� E 
���� 
�� curlPE� � �hMs���� � si for all � �H��

�����

�
�E � ���t� curlPE� curlQ� � ���t�
curl P�� curlQ� for all Q � H��

�����



�	�

We will prove Theorem ��� by choosing the appropriate test functions in these equa�

tions� First we need a lemma�

Lemma 	��� Under the same conditions of Theorem ���� there is a constant C

such that for r � H�
���

jh�E � s� rij �Ct���
krk���� � tkrk�����
kF k� � kKk� � kPEk��

� Ct���krk����k�
Ek��

Proof of Lemma ���� We de�ne the usual boundary��tted coordinates in a neigh�

borhood of the boundary� Let �� be a positive number less than the minimum radius

of curvature of �� and de�ne

�� � fz � �nzjz � ��� 	 � � � �� g �

where nz is the outward unit normal to � at z� Let z
�� � 
X
��� Y 
���� � � �	� L��

be a parametrization of �� by arclength which we extend L�periodically to � � R�

The correspondence


�� �� � z � �nz � 
X
�� � �Y �
��� Y 
�� � �X �
���

is a di�eomorphism of 
	� ��� 	R�L on ��� For any function f � let #f 
�� �� denote

the change of variable to the 
�� ���coordinate�

Now� we de�ne an extension R of r to �� by

R
�� �� � #r
��e�	�t�

Then �nd a smooth cut�o� function � which is a function of � alone� independent of

� and t� and identically one for 	 � � � ����� identically zero for � � ������ Thus

�R gives an extension to all of � and� by simple computations�

k�Rk� � Ct���krk����� k�Rk� � C
t����krk���� � t���krk������



�	�

Using integration by parts and 
����� with Q � �R we obtain

h�E � s� ri � 
curl
�R���E � � 
�R� rot�E�

� ����t�
curl
PE � P��� curl
�R�� � 
�R� rot�E�

Applying the Schwartz inequality and the estimates on �R leads to the proof of the

lemma� �

We are now in the position to prove Theorem ����

Proof of Theorem ���� Taking � � �E in 
����� and Q � PE in 
����� gives


C E
�E�� E 
�E�� � ���t�
curlPE � curlPE�

� �hMs����
E � si � ���t�
curl P�� curlP

E��

�����

We bound the �rst term on the right hand side using Lemma ��� and the bounds


���� on ���

jhMs����
E � sij

� C
t���kMs��k���� � t���kMs��k�����
tkF k� � tkKk� � tkPEk��

� Ct���kMs��k����k�
Ek�

� C
�
t���
kF k���� � kKk���� � t���
kF k��� � kKk����

�
�
�
tkF k� � tkKk� � tkPEk�

�
� Ct���
kF k���� � kKk����k�

Ek��

�����

For the second term on the right hand side of 
����� we have

jt�
curlP�� curlP
E�j � Ct
kF k� � kKk�� tkP

Ek�� 
�����

Next we choose Q with zero average and curlQ � P�E � the L��projection onto the

rigid motions 
the space spanned by f 
a � by� c � bx�ja� b� c�� R g� in 
������ to get


�E �P�E � � ����t�
curl
PE � P���P�
E ��



�	�

which implies

kP�Ek� � Ct
tk curlPEk� � tkF k� � tkKk��� 
�����

Combining 
����� 
����� and using the equivalence between k�k� and

j
CE
��� E 
���j��� � kP�k� gives

k�Ek� � tkPEk� � C
�
t���
kF k���� � kKk���� � t���
kF k��� � kKk����

�
�

where we use the fact that

kF k� � C
t���kF k���� t����kF k������ kKk� � C
t���kKk���� t����kKk�����

Finally we choose � in 
����� with

rot� � PE� � � s � 	 on ��� k�k� � CkPEk�

to get


PE � PE� � 
CE
�E�� E
����

Thus

kPEk� � Ck�Ek��

This completes the proof of the �rst estimate of Theorem ����

To get the second estimate we use elliptic regularity� From 
����� we see

�div C E
�E� � curlPE in ��

Ms�
E � �Ms��� Mn�

E � 	 on ���

Therefore

k�Ek� � C
�
kPEk� � kMs��k������ � kP�Ek�

�
� C

�
t����
kF k���� � kKk���� � t���
kF k��� � kKk���� � kF k� � kKk�

�
� C

�

t����
kF k���� � kKk���� � t���
kF k��� � kKk����

�
�
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as desired�

Similarly� by 
�����

��PE � �P� � �t�� rot�E in ��

�PE

�n
� �

�P�
�n

� �t���E � s on ���

so

kPEk� � C
kP�k� � t��k�Ek��

� C
�
kF k� � kKk� � t����
kF k���� � kKk����

� t����
kF k��� � kKk����
�
�

which is the desired estimate on kPEk�� �

Combining the standard interpolation theory and Theorem ���� we get

Corollary 	��� Under the same conditions of Theorem ���� we have

k�k����� � kPk����� � tkPk����� � C�t
��
�
kF k� � t���kF k�

�
for K � 	�


�����

k�k����� � kPk����� � tkPk����� � C�t
��kKk� for F � 	� 
�����

for 	 � � � ����
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