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CHAPTER 1

INTRODUCTION

Finite element methods are widely used for approximating elliptic boundary value
problems. Usually the accuracy of such numerical methods depend on both the
smoothness of the exact solution and on the order of complete polynomials in the
finite element space. To be specific, consider the Dirichlet problem for the Poisson

equation
Au=f 1in ),

(1.1)
u=0 on 09,

where 2 is a bounded polygonal domain in R? (so that the finite element space can
be constructed without error in approximating the boundary) and f is some given
function. The standard finite element method for (1.1) consists of constructing a one-
parameter family of continuous piecewise polynomials subspaces Vi of the Hilbert
space H! () and using the Ritz-Galerkin method to compute an approximation

up € ‘O/h. The standard error estimate gives

le = wnlie < C inf Jlu = o]0 < CR™EDju], 0, (1.2)
veVhy
where || - ||;o is the norm on Hilbert space H"({2) and k is the order of complete

polynomials in the finite element space V. In order for the finite element solution
to achieve the optimal convergence rate, the exact solution u must be sufficiently
regular. Namely, if » > &k + 1, then (1.2) will result in an O(h*) order convergence
rate, which is best possible for the degree of polynomials used. Otherwise a loss of
accuracy will occur.

In practice, it often happens that r < k4 1. For example, when € is a nonconvex

polygon, the exact solution will generally have corner singularities, and one cannot



expect u to be in H*(2). So no matter how high the order of the finite element space
Vi is, the finite element approximation does not even achieve first order convergence.
The situation is even worse for the plane elasticity problem, described by a second
order vector elliptic equation. In this case, the solution may not be in H*({) even
if © is a convex polygon [29] (under some boundary conditions). We also note that
there are other important situations when the exact solution is singular or nearly so,
even when the boundary is smooth, for example, in singular perturbation problems
or problems with concentrated loads.

In the examples mentioned above, the exact solution is smooth in a large part of
the domain and the singularity is a local phenomenon. Therefore, it is natural to
ask whether uj;, approximates u better where u is smoother. Interior error estimates
address this question.

Interior error estimates for finite element discretizations were first introduced by
Nitsche and Schatz [33] for second order scalar elliptic equations in 1974. They
proved that for h sufficiently small

lu = wnllige < O inf flu = vllig, + v = unll-pas ). (L.3)

veVy

for 0y € Q1 € Q (here A € B means that A C B) and any nonnegative integer p.
Here C' is a constant that is independent of u, u;, and h. This estimate says that
the local accuracy of the finite element approximation is bounded in terms of two
factors: the local approximability of the exact solution by the finite element space
and the global approximability measured in an arbitrarily weak Sobolev norm on
a slightly larger domain. The usual way to estimate ||u — up||—p o, 1s to use the
fact that ||u — up||—p.0, < ||u—unl—p 0, for which the estimate is available by using
Nitsche’s duality technique. The significance of the negative norm is that, under

some very important circumstances, one can prove higher rates of convergence in



the negative norm than that in the energy norm. Therefore, better convergence rates
may be obtained in the interior domain. But it does not imply that one can always
recover the optimal convergence rate. For example, as a direct application of (1.3)
and the standard convergence theory of the finite element method, it is easy to see
that if linear Lagrange elements are used for the Poisson equation on an L-shaped
domain with a smooth forcing function, then ||u —up||1,0, is of O(h) for any interior
region {2g. However, if quadratic Lagrange elements are used for the same problem,
| — w100 is only of order O(h*/?), which is less than the optimal O(h?) rate (but
better than the O(h%/?) global rate). This phenomenon is called the pollution effect

of the boundary singularity.

In 1977, Schatz and Wahlbin extended the idea of [33] and established interior

estimates in the maximum norm [35] for second order elliptic equations. They proved

that
1 T
o = walloy < € E) 0F =iy + = o) (1)
vEVR
where || - |00, 0, represents the usual maximum norm and 7 = 1 for linear elements
in R%, ¥ = 0, otherwise. This was later generalized to allow Qy to intersect the

boundary of €.

Interior error estimates are important for other reasons as well. In some cases,
mesh refinement and post-processing schemes to improve the initial approximation
can be designed by using the information obtained from a local analysis. In 1979
Schatz and Wahlbin [37], based on (1.4), gave a systematic mesh refinement proce-
dure for the finite element method for second order elliptic equations on polygonal
domains and showed that optimal global convergence rates could be obtained. In
1983, they studied in detail the approximation of the standard finite element method

for the singular perturbed second order elliptic equation, where a strong boundary



layer effect exists [38], again utilizing the interior convergence theory. In 1985 Eriks-
son [24], [25] applied the local analysis method to the second order elliptic equations
with singular forcing functions and designed an adaptive mesh refinement scheme to
obtain optimal convergence rates. They also generalized such methods to some time
dependent problems [27].

Interior error estimates have also been used successfully to study a posteriori
estimators. In 1988 Eriksson and Johnson [26] introduced two a posteriori error
estimators based on local difference quotients of the numerical solution. Their anal-
ysis was based on the interior convergence theory in [33]. Zhu and Zienkiewicz
[45], [46] proposed several adaptive procedures for finite element methods based on
smoothing techniques. In 1991, Babuska and Rodriguez [9] gave a complete study
of these estimators by using the interior estimate results of Bramble and Schatz [12].
In 1992, Durén [22], [23] proved the asymptotic exactness of several a posteriori er-
ror estimators by Bank and Weisser [10] by applying the interior superconvergence
results of Whiteman and Wheeler [42].

The interior convergence theory is reasonably well understood for standard finite
element methods. For a comprehensive review, see [41]. But there are only few
results in this area for mixed finite element methods. The difficulty in obtaining
interior estimates for mixed methods can be understood by considering how an
interior estimate is usually obtained: first the exact solution is restricted to a local
domain and its projection is constructed; then the difference between the global finite
element solution and the local projection of the exact solution is estimated via duality
and energy arguments. For the interior analysis of a mixed method, there are two
new aspects compared to that for a standard one: the coupling of local projections
and the balancing of two different norms. The resolution of these problems depends

on the specific mixed formulation. In 1985 Douglas and Milner [20] adapted the



Nitsche-Schatz approach to the Raviart-Thomas mixed method for scalar second
order elliptic problems. Their work took advantage of the so—called “commuting
diagram property” [21] between the two discrete spaces. Recently, Gastaldi [28]
obtained interior error estimates for some finite element methods for the Reissner—
Mindlin plate model. Her work is similar in spirit to that of Chapter 4. However
it is for the Brezzi-Bathe-Fortin family of elements for the Reissner-Mindlin plate
[14], for which the variational formulation is different. The “commuting diagram
property” plays an important role in Gastaldi’s work, but does not enter here.

In this thesis we establish interior estimates for some nonconforming and mixed
finite element methods. Our primary goal is the interior error analysis for the the
Arnold-Falk element for the Reissner-Mindlin plate model [3]. Via the Helmholtz
decomposition, the Reissner-Mindlin system can be transformed into an uncoupled
system of two Poisson equations and a singularly perturbed variant of the Stokes
system. Using a discrete Helmholtz decomposition theorem, the Arnold-Falk element
can be viewed as combination of nonconforming linear elements for the Poisson
equations and the MINT element [2] for the Stokes-like system. Therefore the interior
analysis of the Arnold-Falk element requires analysis of the nonconforming piecewise
linear finite element for the Poisson equation and of the MINT element for the Stokes-
like system, and so we consider those problems, which are also of interest in their
own right, first.

The thesis is organized as follows. Chapter 2 defines with some notation and
derives interior estimates for the linear nonconforming finite element method for the
Poisson equation. This result will be used later in Chapter 4 in the interior estimate
of the Arnold-Falk element for the Reissner-Mindlin plate model. Because of the
relative simplicity of this chapter, it also serves to review the standard procedure

for obtaining interior error estimates. Chapter 3 gives interior error estimates in the



energy norm for a wide class of finite element methods for the Stokes equations. In
Chapter 4 we study the interior error estimate of the Arnold-Falk element for the
Reissner-Mindlin plate model. First by adapting the theory of Chapter 3, we obtain
the interior estimate for the Stokes-like system. This is later used to prove that the
Arnold-Falk element achieves (almost) first order convergence rate uniformly in the
plate thickness ¢ in any interior region. Note that first order convergence cannot
be achieved globally (for the soft simply supported plate), due to the existence of
a boundary layer in the exact solution. This problem does not arise for the hard
clamped boundary conditions considered in [3], since in that case the boundary
layer is weaker, and global first order convergence is achieved. Numerical results
are given, which confirm the theoretical prediction.

Finally, in the Appendices, we prove two technical results, one about approxima-
tion property of linear finite elements and the other about the regularity of the exact

solution of the Stokes-like system. They are required in Chapter 4.



CHAPTER 2

INTERIOR ESTIMATES FOR
A NONCONFORMING METHOD

2.1 Introduction

In this chapter, we first introduce some standard notations and then take the
Poisson equation as an example to study the interior error estimate for the noncon-
forming finite element method. The linear element will be the focus of the study
and the result obtained here will be used in Chapter 4 in the interior estimate of
the Arnold-Falk element for the Reissner-Mindlin plate model. We note that more

general results can be obtained similarly.

The technique used is a combination of those in [33] and [34]. Even though the
method of getting interior estimates for finite element methods is well known (for a
comprehensive review, see [41]), the result proven here, to the author’s knowledge, is
new. We mention that in 1990 Zhan and Wang [44] obtained interior estimates for a
class of (compensated) nonconforming elements for second order elliptic equations.
However, the method they considered there excludes most standard nonconforming

methods, including the linear element we will study here.

Overall, the structure of this chapter is quite similar to that in [33] for the continu-
ous element. So this chapter can serve to review the standard procedure of obtaining
interior estimates. Some differences still exist: (1) in section 2.4, additional terms
have to be taken into account due to the discontinuity of finite element functions
across element edges; (2) in section 2.5, the integration by parts technique, which is

essential in Nitsche and Schatz’s treatment for the continuous element [33, section 5],



is not used. Instead, we use a method by Schatz in [34].

The remainder of this chapter is organized as follows. Section 2.2 presents nota-
tions and the model equation. Section 2.3 gives a brief introduction to the noncon-
forming finite element space and proves some of its properties. Section 2.4 derives

an interior duality estimate and section 2.5 shows the final result.

2.2 Notations and Preliminaries

The notations used in this chapter (as well as the whole thesis) are quite standard.
For those for Sobolev spaces, cf. Adams [1].

Let Q C R? be a bounded domain with Lipschitz boundary 9Q. LP() is the usual
space consisting of p-th power integrable functions. W P?(Q) will be the standard
Sobolev space of index (m,p) with norm denoted by || - |[m .0, for m € N. The
fractional spaces can be defined by interpolation [32]. We shall use the usual L2-
based Sobolev spaces H*(2) and H*(0f2), s € R, with norms denoted by || - |50
and || - ||s,a0, respectively. Notation |-|s o denotes the semi-norm of H*(). We will
drop 2 and use H® to denote H*(2), with norm || - ||, whenever no confusion can

arise. The space H* is the completion of C§e(Q) in H®.

For s > 0, H™*® denotes the closure of C§°(2) under the norm

(u, )

[vlls.

Jull—sg = sup

veH?®
v#0

The notation (-, -) stands for both the L? inner product and its extension to a pairing
of H* and H~*. The notation (-,-) denotes the pairing of H*(9€) and H~*(912). We
use boldface type to denote 2-vector-valued functions, operators whose values are

vector-valued functions, and spaces of vector-valued functions. This is illustrated



in the definitions of the following standard differential operators:

9¢1 | 02 _ (9p/0%
g T oy gradp = <3p/3y '

The letter C' denotes a generic constant, not necessarily the same in each occurrence.

dive =

Consider the boundary value problem

—Au=K—divF in (Q, (2.2.1)

u=20 on 0f). (2.2.2)

In the above, we include div F' on the right hand side since it appears in a reformu-
lation of the Reissner-Mindlin plate equations for which we will study in Chapter 4.
This plate model was the original motivation for the current investigation.

The weak variational form is:

Find u € H' such that
(gradu, gradv) = (K,v) + (gradv, F) for all v e H'. (2.2.3)

From the standard theory on elliptic boundary value problems (cf. [32]), we have:

Lemma 2.2.1. For a smooth Q, a given K € H*, and an F € H*t', there is a

unique solution u satisfying (2.2.1) and (2.2.2). Moreover,

ullirz < COIE |k + | F k1), (2.2.4)

where C s independent of K, F', and u.

2.3 The Nonconforming P' Element

The notations and definitions for finite element spaces used here follow closely

those by Ciarlet [16]. For simplicity, we will assume that €2 is a polygonal domain.
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This is just to avoid explaining the construction of curved elements near the bound-
ary 0€2. The theory of the interior estimate to be developed in this chapter, however,
is independent of this assumption.

By a triangulation of 2 we mean a set T of closed triangles such that the inter-
section of any two triangles is either a common edge, a common vertex, or empty,
and such that Q = UKETh K. For any K € Ty, , let hg be its diameter and pg the
radius of the largest inscribed disk inside K. Define h = maxgeT, hi.

We will assume that triangulation 7;, is quasi-uniform (cf. [31, page 141)), i.e.,

there are positive constants 3; and (35 independent of h such that

hx > pih, ZK > 3,

K
for all K € 7T;,. This restriction carries over to the whole thesis unless otherwise
stated.

Define

Wy, ={w € L* : w|p € Py(T) for all T € T}, w is continuous at midpoints
of element edges},

Wy, ={w € L* : w|r € Py(T) for all T € T}, w is continuous at midpoints
of element edges and vanishes at midpoints of boundary edges},

Vi ={v e H': vlr € Pi(T) for all T € Tp, v is continuous at element

vertices}.

Here P (T) is the set of linear functions on T. The sets W}, and V}, are the standard
nonconforming linear finite element space and the conforming linear finite element

space, respectively. For g C €, let

I/T/h(QO) = {p € Wy | suppp C Qo}, ‘O/h(Qo) ={v €V | suppv C Qo}.
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If G, @ Q is a union of triangles, let W;,(G4), Wi (Gyr), and V},(Gj) be defined the
same way as Wy, W}, and V},, respectively.

Let Go and G be two concentric open disks with Gy @ G € Q, i.e., Go C G and
G C Q. Then there is a positive number hg, such that for h < hg, the following
properties hold.

Superapprozimation property. Let w € C§°(Go) and u € Wj. There exists a

function v € T/OVh(G), such that
| grad, (wu — v)lo.c < Ch(lwgrad, ulog + luloc), (231

for C = C(Gyo, G,w). Here for yn € W}, grad,, p denotes the function with values in
the space of piecewise constants that coincides element-wise with grad p.
Inverse inequality property. Let t be a nonnegative integer. Then there exists a

set Gy, which is a union of triangles and satisfies Go @ G, € G, such that
Jullf.q, < Ch " Mull—t,g, forall u € Wy, (2.3.2)

where the constant C is independent of h and u. Here HquGh = (|| grad, thz),Gh +
HuHaGh)l/z for u € Wy,

The above superapprozimation property is somewhat different from the one in [33]
(cf. section 3.3). This is because a different approach will be used in the step of
“interior error estimates” [33, section 5| (from that for the conforming elements).
We mention that (2.3.1) was first proved by Schatz [34] for the continuous linear
element and the same proof can be carried over to the nonconforming element. For

the sake of completeness, we include the proof.

Proof of the superapprozimation property. As w € C§°(Gy), for h small enough, we

can find a set Gy, a union of triangles, such that Gy € Gy € G. By the standard
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approximation theory on finite element spaces (cf. [16, page 121]), the linear function

vy which interpolates w?u at the midpoints of the edges of T satisfies

| grad(w?u — vy)||o,r < Crhy| grad(w?u)|,r

< Crhr(||lwgrad ullo,r + ||¢]lo,7),

for each T' € G Define v in Wj,(Gy) by v|r = vr and extend it outside G}, by zero
so that v € T/OVh(G). Summing up inequalities of above type for each T and using

the fact that 7, is quasi-uniform, we obtain (2.3.1). O

An inverse inequality like (2.3.2) was used in [33] for continuous elements, where
it was stated that it could be obtained by using the inverse inequality ||u||s,q, <
Ch*!|ul|s,G,, for 0 < s <t, and Green’s formula. It is unlikely that this approach
can be easily adapted for discontinuous elements. In the following we give a proof

that is independent of the specific finite element space.

Proof of the inverse imequality. The proof uses a result by Schatz and Wahlbin [35,
Lemma 1.1].

Let t > 0 be an integer. Furthermore, let 25, 3 =1,...,J, be disjoint open sets
with Q = UjJ:l Q;. Then

J
S llull? g, < llull®y g, for allu e H™.
j=1

Based on the above inequality and the standard inverse inequality [16, page 112]
HUH? < Ch7Hullo for all u € Wy,
it is easily seen that one need only prove

lwflo, x < Ch_tHuH_LK, for all w € Py (K) and K € Tp,. (2.3.3)



13

To do so, we apply the scaling argument [16]. Let K be the standard reference
triangle and F an affine mapping from K into K. For any function v € L*(K),
let 9(2) = v(x), where © = Fg(#). Under Fi, the set W},(K) will be mapped onto
Pl(IA&’), the space of linear polynomials on K. Using the equivalence of norms on a

finite dimensional linear space, we obtain
lillg. i < Cllill_, 5 for all @& € Py(K), (2.3.4)

with C independent of 4. By definition

) i, 0) 5
ol o= sup ok (235)
T ein Plek
v€EH"(K)
970
We have (cf. [16, page 140])
(4,9) - < Chi*(u,v)K (2.3.6)
and
t .
o1l i = ChH (DRIl )® = ChI o]l (23.7)

=0
with constant C' depending only on the minimum angle of . Substituting (2.3.6)

and (2.3.7) into (2.3.5) yields

~ 4 u,v 4
il < Cht™" sup L9 gl e

UEIth(I() HUHt7I(
v#0

Since

lullo,x < Chillally
and the mesh is quasi-uniform, inequality (2.3.3) follows. O

The finite element approximation for (2.2.1) and (2.2.2) is:
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Find a uj, € W), such that

(grad, u;,grad, v) = (K,v) + (grad, v, F) for all v € W, (2.3.8)
The following convergence theorem is well known. See, for example
[3, Lemma 5.4].

Lemma 2.3.1. Let K € L? and F ¢ H'. Assume that Q is a convez polygon and

u and up, are the solutions of (2.2.1) and (2.2.2), and (2.3.8), respectively. Then,
Ju— wallo + Al grady (u — un)lo < CR2(IK o + |FIL). (239

The following estimate, which can be found in [18], will play an important role

in our analysis.

Lemma 2.3.2. There is a constant C' independent of h such that

E / uw - nr
oT

TET

< Ch|lwlly inf [ grad,(u—wv)lo
vEH1
forallw e H', we W, + H', (2.3.10)

where np 1s the outer normal of each triangle T

Before we turn to the next section, we define a semi-norm for linear functional L

on T/OVh(G).
L(v
Zhe= sp D
UEWh(G) nga thO7G
grad;, v#0

We also want to point out that the results of this chapter require that the mesh
size h to be sufficiently small (which is self-evident from the analysis involved).

However, for the sake of simplicity, we may not mention it explicitly.
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2.4 An Interior Duality Estimate

In this section we will derive an interior duality estimate. The method used here
is parallel to that for the conforming method, but there are some additional terms,
which measure the jumps of the discontinuous finite elements, to be taken care of.

Let u € H' be some solution to the Poisson equation (2.2.1) and uy, € Wy, be some

finite element solution satisfying (both without regard to the boundary conditions)
(grad, uj, grad, v) = (K,v) — (grad, v, F) for all v € Wj.
Using integration by parts we obtain

(grad, (v — up),grad, v) = Z / (8_u — F-np forallve W, (2.4.1)
fez, Jor On

The interior error analysis only depends on the above interior discretization equation.

Lemma 2.4.1. Let L be a linear functional on Wy, and assume that v € H' + W),
satisfies

(grad, u,grad,v) = L(v) for allv € Vi. (2.4.2)

Then for any concentric disks Go € G € §) and any nonnegative integer t
[ullo.co < C (Rl grad, ullo.c + llull-1.c + I Lllc). (2.4.3)
Moreover, if L(v) =0 for all v € ‘O/h, then

lullo.c, < C (Al grady ullo.c + [[ull-1.c ). (2.4.4)

Proof. We first prove that for any integer s > 0,

lull—so < C(hll grady ullo. + [ul—e-1.6 + | Zllc) (2.4.5)
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holds for any concentric disks Gy € G € ) (not necessarily the same sets as in
(2.4.3)). Then inequality (2.4.3) can be obtained by iteration.
Find a union of elements Gp, such that Gy @ G @ G. Construct a cut-off

function w € C§°(G) such that w = 1 on Gy. By definition

(wu,qb)

|u]l—s,co < |lwul|—s,6 = sup Tolg (2.4.6)
GEH* (G) G
$7£0

By Lemma 2.2.1, there exists a unique function U € H*T%(G) N ﬁl(G), such that

~AU=¢ inG,
U=0 ondG.
Moreover,
1Ulls 42,6 < Cllélls,- (2.4.7)

For convenience, we extend U by zero outside the disk G. Now, we can estimate the

numerator of the right hand side of (2.4.6):
(wu,qb)G = —(wu,AU)Gh

= > [(grad(wu),gradU)T—/a wua—Uds]

on
TeGy, T

= Z [(grad u,grad(wU))T + (ugradw,gradU)T
TeGy,

—I—(u,div(Ugradw))T—/ (uU—+wu—)ds],

where we use the definition of U, differentiation rules, and integration by parts.
Since suppwU C G}, C G, the continuous piecewise linear interpolant (wU)! of wU

belongs to € ‘O/h(G), thus

|wU = (wU) |l1. < Ch||U||2.6- (2.4.9)
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So we have

(wu, )= Y [(gradu,grad(wl — (wU)"),] + L((wU)")

+ Z [(ugradw,gradU)T + (u,div(Ugradw))T]
Ted,

— Z {/ uUa—wdS—l—/ wua—Uds]
TeG) oT an oT an

= A+ L((wU)") +B+C. (2.4.10)

where we use the fact that ( grad, v, grad(wU)’ ) = L((wU)’). Applying (2.4.9),
Lemma 2.3.2, and the Schwarz inequality, we get
| Al < Chl grady, ullo,q, ||Ull2,6,
1B < Cllull-s-1,6Ulls+2,6,
(2.4.11)
|C| < Chl[grad,, uljo,c, |U][2,6,
IL((@U)")] < ClIL)i6, U6
Substituting (2.4.11) into (2.4.10), then using (2.4.6) and (2.4.7) we obtain (2.4.5).
To prove (2.4.3), take a family of concentric disks: Gp € Gy € ... Gy = G. Then

applying (2.4.5) with s = 0 and G replaced by G1, we obtain

[ullo,cio < C(hllgrad, ullo,, + llull-1.6, + ILlla, ).
To bound ||u||-1,q,, we apply (2.4.5) with G and G replaced by G and G, re-
spectively, and s = 1. Thus, we get

[ullo,cio < C(hllgrad, ullo,. + [lull-2.6 + IL]|a. ).

Continuing in this fashion, we obtain the (2.4.3).
If L(v) =0forall v e ‘O/h, we see easily from the above proof that the term ||L||a

can be taken away from the right hand side of (2.4.3). O
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2.5 The Main Result

In this section, we prove the main result of this chapter: Theorem 2.5.2. To be
specific, we first use a local energy estimate to study the discrete function satisfying
(2.5.1). This equation is usually satisfied by the difference between the global finite
element solution and the local projection of the exact solution. Then we combine
it with Lemma 2.4.1 to obtain a local version of Theorem 2.5.2. The final result is

obtained by a covering argument.

Lemma 2.5.1. Let L be a linear functional on Wy, and assume that uw € W), satisfies
(grad, u,grad, v) = L(v) for all v € Wy, (2.5.1)
Then for any concentric disk Go € G and nonnegative integer t, the following holds

lullt o < C(Null—ra + [ Llle ). (2.5.2)

Proof. Let Gy @ GG1 @ G be concentric disks and G, G; € G, € G, be a union of

triangles. Construct a cut-off function w € C§°(G1) such that w =1 on Gg. Then,
Irad, ulf g, < 1o grad, ul} o = [ w* grad, u-grad, u
G

= {/ grad, u - grad, (w?u) } — {2/ wgrad, u - ugradw} =Ji+ Ja.
G G (2.5.3)

Using the inverse inequality (cf. [16])
hllgrady ullo,c, < Cllullo,c, (2.5.4)

the Schwarz inequality, (2.3.1), and the arithmetic-geometric mean inequality, we
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get

| J1 | = |/Ggradh u - grad, (w’u — (wzu)1> + L((wzu)1)|
< C|lgrad, ullo,, || grad;, (w?u — (w?u)" )G, +|L]lc, || grad, («*u)'[lo,c,
< Ch| grad,, uljo,c, (|l« grad, ullo,c, + [[uflo,c. )
+ 11 Lll6, (|| grad, (w?u)llo.6, + || grad, (w?u — ()" )flo,6, )

1
< llwgrad, ullg ¢ + Cllullgq, + ClILlE: (2.5.5)
The estimate on |.J3| is straightforward:

| J2 | < Cllwgrady, ullo,c, [[ullo,c,

1 ) ) (2.5.6)
< Jllwerad, ulls ¢ + Cllullo,q, -

Combining (2.5.3), (2.5.5), and (2.5.6), then taking the square root, we obtain
lgrad,, ullo.c, < C(llullo.c, + [ Ll )-
From (2.5.1) and Lemma 2.4.1, we have
[ullo,co < C(h]|grad, ullo,c + ||ull-t.c +[|L]lc)-
Combing the above two inequalities we get
lullf ¢, < C(llullo,gy + Allullf ¢ + lull—t.c + I Llla ).

Then using Lemma 2.4.1 again with Go replaced by Gy to bound ||ullo,¢, on the

right hand side of the above inequality yields
lully @, < C(Rllullf @ + Ilull-e.6 +ILlle). (2.5.7)

We will now use an iteration method [33] to prove (2.5.2).



20

Let Go € Gh € ... @ Gy42 = G be concentric disks and apply (2.5.7) to each

pair G; @ Gj4+1 (with Go and G replaced by G; and Gj41, respectively) to get
lulli,; < C(hllulll g, + lull-t60: + 1 Ll65m ).
Combining inequalities of above type (for j =0, 1,...) we obtain

lullf o < C(Pllully 6, + lull—tcy + 1 Llc: )
<.

< C(P M ullf gy, + lull—Gen + 12 Gegs )-
By (2.3.2), there is a set Gy, Giy1 € G, € Gyy2 = G, such that
R ulf gy, <Pl 6, < Cllull—r6, < Cllull—1,6-

Thus the above two inequalities imply (2.5.2). O

Theorem 2.5.2. Let Qo @ Q1 € Q and assume that K € L? and divF € L?.
Assume that Flg, € H'(Q). Suppose that v € H' satisfies ulg, € H*(Q) and
up € Wy, satisfies (2.4.1). Let t be a nonnegative integer. Then there exists a
constant C' depending only on Qqg, Qo, and t, and a positive number hy, such that

for h € (0, hq]

lu = wnlll g, < Chllullogy + bIF gy + v — vall-eg ), (258)

lu = unlloge < C(Wlullogy + B2 N Fllig, + lu—wnll—ra, ). (25.9)

Proof. We first prove a local version of (2.5.8), that is,

lu = wnllt iy < Ch(lullee + 1l .6 ) + Cllu = unll e (2.5.10)
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for any pair of concentric disks Gy € G € 2. In order to do so, we find a disk G4
such that Gy € Gy € G, € G, with G a union of triangles. Construct a cut-off
function w € C§°(G},) such that w = 1 on Gy. Use the notation u = wu and define

Tu € Wh(Gh) by
(grad, =, grad, v) = (grad, u,grad, v) for all v € Wj,(Gp). (2.5.11)
This problem is uniquely solvable. Moreover,
~ ~ h . ~
il <€ _inf  [i- vl < Chllulag,

By the triangle inequality,

lu = unlly gy < 0= wall¥ g, + lI7d —unlli g,

< Chlulla.a, + 177 — wallt (25.19)
From (2.5.11), (2.4.1), and the fact that w =1 on G,
(grad, (7u — uy), grad, v) = (grad, (v — uy), grad, v)

= > /BT(g—Z—F-nT)U

Ted,

=: L(v) forallv € T/OVh(Gl).
By Lemma 2.3.2,

L(v)Gy| < Ch(|lullz., + | F 11, )l grady vllo.c, for all v € Wy(Gh),

which implies

ILlle, < Ch(llullz.c +11Fl1cn ) (2.5.13)
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Then, applying Lemma 2.5.1 with G replaced by G1, we obtain

Iz = unll¥ g, < C (7t = unll-c.y + | Llle,)
< Cl[ru = ull-v,6y + [lu = unll-r,a, + [ LllGn)

< Ch(|IF|hc + |lull2.c ) + Cllu — unl-1c- (2.5.14)

By the triangle inequality, (2.5.12), and (2.5.14), inequality (2.5.10) is obtained.
In order to prove (2.5.8), we use a covering argument. Let d = do/2 where
do = dist(Qo,09;). Cover Qy with a finite number of disks Go(x;), 1 = 1,2,...,m
centered at x; € Qo with diam Go(z;) = d. Let G(z;), i = 1,2,...,k be correspond-
ing concentric disks with diam G(x;) = 2d. Applying (2.5.10) to each pair Go(z;)
and G(z;), and adding inequalities of the form (2.5.10), we obtain the desired result.

To prove (2.5.9), note that
(grad,(7u — up),gradv) =0 forallve Vi(Gy).
By Lemma 2.4.1, we obtain
lu = unllo,Go < C(nllgrad, (v —up)llo,g, + lu —unll-1,6, ),
for any disks Go @ G1. Then, applying (2.5.10) with Go replaced by G; to get
lu = unllo,co < C(h*||ull2,c + R || Fllv,a + lu — unll-6 ).

for any pair of disks Gy €@ G € §. Then a covering argument leads to (2.5.9) O
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CHAPTER 3

INTERIOR ESTIMATES FOR
THE STOKES EQUATIONS

3.1 Introduction

In this chapter we establish interior error estimates for finite element approxima-
tions to solutions of the Stokes equations. The theory (cf. [6]) to be developed here
covers a wide range of finite element methods for the Stokes equations. It is based
on some abstract hypotheses that apply to most stable elements. This is different

than what we did in Chapter 2, where we only studied one special element.

The conclusion we obtain here is quite similar to that for the second order elliptic
equation. Namely, we prove that, the approximation error of the finite element
method in the interior region is bounded above by two terms: the first one measures
the local approximability of the exact solution by the finite element space and the
second one, given in an arbitrary weak Sobolev norm over a slightly larger domain,

represents a global pollution effect.

The technique used here is adapted from that for the second order elliptic equation
by Nitche and Schatz [33]. Although the general approach is not new, there are a
number of significant difficulties which arise for the Stokes system that are not
present in previous works. The method developed here will also be generalized to
get the interior error estimate of the Arnold-Falk element for the Reissner-Mindlin

plate model in the next chapter.

After the preliminaries of the next section, we set out the hypotheses for the

finite element spaces in section 3.3. These assumptions are satisfied by most stable
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elements on a locally quasi-uniform mesh. In section 3.4, we introduce the local
equations and derive some basic properties of their solutions. Section 3.5 gives the
precise statement of our main result and its proof. In section 3.6, we apply the
general theory to the MINI element of Arnold-Brezzi-Fortin [2] and show that it
achieves the optimal convergence rate in the energy norm away from the boundary
for a nonconvex polygonal domain. However this optimal convergence cannot be

obtained on the whole domain due to the corner singularity of the exact solution.

3.2 Notations and Preliminaries

Let Q denote a bounded domain in R? and 9Q its boundary. We define the

gradient of a vector function:

[ 061/0c 961 /0y
grad¢‘<a¢l/ax aq.sl/ay)‘

Let G be an open subset of  and s an integer. If ¢ € H*(G), ¥ € H*(G), and
w € C§°(G), then
(W, ¥)| < Clidlls allll-s.6,

with the constant C' depending only on G, w, and s. For ® € H*(G), ¥ € H*t1(G)
define

R(w,®,¥) = (®(gradw)’, grad ¥ ) — (grad ®, ¥(gradw)’ ). (3.2.1)

Then
R(w,®,9)] < Cl[®]ls ol ]ot1 0 (3.2.2)

If, moreover, ¥ € H %72, we have the identity

(grad(w®),grad ¥ ) = (grad @, grad(w?¥) ) + R(w, ®, ¥).
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If X is any subspace of L%, then X denotes the subspace of elements with average
value zero.

The following lemma states the well-posedness and regularity of the Dirichlet
problem for the generalized Stokes equations on smooth domains. (Because we are

interested in local estimates we really only need this results when the domain is a

disk.) For the proof see [40, Chapter I, § 2].

Lemma 3.2.1. Let G be a smoothly bounded plane domain and m a nonnegative
integer. Then for any given functions F € H™ ' (G), K € H™(G) N iZ(G), there

exist uniquely determined functions
¢ € H™(G)n H'(G), pc H™(G) N L*(G),
such that

(grad ¢, grad ) — (divep,p) = (F,¢p) for all 4 € Iofl(G),

(div (,b,q) (K, q) for all q € zZ(G).

Moreover,

pllmtr.c + IPlmc < CUFIm-1.6+ | K]lm.c).

where the constant C' is independent of F' and K.

3.3 Finite Element Spaces

In this section we collect assumptions on the mixed finite element spaces. As
usual for the interior estimate, we require the superapproximation property of the
finite element spaces, in addition to the the approximation and stability properties.

Let Q C R? be the bounded open set on which we solve the Stokes equations.

We denote by Vj, the finite element subspace of H', and by W)}, the finite element
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subspace of L?. For g C , define

Vi) ={la, | @€V}, Wi(0) ={pla, | P € Wi},

Vi(Q)={p eV, | suppo C Q}, Wi(Q0)={pe W | suppp C Qo }.

Let Gy and G be concentric open disks with Go € G € ). We assume that
there exists a positive real number hg and positive integers by and ks, such that for
h € (O, ho], the following properties hold.

Al. Approzimation property.

(1) If ¢ € H™(G) for some positive integer m, then there exists a ¢! € V', such

that

H(:b - (:ZSIHLG S Chrl_l | (:b |m,G7 ™ = min(kl + 17m)

(2) If p € HY(G) for some nonnegative integer [, then there exists a p! € Wy,

such that

lp = p'llo.c < Ch™llpllig, 2 = min(ks +1,1).

Furthermore, if ¢ and p vanish on G\ Gy, respectively, then ¢’ and p’ can be chosen
to vanish on 2\ G.

A2. Superapprozimation property. Let w € C§°(G), ¢ € Vi, and p € Wj,. Then
there exist v € ‘O/h(G) and g € T/OVh(G), such that

lwp =Yl < Chl@lh 6,

lwp = dglloe < Chllpllo,c

where C' depends only on GG and w.
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A3. Inverse property. For each h € (0, ho], there exists a set Gy, Go € G, € G,

such that for each nonnegative integer m there is a constant C' for which

H¢H17Gh < chp=imm H(abH—”%Gh for all ()b € Vy,

Ipllo.g, < CR™™||pll-m,G, forall p& W.

A4, Stability property. There is a positive constant v, such that for all h € (0, hg]

there is a domain Gy, Go € G, € G for which

. <d1V¢,p> Ghn

inf sup =
PEWL(GR) $EV ,(Gh) [®ll1,6 lIPllo,cn

pF0 »F0

When G, = €, property A4 is the standard stability condition for Stokes elements.
It will usually hold as long as G, is chosen to be a union of elements. The standard

stability theory for mixed methods then gives us the following result.

Lemma 3.3.1. Let G} be a subdomain for which the stability inequality in A4
holds. Then for ¢ € Iofl(Gh) and p € L*(Gy), there exist unique T € ‘O/h(Gh)

and mp € Wi(Gy) with th P = th p such that

(grad(¢ — m¢),grad ¢) — (divep, p—7p) =0 for all ¢ € ‘O/h(Gh),

(div((,b — W(ﬁ),q) =0 for all ¢ € Wi(Gh).

Moreover,

¢ — 7ol +p—7pllo, < C( inf ¢ =9llic, + inf |p—dgloa.).
YEV L (Gh) qeEW" (Gh)

The approximation properties Al are typical of finite element spaces V', and
W}, constructed from polynomials of degrees at least ki and ko, respectively. (It

does not matter that the subdomain G is not a union of elements since ¢ and p
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can be extended beyond G.) The inverse inequality was proved in section 2.3 for
general finite element spaces. The superapproximation property is discussed as
Assumptions 7.1 and 9.1 in [41]. Many finite element spaces are known to have the
superapproximation property. In particular, it was verified in [33] for Lagrange and

Hermite elements. To end this section we shall verify the superapproximation for

the MINI element.

Let by denote the cubic bubble on the triangle T', so on T', by is the cubic poly-
nomial satisfying br|s7 = 0 and fT br = 1. We extend by outside T by zero. For a
given triangulation 73 let V}, denote the span of the continuous piecewise linear func-
tions and the bubble functions by, T € T,. The MINI element uses V}, x V}, as the
finite element space for velocities. We wish to show that if ¢ € Vj, and w € C§°(G)
then |lwe— |1, < Chl|¢||1.¢ for some ¢ € Vi (G). We begin by writing ¢ = ¢+ ¢y

with ¢; piecewise linear and ¢y = ZTeTh Orbr for some B € R.

We know that there exists a piecewise linear function ; supported in G for which

|wdr — dill1,0 < Chlloli G-

Turning to the bubble function term ¢, define ¥y = o (Br L1 w)br € ‘O/h(G)
where L1 w € R is the average value of w on T. Now if T intersects suppw then

T C G, at least for h sufficiently small. Hence

lwds —vollo = > llwes = ulld p = > [1Brbr(w — Lrw)|§ ¢

TCq TCG

< D e = LroliemBrbrlls r < CL s 6
TCaE
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where the constant C' depends on w. Moreover,

| grad(wsy — v5)[I5o = > llgrad(wes — vs)[3 ¢

TCaE

= Z I grad(ﬁTbT(w — L W))H(Z),T
TCG

=) [|IBr(w — Ly w)grad by + Brby grad(w — Lo w)[[3 7

TCaE
<C(h* ) llgradw|% oll6r gradbr|§ o + | gradwl|i, 7 Y 157075 1)
TCq TCG
< Ch*|| |11 -

where we used the fact that
[or]fo,r < CR|br|l1,7
Taking v, = ¥y + 1 € ‘O/h(G) we thus have

lwpn — allie < Ch(|osllr,a + llodha)-

We complete the proof by showing that || ||1,7+||¢il|1,7 < Cl|¢s+ ¢1]|1, 7 for any
triangle T with the constant C depending only on the minimum angle of T'. Since

fT grad ¢ - grad ¢; = 0, it suffices to prove that

llovllo, 7 + l|@dlo,r < Cllos + @illo,7-

If T is the unit triangle this hold by equivalence of all norms on the finite dimen-
sional space of cubic polynomials, and the extension to an arbitrary triangle is

accomplished by scaling.
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3.4 Interior Duality Estimates

Let (¢,p) € H' x L? be some solution to the generalized Stokes equations

—Ag¢+gradp=F,

dive = K.

Regardless of the boundary conditions used to specify the particular solution, (¢, p)

satisfies

(grad¢,grad¢)—(div¢,p) (F,¢) fora11¢€Iofl,

(divqb,q)

(K,q) for all g € L?.

Similarly, regardless of the particular boundary conditions, the finite element solution

(dn,pr) € Vi x W), satisfies

(gradth,gradzp) — (divzp,ph) = (F,¢> for all ¢ € ‘O/h,

(divth,q) = (K,q) for all g € Wh.

Therefore

(grad((,b — th),gradv,b) — (divzp,p—ph) =0 forall ¢ € ‘O/h,
(3.4.1)

(div(¢ — ¢h)7Q> =0 for all ¢ € Wy.
(3.4.2)

The interior interior error analysis starts from these interior discretization equations.

Theorem 3.4.1. Let Gy @ G be concentric open disks with closures contained in

Q and s an arbitrary nonnegative integer. Then there exists a constant C such that
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if (p,p) € H x L?, and (¢n,pr) € Vi, x Wy, satisfy (3.4.1) and (3.4.2), we have

16 = @nllo.co + llp = pall1,60 < C(hll¢ = @nlli.a + hllp = pallo.c

+1l¢ — bnll—s.c + llp — prll-1-s.6)-
(3.4.3)

In order to prove the theorem we first establish two lemmas.

Lemma 3.4.2. Under the hypotheses of Theorem 8.4.1, there exists a constant C'

for which

P — pull—s—1,c0 < C(Rh|ld — @ull1,c + hllp — prllo.c

+lé = @nll—s—r.c +lp—pall-s—2.)-

Proof. Choose a function w € C§°(G) which is identically 1 on Gg. Also choose a

function 6 € C§°(Go) with integral 1. Then

wip—pn) g
10— ptlloetico < lolp—pr)lsmrg = sup  LEETPER) g
gEIjIS-I_l(G) HgH5+17G
970

Now
(wp—pn)g)= (w(p—ph)ag—cs/Gg)+(w(p—ph)75)/Gg
and clearly

[ (wlo=0).8) [ 912 Cllp=pl-smzclglboc
G
Since g — 6 [, 9 € H*T(G) N ﬁz(G) it follows from Lemma 3.2.1 that there exist
® ¢ H*t2(G) N H(G) and P € H**'(G) N L*(G) such that
(grad®,grad e ) — (divep, P) =0 for all o € HY(G), (3.4.5)

(div@,q) :<g—5/g,q> for all ¢ € L*(G).
G (3.4.6)
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Furthermore,

1@|s+2.6 + [[Pllst1,6 < Cllglls+1.6- (3.4.7)

Then, taking ¢ = w(p — pi) in (3.4.6), we obtain

(9—5/Gg,w(p—ph)>

= (div®,w(p —pn)) = (div(w®),p —pr ) — (gradw, (p — ps)®)

= (div(w®),p—pr) + {(div[w(I) — (w®)],p—pr) — (gradw, (p —ph)<1>)}
= Ay + By. (3.4.8)

Here the superscript I is the approximation operator specified in property Al of

section 3.3. Choosing ¥ = (w®)! in (3.4.1), we get

Ay o= (div(w®)',p—pn ) = (grad(¢ — ¢), grad(w®)" )
= (grad(¢ — ¢1), grad(w®) ) + (grad(¢ — ¢1), grad((w®)’ — (w®)])
= (gradls(¢ — ¢1) grad ® ) + {R(w, ®,6 — 1)
+ (grad(¢ — ¢), grad((w®)' —w®])} = 4, + By, (3.4.9)

where R is defined in (3.2.1). Next, setting ¢ = w(¢ — ¢y,) in (3.4.5), we obtain

Ay = (grad[w(¢ — ¢1)],grad @ ) = (divjw(¢ — ¢4)], P)
= (div(¢p — ¢n),wP ) + (gradw, P(¢ — ¢n) )
= (div(¢ — ¢n),wP — (wP)") + (gradw, P(¢ — ¢1) ),
where we applied (3.4.2) in the last step.
Applying the approximation property Al and (3.2.2) we get
|B1] < C(hl@ll2cllp = prlloc + @l s+2.6llp = prll-s-2.6).
1B2| < Ol — dnll—s—1,6l|@llst2,6 + 2l — Pulli,cl1 @26 ), (3.4.10)

A2 < C(hlld = @nll .l Pl + Il — @nl -1l Pllst1.6)-
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Substituting (3.4.7) into (3.4.10) and combining the result with (3.4.4), (3.4.8), and
(3.4.9), we arrive at (3.4.3). O

Now we state the second lemma to be used in the proof of Theorem 3.4.1.

Lemma 3.4.3. Under the hypotheses of Theorem 8.4.1, there exists a constant C'

for which

|6 — dll-s.c0 < C(hll¢ — bl + Rllp — prllo.

+lé = @nll—s—r.c +lp—pall-s—2.)-

Proof. Given F' € H*(G), define ® € HS+2(G)OIO{1(G) and P € HS+1(G)OI:2(G)
by

(grad ®,grade) ) — (divey, P) = (F,¢) forallep € H'(G), (3.4.13)
0

(div <I>,q> for all ¢ € L*(G). (3.4.14)
Then, by Lemma 3.2.1,
1@[|s42.6 + [[Pllstr.e < C[Fllsa, €= C(Go, G).

Now

wip— o). F
I — dnll—s.co < |lw(P — @n)||—s.c = sup (wip—9),F)
FcH®(G) HFHsG
F+#0

with w as in the proof of the previous lemma. Setting ¢ = w(qb — ¢y ) in (3.4.13),

we get
(w(¢ —¢n), F) = (grad @, grad[w(¢ — ¢1)] ) — (diviw(d — ¢n)], P)

- {<grad(w‘1’)7grad(¢ —¢n)) — (div(e - ¢h)’“P>}

_ {R(w@,(p—(ph) + (gradw,P(¢—¢h))} —. B, + F,,
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To estimate Ey, we set ¢ = (wP)! in (3.4.2) and obtain

Ey =(grad(w®)’, grad(¢ — ¢) ) — {(div(¢ — ¢n),wP — (wP)")

~ (gradlwd — (w®)'] grad(é — ¢1)) } = Bz + .

Taking 1 = (w®) in (3.4.1), we arrive at

div(w®),p — pn ) + (div[(w@)l — (w®)],p —pn)

gradw, (p —pi)@) + (div[(w®)" — (w®)],p — p1 ),

where we applied (3.4.14) in the last step. Applying (3.2.2) and the approximation

property Al, we have

| By [ C(||¢ — bull—s—1,6]|®||s+2,6 + || — @nll—s—1,6]| Plls+1,6),
| B2 | < CR(ll¢ — @nllicllPllic + |l — dnlli,cl|®ll2,6),

| B2 | < Cllp = pall—s—2.cl1®[lt2,6 + 2P = prllo.cl @2 )-
From these bounds we get the desired result. O

Proof of Theorem 8.4.1. Let Go @ G; € ...Gs = G be concentric disks. First
applying Lemma 3.4.2 and Lemma 3.4.3 with s replaced by 0 and G replaced by

(1, we obtain

¢ — Prllo.co + Il — prll-1.60 < C(hlld = @rll1.a, + hllp — pallo.c,

+ ¢ — bnll-1.6, +1lp — prll-2.60 )-

To estimate ||¢ — ¢dn||-1,6, and ||p — prl|-2,G,, we again apply Lemma 3.4.2 and

Lemma 3.4.3, this time with Gy and G being replaced by GG; and G5 and s replaced
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by 1. Thus, we get

¢ — bnllo,co + I — Prll-1,60 < C (Rl — bill1,65 + hllp — Prllo.c.

+ 1@ — dnll-2.60 + Ip — Pall=3,62 )-

Continuing in this fashion, we obtain (3.4.3). O

3.5 Interior Error Estimates

In this section we state and prove the main result of this chapter, Theorem 3.5.3.
First we obtain in Lemma 3.5.1 a bound on solutions of the homogeneous discrete
system. In Lemma 3.5.2 this bound is iterated to get a better bound, which is then
used to establish the desired local estimate on disks. Finally Theorem 3.5.3 extends

this estimate to arbitrary interior domains.

Lemma 3.5.1. Suppose (th,ph) € Vi x Wy, satisfies

(grad ¢y, grad ey ) — (divep,pp ) =0 for all p € Vi, (3.5.1)
(div (,bh,q) =0 for all ¢ € Wy. (3.5.2)

Then for any concentric disks Go @ G € €, and any nonnegative integer t, we have

@ 11,60+ PR llo,co < C (Rll@nll,c+nlpwllo,q+@nll—t,c+lprll-t-1,6 ), (3.5.3)

where C = C(t,Go, G).

Proof. Let Gy, Go @ G, € G, be as in Assumption A4. Let G’ be another disk
concentric with Gop and G, such that Go € G' € Gy, and construct w € C§°(G')

with w =1 on Gp. Set q%vh =woy € IOJI(G’), pr = wpp € L*(G"). By Lemma 3.3.1,
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we may define functions 77(,5; € ‘O/h(Gh) and 7py, € Wi(Gy) by the equations

(grad((,g; — W%),gradzp) — (divep,pp —7pr, ) =0 forall ¢ € ‘O/h(Gh),
(3.5.4)

(div((,g; — F%),(]) =0 forall ¢ € Wi(Gy),
(3.5.5)

together with |, G (mpn — pr) = 0. Furthermore, there exists a constant C' such that

lon — 7@nllv,cn + llPh — 7Pk llo,G
<C( inf |¢n— +  inf  |pr -
<¢€‘7h(Gh) H¢h ¢H17Gh qEWL(Gr) th QHQGh )
< Ch(ll@nllr,ar + llprllo,r), (3.5.6)

where we have used the superapproximation property in the last step.

To prove (3.5.3), note that
nlls.co + lpallo,co < lBnll1,ci + lIBRllo,cn
< llén =7l + 50— 7pillo,ci + I7nllcn + 70 o,
< Ch(|lénllro + llpnllo,ar) + 1m@nllv,cn + 7Dk ll0,G- (3.5.7)
Next, we bound Hﬂ'(,g; l1,G,- In (3.5.4) we take ¢ = 77(,5; to obtain, for a positive
constant c,
cqufszhHiGh < (gradw%,gradw%)

= (grad%,gradﬁ%) - <diV77$;723\’;_ Fﬁ)
(3.5.8)

For the first term on the right hand side of (3.5.8), we have
(grad (E, grad 77(,5; ) = (grad(w¢h), grad 77(,5; )
= (grad ¢y, grad(wr ) ) — R(w, 7, b1 )
= (grad th,grad(wwgg;)I) + {(grad b, grad[wm,g; — (wwq%vh)j] )

—R(w,wgg;,(ﬁh)} — Gy + H. (3.5.9)
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To bound Gy, we take ¢ = (wﬂ'(,g;)j in (3.5.1) and get

diviwrdn) . pr)

(
<d1V wﬂ'(ﬁh ) + (div[(ww%)l - WW%]aPh)
(
(

div quh,wph) + (gradw,phﬂ'(,g; ) + (div[(ww%)l — wﬂ'(,g;],ph>
div ngh,ph ) + (grad w,phﬂ'(,g; ) + (div[(ww%)l — wﬂ'(,g;],ph )

(div 7 en,pn ) + Ho. (3.5.10)

Combining (3.5.7), (3.5.8), (3.5.9), and (3.5.10), we obtain
cllxdnll g, < (divrdn,pn ) + Hi + Ho — (div 7én, pi — 7ph )
= (divren. 7pr ) + Hy + Ho. (3.5.11)
Taking ¢ = 7py, in (3.5.5), we get
(divrgn, 7pn ) = (diven, mpr ) = (div(wen), 7pn )

(div s, wrpr ) + (gradw, mprdp )

(div G, wTpy — (wwﬁﬁ)1> + (gradw,wﬁ(ﬁh) =: Hj,
(3.5.12)

where we used (3.5.2) at the last step. Applying the Schwartz inequality, (3.2.2),

and the superapproximation property A2, we get
| Hy |< C(Rlpnlliar + @nllo.c )lImenlh.c.
| Ha |< C(llpnll-1,¢0 + B llpallo,ar ) 1w @nll,c
| Hs |< C(R|lénll,cr + @nllo,c )lImprllo,c -
Combining the above three inequalities with (3.5.11) and (3.5.12), and using the
arithmetic-geometry mean inequality, we arrive at
I7énllt ., < Ci(Rénllf o + 1@nlle.cr + P2 pallg,cr + lpallZy )

+ Co(||onllo,cr + R llonllr,e ) 7Pk llo,c, - (3.5.13)
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Next we estimate ||7pp]lo,¢,. By the triangle inequality,

. — Ja, 7Pr I
e e BRI R
meaS( h) 0,G Gh 0,Gp
-I-meas(Gh)_l‘/ Ph (3.5.14)
G 0,Gp

Notice that the second term on the right hand side of (3.5.14) is bounded above by

the right hand side of (3.5.6), and, for the last term,

‘ / Ph / wph
Gh Gh

To estimate the first term, we use the inf-sup condition,

< Cllpn|-1.c0- (3.5.15)

07Gh ‘ 07Gh

L TPh div p, mpp,
PR — thT <C sup ( >Gh (3.5.16)
meas( h) 0.G, ¢€Z;(0Gh) H,(IbHLGh

To deal with the numerator on the right hand side of (3.5.16), we apply (3.5.4),

(divep,mpn) = (dive, i) — (grad(én — 7). grad )
(divep,wpn ) — (grad(g, — wdn), grad )
= (div(wip),pr ) — (grad(¢s — w¢r),grad ¢ ) — (gradw, ppyp)
(div(wp)',pr) — (grad(én — 7es), grad )
N

(div(wyp — (w)!),pr ) — (gradw, ppap ). (3.5.17)

We use (3.5.1) to attack (div(w@b)I,ph) and get

(div(wyp)’,pn ) = (grad ¢, grad(wy)’ )
= <grad ¢n, grad(wip) ) + (grad P, grad[(w¢)I —wi] )
= <grad(w¢h), grad ¢ ) + {R(w, Y, On ) + (grad P, grad[(w’(ﬁ)l — wy] >}

=: (grad%,gradzp) + M;. (3.5.18)
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Combining (3.5.17) and (3.5.18), we get

(divep, mpr ) = { (div(wyp — (wep)'), pr ) — (gradw, patp ) }
+ (gradwg%vh,grad¢) + M,y

=: (grad qu;,gradzp) + My + Ms. (3.5.19)

Then applying the superapproximation property, the Schwartz inequality, and (3.2.2) ]

we arrive at

| My |< C(llgnllo.ar + P llonlliar ) llelh,a,,
| My |< C(Rllpallo,ar + llpall 1.6/ ) 1P ]l1,6a s
| (grad 7o, grade ) |< ||[7dnll1.cn %16,

Combining (3.5.14), (3.5.15) , (3.5.16), and (3.5.19) with the above three inequalities,

we obtain

I7Prllo.c < C(hllnllier +1@nllo.cr + hllpallo.cr + Ipall-1.60 + 17 dnll1a, )-
(3.5.20)
Substituting (3.5.20) into (3.5.13), we obtain

Ixdnll1.c, < C(Rlbnllcr + [ Dnllo,r + hllpallo,ar + llpall-1,60 ). (3.5.21)

Thus, substituting (3.5.21) back into (3.5.20), we find that ||7pp||o,¢, is also bounded

above by the right hand side of (3.5.21). Therefore, from (3.5.7) we obtain

lPnll1,co + lIprllo,co < C (hllonlli,ar + lldnllocr + P llpallo.e + llpall 1,60 ).

Applying Theorem 3.4.1 for the case that ¢ = p = 0 and G’ in place of G, we finally

arrive at

lpnll.co +llpallo.co < C (Al@nllic + lonll-r.c +hllpallo. + Ipall-t-1,6). O
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Lemma 3.5.2. Suppose the conditions of Lemma 8.5.1 are satisfied. Then
@0 ll1.co + llprllo,co < C(I1@nll-a + [Ipall——1,6). (3.5.22)

Proof. Let Gy @ Gy € ... € G442 = G be concentric disks and apply Lemma 3.5.1
to each pair G; € G4 to get
l@nllr,c; + llprllo,c;

<C <hH¢hH17Gj+1 + thhH07Gj+1 + H(abhH—th-H + thH—t—LGj-H )

(3.5.23)
Combining these we obtain
lorllico + llPnllo,co < C (A HOnl1 6oy + 2T Iprllo,Gosn
Fllbnll-t,6opr + Ionll—t41,604 )-
(3.5.24)
While by A3, we can find Gy, Gy4+1 € G, @ G429 = G, such that
R onll,con <P H@nl,6h < Cllénll-t,an < Clldnll-ra,
(3.5.25)

R pallo,Gegs < 2 Ipnllon < Cllpnll—t-1,640 < Cllpall-e-1,6-
Thus inequality (3.5.22) follows from (3.5.23), (3.5.24), and (3.5.25). O
We now state the main result of the chapter.
Theorem 3.5.3. Let Qo @ Q; @ Q and suppose that (¢, p) € H' x L? (the exact
solution) satisfies @lo, € H™(Q1) and plg, € H™ 1 (Qy) for some integer m > 0.
Suppose that (¢n, pr) € Vi xWy (the finite element solution) is given so that (3.4.1)

and (3.4.2) hold. Let t be a nonnegative integer. Then there exists a constant C

depending only on §2y, o, and t, such that

I — @nllsco + P = prlla—1.00 < C (A" @llmg, + 17 [Ipllm-1.0,

—I_H()b_()bhH—t,Ql ‘|-Hp—th_t_1791>, 3:07]_
(3.5.26)
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with 1y = min(ky + 1,m), ro = min(ke + 2,m), and k1, ke as in Al
The theorem will follow easily from a slightly more localized version.

Theorem 3.5.4. Suppose the hypotheses of Theorem 8.5.8 are fulfilled and, n
addition, that o = Go and Qy = G are concentric disks. Then the conclusion of

the theorem holds.

Proof. Let G, @ G' be further concentric disks strictly contained between Gy and

G and let G, be a domain strictly contained between G’ and G for which properties
A3 and A4 hold. Thus

GoeGyeG eG,eGeN.

Take w € C§°(G') identically 1 on GY and set (:5 = w@, p=wp. Let 77(:5 € ‘O/h(G),
7p € Wi(G) be defined by

(grad(qg— W%),gradzp)—(div P, p—rp) =0 forallee ‘O/h(Gh),

(3.5.27)
(div(qg— 7T(:5),(]> =0 forall ¢ € Wi(Gp),
(3.5.28)
together with th Tp = th p. Then using Lemma 3.3.1 and Al we have
16 — 7@l + 1P = 7Bllo.ci

<C inf b — + inf p—

<o it o=l + it 15 alo,)

< C(R 7 Bllmn + = lpllm—16. ). (3.5.29)

Let us now estimate ||¢ — @|1,6, and ||p— prllo,c,- First, the triangle inequality
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gives us

| — @nll1,6o + llp = Prllo.co
<@ —7oll1,6o + lIp — 7pllo,Go + |7 — Prll1.6o + 7P — prllo,c0
<@ —7olli.6, +|Ip— 7Dllo.c, + 7@ — @ull1,Go + |7P — prllo,Go

< C (W7 Bllm,cn + 2" lpllm—1,60) + 7@ = Bl + 175 — pallo.co-
(3.5.30)

From (3.5.27), (3.5.28) and (3.4.1), (3.4.2) we find
(grad(¢, — W%),gradzp) — (divep,pp, —7p) =0 forally € ‘O/h(G()),
(div(en — 77(?5),(]) =0 forallqe T/OVh(G()).

We next apply Lemma 3.5.2 to ¢j, — 77(:5 and p, — 7p with G replaced by G{. Then

it follows from (3.5.22) that
lpn — 7@ll1.6o + lpn — 7Dllo.co < C (Npn — 7bll—t,cr + llpn — 7Dl 11,61, )
<C (¢ —onll-t,cr, + llp—prll—i—1.c, + |& — 7|l —t,cr. + lp — 7Pl —=1,a1,)
<C <H¢ — @nll-t,6 + lp = prll-t-1,6 + |6 = 7d|l1.6, + |lp — WﬁHO,Gh> :

In the light of (3.5.30), (3.5.29), and the above inequality, we have

6 = dnllico + I = pallogo < (0" @l + 27 pllm—1,a

+ | — dnll-t.¢ + llp — pull-1-1,6) -
(3.5.31)

Thus, we have proved the desired result for s = 1. For s = 0, we just apply
Theorem 3.4.1 to the disks Gy and G’ and get

1 = @nllo.co + P = Prll-1,60 < C(Rll& = @rll1,cr + Pllp = prllocr

+ ¢ — @énll-t,c0 + |lp — prll—t-1.67) -
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Then, applying (3.5.31) with Go replaced by G', we obtain the desired result

¢ = dullo.cio + Ilp = prll-1.60 < C (A" |@llm.c + B2 ||pllm—1,6
+llo = @ull-rc + llp = pall-e-1.c). O

Proof of Theorem 8.5.3. The argument here is same as in Theorem 5.1 of [33]. Let
d = do/2 where dy = dist(Qg, ). Cover {0y with a finite number of disks Go(z;),
i =1,2,...,m centered at x; € Qo with diam Go(x;) = d. Let G(x;),i =1,2,... ,k
be corresponding concentric disks with diam G(x;) = 2d. Applying Theorem 3.5.4,
we have

16 — Drlls,Gotwn + 12 = Prlls—1,Goeny < Ci (R Nl Gy + 2= pllm—1,G00

+ Il — bl —t.cx0) + lp = Prll—t—1,G(x1) )-
(3.5.32)

Then the inequality (3.5.26) follows by summing (3.5.32) for every 7. O

3.6 An Example Application

As an example, we apply our general result to the Stokes system when the domain
is a non-convex polygon, in which case the finite element approximation does not
achieve the optimal convergence rate in the energy norm on the whole domain, due
to the boundary singularity of the exact solution.

Assume that {2 is a non-convex polygon. Then it is known that the solution of

the Stokes system satisfies
¢peH"'NH;, pe H”,
¢€H2(Ql)7 peﬂl(gl)v if Q1 @Qv

for s < sq, where sq is a constant which is determined by the largest interior angle

of Q (cf. [19]). For a non-convex polygonal domain we have 1/2 < sq < 1. The
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value of sq for various angles have been tabulated in [19]. For example, for an
L-shaped domain, s ~ 0.544.

The MINI element was introduced by Arnold, Brezzi and Fortin in [2] as a stable
Stokes element with few degrees of freedom. Here the velocity is approximated
by the space of continuous piecewise linear functions and bubble functions and the
pressure is approximated by the space of continuous piecewise linear functions only.

Globally we have

I — @nlls +1lp = prllo < CR*([[Dlls1 +Iplls),

which reflects a loss of accuracy due to the singularity of the solutions.
In order to apply Theorem 3.5.3, we note that a standard duality argument as in
[2] gives us

¢ — @nllo + llp — pall-1 < CH*| Fllo.

Hence, according to Theorem 3.5.3, for g € 1 € €2, we have

I — @nlli.ao +1lp = prllog, < C(hllll20, +llplia, +5* [|Flo).

Since 2s > 1, the finite element approximation achieves the optimal order of conver-

gence rate in the energy norm in interior subdomains.
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CHAPTER 4

INTERIOR ESTIMATES FOR
A FINITE ELEMENT METHOD FOR
THE REISSNER-MINDLIN PLATE MODEL

4.1 Introduction

The Reissner-Mindlin plate model describes deformation of a plate with small to
moderate thickness subject to a transverse load. The finite element method for this
model was studied extensively (cf. [11], [30], and references therein) and it has been
known for a long time that a direct application of standard finite element methods
usually leads to unreasonly small solution, as the plate thickness approaches zero.
This is usually called the “locking” phenomenon of the finite element method for the

Reissner-Mindlin plate [11], [30].

The reason behind the locking phenomenon is well known: as the plate thickness
becomes very small, the numerical scheme tries to enforce a discrete version of
the Kirchoff constraint on the displacement and the rotation fiber normal to the
midplane. If the finite element spaces for those two quantities are not chosen wisely,
then, together with boundary conditions, the numerical solution reduces to the trivial

solution.

Another difficulty relating to the Reissner-Mindlin plate model is that the solution
possesses boundary layers, having the plate thickness as the singular parameter. As
usual, the strength of the boundary layer is sensitive to the boundary condition. The

structure of the dependence of the solution on the plate thickness was analyzed in

detail by Arnold and Falk [4], [5].
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The purpose of this chapter is to obtain the interior error estimate for the Arnold-
Falk element [3] for the Reissner-Mindlin plate model. This element is the first to
achieve a locking-free first order (optimal) convergence for the Reissner-Mindlin plate
(under the hard clamped boundary condition). However, it does not retain the same
order of convergence rate for the plate under the soft simply supported boundary
condition, due to a stronger boundary layer effect. By applying the interior estimate
to the soft simply supported plate, we are able to obtain the interior convergence
rate of the Arnold-Falk element and show that it still possesses (almost) first order
convergence rate in the region away from the boundary.

The construction of the Arnold-Falk element is based on an equivalence between
the plate equations and an uncoupled system of two Poisson equations plus a Stokes-
like system [3]. Arnold and Falk used the nonconforming linear element for the
Poisson equation and the MINT element for the Stokes-like system. So the (global
or interior) analysis of the Arnold-Falk element consists of two parts: one for the
nonconforming method for the Poisson equation and another for the MINT element
for the Stokes-like system. Recall that in Chapter 2 we obtained interior estimates for
the nonconforming element for the Poisson equation. So the task here is essentially
to analyze the interior error estimate of the MINI element for the Stokes-like system.

The organization of chapter is as follows. Section 4.2 presents the Reissner-
Mindlin plate equations and its reformulation under the Helmholtz decomposition
for the shear stress. The interior regularity of the solution of the singularly per-
turbed system is studied in section 4.3. The Arnold-Falk element is introduced in
section 4.4. Section 4.5 is devoted to the interior duality analysis of the variant of
the Stokes system. In section 4.6 we first obtain the interior estimate of the MINI
element (Theorem 4.6.2) for the Stokes-like system with perturbation and then use

it to get the interior estimate of the Arnold-Falk element for the Reissner-Mindlin
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plate model (Theorem 4.6.3), which is the main result of the chapter. As an appli-
cation of the general theory we develop, we consider the soft simply supported plate
in section 4.7. We will show that globally, the Arnold-Falk element only achieves
(almost) h'/? order convergence for the rotation (Theorem 4.7.3), but away from
the boundary layer, (almost) optimal order convergence rate can be obtained (The-
orem 4.7.4). Finally, numerical results are shown in section 4.8 which confirm the

theoretical predictions.

4.2 Notations and the Reissner—Mindlin Plate Model

The following operators are standard.

diV (tll t12> _ <8t11/8:1: —|— 8t12/8y>
t21 ta2 Oty1/0x + Otaz /Oy )’

curlp = (%iz;/aiy>, rot ¢ = J¢y /Oy — O /Ox.

Let Q denote the region in R? occupied by the midsection of the plate, and
denote by w and ¢ the transverse displacement of {2 and the rotation of the fibers
normal to €2, respectively. Under the soft simply supported boundary condition,
the Reissner-Mindlin plate model determines (w, ¢) as the unique solution to the

following variational problem:

Find (w, @) € H! x H* such that

a(p, )+ M2 (p—grad w, P —grad y) = (g,p) for all (u, ) € H' x H'. (4.2.1)

Here ¢ is the scaled transverse loading function, ¢ the plate thickness,

A = Ex/2(1+v) with E the Young’s modulus, v the Poisson ratio, and ~ the
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shear correction factor. The bilinear form « is
- E 6¢1 8qb2 877/)1 aﬁbl aﬁbZ 877/)2
“<¢’¢>‘1z<1—u2>/9<ax *”ay> da *(” o " ay) dy
1—v 6¢1 8¢2 877/)1 877/)2
+ 2 <8y+8:1;><8y+8:1;>

- / CE() : £(8).

Here, £(¢) is the symmetric part of the gradient of ¢ and C is a fourth order tensor
defined by the bilinear form a.
Following Brezzi and Fortin [15], equation (4.2.1) can be reformulated by using

the Helmholtz Theorem to decompose the shear strain vector
M %(grad w — ¢) = grad r + curlp, (4.2.2)

with (r,p) € H! x H'
Equation (4.2.1) now becomes

Find (r, ¢, p, w) € H' x H' x H' x H! such that

(gradr,grad ) = (g, ) for all p € H', (4.2.3)

<C5(¢),5(¢)) — (curlp,zp) = (gradr,¢> for all i € H', (4.2.4)

—(¢,curlq) — A\ '#*(curlp,curlq) =0 forall ¢ € H' (4.2.5)

(gradw,grads) = (¢ + A\~ 't* gradr,grads) foralls € H'. (4.2.6)

Obviously the function r in (4.2.3) is independent of ¢ and the functions ¢, p, and
w are not. It has been shown in [5] that the transverse displacement w does not
suffer from the boundary layer effect under all boundary conditions. However, the
regularity of solution (¢, p) for system (4.2.4) and (4.2.5) depends on the boundary

condition imposed on the plate. For example, under the hard clamped boundary
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condition (then, ¢ is to be found in space Iofl, rather than H'), the following holds
3]
9]z + [Pl < Cllgllo,

with the constant C' independent of the plate thickness ¢. This guarantees the MINI
element to achieve a locking free first order convergence rate for the system (4.2.4)
and (4.2.5) [3].

But the above estimate does not hold for the soft simply supported plate. In this
case, one can only expect that the H?/? norm of function ¢ and the H'/? norm of
function p to be bounded above, independent of the small parameter ¢ [5]. This is
obviously not enough for the finite element method to achieve first order convergence
rate. It is also easy to see that a complete understanding of the dependence of the
regularity of the solution on the small parameter ¢ is of crucial importance for the
convergence analysis of the finite element method. However, for the purpose of
interior estimates, we need only know the inteiror regularity of the solution of the
Stokes-like system. This will be given in the next section.

In the following, we introduce some notations that will be used in the interior
estimate.

Let G be an open subset of Q, w € C§°(G), and s an integer. For ® € H*(G),
U ec H (@), P e H*(G), and Q € H*1%(G), define

R(w, ®, W) = (CEw®),E(T)) — (CE(T), E(wT))

and

R’(w,P,Q) = (curl(wP),curlQ) — (curlP, curl(wQ)).

Then

R(w.2.%) < O]l ¥]-rs1.0 (4.2.7)
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and

R'(w,P,Q) < C||P|l+,allQll-t+1,6 (4.2.8)

for non-negative integers t < s.

4.3 An Interior Regularity Result

In this section we present an interior regularity result for the solution of the
singularly perturbed Stokes-like system under the homogeneous Dirichlet boundary
condition. We will show that the regularity of the solution in the interior region
is not affected by the boundary layer. This will be used in section 4.5 for the the
interior duality analysis of the MINT element.

The proof basically follows that in [3, Theorem 7.1] for proving the regularity of
the solution of the hard-clamped plate and uses the standard approach for analyzing

interior regularities for solutions of elliptic equations.

Theorem 4.3.1. Let F € H*(G) and K € H*T1(G) N ﬁz(G), where integer s > 0
and G is a disk. Then there exists a unique solution (®, P) € H*T*(G)N Iofl(G) X
HH(GE) N ﬁz(G) such that

(CE(W),E(®)) — (curl P,T) = (U, F) for all © e H'(G), (4.3.1)
—(®,curl Q) — A\ 't} (curl Q,curl P) = (Q, K) for all Q € H'(G). (4.3.2)
Moreover,

1®]2.c + [1Plh.c +tIPll2c + [[Plls.c < CIFlo.c + 1 K]1c). (4.3.3)

[@l[s+2,G0 + |1 Plls+1.60 + tIPllst2.60 + ][ Pllst3,60 < C(I|1Fls.6 + 1K lst1,6 ),
(4.3.4)

for an arbitrary disk Go € G.
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Proof. The inequality
1®]l2,c + [Plli,c + tIPll2.c < C(I1Fllo.c + K]l )

is proved in [3] for I = 0 when a(¥, ®) is simplified into (grad ¥, grad @), i.e.,
(CE(W),E(P)) is replaced by (grad ¥, grad ®) in (4.3.1). By checking the proof
there and using the fact that bilinear form ( CE(W), E(P) ) is coercive on space Iofl,
we can conclude that the same estimate still applies to the current case. What we
will do next is to follow the same proof to show that the estimate is still true for
K # 0. At the same time, we will prove that t?||P||3 ¢ is also bounded above by the
right hand side of (4.3.3).

Define (®°, P?) € Iofl(G) X i)z(G) as the solution of (4.3.1) and (4.3.2) with ¢

set equal to zero:

(CE(W),E(B°)) — (P°,rot U) = (U, F) for all U € H'(G),
(4.3.5)

—(rot ®°,Q) = (Q, K) for all Q € L*(G).
(4.3.6)

This is a Stokes like system which admits a unique solution. Moreover, the standard

regularity theory gives [40]
19126 + I P°lhc0 < C (I Fllo. + K ,0)- (4.3.7)
From (4.3.1), (4.3.2), (4.3.5), and (4.3.6), we get
(CE® —@°),6(W)) — (curl(P—P°), W) =0 forall ¥ e H'(G),
(@ —®° curlQ) + \""*(curl P,curl Q) =0 for all Q € H'(G),
which imply
(CE(® —8°),8(T)) — (curl(P —P°),¥) + (& — 3° curl Q)
+ A7 (curl(P — P°),curl Q)

= A2 (curl P° curl Q) for all (¥,Q) € H'(G) x HY(G).
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Choosing ¥ = & — ®° and Q = P — P°, we obtain
@ —@°F ¢ + 1P — P°li ¢ < CH||PO[1, 1P — Pl1.c-
It easily follows that
@ - @°[1.c +t|P — POllg < Ctl|P°|l,q < Ct(|[Fllo.c + | Kl1a).  (43.8)

Hence also

1Pll.¢ < CUIENo,6 + 1 K]l,6)-

Applying standard estimates for second-order elliptic problems to (4.3.1), we further

obtain

[@]l2,6 < C[|Plh,¢ + [ Fllo,c) < CIFllo,¢ + [ K]l1,6)- (4.3.9)

Now from (4.3.2) and the definition of ®° (i.e., (4.3.6)) we get

A2 (curl Pycurl Q) = —(®@,curl Q) — (K,Q) = (®° — @, curl Q)

for all Q € H'(G).

Thus P is the weak solution of the boundary value problem

oP

—~ AP =M "2rot(®° - ®) inG, 5, =0 on oG,
n
and by standard a priori estimates
IP)l2,c < Ct7|@ = @°l1,6 < Ct7 (| Fllo, + 1K1, (4.3.10)

and

IPlls,c < Ct72|@ = @%||2,6 < Ct2([|@]l2,6 + 1®°2,0) < Ct*([|Fllo.a + | K l1.0),
(4.3.11)
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where we apply (4.3.8) in deriving (4.3.10), and (4.3.7), (4.3.9) in deriving (4.3.11).
This completes the proof of (4.3.3).

In order to prove (4.3.4), we take a disk Gy such that Go € Gy € G. Find a
cut-off function w € C§°(G1) with w = 1 on Gy. We will use the notation ' = D, or
D,, say for example, P’ can be either P, or P,. Then, by differentiation rules, it is
easy to obtain

—div CE(wP') — curl(wP') = wF' — J(w,®') — P' curlw
— R, (4.3.12)
—rot(w®) + AT A(wP') = wK' —curlw - & + X712 AWP’

+ 2\ 't? gradw - grad P’

= K, (4.3.13)
where
J(w,®') =: div CEWP') — wdiv CE(P),
with
| T (w, ®")] < C||®'[|1,6, -
Obviously,

/Gl K = /Gl<—rot(w<1>’) AT AWPY))

= —/ (w®' - s — A" 9(wP')/On) =0,
0G1

because both w and gradw vanish on 0G;. Moreover, we see that (w®' wP’)

satisfies

(CE(W), E(wD')) — (curl(wP'),T) = (U, F,) for all ¥ € H'(Gy),
(4.3.14)

—(w®’ curl Q) — A\ (curl Q, curl(wP’)) = (Q,K;) forall Q € HY(Gy).
(4.3.15)
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Thus, (4.3.3) with (®, P) replaced by (w®’,wP’), G replaced by Gy, implies ( for

(Sl = fGl CUP/)

lw®@|l2.c, + lwP" = dillc, + twP' = dillz.c + llwP’ = dils.c,
<CO(||wF' = J(w,®') — P curlwl|o,¢,
+ |lwK' — curlw - @ + A" AwP’ + 2\ 't gradw - grad P'||1 g, )

<C(IFlvc+1E]2c)-

Since function w = 1 on G, inequality (4.3.4) is proved for s = 1. Now we are

going to prove (4.3.4) for s = 2.

!

The notation ” now means either D,,, or D,,, or D,,. Applying differentiation

rules, we can obtain (for the same w as in before)

—div CE(w®") — curl(wP") =wF" — J(w,®") — P" curlw
— F, (4.3.16)
—rot(w®") + A2 A(wP")=wK" — curlw - "
+ A M2 AwP” + 2 ' t? grad w - grad P”

=: Ky, (4.3.17)

with fGl K5 = 0. Then, inequality (4.3.3), with (®, P) replaced by (w®", wP") and
G replaced by Gy, implies (for d2 = fGl wP")

lw®@"l2,, + [[wP" = &2 l1,6, + tlwP" = &2 12,60 + *[wP" = &2 l5,6,
<C(|lwF" = J(w,®") — P" curlwl|o,¢,
+ lwK" — curlw - ®" + A™'#* AwP"” + 207 '#* grad w - grad P"'||1 ¢, )
< (IF )z, + 1K 5,6, + 1 @l5.6, + 1 Pll2.cy + tIPls.cy + 2| Pllacy )

< C(IFllzc+ 1Klls.c )
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where in the last step we use (4.3.4) with s = 1 and Gy replaced by Gy. Since w =1
on G, so inequality (4.3.4) is proved for s = 2. Same arguments, together with an

induction on s could be used to prove (4.3.4) for s > 3. O

4.4. The Arnold-Falk Element

Let 73 denote a family of quasi-uniform triangulations of € and Py(T') the set of
polynomials of degree not greater than k > 0 restricted to T', an arbitrary element

of Ti. Consider the following finite element spaces

Qn=1{qc L?: qlr € Py(T), forall T < Ty},

Py={pc H' :p|r € P(T), forallT < T},

P, =P, N L2

Wy ={w € L?: wlr € P (T), forall T €Ty, and w is continuous at midpoints
of element edges},

Wi, ={w € L* :w|r € P(T), forall T €Ty, and w is continuous at midpoints
of element edges and vanishes at midpoints of boundary edges}

Vi={¢ecH 9Y|rc|[P(T)®BT)?, forallTeTh}.
In the above, B*(T) is the cubic bubble function on T. For Qg C Q, let

Vi) ={gla, [¢€Vi}, Vi) ={pe Vi |suwpe <},
Pr(Q0) = {dla, | ¢ € P}, Py(S0) = {q € Py | suppq C Qo},
Wi(Q0) = {pla, | p € Wi}, I/T/h(Qo) = {p & Wy |suppp C Qo}.

Since Ty is quasi-uniform, so the approzimation property, superapprozimation prop-

erty, and the imverse inequality property introduced in section 3.3 hold for the above

finite element spaces. We will not repeat them here.
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Let Py be the local L*-projection operator onto Q. Then the finite element in
the primitive variables of Arnold-Falk (for the soft simply supported plate) reads as
follows:

Find (wy, @p) € Wy x V,, such that

<C5(¢h),5(¢)> + /\t_2<P,?¢h —grad;, wp, ¢ — gradh/,L> = (g,u), (4.4.1)

for all (u,%) € W), x V. Then, under the discrete Helmhotz theorem of Arnold
and Falk [3]

[Q4]* = grad,, W}, @ curl P, (4.4.2)

the discrete shear vector can be expressed as
(= /\t_z(gradh wp — P,?(,bh) =grad, r, +curlp,, (rn,pn) € Wi x Py, (4.4.3)

Thus, equation (4.4.1) can be written equivalently in the form:

Find (Th,(ﬁh,ph,wh) - Wh X Vi X Ph X Wh such that

(grad,, r;,grad, 1) = (g, 1) for all u € Wy, (4.4.4)

(CE(Pn), E(W)) — (curlpy, ) = (grady, ri,¢p) forally € Vi, (4.4.5)

—(¢n,curlq) — A\7't?(curl pj, curlg) =0 for all ¢ € Py, (4.4.6)
(grad,, wp,grad, s) = (¢, + N\~ 't? grad, rj,,grad, s,) for all s € W),

(4.4.7)

The function rj is uniquely determined by (4.4.4). Since the MINI element is

stable [2], i.e., there is a constant C, such that

“up (curlp, ) _ “up (curlp, v)

veve ¥l T g 1411
A0 ¢f;/oh

> C|pllo,
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for all p € Py, so (¢n,pn) is uniquely defined by equations (4.4.5) and (4.4.6), and
thereafter, wy by equation (4.4.7).

It is important to note that system (4.4.4)-(4.4.7) is for the purpose of conver-
gence analysis only. Equation (4.4.1) is the one used for the actual computation.
Our interior analysis of the Arnold-Falk element will also be based on the decou-
pled system of Poisson’s equations and the Stokes-like equations, not the original
Mindlin-Reissner plate system (i.e., (4.2.1)). Therefore, the interior estimate of the
Arnold-Falk element consists of obtaining the interior estimate for the nonconform-
ing element for the Poisson equation and that for the MINT element for the perturbed
system (2.3.4) and (2.3.4). Since the first part is done in Chapter 2, we need only
concentrate on the Stokes-like system here.

Before we turn to the next section, we introduce a result on the convergence of

the MINT element for the perturbed Stokes-like system.

Lemma 4.4.1. Let Gy a union of triangles. Then for ¢ € Iofl(Gh), p € HY(Gp),
and F € L*(Gy), there exist unique functions ¢ € ‘O/h(Gh) and wp € Py (G}) with

th p= th wp, such that

(CE(P —7¢),E()) — (curl(p — 7p), b ) = (F, ) for all b € V4, (Gy),

—(qb — qu,curlq) — /\_1t2<curl(p — Wp),curlq) =0 for all ¢ € Pp(Gp).

Moreover,

I = 79ll1.6n + llp = 7pllo,Gi + tll curl(p — 7p)llo,c,

<C( inf — t 1(p -
< (qezgl(Gh)(Hp qllo,G, +tll curl(p — )0, )

+ inf |l =%l +I[Floc, ) (4.4.8)
PEV L (Gr)
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Proof. The unique existence of solution (w¢,np) follows from the stability prop-
erty of the MINT element and Brezzi’s Theorem [13] . The estimate (4.4.8) can be

obtained by following the proof in [3, Theorem 5.5]. O

4.5 Interior Duality Estimates

Let (w,¢) € H' x H' be some solution to the Reissner-Mindlin plate equa-
tions and (r,p) € H' x H' be determined by the Helmholtz decomposition (4.2.2).
Regardless of the boundary conditions used to specify the particular solution,

(7, ¢, p,w) satisfies

(gradr,grad ) = (g, ) for all p € H',
<C5(¢),5(¢)) — (curlp,zp) = (gradr,¢> for all ¢ € Iofl,
—(¢,curl q) — A\ '#*(curlp,curlq) =0 for all g € ﬁl,

(gradw,grads) = (¢ + A"t gradr,grads) forall s € H'.

Similarly, regardless of the particular boundary conditions, the finite element solu-

tions (rn, @n, pn,wp) € Wi, x Vi x P, x Wy, satisfies

(gradry,grad ) = (g, ) for all p € W,
(CE(pn).€(9)) — (curlpy, ) = (grad, ra, ) forall ¢ € Vi,
—(¢n,curlq) — \7't*(curl p;, curlq) =0 for all g € P,

(grad wy, grad,, s) = (¢ + A\ 't* gradr,,grad, s) for all s € Wh.
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Then, together with integration by parts, we obtain

(grad,(r — ry),grad;, u) = Z / a—uv for all p € Wy, (4.5.1)
ier, Jor On

(CE(@ —n). E(¢)) — (curl(p — pr),¥) = (grad, (r —rn), ¢)

for all ¢ € V', (4.5.2)

— (¢ — ¢n,curlq) — A\t (curl(p — pp),curlg) =0 for all ¢ € ]-O’h,
(4.5.3)

(grad,, (w0 — wy), grady s) = (¢ — ¢y + At grad,,(r — r4). grad, 5)

— Z / (¢ -nr+ /\_ltzg—:;)s for all s € T/OVh. (4.5.4)
TeT, T

As usual, the interior error analysis starts from these interior variational discretiza-
tion equations. They are independent of the boundary conditions.

The interior estimate for r — r, is done in Chapter 2 (Theorem 2.5.2). However,
we cannot use Theorem 2.5.2 directly to obtain the interior estimate for w — wy,.
This is caused by the difference between (2.4.1) and (4.5.4). But we can still use
the same idea (as in the proof of Theorem 2.5.2) to get the interior estimate for
(w — wy ). This will be done in Theorem 4.6.3.

So it is only necessary to obtain interior estimates for (¢ — ¢p,p — pn) which
satisfy (4.5.2) and (4.5.3). These will be the focus of this and next sections. What
we will do is to use the same two-step approach (the interior duality estimate and
the interior error estimate, as for the Stokes equations in Chapter 3) to obtain the
interior estimate for the MINT element.

Consider functions ¢ € H! and p € H! that satisfy the variational equations

(CE(P), E()) — (curlp,h) =0 for all ¢ € V7,
(4.5.5)

—(¢,curl ) — A\ '#*(curl ¢, curlp) =0 for all g € P, (4.5.6)
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We have the following result.

Theorem 4.5.1. Assume ¢ € H' and p € H' satisfy (4.5.5) and (4.5.6). Let
Go € G € Q be two concentric disks. Then for any integer o > 0, the following
holds

[9llo.coFIpll-1,60 < C(R]l@ll1,c+hlpllo,c+ht| curlpllo,c+|@l—a.c+ Pl -a1.6)-
(4.5.7)

Proof. Find a disk G; such that Gy @ G1 @ G and construct a function w € C§°(Gy)

with w = 1 on Gy. Then, for any non-negative integer s,

(we, F)
1ENs.c

[@ll-s,G0 < |lw@ll—s,c = sup (4.5.8)

FcH(G)
F+#0

To estimate the right hand side of (4.5.8), we define (®, P) through (4.3.1) and
(4.3.2) with X = 0. Then take ¥ = w¢ in (4.3.1) to obtain

(wp, F)=(CEwe),E(®)) — (we,curl P)
= (CE(¢), E(w®)) — (@, curl(wP)) — R(w, ®, ¢) + (curlw, Pe)
= {(CE(6).£(w®)") — (. curl(wP) )}

+{(CE(¢),E[w® — (w®)']) — R(w,®,¢) + (curlw, Po)}

Here the superscript I is the approximation operator. Chosing % to be (w¢)! in
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(4.5.5) we get

A; = (curlp, (w®)") — (¢, curl(wP))
= (curlp,w®) — (¢, curl(wP)) + (curlp, (wd) — wd)
= {(curl(wp), ®) — (¢, curl(wP)) }
—{(curlw,p®) — (curlp, (W) —wd)}

Taking ) = wp in (4.3.2) (with K = 0), we obtain

Ay = =A""*(curl(wp), curl P ) — (¢, curl(wP))
= —/\_1t2<cur1p, curl(wP)) — <¢,curl(wP)) + AR (w, P, p)
= — {\"'*(curlp, curl(wP)’) + (¢, curl(wP))}

+ {/\_1t2<cur1p, curl[(wP)! — wP]) + A_ltZR'(w,P,p)} =: A3z + Bs.
(4.5.11)

Substituting ¢ = (wP)! in (4.5.6), we have
Ay = (@, curl(wP)’) — (¢, curl(wP)) = (¢, curl[(wP) —wP]).  (4.5.12)

Combining (4.5.9) through (4.5.12), we get
(wp,F) =Bi + By + Bs + A;. (4.5.13)

Then applying the approximation property, (4.2.7), (4.2.8), integration by parts, and

the Schwarz inequality, we obtain
| By |< C(hl@llc @2 + |@ll-s1.c ([ @lls42,60 + [ Plls41.61) ),
| By |< C(Rlpllo,. 1®ll2,0 + [Pl —s—2,0 [ @l 542,64 )
(4.5.14)
| Bs |< C(ht*| eurlpllo.c, | Pll2.cy + 1Pl -s—2,6, 1 Pllsts.c )

| As [< Chl|@ll16 1Pl1.6:-
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First combining (4.5.14), (4.5.13), and (4.5.8), then applying (4.3.3) and (4.3.4),

we obtain

[#l—s,c0 < C(RlIBll1.c + hlpllo.c + |@ll—s—1,6 + [pll—s—2,6 + ht|| curl pllo,c ).
(4.5.15)

To estimate ||p||—s—1,G,, first find a function § € C§°(Gy) with fG 6 = 1. Then,

w 2
Ipl=s-1,60 < [lwpll—s—1,6 =  sup _(©p.g) (4.5.16)
geir+ia) 19lls+1,6
970

Note that

(wp,g) = (wp,g—é/ g)+(wp,5/ g) (4.5.17)
G G
and

[ (wp,6 /G 9) 1< Cllpll—ezs & - I9llo.c- (45.18)

In order to estimate the first term on the right hand side of (4.5.17), we define (®, P)
through (4.3.1) and (4.3.2) with F =0, K = g — ¢ [, ¢g. Taking Q@ = wp in (4.3.2),

we have

(wp,g—cs/Gg)

—(curl(wp), ®) — A\~'#?(curl(wp), curl P)
—(curlp,w®) — \7'#*(curlp, curl(wP)) — (curlw, p® ) + \'#*R'(w, P, p)
—{(curlp, (w®)") + \7'#*(curlp, curl(wP)" )}

+ {(curlp, (w®) —w®) + A7 '¢?(curlp, curl[(wP)’ —wP])
—(curlw,p®) + \"'#*R(w, P,p) }
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Applying (4.5.5) and (4.5.6) with ¢ = (w®)! and ¢ = (wP)?, respectively, we get

Cr = —(CE(¢),E(w®)" ) + (¢, curl(wP)")
= —(CE(9), £(w®)) + (¢, curl(wP)") + (CE(¢), E[w® — (w®)'])
= —{(CE(wo),E(®)) — (¢, curl(wP)')}
+{(CE(9).£w® — (w®)']) —R(w, @)}

Taking ¥ = w¢ in (4.3.1) (with F = 0), we obtain

Cy = —(wqb, curlP) + ((;3, curl(wP)I> = ((;3, curl[(wP)! —wP] ) + (curlw, P(;S)
(4.5.21)

So far, we have
(wp,g—5/g):D1+D2—|—02.

Then applying (4.2.7), (4.2.8), integration by parts, the approximation property, and

Schwarz inequality, we arrive at
| D1 |< C(Rlpllo.c, [|@ll2.c, + 1|l eurl pllo.c [ Pll2,c,
+pll-s—2.6l1@lls+2.60 + [Pl —s—2,6l Plls+3,61 )
(4.5.22)
| D2 |< C(RlIBl1cll®ll2.60 + @l —s—1.6 1R llst2,61 )
| G2 1= C(h@lla IPlle: + @]l —s—1.6 1 Plls+1.60)-
Combining (4.5.16) through (4.5.22), together with (4.3.3) and (4.3.4), we obtain
Ipll-s—1,60 < C(Rll@ll1c + Alpllo,g + [@ll-s—1.6 + [[pll-s—2.6 + ht|| curl pllo, ).
(4.5.23)
Finally, (4.5.7) can be obtained by the standard iteration method (cf. section 2.4,

section 3.4). O
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4.6 Interior Error Estimates

In this section we first obtain the interior estimate of the MINI element for the
Stokes-like equations with perturbation, then we use it to derive the interior estimate
for the Arnold-Falk element (Theorem 4.6.3). To be specific, Lemma 4.6.1 gives a
bound on functions satisfying a homogeneous discrete Stokes-like equations. It is
then used with Theorem 4.5.1 to get the interior estimate for the MINT element for
the Stokes-like system (Theorem 4.6.2). By combining this result with the interior
estimate of the nonconforming element (Theorem 2.5.2), we obtain the interior es-
timate of the Arnold-Falk element (Theorem 4.6.3). This is the main result of this

chapter.

Lemma 4.6.1. Suppose (¢n,pn) € Vi, X Py is such that

(CE(Pn),E(W)) — (curlpy, o) =0 for allp € Vy,
(4.6.1)

— (¢, curlq) — X't (curl pj,curlq) =0 for all q € P,
(4.6.2)

Then, for any two concentric disks Go € G € ), h small enough, o and 3 any

nonnegative integers, we have

|@nll1,60 + llPrllo,Go + t]] curl pillo,c,

< C(t7(|bnllr,a +tlpnll,c) + 10wl -a.c + llPall—a=1,a ),
(4.6.3)

where C = C(a, 3, Go, G).

Proof. Let Gog € G' € Gj, @ Gi € G with G' a concentric disk and G}, a union of

elements. Constructw € C§°(G") withw = 1 on Gg. Set q%vh = wop, pr, = wpp. Then
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% € Iofl(Gh), pn € H'(Gp). By Lemma 4.4.1, 77(,5; € ‘O/h(Gh) and 7py, € Pr(Gp)

can be uniquely determined by the equations

(CE(Gn —mpn), E()) — (curl(py — 7pr), ¥ ) =0 forall ¥ € V,(Gh),
(4.6.4)

—(n — Wq%vh,curlq> — A" (curl(p, — 7pp),curlq) =0 for all ¢ € Py(Gy),
(4.6.5)

with th PhL = th 7pn. Moreover, we have

lén = 7dnllic + Ik — 7pallo,ci + tl| curl(pn — 7pa)llo.cn

<C( inf  |én =l + _inf  ([pk —dllo,g, +tllcurl(pr —a)llo,,))
PEV L (Gh) qE€EP (Gr)

< Ch( H(IbhHLGh + thH07Gh + thhHLGh )7 (466)

where we have used the superapproximation property (cf. section 3.3) in the last

step. By the triangle inequality

|@nll1,60 + llPrllo.Go + t]] curl pilo,,

< lpnlls.c + Ipnllo.c + tl curl pllo.c,

< l¢n — 7dull,cn + ok — 70rllo, + ¢l eurl(pr — 7p1)lo.ci,
+7@nllr.cn + I7Prllo.cn + tll curl 7prljo i,

< Ch(|lpnllr,en + llprllo,c, + tlpnll,c,)

+lIx@nllr i + I7Bnllo.c, + ¢l curl wpilo,, - (4.6.7)

We shall consider HF%HLG}L first. In (4.6.4), we take ¢ = 77(,5; to obtain

(CE(ren) E(mpn)) = (CE(n), E(nn)) — (eurl(ph — 7pi), 7w ). (4.6.8)
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We have

(CE(en), E(rpr)) = (CE(wepn), E(rpr) )
= (CE(¢n), E(wren)) — R(w, 7. @) = ( CE(dn), E[(wrepn)'])
+ {( Cg((,bh),g[wﬂ'(,g; — (wﬂ'(,g;)ID — R(w,ﬂ'(,g;,(ﬁ)}

—: (CE(pn), E[(wrbn)"]) + Fi. (4.6.9)
Taking ¢ = (wﬂ'(,g;)f in (4.6.1), we get

(CE@n), Ellwren)']) = (curlpy, (wren)")
— <cur1ph7ujﬂ'%> + (curlph, (wﬂ'(,g;)j — wﬁq%vh )
= (curl(wph),wgbvh> — {(curlw,pmu%) — (curlph, (wmg;)j — wwqg; )}

—: (curlpy, 7y ) + Fy. (4.6.10)
Combining (4.6.8)—(4.6.10) and substituting ¢ = #py, in (4.6.5), we obtain

(CE(wpn), E(xpr)) = (curlnpy, wy ) + Fi + F

= (@n,curlnpy, ) + A\"'¢* (curl(p, — «pp), curl xpy, ) + Fy + F

= (wen,curlwpy ) + X7 '* (curl(py, — 7pp), curl 7py, ) + Fy + F

= (@n.curl(wrpy) ) — (curlw, 7pry ) + \™'t*(curl(p, — 7py), curl 7py, )
+R+F

= {(pn, curl(wrpy)’ ) + A1 (curl(py, — wpy ). curl 7y ) }
+ {(@n, curllwrpy, — (wrpr)’]) — (curlw, 7pres ) } + Fi + F
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Setting ¢ = (wrpy)! in (4.6.2), we get

E; = -\ (curl pp, curl(wrpy)' ) + A7 (eurl(ps, — 7pp), curl 7py, )
= —\"1¢? ( curl py, curl(wwﬁ)) + A2 ( curl py,, curljwrpy, — (wrpy)’] )
+ A2 ( curl(p; — =pp), curl Wﬁ)
= —\"'t*(curl(wpy), curl 7py,) + A\ 712 ( curl(p; — =pp), curl Wﬁ)
+ {\"" (curl py, curljwrpy — (wrpr)’]) + AR (w, pr, 7pn) b

=: —\"'#*(curl 7py, curl 7py;) + Fy. (4.6.12)
So far, we have
IC2E(rdn)2 6, + N2 curlwpi |2 o, = Fi + Fy + Fs + Fu. (4.6.13)

Using the superapproximation properties (cf. section 3.3), the Schwarz inequality,

integration by parts, (4.2.7), and (4.2.8), we obtain

| Fy |< C(hlldallnanllmdnlli, + I nllo.c mdnllicn ),
| B> [< C(llpnll-1,60 I76nlls 6. + hllpllo.ullmen . ).
| B5 |< C(hllénllr.cllmprllo,c, + I@nllo,c, | 7Phllo.can )
| Fx |< C (R curlpylo., 1nPkll1,6, + el [|7Pklo.6, )-
Combining the above inequalities with (4.6.13), using the inverse inequalities for
TPh, Gn, and pp, we get
Iwnlic, + 1 curl mpnlE,c,
< C(hllnllr,cn + ll¢nllo,cn + hllpallo.cn + llpall-1,60 ) lrallr,c
+C(hldnllie + lenlloc, +Ipalle, J7prllo.c,

< C(|énllo.c, + llprll=1,60 )Ixdnll1,a, + C(ll@nllo,c, + Ellprlli.cn ) 7Pr o, -
(4.6.14)
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To proceed, we need to estimate ||7py||o,i, - By the triangle inequality,

| 7pa || < ||7pn — MH I Je, 72n = Prllo.Gn Il G, Prllo.G
Pril0,Gyp = [I7Ph meas(Gp) 0 meas(Gp ) meas(G)
(4.6.15)

It is easy to see that the second term on the right hand side of the above inequality

is bounded by the right hand side of (4.6.6). For the last term we have

H / Fillocn = | / wpnllocs < Cllpall—1.c.
Gh Gh

From that fact that the triangulation 7p is quasi-uniform, we have the following

stability condition for the MINI element on set Gy,

N Dh curl 7py,, ¥
|7pn — thiHo G, <C  sup ( )a, (4.6.16)
meas(G) YEV L (G) ¥ 1l1,c,
$£0

Applying (4.6.4), we obtain

= (curlpy, 9 ) — ( CE(n — 7¢n), E(¥))

(curl(wpn). v ) — (CE(pn — ), E())
(curlpy,wip) — (CE(Gn — 7¢),E(¥)) + (curlw, prh)
{(curlpy. (i)' ) = (CE(n - w&?),s(«p))}
.

{(curlw pth) (curlph,wzp I)} =: G, + H;.
(4.6.17)

(curl 7py, ¢
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Setting ¥ = (wp)! in (4.6.1), we get

G1 = (CE(¢n),E(wdp)") = (CE(Dn — 7). E(%))
= (CE(dn). E(w)) + (CE(¢n), El(wr) —w])
— (CE(dn —7d),E(¢))
= {(Cewen).e@)) — (CE@n —76).£()) |
+ {R(w, 9. d1) + (CE(n). El(wip) —wip])}

—: (CE(xepn), E()) + Hs. (4.6.18)

Applying the superapproximation property, the Schwarz inequlity, (4.2.7), (4.2.8),

and integration by parts, we have

| Hy 1< C(lpall-1,60 1¥ 1,60 + Bllprllo.c 1% l,6, ),
| Hy |< C(||onllo.anll®llr.c, + Bll@ll1,c ¥, ),

| (E(rn), E)) I< Imdal1,cnllPllr.6n-

Combining (4.6.6), (4.6.15)—(4.6.18), the above inequalities, and using the inverse

inequalities, we arrive at

|7pr oGy
< C(h|énll,a, +l@rllo,a, + htlpell,c, + Rllpello.c, + Iprll-1,6,) + |7 @rll1,c.

< C(||énllo,an + Btlprllt,c, + lpell-1,6, ) + |7@nll1,6, -
(4.6.19)

Substituting (4.6.19) into (4.6.14) and using the arithmetic-geometric mean inequal-

ity, we have

I7nll1.c, +tll eurlapyllo.c, < C(lldnlloc, + (#* + ht)llprlla, + lenll-1,6. ).
(4.6.20)
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Substituting (4.6.20) back into (4.6.19), we get

I7Prllo,c < C(onllo,cn + llprll-1,6, + (Bt +*)lpallic, )- (4.6.21)
Hence, combining (4.6.20) and (4.6.21) with (4.6.7), we obtain

|@nll1,60 + IPnllo,Go + t] curl palo,c,
(4.6.22)
< C(|lonllo,a, + llprll-1,a, + (Mt + ) |palli,a, )-

Applying Theorem 4.5.1 with Gy replaced by G to bound ||@4]|0,¢, and |[prll-1,6,,

we get

|@nll1,60 + IPnllo,Go + t] curl palo,c,
< C(hllonll,a + hllpillo.a + 1t + h)|lprllic + | @rl-aa + [IPrl—a—1.6 )-

Iterating the above inequality # — 1 times as in section 2.5, or section 3.5, but

separating the case h <t with that A > ¢, we prove (4.6.3). O

Theorem 4.6.2. Let Qo @ Q1 @ Q. Suppose that (¢,p) € H' x H' satisfies

Ola, € H* (1) and pla, € H* (). Suppose that (dn,pr) € Vi X Py are such that

(CE(¢ — dn). (W) — (curl(p — pp), o) = (F. ) for all 9 € V1,,(4.6.23)

—(¢p — ¢, curlq) — A\t (curl(p — pp),curlq) =0 for all q € P,
(4.6.24)

for some function F in L*. Let o and 3 be two arbitrary nonnegative integers.

Then, there is a positive number hy such that for h € (0, hq],
1o = Pnllr.a0 + llp = Pallo.ao + tll curl(p — pr)ljo.0q

< C(IIFllog, +h(l@llz0 +llpllie, +tpllz0.) +t7ll) — dnllie,

+ tﬁ—HHp - thLQl + H¢ - (abhH—CLQl + Hp _th—a—th )7
(4.6.25)
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for a constant C depending only on €y, Qo, «, and 3.

Proof. Let Gy € G, @ G' € G, @ G1 € G be concentric disks and find a w €
C§P(G") with w =1 on Gf. Set (:5 = w@, p = wp. Then (:5 € Iofl(Gh), peHYG).
By Lemma 4.4.1, 77(:5 € ‘O/h(Gh), mp € Pup(Gh) can be defined uniquely by the

following equations,

(CE(P — 7). E(¢)) — (curl(p —7p), ¢ ) = (F,¢p) for all ¢ € V,(Gy),

(4.6.26)
—(qg — 7, curlg) — A 7'#*(curl(p — 7p),curlq) =0 for all ¢ € P (Gy),
(4.6.27)
with th wp = th p. Moreover, we have
1§ — 7. + 115 — 7Bllo.cin + tl| curl(p — 75) o,
<C( inf p— t 1(p — F
<t (5= 4l o+l el - albog,) + [Pl )
+ inf (e —dlhe)
eV (Gh)
< C(l1gll.c + llpllo.c + tpllc + 1 Flloc )- (4.6.28)

Let us now estimate ||¢ — @nl[1,Go, ||p — prllo,co, and t[[ curl(p — pu)|lo,G,- By the

triangle inequality, we have

@ — Drll1,G0 + |lp — Prllo,Go + t]| curl(p — pr)llo,Go
<@ —7oll1,6o + Ip — 7pllo,Go + |7 — Prll1.6o + 7P — prllo,c0

T 1]l curl(p — 7p)llo.co + tll curl(x — pn)o.cio- (4.6.20)

Since (4.6.26), (4.6.27) and (4.6.23), (4.6.24) hold for any ¥ € ‘O/h(G()),
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q € ]'th(G()), respectively. Subtracting the corresponding two equations, we obtain

(E(pn — 7¢), E(¢)) — (curl(p, — 7p), ) =0 for all ¢ € V1 (Gy),
(4.6.30)

—(on — 7, curl q) — A\t (curl(p, — 7p),curlqg) =0 forall g € ]-O’h(G()).
(4.6.31)

Then we apply Lemma 4.6.1 to ¢, — 77(:5 and pp, — 7p with G replaced by Gf to
obtain

g = 7@ l11.60 + Ipn — 7Bllo,cio + ¢l curl(ps — 75)lo,cq

< C(|lgn — 7l + ¢ lpw = 7By o + 0 — 7D —acr,

+lpn = 7Pl —a=1,61 )
< (9 p =l + " on — pllygr + 116 — 7Dy + [0 — Sl
+t%)l¢ = mdnll,cy + t7lldn — drlliay o= 7By g+ llp = Pall ooy )
< C(ll¢ — 7., + 1Ip = 7Bllo.c, + | curl(5 — 750,

+t%)l¢ = dnllic + 1" p = pallie + ¢ — @rll-ac + llp = prll-a-1,6)-
(4.6.32)

Combining (4.6.28), (4.6.29), and (4.6.32), we obtain
¢ — érll1,6o + lIp — prllo,Go + tll curl(p — pr)llo, G
< C(IIFllo.c + 9l + lIpllo.c + tll curl pllo,c
+ ¢ = dullig + " p = pullig +llé = nll-ac + P = prll-a-1,6)-
Since [(¢ — q) — (¢ — q)] and [(p — q¢) — (pr — q)] also satisfy equations (4.6.23) and
(4.6.24) for any ¢ € V), and q € ]Bh, we have
¢ — érll1,6o + lIp — prllo,Go + tll curl(p — pr)llo, G

<C( inf |l¢ —%l1.e+ inf (|p—dqlloc + ]| curl(p — ¢)|lo,c) + || Fllo,a
PYEV, qe Py

+ ¢ = ¢ull-ac + P = prll—amr.a + 1716 = ¢ullia + " p = palha)-
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Then, first using the approximation properties of the finite element spaces and then a

covering argument (cf. section 2.5 and section 3.5), we obtain the desired result. O
We now state the main result of this chapter.

Theorem 4.6.3. Let Qg @ Q1 @ Q and suppose that (r,¢,p,w) € H' x H' x H' x
H' (the ezact solution) satisfies (r,¢,p,w)|q, € H?*(Q1) x H*(Qy) x H*(y) x
H?(Q). Suppose that (ri,dn,pn,wn) € Wi x Vi x Py x Wy, (the finite element
solution) is given so that (4.5.1), (4.5.2), (4.5.3), and (4.5.4) hold. Let o, 3 be
two nonnegative integers. Then there exists a positive number hy and a constant C

depending only on Qo, 1, o, and 3, such that for all h € (0, hq]

I = rallf o, < C(R|r|l2.0, + |Ir = 74l —a0: ) (4.6.33)
@ — dnll1,020 + Ilp — prllo,go + t]| curl(p — pr)lo,a,
< C(h(|pll2.0, + Il 0, +tpll2.0 + I7ll2.00) + 17 = 7ol -a.0)

+ |l — drll—avr + llp = Prll—a—1.0, +t7)|d — @ullre, + 7T P — prllie, ).

(4.6.34)
[w = wh[} g, < (Ch([[@ll2.0, + Pll100 +tplz0, + 1720, + [lwll20,)
+ v —will—a,0, + 1| = @rll-a0, + Ir = rhll-a,0,
+p = pall—a-1,0, +°lp — dullr.0, + " lp—palia, ) (4.6.35)

Proof. Find a subdomain €' such that Qg € ' @ Q. Apllying Theorem 2.5.2 with

Qo replaced by € yields
I = rallt e < CChllrlls, +lr = rull=os ). (4.6.30

which also implies (4.6.33). From (4.5.2), (4.5.3), (4.6.36), and Theorem 4.6.2 with
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2, replaced by €', we obtain

& — @nll1,00 + [P — prllogs + ] curl(p — pa)lo,,
< C(h(llpllz.0 + lIpll10 + tlpllz,0) + | grad, (r —r1)llo.o

+1l¢ = bull-a + llp = Prll—a—1,0 + " p = pullio + 7|6 — i)
< C(hllPllz,0, + 1.0, +tplle,e0 + Irl20.) + ¢ — @rll-a0,

+ P = prll—amr0, + %16 = @allie, + 17 p = prllie, +lr = rall-ae,)-

This completes (4.6.34).

We now consider the interior estimate for the transverse displacement. Because
of the difference between (2.4.1) (required by Theorem 2.5.2)) and (4.5.4) (satisfied
by (w — wp)), Theorem 2.5.2 cannot be used directly. But we can follow the same
proof to get (4.6.35).

Let Go € G; @ G be concentric disks and G}, be a union of triangles which

satisfies G; € G, @ G. Use the notation w = ww and define 7w € W;,(G},) by
(grad, 7w, grad,, s) = (grad, w,grad, s) for all s € W,(Gp).

We have

@~ 7|l <C _inf |l@—s|ia < Chllw|g,-
sEWR(Gh)

By the triangle inequality,
lwo —wnlli g, < 1@ =70 G, + 170 — walli g

< Chllwlle.c, + 17 — wallg,. (4.6.37)

From (4.5.4) and the fact that w = 1 on Gy,

(grad, (7w — wy), grad, s) = (grad, (w — wy), grad, s)
O (4.6.38)
= L(s) for all s € Wy(Gy),
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where

L(s) := (¢ — ¢ + N "t grad, (r — ry),grad, s) Z / ‘AT — or )s,
TeT;, ' 9T On

for all s € W), By Lemma 2.3.2,

IL(s)a, | < C(Nl¢ = Pallian + Ir —rallt g,

+ h(|@ll,cn + I7ll2.0) )|l grady sllo.c, for all s € Wi(Ga),
which implies
ILlle, < C(llé = nllia, +Ir—ralltq, +hllelhc, +l7lze.))-
Under (4.6.38) we apply Lemma 2.5.1 with G replaced by G to obtain

l7@ — walli ¢, < C(ll7@ — wall-1,6, + | L]lc,)
< C(llmw = wll-r,6s + v = wall-1,6, + [ Lle,)

(4.6.39)
<CO(ll¢ = ¢nllie + Ir = rulll e + lw —wil-aq

h{ll¢lrc +lIrllzc)).

Using the triangle inequality, (4.6.37), and (4.6.39) yields

o —willi o, < C(lle = dulliar + lIr = ralli ar + lw = wall—ac

+h(l@llc + lwllz.c + 7ll2c)).

Applying (4.6.33) and (4.6.34) with Qg and §; replaced by G’ and G, respectively,
we obtain a local version of (4.6.35). Then a standard covering argument leads to

(4.6.35). O
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4.7 The Global and Interior Convergences of the Arnold-Falk Element

As an application of the theory we developed in the last section, we consider the
soft simply supported plate with a smooth forcing function g. Under this boundary
condition (for a smooth ), the exact solution of the Reissner-Mindlin plate satisfies

(cf. [5))
Ielle + oz + 1lls 2 + lIplla s + tlpllsz < €

[@l3/2+¢ + IPll1 /24 + EllPll3 246 < Cet™, (4.7.1)

Iz + Il + tlpll2 < Ct=/2,

for a constant C, that is independent of ¢t and h, and € € (0,1/2]. Obviously,
functions ¢ and p are not regular enough to ensure that the MINT element converges
at the optimal rate, uniformly in the plate thickness t.

Thus, we want to use Theorem 4.6.3 to obtain the interior convergence rates
of the Arnold-Falk element. To do so, we must estimate ||p — paul|1, [[¢ — @nll1,
I = rall-ais 1@ — @nll-a0is IP = Prll-a-1.9,, and [w — wh|-a,e, for some
suitable domain €7 and integer a. The only way of doing these, as far as we
know, is to use the inequality || - ||+,0, < || - |l+,o. Hence, the global convergence of
the nonconforming element for the Poisson equation and that of the MINI element
for the Stokes-like equations must be established. The first one is well-known but
the second one is difficult due to the special structure of the singularly perturbed
Stokes-like equations and the type of the boundary condition imposed. Because of
the difficulty in dealing with the boundary approximation when the boundary layer
exists, we will only work on a polygonal domain, i.e., we will assume that  is a
convex polygon. Therefore, we need to know the regularity of the exact solution
of the singularly perturbed generalized Stokes-like equations on a convex polygon

(under the soft simply supported boundary condition). But so far we cannot prove
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the regularity result (Theorem 4.7.2) we need. So we will assume that it is true. We
feel that we have reason to believe it is correct (possibly with some restriction on
the magnitude of the maximum angle of the polygon). As a partial justification, we
will prove a similar result for a smooth € in Appendix B.

This section is organized as follows. Theorem 4.7.1 presents a technical result on
the approximation property of the continuous piecewise linear functions. Its proof
can be found in Appendix A. Theorem 4.7.2 is the assumption we just mentioned.
The global convergence of the Arnold-Falk element is given in Theorem 4.7.3. Finally
by combing Theorem 4.7.2 and Theorem 4.6.2 we get the interior convergence rate

of the Arnold-Falk element for the rotation (Theorem 4.7.4).

Theorem 4.7.1. Let Q be a convex polygon and uw € H?. Then there exists an

operator wp : H' — P}, such that

lp = 7apllo < Ch**|Iplly j2e, (4.7.2)

lp = mrplls < CR'V2|[plls 2, (4.7.3)
/

HP - 7ThPH—1/2,aQ < Ceh1/2+EHPH1/2+e7 (4-7-4)

for any 0 < e < 1/2. Here C 1s independent of € and C. depends on €, but not h.
Proof. See Theorem 5.3.1, Appendix A.

Theorem 4.7.2. Let Q be a convex polygon and F € H' and K € H? N L%, Then

there exists a unique solution (®,P) e H* x H' N L2 to the equations
(CE(P),E(®@)) — (P, curl P) = (F,¥) forall ¥ c H',
(4.7.5)

—(®,curl Q) — N (curl Q,curl P) = (K,Q) forallQ € H'.
(4.7.6)
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Moreover,

[@|l5 /21 + 1Pll1j24¢ + | Pll3 /24 < Cet™ (| Fllo + t3/2HFH1> for K :(07 )
4.7.7

[@l3/24¢ + [[Pll1j24+e T tPl[3/24+c < Cet™ || K]z for F =0, (4.7.8)
for 0 <e<1/2.

Proof. See Corollary 6.4, Appendix B.

Theorem 4.7.3. Let Q be a convex polygon.  Assume that (r,¢,p,w) and

(ro, ®n,ph,wp) solve (4.2.3)—(4.2.6) and (4.4.4)—(4.4.7), respectively, for some

smooth g, some t € (0,1], and a quasi-uniform mesh Ty. Then,

Il — Dulls + llp — pallo + t]| curl(p — pu)|jo < ChM/*7°, (4.7.9)
|6 — dallo + llw —wall} < Ceht™, (4.7.10)
tle — @ull + | curl(p — pr)llo < Ch, (4.7.11)
¢ — @nll-1 + [lp — prll—2 < Ceht™, (4.7.12)

for an arbitrarily small constant e.

Proof. Subtracting (4.2.4) by (4.4.5) and (4.2.5) by (4.4.6), respectively, we obtain

(CE(P— 1), E(W)) — (Y, curl(p—ps)) = (grad(r —ry), v ) for all ¢ € V),
(4.7.13)

—(curlq,qb — (,bh) — /\_1t2<curl(p — ph),curlq) =0 for all g € Py,
(4.7.14)

From (4.7.13) and (4.7.14) (see also the proof on page 1284 of [3, Theorem 5.5]),

we have
IC2E(¢n — )5 + 27" ¢ curl(pr — q)|l5
= ( CE(p— ), E(dn — ¢)) + /\_1t2<curl(p —q),curl(p, — q))

— (curl(p—q),¢n — ¢ ) + (¢ — ¢, curl(p;, —q) ) + (grad,(rp —r),Pn — ¢ ).
(4.7.15)
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In the above we choose ¥ to be the Fortin projection of ¢, that is,

(¢ — I, curlq) =0 for all ¢ € Py,

l¢ —IIp|s < Cll¢p — [y forall p € Vip.

We see that the fourth term on the right hand side of (4.7.15) is gone. Taking
q = 7, p to be the interpolant of p described in Theorem 4.7.1 and using the Schwartz
inequality, integration by parts, and the arithmetic-geometric mean inequality, we

obtain

1C2E(pn — TL)|[2 + A2 curl(py — 7ap)||3
< (¢ — |2 + #|lp — mapll? + ||p — 7apllo]| rot(dn — T1)|jo

+ [[¢n — |1 |lp — mapll=1/2,00 + hllén — Ie||1). (4.7.16)

To estimate ||y — I1ep||1, we note that the H' norm of the vector function ¢y, — IT¢

is equivalent to

1€ — é1)o + |/H¢ i+ |/<H¢— 1) (—y.2)| (4.7.17)

The first term in (4.7.17) is already covered by (4.7.16). To control the other two,

we take ¢ = y and ¢ = x, respectively in (4.7.14) to get

| [6-enl<ce| [ eurlp—p).

which implies

|/<H¢> gl < |/<H¢ —¢)| + C | curl(p — pi)]lo

< C(ll¢ —Hgllo + 2| curl(p — mpp)llo + *|| curl(zap — pa)llo )-
(4.7.18)
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To control the third term in (4.7.17), we take ¢ = Lrqo = Lp(2* +y?)/2: the L?

projection of (2% 4+ y*)/2 in P,(Q) in (4.7.14), to obtain

(¢ — ¢n.curlqy ) = (¢ — ¢n,curl(go — L1rq0) )

— 12 ( curl(p — pp),curl L qo )

Using the fact that

g0 — Lrgoll1,00 < Ch

and
1Lk q0ll1,00 < C,
we obtain
| [6=6u) - (o0l <Clhlo - dulo+#] [curlp-p)).  (47.19)
Therefore,
| / T — n) - (—y.2)
C(|l¢ — Mo + h||TIp — ¢ullo + 2| curl(p — map)|o +#*|| curl(map — pr)|lo ).

(4.7.20)

Combining (4.7.16)—(4.7.20) and using the arithmetic-geometric mean inequality, we

get

|pn — |1 + t|| curl(pr — 7rp)llo

< C(ll¢ =1l +tlp — muplls +llp — 7apllo + = 7apll-1/2.00 + 7).

Applying the approximation property of I and Theorem 4.7.1, we get

|pn — ||y + t|| curl(py — 7rp)lo

< ChM( @lls/2 + tllplls/2 + 1pll1j24e + ht/y,
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which implies

I — bnlls + tll curl(p — pa)llo < ChM27. (4.7.21)

Moreover,

tllp — @ulls + t*|| curl(p — pa)|lo < Ct( || — M|y + tl[p — mrplls
+ |lp = 7rpll =1 /2,00 —I—h>

< Cth(ll¢llz +tlpll2 +1) < Ch.

To estimate ||[p—pn ||o, we simply repeat the proof on page 1285 of [3, Theorem 5.5].
By the stability condition, there exits v > 0 independent of A such that for all ¢ € Wi

there exists a nonzero ¢ € V), with

7llgllol[ grad ¥[lo < (curlg, ).

Applying this result with ¢ replaced by (py — map+ [, rp), and again using (4.2.4)

and (4.4.6), we have

s — 7ap + / muplloll grad 9o < (curl(ps — mp), )
= (curl(p — mup). ¥ ) + (CE(dr — @), E(¥) ) — (grad, (r, — 1), )

< C(llp = mnpllo + |l grad(en — @)llo + | grad,, (s — r)llo )|l grad 4|lo,

SO

lpn = 7np + / mupllo < C(llp — mapllo + [l — @nlls + | grad,(r = ru)llo ).
Q

By the triangle inequality, we get

lp = pallo < C(llpllo + P = 7apllo + [|¢ — éulls + [l grad,, (r —ra)llo ).
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Since if (¢ — ¢n,p — pn) satisfies (4.7.13) and (4.7.14), so will

[(¢ - ’(:b) - (¢h - ’(;b)v(p - Q) - (ph - Q)]v for any (¢7Q) € Vh X Wh- Thereforev
together with (4.7.21) and Theorem 4.7.1, we get

lp = pallo < C(Ilp = mupllo + ¢ — @nlls + || grad,(r —ri)llo ) < Ceh/37<.

This completes (4.7.9). To bound |[¢ — ¢dunllo, we construct the following duality

problem:

Find (®,P) € H' x H' such that

(CE().£(®)) — (. curl P) = (¢ — ¢y, 9p) for all o € H,
(4.7.22)

—(curlq, ®) — A\ '#*(curlg,curl P) =0 for all g € H'. (4.7.23)
From Corollary 4.2.4 we know that (®, P) is uniquely defined. Moreover,

[@|l5 /21 + | Pll1j24e + I Pllsj2te < Ct™(||d — dnllo + 52| — 1) (4.7.24)

Following the proof of Theorem 6.1 on page 1286 of [3], we can obtain, for (¢, ¢) =
(7, P,I1®), where II is the Fortin projection and 7, the interpolant as described in
Theorem 4.7.1,

6 — @nlls =(CE(P — @), £(® — 1)) — (¢ — Py, curl(P — 7, P))
— (curl(p — mp), @ —II® ) — A~ '#*(curl(p — ps), curl(P — 7, P) )
+ (grad,(r —ry), 11®)
=(CE(p— 1), E(® —TI®) ) — (rot(p — @), P — 71 P)
~ (¢ = 1) 8. P — 7 P)yq + (p — mnp,rot(® — I1P) )
—(p— map, (® — TI®D) - 5) 5, — A\"'#*(curl(p — py), curl(P — 7, P))

+ (grad,(r —r;), ®) (4.7.25)
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Using the Schwartz inequality and integration by parts in (4.7.25), we get

& — ¢nlls
< Cll¢p— @ull1(||® —TB||; + [P — 74 Pllo + | P — 7P| -1 12,00)
+1|® — @1 (|[p — mrpllo + I — 7apll=1/2,00)

+t*| eurl(p — pa)llo]| curl(P — 74 P)|lo + || grad,, (r — r1)]o][TI®||o.
(4.7.26)

If + < h, then by Theorem 4.7.1, (4.7.26), (4.7.24), and (4.7.9), we obtain

I — 2
< Cet™ (| @llsj2 + | Plljotc ) + Chll@llaj2llpllsjoe + Cehl|Pllsj2 + Chll@|s
< Ot (|| — dullo + /% — dullr)

< Ceht™* (|l — dullo +17),
which implies
I — @nllo < Ceht ™.

If t > h, using (4.7.24) with e = 1/2 in (4.7.26), we obtain

¢ — éullg

< O @]l + || Pll) + Ch* 24| @ | + Ch* || P2 + Ch| @]

< O P42 (¢ — @nllo + 12| ¢ — dull) + Chlld — ¢ lo-

Since t > h,

I — pulls < Ceht™ (|| — @nllo + 1?).

Hence

1 = @nllo < Ceht™.
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To analyze w — wy,, we follow that in [3,Theorem 5.5]. Define w;, € W}, by
(gradh wp, grad, 3) = ((,b + A7 '#* grad r, grad,, 3) for all s € W,

So
lw — whll} < Ch(]l@p+ 27|l + |lwll2) < Ch,

where we use the fact that ||@]1 + [|r]]1 + [|w]]z < C, with C independent of t. In

addition, we have
(gradh(wh — wy), grad,, 3) = ((,b — ¢ + N grad, (r —rp), grad, 3),
for all s € W},. Obviously,

lon —wally < C (¢ — nllo + || grad, (r —r)lo)

<C(h+l¢—nlo),
which implies
lwo —wnlli g < lw = @nlly + [lon —wallf < Clh+]ld —@allo) < Ceht™™.

This completes (4.7.10).
We will use the duality argument again to estimate |[p — ppl|—2. To do so, we
introduce the following auxiliary problem.

Find (®,P) € H' x H' such that

(CEW),E(®)) — (¢,curl P) =0 for all ¢ € H', (4.7.29)
—(curlq,®) — A\ 't*(curlq,curl P) = (K,q) forall g€ H', (4.7.30)
for any K € L2, By Corollary 4.2.4, this problem admits a unique solution, and

that

1@ls/24¢ + [[Pll1j24¢ Tt Pllsj24e < Cet™ [ K2 (4.7.31)



85

By definition,

_ ]7”
Ip—pallz = sup P—PK)

KeH? HKHZ
K=0

(4.7.32)

In (4.7.30), we take ¢ to be p — p;, and apply (4.2.4), (4.2.5), (4.4.5), (4.4.6), and
(4.7.29) to obtain

(p—pn, K)=— <<I> —II®, curl(p — ph)> — /\_1t2<curl(p — pn),curl(P — 7ThP)>
—(CE(d— ), E(® —1I®) ) + (& — ¢y, curl(m, P — P))
+ (grad,(r —r;), ®) (4.7.33)
Using the Schwartz inequality, Theorem 4.7.1, and (4.7.31) in (4.7.33), we get
|(p = pn. )| < Cht™ (|| @][372 + | Pllsj2 + 1 Pll1 j24¢ )- (4.7.34)
Combining (4.7.31)—(4.7.34), we arrive at
Ip = pull—2 < Ceht ™.
Similarly, we can prove
16 — 1 < Coht2.
Since € is an arbitrary number, then (4.7.12) is proved. 0O

Equipped with the above result, we are able to prove the following interior esti-

mate for the Arnold-Falk element for the rotation ¢.

Theorem 4.7.4. Let Q be a convex polygon and o, @ Q an interior domain. Let g
be a smooth function. Assume that Ty is quasi-uniform. Suppose that (w, @) solves
(4.2.1) and (wp, @) solves (4.4.1). Then there exists a number hy > 0, such that
for all h € (0, hq],

| — dnll1.0, < Ceht™, (4.7.35)
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where C. 1s independent of t and h.

Proof. First choose §; such that Qp € €y € Q. Then note that || - ||s.0, < - |[s.0-
Combining Theorem 4.7.3 with Theorem 4.6.3 with o = 2, § = 2, (4.7.35) can be
obtained. O

Because the Brezzi-Fortin element (cf. [15]) is also based on the variational

formulation (4.2.3)-(4.2.6), we have the following result.

Corollary 4.7.5. Assume that the Brezzi-Fortin method [15] is used to solve (4.2.3)-]
(4.2.6). Then, under the same conditions of Theorem 4.7.4, Theorem 4.7.8 and
Theorem 4.7.4 hold.

4.8 Numerical Results

In this section we give the results of computations of the solutions to the Arnold-
Falk element for the Reissner-Mindlin plate model. Through a model problem, we
show that the Arnold-Falk approximation for rotation ¢ does not achieve the global
first order convergence rate in the energy norm for the soft simply supported plate,
but it does have first order convergence rate for the transverse displacement w. We
will also show that the Arnold-Falk method obtains the first order convergence rate
for the rotation in the region away from the boundary layer. Thereafter, numerical
computations conform to the theoretical predictions.

We will take the domain € to be the unit square. Since we know the exact
solution of the semi-infinite (y > 0) Reissner-Mindlin plate when the load function
g(x,y) = cos(x) and the plate is soft simply supported on the boundary y = 0, we
can simply restrict this solution to 2. By doing so, we obtain the exact solution of
the unit square plate with the hard clamped boundary condition on the left, upper,

and right edges, and soft simply supported boundary condition on the lower edge



87

(0 <az<1,y=0)(ct [8]). And the lower edge (0 < = < 1, y = 0) is where the
boundary layer occurs.

We take E = 1, v = 3/10, and x = 5/6. Moreover, the mesh is taken to
be uniform. The interior domain is taken to be the upper half of the unit square
(since the boundary layer only exists near the lower edge 0 < @ < 1,y = 0). All
computations were performed on a Sun SPARCStation 2 using the Modulef (INRIA)
package.

A distinguished feature of this test problem is that the exact solution has the
following property: ¢; € H*/2(Q) and ¢, € H?/?(), i.e., ¢; has a stronger bound-
ary layer than ¢ does (cf. [5]). The numerical results unmistakenly express this
difference.

In each graph (of Figure 4.1-Figure 4.6) the H' norms of the errors on the global
domain and the interior domain, are plotted as functions of the mesh size h. The
values of h are 1/2, 1/4, 1/6, 1/8, 1/10, 1/12, 1/16, 1/20, and 1/24. Both axes
have been transformed logarithmically so that the slope of the error curves gives the
apparent rate of convergence as h tends to zero. Absolute errors are shown.

Figures 4.1-4.2 show the approximation errors in H' norm of ¢; and ¢y for
t = 1 and the first order optimal convergence rate is as expected. And there is no
difference between the rate on the whole domain and that on the upper half unit
square. Figures 4.3-4.4 show the errors in H! norm of ¢; and ¢, for t = 0.0001. It
is clear that when ¢ is small, the boundary layer effect of ¢ comes into play and as a
result, we only see a 1/2 order convergence rate for ||¢; —¢%||; on the whole domain.
However, away from the boundary layer, the optimal first order convergence rate is
recovered.

Figures 4.5-4.6 show the errors in H' norm of the transverse displacement w for

t =1 and 0.0001. In all cases, the first order convergence rate is observed, because
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there is no boundary layer in the transverse displacement.

Figures 4.7-4.12 show the errors in L? norm for variables ¢1, ¢2, and w, with the
thickness of the plate ¢ = 1 and ¢ = 0.0001, respectively. We note that in the interior
domain, the optimal convergence rate (second order) is observed, but this cannot be
proved by the current method. (Though we did not explicitly state a theorem about
the interior estimate in the L? norm in section 4.6, it is not difficult to do so in the
light of Chapter 2 and Chapter 3.) The global convergence rates in the L? norm are
also higher than we actually proved in Section 4.7. We do not know at the moment
whether they are of the special feature of the test problem or they simply indicate

that the convergence analysis can be improved.
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APPENDIX A

AN APPROXIMATION RESULT

5.1 Introduction

The purpose of this appendix is to prove Theorem 5.3.1, which is due to Arnold [7].
This approximation result was used extensively in Chapter 4 (as Theorem 4.7.1) for
proving the global convergence of the Arnold-Falk element for the Reissner-Mindlin
plate model under the simply supported boundary condition.

Recall that P} is the space of continuous piecewise linear functions. We shall

start with a result by Scott and Zhang [39].

Theorem 5.1.1. Assume that Q is a conver polygon. Let T = 0Q and P} =
{vlp:ve Py} C HYT). There exists a projection I, : H' — Pj, such that if

ulr € P{ then Ipu|r = ulp. Moreover
lw — Tnulls < CR™*||ull;, for 0<s<1<2, 1>1/2. (5.1.1)

Using this, we can quickly prove:

Lemma 5.1.2. Let w € H' be a function for which w|r € P{. Define wy, € Py, by

/gradwh-gradv:/gradw-gradv forallve Py, wp=w onT.
Q Q

Then
lo—wili £C it =l (5.1.2)
XEP
x=w on I
| — wyllo < Ch|lw — w1, (5.1.3)

|w —wp|[s < CR™%|wll;, s=0,1, t=1,2. (5.1.4)
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Proof. The first two estimates are completely standard. We take y to be the inter-

polant of Theorem 5.1.1 to get the third. O

The outline of this chapter is as follows. Section 5.2 constructs the approximation

operator and section 5.3 proves that it has the desired property.

5.2 The Construction of the Approximation Operator

In this section we study a finite element method for the nonhomogeneous Dirichlet
problem for the Poisson equation. We will prove some of the properties of the finite
element method here and we will show in the next section that the approximation
operator determined by the finite element solution is the one we need.

For simplicity, we will use notation |- |¢ to denote || -||¢a0 in this chapter (instead

of its old meaning as the semi-norm on H?).

Lemma 5.2.1. Given p € H', let g = p|r and let gn be the L*(T')-projection of g

into PL. Define p, € Py by

/ gradp, -gradq = / gradp-gradq for allq € ]-O’h, pr=gn onT. (5.2.1)
Q Q

Then

Ip = prlls <CR*lIplle, 0<s <1, 1<t<2,
Proof. Define py, € H! by
Apr=Ap inf), p,=gp onl.
Since p — pp, 1s harmonic, we have

lp —pullo < Clg—gnl-1/2,  llp—prllh < Clg —gnlija- (5.2.2)
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Now using a standard duality argument and standard approximation results for the
L%-projection into P} together with the trace theorem we get

|9—9h|—1/2: sup M
remzry  flige

_ <g'_'gh7f'_'fj>
= sup
FEHI2(T) | fl1/2

< Ch'Plg = galo < Chlgli e < Chllp|s, (5.2.3)

where f! is the L*(T") projection of f on P}. Although T is not sufficiently smooth
to define the space H3/2(T') intrinsically, we can define H3/?(T') to be the space

of functions in H'(T') whose restrictions to each edge e of the polygon belong to

H?/?(¢), and use as the norm

1/2
Ys/2 -= (Z HW?{W@)) :

e €N

Then

lg — gh|—1/2 < Ch1/2|g — grlo < Ch2|g|3/2 < CthPHZ (5.2.4)

From |g — gnlo < Clglo and the inverse inequality we can obtain |g — gn|1 < Clgl;-

Then, by the interpolation theorem we get
|9 —gnlij2 < Clglie < Cllplli, 19— gnlijz < Chigls/e < Ch|plf2. (5.2.5)
Combining (5.2.2)—(5.2.5) we get
Ip—pulls < CR*|lplls, s=0,1, t=1,2 (5.2.6)
Now

/ grad p, - gradg = / grad py - gradq for all ¢ € ]Bh, pr =pp onl,
Q Q
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Then, using (5.1.4) in the case t = 1 we obtain
lpr = plls < CR = |lpalls, s =0, 1.
Thus combining the above with (5.2.6) in the case t = 1 we get
lp = prlls < CR7(lplly + lpnlls) < CR S llpll, s =0, 1,

where in the last step we use (5.2.6) for s = 1 and ¢ = 1.
Now let I p be the usual piecewise linear interpolant of p so that g, := Ipp|r is

the piecewise linear interpolant of ¢, and define pj, € Py by
/ grad py - grad ¢ = / gradp-gradg forall ¢ € ]-O’h, pr=¢gn onl.
Q Q
Then

lp—Dpulli <C Xiéllﬁh P = xllx < Cllp = Inpllr < Ch[pll2- (5.2.7)
x=gn on I

Next, define w € H! by
Aw=0 inQ, w=gy—gr onl.

Note that p — pp € Pp, and

/ grad(p, — pn) -grad ¢ = / gradw -gradq =0 forall g€ P,
Q Q

pr—pr=w onl.
Then by the Lemma 5.1.2, we have ||pr, — prlls < Ch'7%||w]|1, for s =0, 1. Since

lwlly < Clgn — gnlij2 < Cllg = grliyz + 19 = grlij2) < Chlgls/2 < Chlpll2,
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we get

Br = palls < CR*=*|Ip]2.

which, together with (5.2.7) gives ||p — pu|l1 < Chl|p||2-
Finally we use duality to prove that ||p—pa|lo < Ch||p—pnll1, and thus |p—pu|lo <

Ch||p||2- Namely, we define z by

—Az=p—p, 2, z=0 onl.

Then ||z]|2 < C|lp — pallo, and

0z
Hp—thS:—/(p—ph)AZZ/grad(p—ph)'gradz—/(g—gh)a
Q Q T nr
. 0z
< llp = pall inf Iz =xlls +19 = grl-1/2|
XE P nr 1/2

< Chllp = pullsllzllz + ChZ|gls 2212

< Cr¥|lpllllp = pallo;

as desired.

This completes the proof for s =0 and 1, and ¢t = 1 and 2. The extension to real

indices follows by interpolation. [

5.3 The Main Result

For p € H', let m,p = pj, be the finite element solution defined in Lemma 5.2.1.
In the following, we shall prove that 7, is what we need. To do so, we should keep
in mind two important properties of 7;: equation (5.2.1) and that 7, preserves P}

on the boundary.
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Theorem 5.3.1. Assume that u € H?, where Q is a convez polygon. Then the

operator mwy, : H — Py constructed in Lemma 5.2.1 satisfies

lp = mnpllo < Ceh 2+ Ipll1 jages (5.3.1)
lp = 7npll < CBM2|[pls 2, (5.3.2)
p— 7|12 < ChM ¥l ames (5.3.3)

for any 0 < e < 1/2. Here C 1s independent of € and C. depends on €, but not h.

Proof. Inequality (5.3.2) is already proved in Lemma 5.2.1. Inequality (5.3.3) is

also straightforward: since 7;p is the L*(T') projection of p on P}, we have
p = mplo1ye < CRMY2|p — muplo < CRM P ple < CR 2l jae,

where we use the trace theorem in the last step.
We now prove (5.3.1) in three steps: first for p € ﬁl, then for p such that
plr € P}, and finally for all p € H'.

Using an inverse inequality [43,Theorem 3.1], we obtain
HZhH3/2_E < C’Eh_l/z'i'eﬂzhﬂl for all zp € Py,
which implies that z;, € H3>/?2=¢. For all T € T}, applying inequality [32]
el < C8][ullzr + 6747 1 1)
for u =2 —mpz, § =h'/?7¢ and s = 1/2 — € yields

Iz = mnzllsjomer < CelB P76z = mpzlor + R Y272 = mpz|lir)  for all = € H2.

Summing up inequalities of above type for all T' € € and noting that the second

order derivative of 7z vanishes, we obtain

|2 — mhzllsja—e < Ce(h Y 2]ls + A2z — mpz|y)  for all z € H?).
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Then applying Lemma 5.2.1 for s = 1 and ¢ = 2 yields
|2 — mhzlls /0 < Ceh? 2]l for all » € H?. (5.3.4)
Now if p € H! then Thp € ]—O’h, so if both p, z € ﬁl,
(grad m;p, grad z) = (grad 7, p, grad 7, 2) = (grad p, grad 7, 2).

For a given p € ﬁl, we will use a duality argument to get (5.3.1). Taking z € H2NH!
with — Az =p—myp and ||z]|2 < C||p—mupllo for 7pz as described in Lemma 5.2.1,

we get

lp — 7aplls = (grad(p — mp), grad 2) = (grad p, grad(z — m,2))
< |lgradpllc_1/2|l grad(z — 7r2)[l1/2—c < ||Pll1j24ellz — 7Tn2lls/2—

< Ch P pllyjarell2llz < Ch' 2 HeIplly o llp = mapllo,

which proves (5.3.1) for p € H'.
Assume p € H' has the property that p|r € P} Let I denote the Scott-Zhang
interpolant [39]. Then, since Ipp = p on I' and, using what we just proved and the

fact that Ij, is bounded in H'/2%¢ we obtain

lp — mrpllo = |(p — Inp) — 7r(p — Inp)llo

< C AV p — Inpllij24¢ < Ceh1/2+EHPH1/2+e-

This completes the proof of the second case. Finally for the general case of p € H*
we use the same decomposition as in the proof of Lemma 5.2.1. Namely we define
pr € H' by

App,=Ap inQ, pp=gp on 0N,

where gy, is the L?(T')-projection of g = p|r into P} . Then

1P = prllo < 19— gnl—1/2 < Ch2Feglc < ChM2F|pll1 jope-
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Also

[P = Prllijz4e 19— gnle < Celgle < Cellpllijze-

Here we have used an inverse inequality to obtain that the L?(9Q)-projection is

bounded in H(02). We thus have
12011 /24¢ < Cellpll1 24
Finally we have wppp, = wpp, so

lor — 7hpllo = |[Pr — Thprllo < Cehl/z—i_eHﬁhHl/2+e < Ceh1/2+6HPH1/2+e-

This completes the proof. [
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APPENDIX B

A REGULARITY RESULT

The purpose of this Appendix is to prove Theorem 6.1 on the regularity of the
exact solution of the singularly perturbed Stokes-like system under the soft simply
supported boundary condition. This is done assuming that the domain €2 is smooth.

So far, we cannot prove the same result for a convex polygonal domain.

Theorem 6.1. Let Q) denote a smooth domain, and let F € H' and K €¢ H* NnLz.

Then there exists a unique solution (®,P) € H? x H' N L2 to the equations

(CE(W),E(®)) — (P, curl P) = (F,¥) for all ¥ ¢ H',

(6.1)
—(®,curl Q) — A\ 't} (curl Q,curl P) = (K,Q) for all Q € H'.
(6.2)
Moreover,
1@z + 1Pl + 2| Pll2 < C (7 V2UF -1 yz + 1Kl j2) + I F ]l + 1K) )
(6.3)
IPll1y2 < CCONEN=1y2 + K12 + tUIF 2 + 1K ]]/2) ), (6.4)

@115 /2 + tI1Pllsjz < CUIFl=1j2 + 1K 1 je +#2(F 1 + 1K]2)).  (6.5)

Proof. We first define some notations. Let

anb::n-CE(qb)n:D(a—('b-n—l—ua—(ﬁ-s),

on Os
qub::s-CE((,b)n:w<g—f-s—l—ug—f-n>,
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on 0f), where s and n are the unit tangential and outward normal directions, re-
spectively. Then consider a reduced problem:

Find (®q, P) € H?> x H' n L? such that
—div CE(®y) —curl Py = F, (6.6)
—rot @y = K, (6.7)
together with boundary conditions
M, ®, =0, d,.-s5=0.
By the standard theory on the elliptic system, we have
|®olls+1 + || Polls S C(||F||s=1 + || K||s) for all real s > 0. (6.8)

Now set

" = — B, Pt =p_p,.

In the light of (6.8), we need only estimate ®* and P¥. Actually, we have the

following theorem.

Theorem 6.2. Under the same conditions of Theorem 6.1, there exists a constant

C' depending only on the domain §2 such that

12511 + 11250 + Pl

S C(HPIFl=1pz + 1K) + 22U F e + 1K ls/2) ), (6.9)
1252 + #| P72
<O EF e + 1K ) + HUF L+ 1K ]12) ) (6.10)

We claim the above is enough for our purpose.
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Proof of Theorem 6.1. Suppose momentarily that Theorem 6.2 is proved. Then
estimate (6.3) can be obtained by combining (6.9) (for ||P¥]|;), (6.10), and (6.8).
Moreover,
12713/, < Cll@”|1]|@" |l
< C(H P F | 2apa + 1K 1g2) + P F e + 1K 1572) )
(ETVEF | 2age + 1K y2) + ]+ (1K)
SCUFIL 2 + 1N + CIFNT 2 + EIENS ) + CIFIT + 1K)
< C(IIFIZy o + 1K 2 + EIFI + K3 ),
where we use the fact that
[Flle < CEPIFI A+ B e (K llage € CEPIE 2+ 47K 2.
So
12532 < CUIF-1/2 + 1 Kl + 2 (1Fll + 1K ]2))-

Similarly

1PZ N1 < COIFN1pe + 1K Lz + HIFlh 2 + 1K l372) ).
and
1PFlls o < COET IF =1 g0 + 1 Kl y2) + 2 (IF L+ 1 K]l2) )-
Combining these estimates on ®¥ and P¥ with the estimates in (6.8) for ®; and
P, then gives (6.4) and (6.5). O

Therefore it remains to prove Theorem 6.2. From the definitions we get

(CE(®Y), (W) — (T, curl PF) = — (M. ®, ¥ - s) forall U c H',
(6.11)

—(®F + X712 curl PP curl Q) = A\ (curl Py, curl Q) for all Q € H'.
(6.12)
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We will prove Theorem 6.2 by choosing the appropriate test functions in these equa-

tions. First we need a lemma.
Lemma 6.3. Under the same conditions of Theorem 6.1, there is a constant C'
such that for r € H'(0RQ)

(@" - s.r)| <CE(|Irllo.00 +tlrllnee) (1 Fllo + 1Kl + [P*]1)

+ Ot 20,00 /1@ 1.

Proof of Lemma 6.3. We define the usual boundary-fitted coordinates in a neigh-
borhood of the boundary. Let pg be a positive number less than the minimum radius

of curvature of 92 and define
Qo={z—pn.lz2€0Q, 0<p<po},

where n, is the outward unit normal to  at z. Let z(0) = (X(6),Y (0)), 0§ € [0, L),
be a parametrization of 92 by arclength which we extend L—periodically to 6 € R.

The correspondence
(0,8) = = — pn- = (X(8) — pY"(6),Y'(6) + pX'(6))

is a diffeomorphism of (0, pg) x R/L on . For any function f , let f(,o, 6) denote
the change of variable to the (p, #)-coordinate.

Now, we define an extension R of r to {2y by
R(p,6) = #(f)e "/t

Then find a smooth cut-off function y which is a function of p alone, independent of
6 and ¢, and identically one for 0 < p < po/3, identically zero for p > 2py/3. Thus

YR gives an extension to all of 2 and, by simple computations,

IXRllo < Ct2rllo.oe.  [INRIL < Ct2|Irllo,o0 + /2 [r]l1.00).
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Using integration by parts and (6.12) with Q = yR we obtain
(®F . s,r) = (curl(xR), ®*) — (YR, rot %)
= A" (curl(P¥ + Py), curl(xR)) — (YR, rot ®)

Applying the Schwartz inequality and the estimates on yR leads to the proof of the

lemma. O
We are now in the position to prove Theorem 6.2.
Proof of Theorem 6.2. Taking ¥ = ® in (6.11) and Q = P¥ in (6.12) gives
(CE(®F), £(@Y)) + A (curl PP curl PF)

= —(M,®,®" - s) — \71t*(curl Py, curl PY).
(6.13)

We bound the first term on the right hand side using Lemma 6.3 and the bounds
(6.8) on @g:
(M@0, @ - 5))|
< C(t2|| Ms®@ollo,.0n + /|| MsRoll1,00) (]| Fllo + t| K| + ¢ P[|1)
+ Ct2 || My ®ollo 00| 2 |
< C( 2P + 1K 1 y2) + 22U F gz + 1K s 2))

(HIFlo + 1K+ PN ) + CHPAF 1z + K g2) |25 6.14)
6.14

For the second term on the right hand side of (6.13) we have
t*(curl Py, curl PZ)| < Ct(||F||o + | K1) t| P (6.15)

Next we choose Q with zero average and curl Q = P®” | the L?-projection onto the

rigid motions (the space spanned by { (a — by, c 4 bx)|a,b,¢,€ R }) in (6.12), to get

(@7, P®Y) = )\t (curl(PF + Ry), P®Y),
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which implies
|P®F o < Ct(t|| curl PT||o + || F||o + t||K||1). (6.16)

Combining (6.13)—(6.16) and wusing the equivalence between ||¢|l1 and
(CE(@). E(@NIV* + [P0 gives

12511 + tIPFl < C( 2 UIF ) p2 + 1K N1 j2) + 2 F 2 + 1K s /2) )
where we use the fact that
1Fllo < CEPIEl s+t 2IF ) 1K < CEPIR s po+87 2K 11 po).
Finally we choose W in (6.11) with
rot W =PF W.s5=0 ondN, 1T, < C|PElo

to get
(PP, PE) = (CE(®T), £(W)).
Thus

1P5]lo < C|[@" 1.

This completes the proof of the first estimate of Theorem 6.2.

To get the second estimate we use elliptic regularity. From (6.11) we see
—div CE(®F) = curl PX in Q,
M,®Y = —M,®,, M,®" =0 on 09.
Therefore

125> < COIIP"|h + | Ms®oll1 2,00 + | P27 ]0)
<CY2IF =gz + 1K o) + 2 UF g + 1K s 2) + 1F o + 1K)

SOV F=ajz + 1K i) + 2N F e + 1K s /2) ).
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as desired.

Similarly, by (6.12)

—APE AP -\ ?rot®” inQ,

oprt OP, ConE
W——a—n—/\t b~ . s OnaQ,

SO
IPZ)l2 < C(|Pollz + 172 @7 1)
< CUIFN + 1K e + 22 UF |12 + 1K)
+t 21 F e + 1K 1372) ),
which is the desired estimate on HPEH2 O
Combining the standard interpolation theory and Theorem 6.1, we get

Corollary 6.4. Under the same conditions of Theorem 6.1, we have

[@|l5 /21 + 1Pll1 /24 + | Pll5 /24 < Cet™ (| Fllo + t3/2HFH1> for K :(07 )
6.17

[@ls/24¢ + 1 Pllij24e +tPllsj24e < Cet™ || K|z for F =0, (6.18)

for 0 <e<1/2.
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