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Chapter 1

Introduction

In the physics literature, spectral quantities abound. These are objects of the form∑
iwiδ(λ − λi), where the λi’s are the eigenvalues, or energies, of a Hermitian opera-

tor, and the coefficients, wi, oftentimes depend on the corresponding eigenvectors. One

frequently encountered spectral quantity, which much work has been devoted to approx-

imating, is the density of states
∑

i δ(λ − λi), see, e.g., [33, 67, 51, 32] and references

therein. In quantum physics, the density of states represents the distribution of energies

at which quantum states are available for occupation. In numerical linear algebra, the

density of states can be used to determine the number of eigenvalues of a matrix in

a given interval, and an approximation of the density of states is useful in large-scale

eigenvalue problems for this purpose. Another spectral quantity, which a large portion

of this thesis is devoted to, is the spectral function
∑

i|(xi, v)|2δ(λ−λi), where xi is the

eigenvector corresponding to λi, v is an arbitrary vector, and ( · , · ) denotes an appro-

priate inner product which varies depending on the context. As we will see, the spectral

function is central to the approximation of all other spectral quantities.

This thesis addresses the approximation of joint spectral quantities. Joint spectral

quantities are a natural extension of the notion of spectral quantities to two distinct

systems. These are quantities of the form
∑

i,j wijδ
(
λ−(λi+λ

′
j)
)
, where the eigenvalues

λi and λ′j are those of two distinct operators, and the coefficients, wij , may depend on

the corresponding eigenvectors. It is often possible to consider joint spectral quantities

as spectral quantities associated with a larger matrix. In some instances, this insight

allows us to use known methods in a slightly new way.

1
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Joint spectral quantities are of particular interest when modeling semiconductors,

or other materials, where the fundamental material properties are determined by the

distribution of electrons in the conductance band and holes in the valence band. While

the electrons and holes are related, the Hamiltonian systems governing each are distinct,

and the sum of eigenvalues of these two systems represents the energy required to excite

an electron into the conductance band, and spawn the creation of an electron-hole pair.

This process is fundamental in the operation of many electronic devices, such as, light-

emitting diodes, laser diodes, and solar cells.

The most direct method to compute spectral and joint spectral quantities involves

solving for all eigenpairs of one or more Hermitian operator(s). While many problems

in physics and engineering require the largest or smallest eigenvalues in magnitude of

an operator, spectral quantities are complicated in that they require all eigenvalues,

and possibly all eigenvectors. Many methods exists for computing select eigenpairs of a

linear operator, e.g., shift-and-invert type methods. However, computing all eigenpairs

of an operator is a daunting task, and often represents a bottleneck in engineering

applications. Thus, methods for approximating spectral and joint spectral quantities

which avoid costly eigenvalue problems are necessary.

The two most prevalent methods for approximating spectral quantities in the liter-

ature are the Kernel Polynomial Method (KPM) and, as we refer to it in this thesis,

the Lanczos process. The KPM was developed in the 1990’s by physicists for use in

approximating spectral functions and densities of states, and involves performing a

formal Chebyshev polynomial expansion of a spectral function [61, 51, 53, 52]. The

Chebyshev coefficients in the expansion are the so called “modified moments,” which

are quadratic forms involving Chebyshev polynomials of a matrix. To compute these

modified moments, the three-term Chebyshev recursion may be used. The other method

for approximating spectral functions, the Lanczos process, has classically been used to

approximate bilinear forms uT f(A)v where f is smooth, A is Hermitian, and u and v

are given vectors. A systematic introduction to using the Lanczos algorithm to approx-

imate bilinear forms is given in [17]. These bilinear forms have many uses, including

error estimation in iterative linear solvers [13], matrix function trace estimation [59, 7],

and partial eigenvalue sums [6]. The Lanczos process can be viewed as a Gaussian

quadrature approximation of an integral with respect to an unknown measure which
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depends on the spectrum of A and the vector v.

Both the Lanczos process and the KPM have their benefits and drawbacks. The

main benefit of the Lanczos process is the accuracy achieved. Because of the moment

matching property of the Lanczos process, which follows from the relationship to Gauss

quadrature, the Lanczos process is able to approximate spectral functions quite ac-

curately at the cost of relatively few iterations of the Lanczos algorithm. The main

drawback of the Lanczos process is the deterioration of mutual orthogonality between

the basis vectors in the Lanczos algorithm due to finite precision arithmetic. Because

of this loss of orthogonality, the beautifully simple three-term recurrence in the Lanc-

zos algorithm cannot be used, and more costly orthogonalization techniques must be

applied, e.g., full Gram–Schmidt orthogonalization. The main benefit of the KPM is

its use of the three-term Chebyshev recurrence in order to compute expansion coeffi-

cients. However, the efficiency of the KPM comes at the cost of accuracy. Because the

KPM relies on a Chebyshev expansion of Dirac measures, high degree polynomials are

required in order to obtain accurate approximations. In contrast, the Lanczos process

forms an approximation in terms of a linear combination of Dirac measures, and so is

of the same form as the spectral function, albeit with fewer terms.

The main ingredient necessary for the Lanczos process is the Lanczos partial tridiag-

onalization of a matrix with respect to a given vector determined by the Lanczos algo-

rithm. From the Lanczos partial tridiagonalization, we are able to compute quadrature

nodes and weights which determine the Lanczos approximation to a spectral function.

The Lanczos algorithm deviates drastically from theory once finite precision effects are

taken into consideration. Necessarily, any discussion of the Lanczos process would be

lacking without taking into consideration the effects of finite precision in the Lanczos

algorithm. In Chapter 2 we discuss the Lanczos algorithm in exact and finite precision,

taking special care to focus on Lanczos partial tridiagonalizations. Also discussed are

methods developed to overcome issues encountered in finite precision.

In Chapter 3 we discuss the theory of the Lanczos process, and how the Lanczos

process for approximating bilinear forms can be viewed as an approximation to the

spectral function associated to a symmetric matrix and given vector. A priori error

estimates for the Lanczos process currently in the literature are only available with

respect to analytic functions. However, it is more appropriate to consider the error
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in a distributional sense, i.e., in negative Sobolev norms. This is also accomplished in

Chapter 3 using a mainstay of approximation theory, Jackson’s Theorem, as well as

Sobolev imbedding theorems.

Next, we introduce spectral quantities, joint spectral quantities, and their Lanczos

approximations in Chapter 4. Beginning with spectral quantities, we overview the

existing literature on using Hutchinson’s method, a Monte Carlo trace estimator, to

form approximations of the density of states. This method is used extensively in the

applications discussed in Chapter 5. Moving to joint spectral quantities, we define

the joint density of states and joint spectral function. The joint density of states is a

natural extension of the density of states to two distinct linear systems. We show how

to approximate the joint density of states using methods pertaining to the density of

states. Additionally, we develop another method for approximating the joint density

of states which relies on the notion of convolution of measures. The final, and most

difficult, joint spectral quantity is the joint spectral function. The joint spectral function,

when computed exactly, requires full knowledge of all eigenvalues and eigenvectors of

both systems under consideration. We show how using the spectrum of one operator

or the other, but not both, we are able to accurately approximate the joint spectral

function using the Lanczos process. Furthermore, if we only wish to approximate the

joint spectral function in a small interval, we show that only a few select eigenpairs of

one operator are necessary. In many instances, this makes the approximation of joint

spectral functions tractable. For all cases of spectral and joint spectral quantities, we

consider both standard eigenvalue problems and generalized eigenvalue problems.

In Chapter 5 we apply the theory developed in previous chapters to modeling random

alloys. For this application we use the effective mass Schrödinger equation to model

electrons and holes in an indium gallium nitride (InGaN) alloy. Using the Lanczos

process, we analyze properties of InGaN alloys, and show how random alloys deviate

from simpler homogeneous alloys. To the best of the authors knowledge, this is the first

time a full numerical analysis of the effective mass Schrödinger equations in one, two,

and three spatial dimensions has been performed for random alloys.



Chapter 2

Lanczos Partial

Tridiagonalization

In this chapter we introduce the theory of partially tridiagonalizing a matrix with respect

to a given starting vector using the Lanczos algorithm. We first discuss the Lanczos

algorithm in infinite precision, and then take into account the effects of finite precision.

2.1 Krylov Subspaces

Let A ∈ Rn×n be a nonsingular matrix and v ∈ Rn a nonzero vector. Denote the family

of Krylov spaces generated by A and v as

Km(A, v) = span{v,Av, . . . , Am−1v}, m ∈ N. (2.1)

Krylov subspaces are the foundation of iterative methods for solving linear systems, e.g.,

conjugate gradient and GMRES, and for eigenvalue problems, e.g., Lanczos and Arnoldi

iterations. We begin this section by understanding why Krylov spaces are natural to

consider. Our presentation closely follows that of [25].

Suppose we are interested in determining the solution, x ∈ Rn, to the linear system

Ax = b. Recall the minimal polynomial of the matrix A is the monic polynomial p, of

minimal degree, for which p(A) = 0. The polynomial p is easily constructed from the

Jordan normal form of A. If λ1, . . . , λd are the unique eigenvalues of A and mi is the

5
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size of the largest Jordan block corresponding to λi, then the minimal polynomial of A

is given by p(t) = Πd
i=1(t− λi)mi . For example, if the Jordan form of A is

1

1 1

1

2

2


,

then, λ1 = 1 has two Jordan blocks, the larger of which has size m1 = 2, and λ2 = 2

has two blocks of size m2 = 1. For this example, the minimal polynomial is p(t) =

(t− 1)2(t− 2).

Expanding out p(t) =
∏d
i=1(t − λi)mi in terms of the monomials, ti, gives p(t) =∑m

i=0 cit
i where m = m1 + . . .+md. Note that c0 = Πd

i=1(−λi)mi 6= 0 since we assumed

A is invertible. Using A−1p(A) = 0, it is easily seen that

A−1 =

m∑
i=1

(
− ci
c0

)
Ai−1 = q(A) with q(t) =

m−1∑
i=0

(
− ci+1

c0

)
ti.

Hence, the solution of the linear system Ax = b satisfies x = A−1b = q(A)b. We have

just proved the following theorem.

Theorem 1. If the minimal polynomial of a nonsingular matrix A ∈ Rn×n has degree

m, the solution of Ax = b lies in Km(A, b).

If the degree of the minimal polynomial of A is small, we can search for the solution

to Ax = b in the low-dimensional Krylov space associated with A and b. In practice, it

is typically not the case that the degree of the minimal polynomial of A is small. For

example, if all eigenvalues of A are simple, then the degree of the minimal polynomial

is n. The purpose of what has been presented so far, is to show that the action of the

inverse of the matrix A on the vector b, and the Krylov spaces associated with A and

b, are intimately related. The main utility of methods involving Krylov spaces resides

in the fact that satisfactory approximate solutions to the system Ax = b can typically

be found in Km(A, b) for m� n, even if the degree of the minimal polynomial is n.

Note that in Theorem 1 we did not use any information about the right-hand side
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vector in determining the dimension of the Krylov subspace. Rather, we showed that

A−1v ∈ Km(A, v) for all v ∈ Rn, so long as the degree of the minimal polynomial of A is

m. Next, we investigate how the relationship between A and v influences the dimension

of the Krylov space Km(A, v).

From the definition of Krylov subspaces (2.1), it is clear that Kj(A, v) j Kj+1(A, v)

for all natural numbers j, and that dimKj(A, v) ≤ j. The next theorem illustrates that

there is a maximal dimension, m, such that

K1(A, v) $ K2(A, v) $ . . . $ Km(A, v) = Km+1(A, v) = . . . . (2.2)

Recall, the minimal polynomial of v with respect to A is the monic polynomial of

minimal degree for which p(A)v = 0. The grade of v, denoted grade(v), is the degree of

the minimal polynomial of v with respect to A. Note that grade(v) is always less than

or equal to the degree of the minimal polynomial of A. The following proposition can

be found in [48].

Theorem 2. For A ∈ Rn×n and v ∈ Rn, dim(Km(A, v)) = min(m, grade(v)).

Proof. We first show that for m = grade(v), Am+jv ∈ Km(A, v) for all j ≥ 0. We

proceed by induction. Denote the vector space of polynomials of degree less than or

equal to k as Pk. Let p ∈ Pm be the minimal polynomial of v with respect to A,

and write p(t) = tm − q(t) for some q ∈ Pm−1. Using p(A)v = 0, we see that Amv =

q(A)v ∈ Km(A, v). Next, assume that Am+jv ∈ Km(A, v) for j = 0, . . . , k. Expressing

Am+kv in terms of the vectors v,Av, . . . , Am−1, we see that

Am+k+1v = A
(
Am+kv

)
= A

m−1∑
i=0

ciA
iv = cm−1A

mv +

m−1∑
i=1

ci−1A
iv,

for some constants ci, i = 0, . . . ,m − 1. Using again Amv ∈ Km(A, v), we see that

Am+k+1v ∈ Km(A, v), as desired.

This demonstrates that dimKm(A, v) ≤ grade(v) for all m. Lastly, to complete

the proof, we show that dimKm(A, v) = m if and only if m ≤ grade(v). The vectors

v,Av, . . . , Am−1v, are linearly independent if and only if for any collection of constants

ci, i = 0, . . . ,m−1, not all zero, the sum,
∑m−1

i=0 ciA
iv, is nonzero. This is equivalent to

saying there is no polynomial q ∈Pm−1 such that q(A)v = 0, i.e., m ≤ grade(v).
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Theorem 2 shows that dimKm(A, v) = m, so long as grade(v) ≥ m. In what follows,

we always assume dimKm(A, v) = m � n to simplify the analysis. For a symmetric

matrix A with simple eigenvalues, as long as v has nonzero components in the direction

of each eigenvector of A, dimKm(A, v) = m for all m ≤ n, and so this assumption holds

in most practical situations. To see this, note that when v has nonzero components in the

direction of each eigenvector of A then the minimal polynomial of A, the characteristic

polynomial of A, and the minimal polynomial of v with respect to A coincide, and are

degree n. That the characteristic polynomial of A and the minimal polynomial of A are

equal in this situation follows from the previous discussion of constructing the minimal

polynomial from the Jordan normal form. To see that the minimal polynomial of v with

respect to A equals the characteristic polynomial, assume the orthogonal eigenvectors

of A are xi, with corresponding eigenvalues λi, for i = 1, . . . , n. If the coefficients of v

in the eigenbasis are γi, then for any polynomial p,

p(A)v =

n∑
i=1

γip(λi)xi. (2.3)

From (2.3) we see that if p(A)v = 0 and the γi’s are nonzero, then p(λi) = 0 for

i = 1, . . . , n. In other words, the minimal polynomial of v with respect to A is the same

as the characteristic polynomial of A when v has nonzero components in the direction

of each eigenvector of A.

2.2 Arnoldi Algorithm

Using the facts established about Krylov spaces in the previous section, we now turn to

the Arnoldi algorithm for constructing an orthonormal basis of Km(A, v). We show that

this is the same basis determined by performing the Gram–Schmidt algorithm on the

vectors {v,Av, . . . , Am−1v}. Recall that we always assume dimKm(A, v) = m, meaning

that the vectors {v,Av, . . . , Am−1v} are linearly independent for m ≤ n.

The basis for Km(A, v) as given in (2.1), while useful for theory, is of little use in

practice. This is because as the Krylov dimension increases, the vectors Ajv become

closely aligned with the dominant eigenvector, as in power iteration. While this is not

an issue in perfect arithmetic, it does pose an issue on finite precision computers. For
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this reason, we need to determine a basis more suited for finite precision computations.

This is precisely what the Arnoldi algorithm does [3].

Assume that H ∈ Rn×n is an upper Hessenberg matrix orthogonally similar to A.

That is,

AV = V H, (2.4)

for an orthogonal matrix V . Equating the jth columns in (2.4), we have relation

Avj =

j+1∑
i=1

hijvi, j = 1, . . . , n, (2.5)

where vj is the jth column of V , (H)ij = hij , and hn+1nvn+1 = 0. Rearranging (2.5), we

can express the vector vj+1 using a j+1 term recurrence involving the vectors v1, . . . , vj ,

hj+1 j vj+1 = Avj −
j∑
i=1

hijvi, j = 1, . . . , n. (2.6)

From the orthonormality of the vectors vi, the coefficients in (2.6) satisfy

hij = vTi Avj , i = 1, . . . , j, hj+1 j =
∥∥∥Avj − j∑

i=1

hijvi

∥∥∥. (2.7)

From recurrence (2.6) and the formulas for the coefficients in (2.7), given a nonzero

starting vector v ∈ Rn, we are able to construct the columns of an orthogonal matrix

V , with first column v1 = v/‖v‖, and upper Hessenberg matrix H which satisfy (2.4).

This is known as the Arnoldi algorithm, and the vectors vj are known as the Arnoldi

vectors.

In practice, we are rarely interested in constructing V and H in full. Rather, we are

mostly interested in utilizing (2.6) and (2.7) for j = 1, . . . ,m, with m � n. If we let

Vm be the first m columns of V , and Hm be the m×m principal submatrix of H, then

we can write

AVm = VmHm + hm+1mvm+1e
T
m, (2.8)

where em is the mth column of the m×m identity matrix. The m-step Arnoldi algorithm

constructs all terms in (2.8), and is summarized in Algorithm 1.
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Algorithm 1 Arnoldi Algorithm

1: Initialize v1 = v/‖v‖.
2: for j = 1, . . . ,m do
3: ṽ = Avj
4: for i = 1, . . . , j do
5: hij = (ṽ, vi)
6: ṽ ← ṽ − hijvi
7: end for
8: hj+1 j = ‖ṽ‖
9: if hj+1 j = 0 then stop

10: else
11: vj+1 = ṽ

hj+1 j

12: end if
13: end for

Consider the stopping criteria, hj+1 j = 0, in Algorithm 1. When this occurs at step

j ≤ m, we have that hj+1 jvj+1 = 0, and so AVj = VjHj . This means that the columns

of Vj span an invariant subspace of A. This is useful if we are interested in solving

for eigenpairs of A. Indeed, if θ is an eigenvalue of Hj with associated eigenvector

y, then θ is an eigenvalue of A with associated eigenvector Vjy. So, using an upper

Hessenberg matrix of order j, we are able to determine spectral properties of A. This is

a rare occurrence in practice. We show next that the Arnoldi vectors are a basis of the

Krylov space Km(A, v), and so our general assumption that the vectors v,Av, . . . , Ajv,

are linearly independent for j < n preclude the stopping criteria, hj+1 j = 0, from being

achieved.

Carrying out the Arnoldi algorithm in full, with starting vector v1 = v/‖v‖, results

in V,H ∈ Rn×n, such that AV = V H, where V is orthogonal and H is upper Hessenberg

with positive subdiagonal. Let K = QR be the QR-factorization of the Krylov matrix

K = [v1, Av1, . . . , A
n−1v1], whereQ is orthogonal andR is upper triangular with positive

diagonal. Since the QR-algorithm is simply the Gram–Schmidt algorithm applied to the

columns of K, we know that the columns of Q are an orthonormal basis for the space

Kn(A, v), and the first m columns of Q are an orthonormal basis of Km(A, v). Using H

and V , we can also write K = V V TK = V [e1, He1, H
2e1, . . . ,H

n−1e1]. Since H is upper

Hessenberg with positive elements on the subdiagonal, Hk has positive elements on the

kth subdiagonal and is zero below. Hence, the matrix [e1, He1, . . . ,H
n−1e1] is upper
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triangular with positive elements on the diagonal, and so K = V [e1, He1, . . . ,H
n−1e1]

is a QR-factorization of K. By uniqueness of QR-factorizations we have Q = V , and so

the columns of Vm are an orthonormal basis for Km(A, v).

2.3 Lanczos Algorithm

In this section we specialize to the case when A is symmetric. We assume throughout

this section that all operations are performed with exact arithmetic. The effects of finite

precision will be taken into consideration in the next section.

Rewriting relationship (2.8) as Hm = V T
mAVm, we see that if A is symmetric then the

upper Hessenberg matrix Hm is also symmetric. A symmetric upper Hessenberg matrix

is a symmetric tridiagonal matrix. Throughout the rest of this chapter we replace Hm

with Tm ∈ Rm×m to emphasize that we are dealing with a tridiagonal matrix. Writing

αj = hjj and βj = hj+1 j for j = 1, . . . ,m, the Arnoldi recurrence now simplifies to

Avj = βj−1vj−1 + αjvj + βjvj+1, j = 1, . . . ,m, (2.9)

where β0v0 = 0, or, equivalently,

AVm = VmTm + βmvm+1e
T
m, (2.10)

where

Tm = V T
mAVm =


α1 β1

β1
. . .

. . .

. . . βm−1

βm−1 αm

 . (2.11)

The vectors vj are now referred to as Lanczos vectors.

The Lanczos algorithm is widely used for many different applications [29]. Often, it

is used to find a few extremal eigenvalues of sparse symmetric matrices. However, when

we use the term “Lanczos algorithm” or “Lanczos iteration” in this thesis, we will be

referring to algorithms for constructing Vm and Tm in (2.10). Oftentimes, we will use

the phrase partial tridiagonalization when specifically referring to construction of the

matrix Tm.
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Because we will need them later, we introduce some terminology regarding the matri-

ces Tm and Vm. Denote the eigenvalues and eigenvectors of Tm as θj and yj respectively,

j = 1, . . . ,m (we drop the dependence on m for notational convenience). The values

{θj}mj=1 are called the Ritz values, and the vectors {Vmyj}mj=1 are called the Ritz vectors.

This terminology comes from the fact that the Lanczos algorithm can be viewed as a

Rayleigh-Ritz method for approximating eigenpairs of the matrix A.

Before discussing the properties of the Lanczos algorithm, we present the equivalent

of Algorithm 1 for the case of a symmetric matrix with the notation used in (2.9). This

is given in Algorithm 2.

Algorithm 2 Lanczos Algorithm

1: Initialize v1 = v/‖v‖, β0v0 = 0.
2: for j = 1, . . . ,m do
3: ṽ = Avj − βj−1vj−1

4: αj = (ṽ, vj)
5: ṽ ← ṽ − αjvj
6: βj = ‖ṽ‖
7: if βj = 0 then stop
8: else
9: vj+1 = ṽ

βj
10: end if
11: end for

We remark on several desirable features of the Lanczos algorithm:

1. Only one matrix vector multiplication is needed each iteration. Furthermore, we

do not need to have the matrix A stored in memory. Rather, it is sufficient to

supply a routine which, given a vector v, returns Av. Thus, we are able to take

full advantage of the case when A is large and sparse.

2. For some applications we are only interested in creating a partial tridiagonalization

of A. For example, this is the case when only eigenvalue, and not eigenvector,

approximations of A are desired. In this case we do not need to create the matrix

Vm. Instead, at step j, only the coefficients αj and βj need to be computed. For

this, only the previous two Lanczos vectors, vj−1 and vj , need to be stored.

3. There are several ways to reduce a symmetric matrix to tridiagonal form, e.g.,
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Givens and Householder rotations. However, algorithms utilizing Givens or House-

holder rotations must be carried out in full before the matrix A is reduced to tridi-

agonal form. At no intermediate step is the matrix tridiagonal. Contrast this with

the Lanczos algorithm, which provides a partial tridiagonalization, Tj = V T
j AVj ,

at each step j.

The benefits of the Lanczos algorithm are manifold, which is why it is so widely used.

However, as was known originally to Lanczos [29], the algorithm behaves differently in

the presence of roundoff error. These differences are considered in the next section.

2.4 Lanczos Algorithm in Finite Precision

The desirable features of the Lanczos algorithm mentioned in the previous section, make

it suitable for many applications, including eigenvalue problems, the solution of linear

systems, and singular value decompositions. However, one of the main drawbacks,

noticed in the original paper by Lanczos [29], is the loss of orthogonality of the Lanczos

vectors due to rounding error. This widely known issue is discussed at length in all

serious textbooks and articles on the Lanczos algorithm. In this section we discuss

the loss of orthogonality in the context of the partial tridiagonalization of the matrix

A. The original work on this issue is the PhD thesis of Paige [39], and his subsequent

publications [40, 41].

In this section we will be dealing with computable quantities on finite precision

computers. In order to avoid an abundance of tildes, or other methods to distinguished

exact quantities and computed quantities, we use the same notation as in the previous

section, with the knowledge that all quantities are computed in finite precision, unless

stated otherwise. That is, the vj ’s, αj ’s, and βj ’s represent quantities which have

been computed with roundoff error, and are not identical to their counterparts in the

previous section. For simplicity, we make the assumption that all Lanczos vectors have

been normalized exactly, i.e., that vTj vj ≡ 1. All equations will now include an error

term, e.g., the recurrence relation (2.9) now becomes

Avj = βj−1vj−1 + αjvj + βjvj+1 + fj , j = 1, . . . ,m, (2.12)
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Figure 2.1: Eigenvalue distribution (2.14).

where β0v0 = 0 and fj is a vector with entries accounting for the roundoff error at

iteration j. Or, equivalently, in matrix form,

AVm = VmTm + βmvm+1e
T
m + Fm, (2.13)

where the jth column of matrix Fm ∈ Rn×m accounts for the roundoff error at itera-

tion j. Throughout this section ε represents the unit roundoff error, which for 64-bit

computations is of order 10−16.

Before discussing the details surrounding roundoff errors in the Lanczos algorithm,

we give a simple example illustrating the deviation of finite precision from exact arith-

metic taken from [36]. We perform the Lanczos algorithm on a symmetric matrix with

eigenvalues given by

λi = λ+
i− 1

n− 1
(λ− λ)ρn−i i = 1, . . . , n, (2.14)

where ρ is a parameter controlling the eigenvalue distribution, λ and λ are the begin-

ning and end of the spectrum, and n is the size of the matrix. For this example, we

choose λ = 1, λ = 100, ρ = 0.95, n = 100, and we construct Vm for m = 50 using two

different methods. The eigenvalues for this example can be seen in Figure 2.1, which

illustrates the clustering of eigenvalues near λ due to the parameter ρ in (2.14). We
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Figure 2.2: Plot of the matrix entries − log(|V T
mVm|) for m = 50 using Algorithm 1 (left)

and Algorithm 2 (right) for a symmetric matrix.

use Algorithms 1 and 2 to construct the basis vectors, the difference being that Algo-

rithm 2 constructs vj+1 by orthogonalizing Avj against the two previously computed

basis vectors {vj−1, vj}, whereas Algorithm 1 orthogonalizes Avj against all previously

computed basis vectors {v1, . . . , vj}, which is equivalent in exact arithmetic. The re-

sults, visualized by plotting the matrix elements − log |V T
mVm|, can be seen in Figure 2.2.

From Figure 2.2 we see that using the three term recurrence in the Lanczos algorithm

results in a significant loss of orthogonality, while orthogonalizing each new Lanczos

vector against all previously computed basis vectors retains mutual orthogonality to

machine precision. Indeed, using the three term recurrence of Algorithm 2 results in

|vTi vj | = O(1) for some i 6= j, when it should ideally be O(ε).

When taking into account roundoff error, we can expect that relationship (2.12)

holds to within machine precision, i.e., the entries of fj are O(ε). This is clearly seen in

Figure 2.3, where the Lanczos vectors are computed using Algorithm 2 (same example

as Figure 2.2 (right)), and the norm of fj = Avj − βj−1vj−1 − αjvj − βjvj+1 is plotted

for each iteration. Even though the Lanczos vectors are far from orthogonal, as seen in

Figure 2.2 (right), (2.12) holds for fj with entries of order ε. In [39] it is shown that

‖fj‖ ≤ Cnε‖A‖, where Cn depends on the matrix size n, and in [44] it is stated that

no exception to the rule ‖fj‖ ≤ ε‖A‖ has been found. In other words, even though the

vector accounting for the roundoff error, fj , remains small, we lose mutual orthogonality
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Figure 2.3: Norm of roundoff error fj computed using the Lanczos algorithm.

between the Lanczos vectors.

A major issue that arises as a consequence of the loss of orthogonality is Tm 6≈
V T
mAVm, i.e., we no longer have a partial tridiagonalization of the matrix A. This can

be seen by premultiplying (2.13) by V T
m ,

V T
mAVm = (V T

mVm)Tm + V T
mFm. (2.15)

While we expect the entries of V T
mFm to be small since each column of Fm has norm

O(ε‖A‖) and the columns of Vm are unit length, V T
mVm is far from the identity, as seen

in Figure 2.2 (right). Thus, if we are interested in producing a partial tridiagonalization

of A, we must take into account the loss of mutual orthogonality of the Lanczos vectors

in finite precision.

Note that Figure 2.2 shows a clear structure to the loss of mutual orthogonality.

We investigate this structure and the propagation of the loss of mutual orthogonality

next. Let the matrix Km ∈ Rm×m have entries kij = vTi vj , i, j = 1, . . . ,m, which

sets Km = V T
mVm. Ideally, Km would approximate the identity matrix to machine

precision, however, the previous example shows that this does not hold when using

Algorithm 2. We can characterize the propagation of diminishing orthogonality using

difference equations for the entries kij [54, 55].
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Theorem 3. Let A ∈ Rn×n be a symmetric matrix and v1 ∈ Rn be a unit vector.

Let v1, . . . , vm+1 be the Lanczos vectors after m iterations of the Lanczos algorithm

(Algorithm 2) in finite precision and define kij = kji = vTi vj for i, j = 1, . . . ,m + 1.

Then, the terms kij satisfy the following:

kii = 1 i = 1, . . . ,m+ 1,

ki i+1 = vTi vi+1 i = 1, . . . ,m,

βjki j+1 = βiki+1 j + (αi − αj)kij + βi−1ki−1 j − βj−1ki j−1 + vTj fi − vTi fj ,

for 1 ≤ i < j ≤ m and k0j = 0.

Proof. The first equation is due to our assumption that the Lanczos vectors are normal-

ized exactly while the second is a definition. Taking the inner product of (2.12) with vi

gives

vTi Avj = βj−1ki j−1 + αjkij + βjki j+1 + vTi fj , (2.16)

for i, j = 1, . . . ,m. Subtract from (2.16) the same expression with i and j switched, and

use kji = kij , to get

0 = βj−1ki j−1 + αjkij + βjki j+1 + vTi fj − βi−1ki−1 j − αikij − βiki+1 j − vTj fi. (2.17)

Rearranging terms in (2.17) gives the final result. Note that because kij = kji, and

we have specified the diagonal as well as the super-diagonal, all that remains to be

determined is ki j+1 for 1 ≤ i < j ≤ m.

Using Theorem 3 we can determine how the loss of mutual orthogonality is propa-

gated forward to newly created Lanczos vectors. The loss of orthogonality is initiated

by local roundoff errors fj , and then is propagated forward to newly created Lanczos

vectors according the recurrence in Theorem 3. Because the fj ’s remain small, it is not

due to an accumulation of roundoff errors that loss of orthogonality occurs. Rather,

at step j, the deviation of ki j+1 = vTi vj+1 from zero depends mainly on the level of

orthogonality of the Lanczos vectors at the previous two iterations and the α’s and β’s.

The dependence of the level of orthogonality of the Lanczos vectors at step j can be

visualized using a finite difference stencil for ki j+1. This is shown in Figure 2.4, which
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Figure 2.4: Finite difference stencil for ki j+1 = vTi vj+1.

is a visual representation of the difference equation in Theorem 3, with the white circle

representing ki j+1, and the black circles representing the terms which ki j+1 depends

on.

In order to understand how far the Lanczos vectors deviate from orthogonal, we

define

κm = max
1≤i,j≤m

|kij − δij |, (2.18)

where δij is the Kronecker delta. In perfect arithmetic, κm = 0, however, as our

example showed, this is not the case in the presence of roundoff error. Due to κm

being nonzero, or equivalently, the Lanczos vectors failing to be mutually orthogonal,

the Lanczos algorithm fails to produce a partial tridiagonalization in many situations.

Obviously, if we are interested in producing a partial tridiagonalization, we need to alter

Algorithm 2. Work on this issue by Parlett and his students [43, 50, 54, 55, 56] has

shown that by modifying the Lanczos algorithm to keep the Lanczos vectors “sufficiently

orthogonal” (made specific shortly), ensures that we produce a partial tridiagonalization

of A. Specific methods of ensuring the Lanczos vectors remain “sufficiently orthogonal”

will be discussed in section 2.5, however, they all follow a similar format, given below

in Algorithm 3.

Note that the only distinction between Algorithms 2 and 3 are lines 6 through 8 in
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Algorithm 3 Modified Lanczos Algorithm

1: Initialize v1 = v/‖v‖, β0v0 = 0.
2: for j = 1, . . . ,m do
3: ṽ = Avj − βj−1vj−1

4: αj = (ṽ, vj)
5: ṽ ← ṽ − αjvj
6: if ṽ requires additional orthogonalization then
7: modify ṽ
8: end if
9: βj = ‖ṽ‖

10: if βj = 0 then stop
11: else
12: vj+1 = ṽ

βj
13: end if
14: end for

Algorithm 3. This is where we ensure the new created Lanczos vector, vj+1, is “suffi-

ciently orthogonal” to the previous Lanczos vectors v1, . . . , vj . In fact, Algorithm 3 is

the same as Algorithm 2 if we always assume ṽ does not need additional orthogonal-

ization. Most importantly, both algorithms produce all quantities in (2.13), with the

exception of the roundoff matrix Fm. Next, we discuss what “sufficiently orthogonal”

entails, in order to ensure the symmetric tridiagonal matrix produced in Algorithm 3 is

a partial tridiagonalization of A.

In what follows, we need to perform a QR-factorization of Vm = [v1 . . . vm], and so we

need conditions which ensure the linear independence of the Lanczos vectors produced

by Algorithm 3. For this we give a simple lemma from linear algebra.

Lemma 1. Let V ∈ Rn×m have columns of unit length, and define K = V TV and

κ = max1≤i,j≤m|kij − δij |. If κ < (m − 1)−1, then the columns of V are linearly

independent.

Proof. By the definition of K, the columns of V are linearly independent if and only

if K is invertible. Furthermore, K is invertible if and only if it has strictly positive

eigenvalues. Therefore, any condition which ensures the positivity of the eigenvalues

of K, also ensures V is full rank. To characterize the eigenvalues of K, we apply

Gershgorin’s circle theorem, which states that each eigenvalue, λ, ofK satisfies |λ−kii| ≤
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j 6=i|kij | for some 1 ≤ i ≤ m. Therefore, the eigenvalues of K satisfy

1− (m− 1)κ ≤ λ ≤ 1 + (m− 1)κ.

Note in the application of Gershgorin’s circle theorem we used |kij | ≤ κ for i 6= j

and kii = 1 (follows from the assumption that the columns of V have unit norm). It

immediately follows that the eigenvalues of K are strictly positive if κ < (m−1)−1.

Applying Lemma 1 with Vm and Km = V T
mVm, we see that the Lanczos vectors (the

columns of Vm) are linearly independent if κm < (m−1)−1, where κm is given by (2.18).

Note, this is a very weak condition. Indeed, for a standard problem, m is of order 103

or less, and so κm can grow to the level of 10−3 with linear independence of the Lanczos

vectors intact. This shows that while the Lanczos vectors may become exceedingly

non-orthogonal, they remain linearly independent. In the following theorem we make

the stronger assumption κm ≤
√
ε/m, and assume this implies the linear independence

of the Lanczos vectors (holds so long as ε < m/(m − 1)2 ∼ 1/m, which is true in all

practical scenarios).

Next, we state the fundamental theorem, due to Simon [54], about partially tridiag-

onalizing a matrix using the Lanczos algorithm in finite precision.

Theorem 4. Let A ∈ Rn×n be a symmetric matrix, v1 ∈ Rn be a unit vector and assume

Tm ∈ Rm×m, Vm ∈ Rn×m, βm ∈ R, and vm+1 ∈ Rn are produced by Algorithm 3, i.e.,

they satisfy AVm = VmTm + βmvm+1e
T
m + Fm, where the entries of Fm are of order

O(ε‖A‖). Then, if κm, defined as in (2.18), satisfies κm ≤
√
ε/m, we have

Tm = QTmAQm + Em,

where Vm = QmRm is the exact QR factorization of Vm and the entries of Em are of

order O(ε‖A‖).

Proof. See [54, 55]. We remark that the QR factorization in the statement of Theorem 4

is well defined due to our assumption that κm ≤
√
ε/m implies κm < (m− 1)−1 (which

guarantees linear independence of the columns of Vm).

Theorem 4 deserves considerable attention. The requirement that κm = O(ε) is
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referred to as “orthogonal to working precision”, while κm = O(
√
ε) is referred to

as “semi-orthogonality”. Theorem 4 tells us that as long as the Lanczos vectors are

semi-orthogonal for steps j = 1, . . . ,m, the partial tridiagonalization of A, Tm, is accu-

rate to order O(ε). In fact, we do not gain any advantage when keeping the Lanczos

vectors orthogonal to working precision. When using the Lanczos algorithm to ap-

proximate the spectrum of A using the Rayleigh-Ritz method, the weaker condition of

semi-orthogonality ensures that we do not obtain redundant copies of eigenvalues of A,

which could otherwise be a serious issue.

Another important consideration in Theorem 4 is the starting vector v1. Note that

the partial tridiagonalization produced by the Lanczos algorithm depends on both the

matrix A and the starting vector v1. Different starting vectors produce different partial

tridiagonalizations. In many applications of the Lanczos algorithm, the starting vector

v1 is chosen randomly, and so is unimportant. However, in this thesis we will often be

interested in producing partial tridiagonalizations of a matrix with respect to specific

starting vectors. Theorem 4 tells us that the partial tridiagonalization produced by the

Lanczos algorithm in finite precision is, up to roundoff error, the same as the partial

tridiagonalization with starting vector q1 (the first column of Qm, the Q-factor of the

exact QR factorization of Vm) in the absence of roundoff error, as long as the Lanczos

vectors are semi-orthogonal. Because we have assumed the Lanczos vectors are normal-

ized exactly, the first column of Qm is v1, i.e., q1 = v1. Therefore, so long as we ensure

the Lanczos vectors remain semi-orthogonal, the partial tridiagonalization produced by

Algorithm 3 is the one we desire.

Much work has been devoted to dealing with the loss of orthogonality of the Lanczos

vectors. In the next section we give a brief overview of a few methods designed to handle

this issue.

2.5 Orthogonalization Strategies

Several methods have been designed to overcome the loss of orthogonality in the Lanczos

vectors. Determining which is best depends on the application at hand. Here we discuss

a few methods designed to ensure the Lanczos vectors are at least semi-orthogonal,

which ensures that the Lanczos algorithm produces a partial tridiagonalization of A
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with respect to a supplied starting vector. All of the following methods fit in the

framework of Algorithm 3, with each method using different criteria for determining

if additional orthogonalization is necessary as well as different methods for producing

semi-orthogonal Lanczos vectors.

2.5.1 Full Orthogonalization

Full orthogonalization takes the most conservative approach, and always performs addi-

tional orthogonalizations (with respect to Algorithm 3). Full orthogonalization entails

explicit (Gram–Schmidt) orthogonalization against all previous Lanczos vectors for ev-

ery iteration. It is one of the simplest ways to maintain a sufficient level of mutual

orthogonality among the Lanczos vectors, however, it is also one of the most costly.

Full orthogonalization was the method advocated by Lanczos [29] and Wilkinson [64].

Full orthogonalization is essentially applying the Arnoldi algorithm, Algorithm 1, to

the symmetric matrix A. This method can be expected to retain mutual orthogonality

to machine precision. This makes full orthogonalization useful for its simplicity and

robustness. However, all computed Lanczos vectors need to be saved in order to form

the inner products, which would not otherwise be necessary for some applications, e.g.,

if we are only interested in producing a partial tridiagonalization of A. Furthermore,

each iteration involves more work since additional Lanczos vectors are present. The

Lanczos method with full orthogonalization is presented in Algorithm 4 [44].

2.5.2 Selective Orthogonalization

Here we present a brief and simplified overview of the selective orthogonalization strat-

egy of Parlett and Scott [43, 42]. Their orthogonalization strategy relies heavily on the

insights of Paige about the behavior of the Lanczos algorithm in the presence of round-

off error. Paige’s thesis illustrated that orthogonality between Lanczos vectors is lost

precisely when a Ritz value converges to an eigenvalue of A. Additionally, Paige showed

in which direction orthogonality is lost. Selective orthogonalization takes advantage of

this knowledge to retain semi-orthogonality.

The following two results form the basis for selective orthogonalization. Note that

the first applies in the case of exact arithmetic while the second takes into account
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Algorithm 4 Lanczos Algorithm (full orthogonalization)

1: Initialize v1 = v/‖v‖, β0v0 = 0.
2: for j = 1, . . . ,m do
3: ṽ = Avj − βj−1vj−1

4: αj = (ṽ, vj)
5: ṽ ← ṽ − αjvj
6: for i = 1, . . . , j do
7: ṽ ← ṽ − (ṽ, vi)vi
8: end for
9: βj = ‖ṽ‖

10: if βj = 0 then stop
11: else
12: vj+1 = ṽ

βj
13: end if
14: end for

roundoff error.

Theorem 5. Assume the Lanczos algorithm (Algorithm 2) for j steps is conducted in

exact arithmetic, i.e., we have computed the symmetric tridiagonal matrix Tj ∈ Rj×j

and the orthonormal Lanczos vectors v1, . . . , vj+1 such that

AVj = VjTj + βjvj+1e
T
j ,

where Vj = [v1 . . . vj ] and βj = ‖(AVj − VjTj)ej‖. Furthermore, assume the exact

eigendecomposition of Tj is Tj = YΘY T , yTk yl = δkl, k, l = 1, . . . , j. Then, for each

Ritz value θi, there is a corresponding eigenvalue, λi′, of A, such that

|λi′ − θi| ≤ βj |yji|, i = 1, . . . , j,

where yji = eTj yi.

Theorem 6. Assume the Lanczos algorithm (Algorithm 2) for j steps is conducted in

finite precision, i.e., we have computed the symmetric tridiagonal matrix Tj ∈ Rj×j and

the Lanczos vectors v1, . . . , vj+1 such that

AVj = VjTj + βjvj+1e
T
j + Fj ,
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where Vj = [v1 . . . vj ], βj = ‖(AVj − VjTj)ej‖, and Fj is a roundoff matrix (columns

of norm O(ε‖A‖)). Furthermore, assume the exact eigendecomposition of Tj is Tj =

YΘY T , yTk yl = δkl, k, l = 1, . . . , j, and denote the Ritz vectors as zi = Vjyi, i = 1, . . . , j.

Then,

(zi, vj+1) =
γi

βj |yji|
, i = 1, . . . , j,

where yji = eTj yi and the γi’s are of order O(ε‖A‖).

Theorem 5 [26, 43] shows that if the last entry of a normalized eigenvector of Tj

is small, then a Ritz value is close to an eigenvalue of A. Note that the quantity

βj |yji| is equal to the norm of the residual of the Ritz pair as an eigenpair of A, i.e.,

‖Azi−θizi‖ = βj |yji|. While Theorem 5 is stated in exact arithmetic, a similar inequality

holds with a slightly different constant when roundoff error is taken into consideration

and the Lanczos vectors are no longer perfectly orthogonal [43]. The authors of [43]

say the bounds in Theorem 5 “fail gracefully” when the Lanczos vectors are no longer

orthonormal. Theorem 6, due to Paige [39], shows that when a Ritz value is near

an eigenvalue, the Lanczos vector loses orthogonality precisely in the direction of the

corresponding Ritz vector. Note that in exact arithmetic (zi, vj+1) = 0. We can use this

knowledge to our advantage when orthogonalizing Lanczos vectors. When computing

a new Lanczos vector, vj+1, we can use the eigenvectors of Tj to check if a Ritz value

has converged to an eigenvalue of A via Theorem 5. If so, according to Theorem 6, we

should orthogonalize the Lanczos vector against the corresponding Ritz vector. This is

summarized in Algorithm 5 where τ , a user defined tolerance, should be O(
√
ε) in order

to retain semi-orthogonality.

In Algorithm 5, the spectral decomposition is computed every step. Since m �
n, and there are specialized algorithms for computing the eigenpairs of a symmetric

tridiagonal matrix, this is not too cumbersome. However, there are several different

ways to relax this requirement, see [43] for more details.

2.5.3 Partial Orthogonalization

Partial orthogonalization, introduced by Simon [54, 56], approximates the solution to

the difference equation in Theorem 3 to monitor mutual orthogonality of Lanczos vec-

tors. If orthogonality drops below a certain threshold, then extra steps are taken to
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Algorithm 5 Lanczos Algorithm (selective orthogonalization)

1: Initialize tolerance τ > 0, v1 = v/‖v‖, β0v0 = 0.
2: for j = 1, . . . ,m do
3: ṽ = Avj − βj−1vj−1

4: αj = (ṽ, vj)
5: ṽ ← ṽ − αjvj
6: β̃j = ‖ṽ‖
7: Diagonalize Tj , Tj = YΘY T , Y TY = I
8: Determine I = {1 ≤ i ≤ j | β̃j |yji| < τ}
9: for i ∈ I do

10: zi = Vjyi

11: ṽ ← ṽ − (ṽ,zi)
‖zi‖2 zi

12: end for
13: βj = ‖ṽ‖
14: if βj = 0 then stop
15: else
16: vj+1 = ṽ

βj
17: end if
18: end for

orthogonalize the current Lanczos vector against previous Lanczos vectors. By moni-

toring the level of orthogonality each iteration, we are able to keep the Lanczos vectors

semi-orthogonal.

Let kij = vTi vj , as in Theorem 3. Using the Lanczos vectors we can compute kij

up to roundoff error, however this requires many inner products and is the same work

required in full orthogonalization. In order to be more efficient, we approximate the

terms kij . The main issue in approximating kij is the roundoff terms vTj fi−vTi fj . Since

we cannot approximate the roundoff terms, but we know their order of magnitude is

O(ε‖A‖), we use random numbers in their stead. Denote the approximation to kij as

k̃ij . We modify the recurrence relation in Theorem 3 so that k̃ij satisfies

k̃ii = 1 i = 1, . . . ,m+ 1,

k̃i i+1 = ζi i = 1, . . . ,m,

βj k̃i j+1 = βik̃i+1 j + (αi − αj)k̃ij + βi−1k̃i−1 j − βj−1k̃i j−1 + ηij ,

(2.19)

for 1 ≤ i < j ≤ m, k̃0j = 0, where ζi and ηij are random numbers chosen from
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appropriate distributions, e.g., ζi ∈ N (0, ε) and ηij ∈ N (0, ε‖A‖), where N (µ, σ) is the

normal distribution of mean µ and standard deviation σ.

In partial orthogonalization, at each iteration 1 ≤ j ≤ m we compute k̃i j+1, 1 ≤
i ≤ j + 1, as an approximation to ki j+1 = vTi vj+1, according to (2.19). Once k̃i j+1

reaches a user specified tolerance, τ , for some 1 ≤ i ≤ j, we orthogonalize against all

previous Lanczos vectors v1, . . . , vj . The tolerance τ should be O(
√
ε) to maintain semi-

orthogonality. Notice, however, it is insufficient to orthogonalize against all previous

Lanczos vectors for just one iteration. Indeed, orthogonalizing against all previous

Lanczos vectors at iteration j implies ki j+1 = vTi vj+1 is order O(ε) for i = 1, . . . , j. For

the next step j + 1, Theorem 3 tells us that

βj+1ki j+2 = −βjki j +O(ε‖A‖).

If k̃i j+1 ≈ ki j+1 reached the tolerance τ , it is likely k̃ij ≈ kij is also close to the tolerance.

Accordingly, it is necessary to orthogonalize against all previous Lanczos vectors for two

consecutive iterations. This brings the level of orthogonality at the next iteration down

to machine precision, and we may proceed to use the standard Lanczos algorithm until

orthogonality again deprecates to the tolerance τ .

After the orthogonalizations are performed, the values k̃i j+1 need to be updated.

In perfect arithmetic they would be zero, however we need to take into consideration

roundoff error. The author in [56] undertook a statistical study and found that replacing

the k̃i j+1 with values from the distribution N (0, 1.5ε) performed well after reorthgonal-

ization. The Lanczos algorithm with partial orthogonalization is given in Algorithm 6.

It is also possible to orthogonalize against select Lanczos vectors, instead of all

previous vectors. However, we will not pursue the particulars here. For more details,

see [56].

2.6 B-Lanczos Algorithm

In this section we discuss the generalization of the Lanczos algorithm to the case of

partially tridiagonalizing a pair of matrices A and B, where A is symmetric and B is

symmetric positive definite. This extension is of primary interest when the matrices

A and B define a generalized eigenvalue problem. Previously, the Lanczos algorithm
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Algorithm 6 Lanczos Algorithm (partial orthogonalization)

1: Initialize tolerance τ > 0, v1 = v/‖v‖, β0v0 = 0.
2: for j = 1, . . . ,m do
3: ṽ = Avj − βj−1vj−1

4: αj = (ṽ, vj)
5: ṽ ← ṽ − αjvj
6: if orthogonalized previous iteration then
7: for i = 1, . . . , j do
8: ṽ ← ṽ − (ṽ, vi)vi


Must
orthogonalize
consecutive
iterations.

9: Update k̃i j+1

10: end for
11: else
12: β̃j = ‖ṽ‖
13: Compute k̃i j+1 according to (2.19) with βj = β̃j .
14: if k̃i j+1 > τ for any i = 1, . . . , j then
15: for i = 1, . . . , j do
16: ṽ ← ṽ − (ṽ, vi)vi



Approximate
vTi vj+1 and
orthogonalize
if necessary.

17: Update k̃i j+1

18: end for
19: end if
20: end if
21: βj = ‖ṽ‖
22: if βj = 0 then stop
23: else
24: vj+1 = ṽ

βj
25: end if
26: end for
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produced a partial tridiagonalization of a single matrix, from which spectral properties

can be approximated with Ritz values and Ritz vectors. In this section, we extend

the Lanczos algorithm so that the Ritz values and Ritz vectors now approximate the

eigenpairs of a generalized eigensystem. The algorithms in this section can be found

in [5, 49]. Throughout this section we assume all operations are done in exact arithmetic.

The effects of roundoff error being similar to the case previously discussed.

Let A,B ∈ Rn×n be symmetric with B positive definite. We are interested in de-

termining a symmetric tridiagonal matrix with spectrum related to that of the system

Ax = λBx, xTBx = 1. The first step in realizing such a tridiagonal matrix is transform-

ing the generalized system into a standard eigenvalue problem. The simplest way to do

this is by working with the matrix B−1A. The issue is that B−1A is no longer symmet-

ric. However, it is self-adjoint with respect to the B-inner product (x, y)B := xTBy.

This allows us to use the standard Lanczos algorithm with the matrix B−1A, and the

B-inner product and induced B-norm ‖·‖B. Starting with nonzero v ∈ Rn, the Lanczos

recurrence after m-steps becomes

B−1AVm = VmTm + βmvm+1e
T
m, (2.20)

or, equivalently,

AVm = BVmTm + βmBvm+1e
T
m, (2.21)

where the columns of Vm are a B-orthonormal basis of the Krylov space Km(B−1A, v).

First, consider the following naive implementation of the standard Lanczos algorithm

with matrix B−1A, vector v, and B-inner product and induced norm. With these

modifications, Algorithm 2 becomes Algorithm 7 shown below. We refer to Algorithm 7

as the “naive” B-Lanczos algorithm due to the extra computational cost relative to

other implementations. In Algorithm 7 there is one matrix vector multiplication with

A, two matrix vector multiplications with B, and one linear solve with B. Next, we

show how to eliminate the matrix vector multiplications with B at the cost of storing

additional vectors.

In order to reduce the costs associated with Algorithm 7 we work with the auxiliary

vector w̃ = Bṽ, instead of ṽ from Algorithm 7. That is, instead of forming ṽ = B−1Avj−
βj−1vj−1 at the outset, we form w̃ = Bṽ = Avj − βj−1Bvj−1. To illustrate the cost
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Algorithm 7 Naive B-Lanczos Algorithm

1: Initialize v1 = v/‖v‖B, β0v0 = 0.
2: for j = 1, . . . ,m do
3: ṽ = B−1Avj − βj−1vj−1

4: αj = (ṽ, vj)B
5: ṽ ← ṽ − αjvj
6: βj = ‖ṽ‖B
7: if βj = 0 then stop
8: else
9: vj+1 = ṽ

βj
10: end if
11: end for

savings, we move through one iteration of the B-Lanczos algorithm. Let us assume the

vectors wi = Bvi, i = 1, . . . , j, have already been computed and note that vTk wl = δkl

for k, l = 1, . . . , j. At the beginning of iteration j we form w̃ as

w̃ = Avj − βj−1wj−1.

Notice that because we are working with w̃ = Bṽ, all B-inner products with ṽ translate

to standard Euclidean inner products with w̃. Line 4 in Algorithm 7 becomes

αj = (ṽ, vj)B = (w̃, vj).

After αj has been computed, w̃ = Bṽ is updated, w̃ ← w̃ − αjwj , giving

w̃ = Avj − βj−1wj−1 − αjwj .

Next, at line 6 we compute βj = ‖ṽ‖B =
√

(ṽ, w̃), for which we need both ṽ and w̃.

Hence, it is necessary to solve the linear system Bṽ = w̃ for ṽ. Finally, by defining

vj+1 = ṽ/βj we have the desired Lanczos vector. Note that we also define wj+1 = w̃/βj ,

since we need it the following iteration. In this way, we form a bi-orthogonal system,

instead of only the B-orthonormal basis as in Algorithm 7.

By working with the vector w̃ = Bṽ, rather than ṽ itself, we have eliminated two

matrix vector multiplications with B. However, in order to utilize this method we also
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have to store the vectors wi = Bvi, i = 1, . . . ,m+1 for the m-step B-Lanczos algorithm.

By defining Wm = BVm, (2.21) becomes

AVm = WmTm + βmwm+1e
T
m, (2.22)

where Vm and Wm are bi-orthogonal, i.e., V T
mWm = I. Thus, we arrive at Algorithm 8.

Algorithm 8 B-Lanczos Algorithm

1: Initialize w = Bv, β0 =
√
vTw, v1 = v/β0, w1 = w/β0, w0 = 0.

2: for j = 1, . . . ,m do
3: w̃ = Avj − βj−1wj−1

4: αj = (w̃, vj)
5: w̃ ← w̃ − αjwj
6: Solve Bṽ = w̃ for ṽ
7: βj =

√
(ṽ, w̃)

8: if βj = 0 then stop
9: else

10: vj+1 = ṽ
βj

11: wj+1 = w̃
βj

12: end if
13: end for

Comparing the B-Lanczos algorithm (Algorithm 8) and the standard Lanczos al-

gorithm (Algorithm 2), we see that there are two main distinctions. First, for the

B-Lanczos algorithm we save two sets of vectors which are bi-orthogonal, instead of a

single orthonormal basis. Secondly, each iteration of the B-Lanczos algorithm requires

a linear solve with B, which is not present in the standard Lanczos algorithm. Both

the standard Lanczos algorithm and the B-Lanczos algorithm require one matrix vector

multiplication with A.

As in the standard Lanczos algorithm, we do not expect the bi-orthogonal basis to

remain bi-orthogonal in the presence of roundoff error. At step j, we must now ensure

the off diagonal entries of W T
j Vj remain O(

√
ε) for Tm in (2.22) to be a partial tridiago-

nalization of the matrix pair A and B. All methods mentioned in section 2.5 work for the

B-Lanczos algorithm with minor modifications. We include the full orthogonalization

version of the B-Lanczos algorithm, Algorithm 9, for completeness.
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Algorithm 9 B-Lanczos Algorithm (full orthogonalization)

1: Initialize w = Bv, β0 =
√
vTw, v1 = v/β0, w1 = w/β0, w0 = 0.

2: for j = 1, . . . ,m do
3: w̃ = Avj − βj−1wj−1

4: αj = (w̃, vj)
5: w̃ ← w̃ − αjwj
6: for i = 1, . . . , j do
7: w̃ ← w̃ − (w̃, vi)wi
8: end for
9: Solve Bṽ = w̃ for ṽ

10: βj =
√

(ṽ, w̃)
11: if βj = 0 then stop
12: else
13: vj+1 = ṽ

βj

14: wj+1 = w̃
βj

15: end if
16: end for



Chapter 3

The Lanczos Process

3.1 Quadratic Forms and Quadrature

We begin this chapter by motivating interest in quadratic forms, vT f(A)v, where v is a

given vector, A is a matrix, and f is a function. We give further conditions on A, v, and

f later. For now, suppose we are interested in iteratively approximating the solution to

the linear system Ax = b, where A is nonsingular and symmetric. Let the approximate

solution, after a number of iterations, be denoted by x̃. In order to know if we should

accept our iterative solution as satisfactory, we would like to efficiently approximate the

error ‖x− x̃‖, where ‖·‖ is the standard Euclidean norm. Notice that we can write the

error as x − x̃ = A−1r, where r = b − Ax̃ is the residual vector. Using the relation

between the error and the residual vector we can write

‖x− x̃‖2 = (x− x̃)T (x− x̃) = (A−1r)T (A−1r) = rT f(A)r,

where f(λ) = λ−2. By approximating the quadratic form rT f(A)r, or by providing

upper and lower bounds, we can determine when to stop the iterative linear solver, and

consider our approximate solution converged. The methods given in this chapter for

approximating quadratic forms were first proposed in [13], and our presentation closely

follows that of [17].

To begin, let A ∈ Rn×n and v ∈ Rn be a given symmetric matrix and unit vector

respectively. Due to the symmetry of A, we know that all eigenvalues are real, and the

32
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eigenvectors form an orthonormal basis for Rn. This allows us to form the orthogonal

eigendecomposition A = XΛXT , where Λ = diag(λ1, . . . , λn), X = [x1 . . . xn], and

XTX = I. We assume, without loss of generality, that the eigenvalues are arranged in

ascending order, i.e., λ1 ≤ λ2 ≤ . . . ≤ λn.

For a smooth function, f , defined on the real line, the matrix f(A) is defined as

f(A) = Xf(Λ)XT , with f(Λ) = diag(f(λ1), . . . , f(λn)), see, e.g., [18]. With the spectral

decomposition of A, and the definition of the matrix f(A), the quadratic form vT f(A)v

can be expressed as

vT f(A)v = vTXf(Λ)XT v,

= (XT v)T f(Λ)(XT v),

=
n∑
i=1

|(xi, v)|2f(λi),

(3.1)

where ( · , · ) is the standard Euclidean inner product. From (3.1) we see that the

quadratic form vT f(A)v is completely determined by the magnitude of the components

of v in the direction of the eigenvectors of A, and f evaluated at the eigenvalues.

While we have made the assumption that v is a unit vector, obviously (3.1) holds for

all n-vectors v. However, the formulas we develop to approximate vT f(A)v are simplest

in the case that v is a unit vector. If we are interested in approximating uT f(A)u for

‖u‖ 6= 1, we can easily rephrase the problem in terms of the unit vector v = u/‖u‖,
using the relation uT f(A)u = ‖u‖2vT f(A)v.

Next, we prepare to approximate vT f(A)v using Gaussian quadrature. To this end,

we express (3.1) in integral form. Define a measure on the real line, s(λ), depending on

v and the spectrum of A, as

s(λ) =

n∑
i=1

|(xi, v)|2δ(λ− λi), (3.2)

where δ(λ) is the Dirac delta distribution concentrated at the value λ. Using the measure

s(λ), we can rewrite (3.1) as

vT f(A)v =

b∫
a

s(λ)f(λ)dλ, (3.3)
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where the limits of integration satisfy a ≤ λ1 and b ≥ λn. The measure, or weight, s(λ),

will be referred to as the spectral function for its obvious relation to the spectrum of A.

A few comments are necessary at this point. First, the integral in (3.3) is well-

defined, even though the weight is not defined in a pointwise sense. Indeed, the integral

in (3.3) can be rewritten as a Riemann–Stieltjes integral

b∫
a

fdµ, µ(λ) =


0, λ < λ1,
k∑
i=1
|(xi, v)|2, λk ≤ λ < λk+1, k = 1, . . . , n− 1,

n∑
i=1
|(xi, v)|2, λ ≥ λn,

where, for simplicity, we have assumed all eigenvalues of A are simple, i.e., λ1 < . . . < λn.

Since µ is non-decreasing and f is continuous, the Riemann–Stieltjes integral exists [17,

63]. Second, while we are phrasing the problem as approximating the quadratic form

vT f(A)v, we are, in fact, approximating the spectral function s(λ). This is obvious

when looked at from the perspective of quadrature. Because the Gauss quadrature

nodes and weights are independent of the integrand, we are approximating the action

of s(λ) on f , for arbitrary f , i.e., we are approximating s(λ). We discuss in what sense

we are approximating s(λ) in greater detail in Section 3.3.

Using s(λ), we define a (discrete) semi-inner product

〈f, g〉s :=

∫ b

a
s(λ)f(λ)g(λ)dλ = (f(A)v, g(A)v), (3.4)

and the corresponding induced semi-norm ‖f‖s =
√
〈f, f〉s, where f and g are smooth

functions. A simple example illustrating why 〈 · , · 〉s is a semi-inner product, and not

an inner product, is the minimal polynomial of A, i.e., if p is the minimal polynomial

of A, then 〈p, p〉s = ‖p(A)v‖2 = 0 with p 6≡ 0. We return to this point shortly. Most

importantly, with our assumptions the semi-inner product 〈 · , · 〉s is well defined for all

smooth functions.

Continuing our quest of approximating vT f(A)v with Gaussian quadrature, we turn

towards determining the nodes and weights for the m-point quadrature rule correspond-

ing to the weight s(λ). For this, we follow the well known Golub–Welsch algorithm [19].
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The Golub–Welsch algorithm determines the nodes and weights of a (weighted) Gauss

quadrature rule using the eigenpairs of a certain symmetric tridiagonal matrix called

the Jacobi matrix. The entries of the Jacobi matrix are the coefficients of the three term

recurrence relation for the orthonormal polynomials with respect to the semi-inner prod-

uct 〈 · , · 〉s. We will see shortly that 〈 · , · 〉s is an inner product, and not just a semi-inner

product, on the space of polynomials below a certain degree. To determine the entries of

the Jacobi matrix, we construct the family of orthonormal polynomials with respect to

〈 · , · 〉s. We begin by forming the family of monic orthogonal polynomials with respect

to 〈 · , · 〉s, and then specialize to orthonormal polynomials.

First, let P and Pk denote the vector space of all polynomials and the vector

space of all polynomials of degree less than or equal to k respectively. Similarly, let

P̂k denote the space of monic polynomials of exact degree k, i.e., p̂ ∈ P̂k has the form

p̂(λ) = λk + ck−1λ
k−1 + . . . + c0 for some constants ci ∈ R, i = 0, 1, . . . , k − 1. As

mentioned previously, 〈 · , · 〉s is not an inner product on the entire space of polynomials

P. This is important because in order to construct the family of monic orthogonal

polynomials, the Gram–Schmidt orthogonalization process is utilized, which requires

an inner product. To see where 〈 · , · 〉s fails to be an inner product (and on what space

it is an inner product), we have the following lemma.

Lemma 2. 〈 · , · 〉s is positive definite on Pm−1, where m = grade(v).

Proof. From (3.4), for any p ∈P, we have 〈p, p〉s = ‖p(A)v‖2, and so, 〈p, p〉s = 0 if and

only if p(A)v = 0. By definition, any polynomial p for which p(A)v = 0, is divisible by

the minimal polynomial of v with respect of A, and the degree of the minimal polynomial

of v with respect to A is m = grade(v). Hence, for any nonzero polynomial p ∈Pm−1,

p(A)v 6= 0, and so 〈p, p〉s > 0.

Because 〈 · , · 〉s is positive definite on Pk for k < m = grade(v), we know there

exists a finite family of monic orthogonal polynomials, p̂k ∈ P̂k, k = 0, 1, . . . ,m − 1,

with respect to the inner product 〈 · , · 〉s [16]. Additionally, these polynomials form a

basis of Pm−1. For convenience, we define p̂−1 = 0.

A useful feature of monic orthogonal polynomials is that they satisfy a three-term

recurrence. To see that monic orthogonal polynomials satisfy a three-term recurrence,
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notice that p̂k+1(λ)− λp̂k(λ) has degree less than or equal to k, and so

p̂k+1 − λp̂k = −α̂k+1p̂k − β̂kp̂k−1 +
k−2∑
i=0

ĉip̂i, (3.5)

for some constants α̂k+1, β̂k, and ĉi, i = 0, . . . , k− 2. Taking the inner product of (3.5)

with p̂k and p̂k−1, and exploiting orthogonality, gives

α̂k+1 =
〈λp̂k, p̂k〉s
〈p̂k, p̂k〉s

k = 0, . . . ,m− 2, (3.6)

and,

β̂k =
〈λp̂k, p̂k−1〉s
〈p̂k−1, p̂k−1〉s

=
〈p̂k, λp̂k−1〉s
〈p̂k−1, p̂k−1〉s

=
〈p̂k, p̂k〉s
〈p̂k−1, p̂k−1〉s

, (3.7)

for k = 1, . . . ,m− 2. Lastly, to see that ĉj = 0, take the inner product of (3.5) with p̂l,

for some 0 ≤ l ≤ k − 2, to get

ĉl =
〈λp̂k, p̂l〉s
〈p̂l, p̂l〉s

=
〈p̂k, λp̂l〉s
〈p̂l, p̂l〉s

= 0, (3.8)

where the last equality in (3.8) holds because λp̂l(λ) is a polynomial of degree strictly

less than k. Therefore, the family of monic orthogonal polynomials with respect to

〈 · , · 〉s satisfies

p̂k+1 = (λ− α̂k+1)p̂k − β̂kp̂k−1 k = 0, 1, . . . ,m− 2, (3.9)

with p̂−1 = 0, p̂0 = 1, and α̂k+1 and β̂k given by (3.6) and (3.7) respectively. Note that

we do not need to define β̂0 since it multiplies p̂−1 = 0.

Next, we obtain the family of orthonormal polynomials with respect to 〈 · , · 〉s by

normalization, i.e., we define pk(λ) = p̂k(λ)/‖p̂k‖s. In order to determine the recur-

rence satisfied by the pk’s, and therefore the elements of the Jacobi matrix, we manip-

ulate (3.9). Writing p̂j(λ) = pj(λ)‖p̂j‖s for j = k − 1, k, k + 1, in (3.9), and dividing
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through by ‖p̂k‖s, we obtain

‖p̂k+1‖s
‖p̂k‖s

pk+1 = (λ− α̂k+1)pk − β̂k
‖p̂k−1‖s
‖p̂k‖s

pk−1,

= (λ− α̂k+1)pk −
‖p̂k‖s
‖p̂k−1‖s

pk−1,

(3.10)

where in the last line of (3.10) we used the fact that β̂k = ‖p̂k‖2s/‖p̂k−1‖2s (see (3.7)).

Writing βk = ‖p̂k‖s/‖p̂k−1‖s =

√
β̂k and αk+1 = α̂k+1, we arrive at

βk+1pk+1 = (λ− αk+1)pk − βkpk−1 k = 0, 1, . . . ,m− 2. (3.11)

Note that p0(λ) = p̂0(λ) = 1 because we have assumed v is a unit vector, and therefore

〈1, 1〉s = ‖v‖2 = 1. Again, we define p−1 = 0 for convenience, and for this reason do

not need to specify β0.

With the (finite) family of orthonormal polynomials with respect to 〈 · , · 〉s defined,

we are ready to define the Jacobi matrix corresponding to the weight s(λ). Letting

Pm = Pm(λ) = [p0(λ), . . . , pm−1(λ)]T for m < m, we can rewrite (3.11) in vector form

as

λPm = JmPm + βmpmem, Jm =


α1 β1

β1
. . .

. . .

. . . βm−1

βm−1 αm

 , (3.12)

where em is the last column of the m×m identity matrix and Jm is the Jacobi matrix of

order m corresponding to the weight s(λ). It is well known that the nodes for an m-point

weighted Gaussian quadrature rule are the distinct roots of the degree m orthonormal

polynomial with respect to the weighted inner product. In our case, denote the roots

of pm(λ) as θ1 < . . . < θm. From (3.12), it is immediate that the roots of pm are the

eigenvalues of the Jacobi matrix, and the corresponding (unnormalized) eigenvectors

of Jm are Pm(θj), j = 1, . . . ,m. Next, as proved in [19], we show that the weights

for the m-point Gaussian quadrature rule are the square of the first component of the

normalized eigenvectors of the Jacobi matrix.

Given the quadrature nodes {θj}mj=1, the weights, {wj}mj=1, for any interpolatory
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quadrature rule (which includes Gaussian quadrature), are given by

wj =

b∫
a

s(λ)lj(λ)dλ, lj(λ) =
m∏
i=1
i 6=j

λ− θi
θj − θi

, j = 1, . . . ,m, (3.13)

see, e.g., [2, 16]. The polynomials lj(λ) in (3.13) are the Lagrange polynomials defined

by the nodes θ1, . . . , θm, and satisfy lj(θi) = δij . Before relating the quadrature weights

to the eigenvectors of the Jacobi matrix, we first need a useful lemma which can be

found, e.g., in [16, 17].

Lemma 3 (Christoffel–Darboux formula). Let pk ∈ Pk, k = 0, 1, . . ., be a family of

polynomials satisfying the recurrence

βk+1pk+1(λ) = (λ− αk+1)pk(λ)− βkpk−1(λ) k = 0, 1, . . . , (3.14)

for some αk, βk ∈ R, k = 1, 2, . . ., with p−1 = 0 (note that β0 need not be defined since

it multiplied p−1). Then, for any m ≥ 0,

m∑
k=0

pk(λ)pk(θ) = βm+1
pm+1(λ)pm(θ)− pm(λ)pm+1(θ)

λ− θ
, λ 6= θ, (3.15)

m∑
k=0

pk(λ)2 = βm+1

(
p′m+1(λ)pm(λ)− p′m(λ)pm+1(λ)

)
, (3.16)

where

p′(λ) =
d

dλ
p(λ).

Proof. Multiplying (3.14) by pk(θ) gives

βk+1pk+1(λ)pk(θ) = (λ− αk+1)pk(λ)pk(θ)− βkpk−1(λ)pk(θ). (3.17)
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Subtract from (3.17) the same expression with the roles of λ and θ reversed, and rear-

range to get

(λ− θ)pk(λ)pk(θ) = βk+1

[
pk+1(λ)pk(θ)− pk(λ)pk+1(θ)

]
− βk

[
pk(λ)pk−1(θ)− pk−1(λ)pk(θ)

]
. (3.18)

Summing (3.18) from k = 0 to k = m, taking into consideration the telescoping structure

and the definition p−1 = 0, establishes (3.15). Taking the limit of (3.15) as θ → λ

gives (3.16).

The Christoffel–Darboux formulae are key in relating the Gaussian quadrature weights

to the eigenvectors of the Jacobi matrix, as we show next.

Theorem 7 (Golub–Welsch). Let Jm ∈ Rm×m, m ≥ 1, be the symmetric tridiagonal

Jacobi matrix corresponding to the weight s(λ) with diagonal entries αj, j = 1, . . . ,m,

and positive super/sub-diagonal entries βj, j = 1, . . . ,m − 1. Let θj, j = 1, . . . ,m, be

the eigenvalues of Jm, and yj ∈ Rm, j = 1, . . . ,m, the corresponding normalized eigen-

vectors. The nodes and weights for the m-point Gaussian quadrature rule corresponding

to the weight s(λ) are given by θj and wj = |(yj , e1)|2, j = 1, . . . ,m, respectively.

Proof. The order m Jacobi matrix satisfies (3.12), from which it is immediate that

the nodes for the quadrature rule are the distinct eigenvalues of Jm, with corresponding

(unnormalized) eigenvectors Pm(θj) = [p0(θj), p1(θj), . . . , pm−1(θj)]
T , j = 1, . . . ,m. The

nodes for m-point Gaussian quadrature are the roots of pm(λ), and therefore we can

write pm(λ) = c
∏m
j=1(λ − θj), for some nonzero constant c. Notice that the Lagrange

polynomials, lj(λ), corresponding to the roots of pm (defined in (3.13)), can be written

as

lj(λ) =
pm(λ)

p′m(θj)(λ− θj)
, j = 1, . . . ,m. (3.19)

Apply the first identity in Lemma 3 with θ = θj , noting that pm(θj) = 0, and solve for

pm(λ)/(λ− θj) to get

pm(λ)

(λ− θj)
=

−1

βm+1pm+1(θj)

m−1∑
k=0

pk(θj)pk(λ). (3.20)
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Rewriting (3.19) using (3.20), the Lagrange polynomials become

lj(λ) =
−1

βm+1p′m(θj)pm+1(θj)

m−1∑
k=0

pk(θj)pk(λ), j = 1, . . . ,m. (3.21)

With an explicit expression of the Lagrange polynomial in terms of the orthonormal

polynomials, can solve for the quadrature weights wj , j = 1, . . . ,m, using (3.13)

wj =

b∫
a

s(λ)lj(λ)dλ =
−1

βm+1p′m(θj)pm+1(θj)

m−1∑
k=0

pk(θj)

b∫
a

s(λ)pk(λ)dλ

︸ ︷︷ ︸
δk0

,

=
−1

βm+1p′m(θj)pm+1(θj)
,

(3.22)

where in the last line we used p0(λ) = 1. Next, using the second identity in Lemma 3

with λ = θj , and again using pm(θj) = 0, we can relate the norm of the (unnormalized)

eigenvector and quadrature weight as follows:

∥∥Pm(θj)
∥∥2

= Pm(θj)
TPm(θj),

=

m−1∑
k=0

pk(θj)
2,

=
m−1∑
k=0

pk(θj)
2 + pm(θj)

2,

= −βm+1p
′
m(θj)pm+1(θj),

=
1

wj
,

(3.23)

where the last equality follows from (3.22). Solving (3.23) for the quadrature weight

gives wj = ‖Pm(θj)‖−2. By definition, yj = Pm(θj)/‖Pm(θj)‖, and therefore

yj =
√
wjPm(θj). (3.24)

Equation (3.24) shows that we can determine wj by equating any nonzero component

of the vectors yj and
√
wjPm(θj), with the simplest being the first component since
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p0(λ) = 1 for all λ. Taking the inner product of (3.24) with e1 and squaring gives

wj = |(yj , e1)|2 for j = 1, . . . ,m.

From Theorem 7, if the Jacobi matrix Jm of order m has eigenvalues θj , and cor-

responding normalized eigenvectors yj , j = 1, . . . ,m, the m-point Gaussian quadrature

approximation to vT f(A)v is given by

vT f(A)v =
n∑
i=1

|(xi, v)|2f(λi) ≈
m∑
j=1

|(yj , e1)|2f(θj) = eT1 f(Jm)e1. (3.25)

According to (3.25), the quadratic form vT f(A)v is well-approximated by the entry in

the first row and first column of the matrix f(Jm).

As is well known, an m-point Gaussian quadrature rule is exact for polynomials of

degree 2m − 1. Accordingly, vT f(A)v = eT1 f(Jm)e1 if f ∈ P2m−1. For f /∈ P2m−1,

standard error estimates for Gaussian quadrature apply. For example, assuming f has

2m continuous derivatives, a standard error estimate is

vT f(A)v − eT1 f(Jm)e1 =
f (2m)(ξ)

(2m)!

b∫
a

s(λ)

(
m∏
j=1

(λ− θj)2

)
dλ, (3.26)

for some ξ ∈ (a, b), see [2, 17, 18]. Note that
∏m
j=1(λ − θj)2 is proportional to pm(λ)2.

In fact, it is not difficult to show that
∏m
j=1(λ − θj) = β1 · · ·βmpm(λ), and by the

orthonormality of pm(λ), the integral in (3.26) is

b∫
a

s(λ)

(
m∏
j=1

(λ− θj)2

)
dλ =

m∏
j=1

β2
j . (3.27)

So, if the βj ’s are known along with bounds on f (2m), we can quantify the error accu-

rately.

In summary, to approximate the quadratic form vT f(A)v using Gaussian quadrature,

we first compute the Jacobi matrix for the inner product 〈 · , · 〉s, and then the quadrature

rule gives vT f(A)v ≈
∑m

j=1|(yj , e1)|2f(θj), where θj and yj are the eigenvalues and

normalized eigenvectors of the Jacobi matrix. The main problem is that the weight,

s(λ), is defined in terms of the spectrum of A, which is unknown and, in general, difficult
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to compute. Next, we overcome this hurdle by relating the Jacobi matrix, Jm, to the

Lanczos algorithm.

3.2 Lanczos Polynomials and Lanczos Vectors

As the last section showed, the most important element for constructing the Gaussian

quadrature approximation of the quadratic form, vT f(A)v, is the Jacobi matrix. The

nodes and weights of the m-point quadrature rule are completely determined by the

eigenpairs of the Jacobi matrix of order m corresponding to the semi-inner product

〈 · , · 〉s. However, one serious issue remains. Namely, the Jacobi matrix is determined by

an unknown measure s(λ). In order to overcome this hurdle, we relate the Jacobi matrix

to the Lanczos partial tridiagonalization of A with starting unit vector v. Throughout

this section we assume m is an integer satisfying m < m = grade(v).

Recall from last chapter, the order m Lanczos partial tridiagonalization of the sym-

metric matrix A, with respect to the starting vector v, is the symmetric tridiagonal

matrix, Tm ∈ Rm×m, given by Tm = V T
mAVm, where the columns of Vm are an or-

thonormal basis for the Krylov space Km(A, v) = span{v,Av, . . . , Am−1v}. The entries

of Tm are the coefficients of the three term recurrence satisfied by the columns of Vm,

which are referred to as the Lanczos vectors. When referring to the Lanczos algorithm in

this chapter, we assume that all computations are done in infinite precision, the effects

of finite precision arithmetic having already been considered in the previous chapter.

Before outlining how to relate the Jacobi matrix and the Lanczos partial tridiag-

onalization, we first want to point out a few hints relating polynomials, such as the

orthonormal polynomials constructed in the last section, to the Lanczos vectors. The

first connection is the definition of the Krylov space itself. It is easily seen that the

Krylov space, Km(A, v), can be expressed as Km(A, v) = {p(A)v | p ∈Pm−1}. It then

follows that the Lanczos vectors can be expressed as p(A)v for properly chosen poly-

nomials p. The next connection comes from the definition of the semi-inner product

〈 · , · 〉s. For any polynomials p, q ∈ P, 〈p, q〉s = (p(A)v, q(A)v), and therefore, 〈 · , · 〉s
directly relates the inner product of a polynomial p, to the vector p(A)v. This relation

also highlights that if the polynomials p and q are orthogonal with respect to 〈 · , · 〉s,
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the vectors p(A)v and q(A)v are orthogonal with respect to the Euclidean inner prod-

uct. Lastly, and most importantly, is the three term recurrence satisfied by orthonormal

polynomials and the Lanczos vectors. The three term recurrences will allow us to tran-

sition directly from the orthonormal polynomials with respect to 〈 · , · 〉s to the Lanczos

vectors.

Let {pk}mk=0 be the family of orthonormal polynomials with respect to the spectral

function s(λ) =
∑n

i=1|(xi, v)|2δ(λ−λi), where pk ∈Pk is of exact degree k, with p0 = 1.

For convenience, we define p−1 = 0. As shown previously, the polynomials satisfy the

three term recurrence relation

βkpk(λ) = (λ− αk)pk−1(λ)− βk−1pk−2(λ) k = 1, . . . ,m, (3.28)

which is simply (3.11) (reindexed). The coefficients in the three term recurrence are

given by

αk = 〈λpk−1, pk−1〉s, and βk = ‖(λ− αk)pk−1 − βk−1pk−2‖s, (3.29)

for k = 1, . . . ,m.

Now, we come to the truly amazing relation between the orthonormal polynomials

with respect to 〈 · , · 〉s, and the Lanczos vectors which result from the m-step Lanczos

algorithm applied to the symmetric matrix A, with starting unit vector v. Defining

vectors vk = pk−1(A)v, k = 1, . . . ,m + 1, we now show that these are the Lanczos

vectors. As mentioned previously, the orthonormality of the polynomials translates to

the orthonormality of the vectors,

(vi, vj) = (pi−1(A)v, pj−1(A)v) = 〈pi−1, pj−1〉s = δij ,

for i, j = 1, . . . ,m + 1. By orthonormality and a dimension argument, we also see

that the vectors, vk, k = 1, . . . ,m, form an orthonormal basis of Km(A, v) (note that

v1 = v). Additionally, the vectors satisfy a three term recurrence like the polynomials

pk. Evaluating (3.28) at λ = A, and multiplying by the vector v, we arrive at the
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standard three term recurrence of the Lanczos vectors

βkvk+1 = (A− αkI)vk − βk−1vk−1. (3.30)

Finally, we show (3.30) is in fact the Lanczos recurrence by looking at the formulas for

the coefficients. Using (3.29), we have

αk = 〈λpk−1, pk−1〉s = (Apk−1(A)v, pk−1(A)v) = (Avk, vk),

βk = ‖(λ− αk)pk−1 − βk−1pk−2‖s = ‖(A− αkI)vk − βk−1vk−1‖,

which are the formulas for the coefficients in the Lanczos algorithm. Because the co-

efficients defining the recurrence relation for the polynomials pk are the same as the

coefficients for the Lanczos recurrence, we have that the Jacobi matrix of order m with

respect to the (unknown) measure s(λ) is the order m Lanczos partial tridiagonalization

of A with respect to the starting vector v.

Utilizing this newfound relationship between the Jacobi matrix and the Lanczos par-

tial tridiagonalization, we can approximate the quadratic form vT f(A)v using Gaussian

quadrature by simply computing the Lanczos partial tridiagonalization of A with start-

ing vector v, as opposed to forming a family of orthonormal polynomials with respect to

an unknown measure. Using the eigenpairs of the Lanczos partial tridiagonalization to

determine the quadrature nodes and weights we are able to approximate vT f(A)v. This

makes approximation of the quadratic form straightforward since the Lanczos algorithm

is well understood, and most numerical software packages have a routine for performing

the Lanczos algorithm.

What we have shown is that it is possible to construct the Lanczos vectors from the

orthonormal polynomials with respect to the inner product 〈 · , · 〉s. We now show that

the converse is also true. Given the partial tridiagonalization of A with respect to the

starting unit vector v, we can define a family of orthonormal polynomials with respect

to 〈 · , · 〉s. The m-step Lanczos algorithm applied to A with starting unit vector v is

succinctly written as

AVm = VmTm + βmvm+1e
T
m, (3.31)

where the columns of Vm ∈ Rn×m (the Lanczos vectors) are an orthonormal basis of
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Km(A, v) = span{v,Av, . . . , Am−1v}, Tm ∈ Rm×m is symmetric and tridiagonal, and

V T
mvm+1 = 0. The partial tridiagonalization of A with respect to v can be written as

Tm = V T
mAVm =


α1 β1

β1
. . .

. . .

. . . βm−1

βm−1 αm

 . (3.32)

Note that at any iteration 1 ≤ k ≤ m, Tk = V T
k AVk ∈ Rk×k is the leading principal

submatrix of Tm.

With the knowledge that the roots of the orthonormal polynomials with respect to

〈 · , · 〉s are the eigenvalues of the matrix Tk (see (3.12)), define the polynomials

pk(λ) = ckχk(λ), χk(λ) = det (Tk − λI), ck =
(−1)k

k∏
i=1

βi

, (3.33)

for k = 1, . . . ,m, and p0(λ) = 1. The polynomials, pk(λ), defined as in (3.33), are

referred to as orthonormal Lanczos polynomials. In order to verify that the orthonor-

mal Lanczos polynomials satisfy the three term recurrence (3.28), we use the following

lemma.

Lemma 4. Let ηk and νk be real numbers for k ∈ N and define a family of symmetric

tridiagonal matrices,

Sk =


η1 ν1

ν1
. . .

. . .

. . . νk−1

νk−1 ηk

 .

Then, the determinants satisfy the recurrence

detSk = ηk detSk−1 − ν2
k−1 detSk−2, k = 1, 2 . . . ,

with initial conditions detS−1 = 0 and detS0 = 1 (ν0 need not be defined since detS−1 =

0).
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Proof. Expand the determinant of Sk along the last row or column.

We now show that the Lanczos polynomials satisfy the recurrence (3.28). Using

Lemma 4, χk(λ) = det (Tk − λI), satisfies

χk(λ) = (αk − λ)χk−1(λ)− β2
k−1χk−2(λ), (3.34)

for k = 1, 2, . . . ,m where we define χ−1 = 0 and χ0 = 1. The normalization coefficients,

ck, defined in (3.33) satisfy βkck = −ck−1, and so multiplying the left hand side of (3.34)

by βkck, and the right hand side by −ck−1, gives

βkckχk(λ) = (λ− αk)ck−1χk−1(λ) + β2
k−1ck−1χk−2(λ). (3.35)

Using again βk−1ck−1 = −ck−2 on the rightmost term in (3.35), and the definition of

the orthonormal Lanczos polynomials from (3.33), we have

βkpk(λ) = (λ− αk)pk−1(λ)− βk−1pk−2(λ),

which is (3.28), as claimed.

The following theorem summarizes this section.

Theorem 8. Let A ∈ Rn×n be symmetric and v be a unit n-vector. Denote the

eigenpairs of A as Axi = λixi, x
T
i xj = δij, i, j = 1, . . . , n, and define the measure

s(λ) =
∑n

i=1|(xi, v)|2δ(λ − λi). Assuming m < grade(v), the Jacobi matrix of order m

corresponding to the measure s(λ) is the order m Lanczos partial tridiagonalization of

A with respect to the starting vector v.

3.3 Approximating the Spectral Function

In this section we illustrate that using the Lanczos process for approximating the

quadratic form vT f(A)v is equivalent to approximating the spectral function s(λ) =∑n
i=1|(xi, v)|2δ(λ−λi). This has many applications in physics, which is the basis of this

thesis. Examples include the density of states [33, 67], the joint density of states [57, 68],

and the optical absorption curve [30]. Additionally, we state known error estimates in
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the Lanczos process for approximating vT f(A)v when f is analytic, and give new error

estimates, in appropriate Sobolev spaces, when f has less regularity.

From the previous section, we discovered that by performing the m-step Lanczos

algorithm on A, with starting unit vector v, the Ritz values, θj , and corresponding

normalized eigenvectors of the partial tridiagonalization, yj , j = 1, . . . ,m, can be used

to approximate vT f(A)v as

vT f(A)v =
n∑
i=1

|(xi, v)|2f(λi) ≈
m∑
j=1

|(yj , e1)|2f(θj), (3.36)

where the λi, i = 1, . . . , n, are the eigenvalues of A and the xi are the corresponding

orthonormal eigenvectors. Using the spectral function s(λ), we can represent vT f(A)v

as
∫ b
a sf (see (3.3)). The approximation to vT f(A)v (right hand side of (3.36)) is then

the integral of f with measure s̃ defined as

s̃(λ) =
m∑
j=1

|(yj , e1)|2δ(λ− θj). (3.37)

Since
∫ b
a sf is approximated by

∫ b
a s̃f for every test function f (we have equality when f

is a polynomial of degree less than or equal to 2m− 1), we can use the Lanczos process

to construct s̃ as an approximation to the spectral function s.

The property that
∫ b
a sf =

∫ b
a s̃f for all f ∈ P2m−1 is a well known fact about

the Lanczos process, and is known as the moment matching property. The moment

matching property states that

n∑
i=1

|(xi, v)|2λki =

m∑
j=1

|(yj , e1)|2θkj , (3.38)

for k = 0, 1, . . . , 2m − 1. This property, a consequence of the degree of precision of

Gaussian quadrature, is very powerful. It allows us to approximate sums involving the

unknown spectrum of A, using the m-step Lanczos partial tridiagonalization of A with

starting vector v. Using the eigenpairs of the partial tridiagonalization of A, we are able

to determine “bulk” properties of the spectrum of A with relatively few iterations of

the Lanczos algorithm. This is in contrast to diagonalizing the matrix A, which gives
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moments of all orders, but is significantly more expensive.

3.3.1 Error Estimates for Analytic Functions

In order to understand how well the Lanczos process performs, we begin by formulating

error estimates for the simplest case. Namely, we consider the error in the Lanczos

approximation to vT f(A)v for analytic f . The results presented here for analytic func-

tions are very similar to those given in [67]. We assume throughout this section that

f : [−1, 1]→ R is analytic.

For the error estimate we use Chebyshev expansions, and known results on the decay

rate of Chebyshev coefficients. The Chebyshev polynomials of the first kind are defined

as

tk(λ) = cos(k cos−1(λ)), λ ∈ [−1, 1], k = 0, 1, . . . . (3.39)

Note that Chebyshev polynomials of the first kind are typically denoted by Tk, however

we reserve this notation for Lanczos partial tridiagonalizations. To see that (3.39) in

fact defines a family of polynomials one can use trigonometric identities to deduce that

t0(λ) = 1, t1(λ) = λ, and tk+1(λ) = 2λtk(λ)− tk−1(λ) for k = 1, 2, . . .. Thus, tk(λ) is a

polynomial of exact degree k which satisfies −1 ≤ tk(λ) ≤ 1 for all λ ∈ [−1, 1].

Because Chebyshev polynomials are defined in the interval [−1, 1], we need to per-

form a spectral transformation to put the eigenvalues of A in the interval [−1, 1]. Recall

that the integration bounds in the definition of 〈 · , · 〉s (see (3.4)) satisfy a ≤ λ1 and

λn ≤ b. Using these bounds, define c = (b+ a)/2 and d = (b− a)/2. Then, the matrix

Â =
1

d
(A− cI), (3.40)

has its spectrum inside [−1, 1]. We assume this has already been performed, and drop

the circumflex.

Expand f in terms of Chebyshev polynomials of the first kind as

f(λ) =

∞∑
k=0

µktk(λ), (3.41)
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where the coefficients µk are given by

µk =
2− δk0

π

1∫
−1

(1− λ2)−1/2tk(λ)f(λ)dλ. (3.42)

Note that the constant before the integral in (3.42) comes from the fact that the Cheby-

shev polynomials satisfy

1∫
−1

(1− λ2)−1/2tk(λ)tl(λ)dλ =


0 if k 6= l,

π if k = l = 0,

π
2 if k = l 6= 0.

By assuming f is analytic in [−1, 1], we in fact get the stronger result that f is

analytic in a region of the complex plane containing the closed interval [−1, 1] in its

interior. The larger the region in the complex plane in which f is analytic, the faster the

Chebyshev coefficients decay. The region of analyticity which is important in this regard

is the interior of a certain ellipse known as a Bernstein ellipse [58]. The Bernstein ellipses

are the image of circles of radius ρ > 1 centered at the origin under the Joukowsky map

given by ζ(z) = 1/2(z + z−1). Putting this all together, the Bernstein ellipse, Eρ, for a

parameter ρ > 1, is given by

Eρ = {1/2(z + z−1) | z = ρeiθ for all θ ∈ [0, 2π)}. (3.43)

The Bernstein ellipse Eρ has foci at ±1 and semi-major axis 1/2(ρ+ρ−1) and semi-minor

axis 1/2(ρ− ρ−1). Bernstein ellipses for several values of ρ are shown in Figure 3.1.

The following lemma on the decay rate of Chebyshev coefficients for analytic func-

tions is taken from [58].

Lemma 5. Let f(λ) be analytic on [−1, 1] with Chebyshev expansion f(λ) =
∑∞

k=0 µktk(λ),

and, for ρ > 1, analytically continuable to the interior of Eρ. Then, the coefficients of

the Chebyshev expansion satisfy

|µ0| ≤M, |µk| ≤ 2Mρ−k for k ≥ 1,
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Figure 3.1: Bernstein ellipses Eρ for ρ = 1.25 (blue), ρ = 1.5 (green), ρ = 1.75 (red),
and ρ = 2.0 (yellow).

where |f | ≤M inside Eρ.

Finally, we are ready to state error results for the approximation of vT f(A)v via the

Lanczos process for analytic f .

Theorem 9. Let A ∈ Rn×n be symmetric with eigenvalues in the interval [−1, 1] and

v ∈ Rn be a unit vector, let f be analytic in [−1, 1] and analytically continuable inside

Eρ for ρ > 1, and let s and s̃ be distributions as defined in (3.2) and (3.37) respectively

(s̃ being determined by the m-step Lanczos process with A and v). Then, the error in

the m-step Lanczos process approximation to the quadratic form vT f(A)v is

∣∣∣∣
1∫
−1

(
s(λ)− s̃(λ)

)
f(λ)dλ

∣∣∣∣ ≤ 4Mρ

ρ2m(ρ− 1)
,

where |f | ≤M inside Eρ.

Proof. Let f̃(λ) be the 2m− 1 degree Chebyshev expansion of f , i.e.,

f̃(λ) =

2m−1∑
k=0

µktk(λ) ≈ f(λ) =

∞∑
k=0

µktk(λ). (3.44)

Since the quadrature formula is exact for polynomials of degree up to 2m − 1 we have
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−1 sf̃ =

∫ 1
−1 s̃f̃ , and therefore

∣∣∣∣
1∫
−1

(
s(λ)− s̃(λ)

)
f(λ)dλ

∣∣∣∣ =

∣∣∣∣
1∫
−1

(
s(λ)− s̃(λ)

)(
f(λ)− f̃(λ)

)
dλ

∣∣∣∣
≤

1∫
−1

s(λ)
∣∣f(λ)− f̃(λ)

∣∣dλ+

1∫
−1

s̃(λ)
∣∣f(λ)− f̃(λ)

∣∣dλ.
(3.45)

Next, we bound the term
∫ 1
−1 s|f−f̃ | (the other term being nearly identical). Expanding

f − f̃ in a Chebyshev series, see (3.44), gives

1∫
−1

s(λ)
∣∣f(λ)− f̃

∣∣dλ =

1∫
−1

s(λ)

∣∣∣∣ ∞∑
k=2m

µktk(λ)

∣∣∣∣dλ ≤ ∞∑
k=2m

|µk|
1∫
−1

s(λ)
∣∣tk(λ)

∣∣dλ. (3.46)

Using |tk(λ)| ≤ 1 for all λ ∈ [−1, 1] and
∫ 1
−1 s = 1 (follows from v being a unit vector)

we have
∫ 1
−1 s|tk| ≤ 1 for all k, and therefore from (3.46) we conclude

1∫
−1

s(λ)
∣∣f(λ)− f̃

∣∣dλ ≤ ∞∑
k=2m

|µk|. (3.47)

We remark that
∫ 1
−1 s̃ = 1, and so by the same argument

∫ 1
−1 s̃|f − f̃ | ≤

∑∞
k=2m|µk|.

Using the bounds on µk from Lemma 5 we have

∞∑
k=2m

|µk| ≤ 2M
∞∑

k=2m

ρ−k =
2Mρ

ρ2m(ρ− 1)
, (3.48)

where M is the bound of f in Eρ. Putting together (3.47) and (3.48) gives

1∫
−1

s(λ)
∣∣f(λ)− f̃(λ)

∣∣dλ ≤ 2Mρ

ρ2m(ρ− 1)
.

As noted previously, the same bound holds for
∫ 1
−1 s̃|f − f̃ |. Combining the bounds on∫ 1

−1 s|f − f̃ | and
∫ 1
−1 s̃|f − f̃ | with (3.45) gives the desired result.
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The above theorem shows that for analytic f , the action of the distribution s(λ) on

f matches that of the approximation s̃(λ), determined by the m-step Lanczos process,

to within O(ρ−2m) for some value ρ > 1. This is impressive, as other known methods for

approximating the spectral function (in terms of the action on analytic functions) are

order O(ρ−m) [33]. This includes the well known Kernel Polynomial Method conceived

in the 1990’s for approximating the density of states (and which can also be used to

approximate s) [61, 53, 52, 51]. In other words, the Lanczos process is twice as accurate

as other known methods! While the error estimates of Theorem 9 are interesting, and

useful for comparison, they are a best case scenario since it involves analytic functions.

Next, we investigate error results in Sobolev spaces.

3.3.2 Error Estimates in Sobolev Spaces

In the last section we gave error estimates in the Lanczos process for approximating

vT f(A)v for analytic functions f . However, as mentioned previously, we are more inter-

ested in estimates for the error in the Lanczos approximation to the spectral function,

s(λ) − s̃(λ). To accomplish this, we consider the norm of s − s̃ in the dual space of

appropriate Sobolev spaces, and use Jackson type estimates to get an a priori rate of

convergence. We begin construction of these error estimates by using general estimates

in the dual space of continuous functions on a closed interval. Then, using Sobolev

imbeddings in the space of Hölder continuous functions we are able to establish the

desired results.

First, we have a need to introduce some notation and terminology from the theory

of Sobolev spaces and Hölder spaces in one dimension. For this background material we

closely follow [1, 15]. The domain on which we define all of the following spaces is the

open interval Ω = (−1, 1). Let Lp(Ω), 1 ≤ p ≤ ∞, denote the standard Lebesgue space

of measurable functions f : Ω→ R with finite norm

∥∥f∥∥
Lp

:=


( 1∫
−1

|f |pdλ
)1/p

, 1 ≤ p <∞,

ess sup
Ω
|f |, p =∞.

Note that for notational convenience we suppress dependence on the domain Ω when
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denoting the norm ‖·‖Lp . This should not cause confusion since the domain does not

change in this section. For a nonnegative integer k, the Sobolev space, W k,p(Ω), is

defined as

W k,p(Ω) =

{
f ∈ Lp(Ω)

∣∣∣ f (`) ∈ Lp(Ω) for 0 ≤ ` ≤ k
}
,

where, f (`) = d`f/dλ`, with derivatives understood in a weak (distributional) sense, and

W 0,p(Ω) = Lp(Ω). When equipped with the norm

∥∥f∥∥
Wk,p :=

( k∑
`=0

∥∥f (`)
∥∥p
Lp

)1/p

,

W k,p(Ω) is a Banach space. Also important are the spaces dual to W k,p(Ω), de-

noted
(
W k,p(Ω)

)′
, i.e., the space of bounded linear functions on W k,p(Ω). The space(

W k,p(Ω)
)′

is a Banach space with the standard operator norm

∥∥L∥∥
(Wk,p)′

= sup
u∈Wk,p(Ω)
‖u‖

Wk,p≤1

|L(u)|.

Next, we define the Hölder spaces. Let C(Ω) denote the Banach space of continuous

functions f : Ω → R with uniform norm ‖f‖∞ = sup−1≤x≤1|f(x)|. The γth-Hölder

semi-norm is defined as

|f |C0,γ := sup
x,y∈[−1,1]

x6=y

|f(x)− f(y)|
|x− y|γ

,

and the γth-Hölder norm is

‖f‖C0,γ = ‖f‖∞ + |f |C0,γ .

The Hölder space, Ck,γ(Ω), is then defined as the space of functions for which the norm

∥∥f∥∥
Ck,γ

:=
k∑
`=0

‖f (`)‖∞ +
∣∣f (k)

∣∣
C0,γ ,

is finite.
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To begin, let w(λ) be a general weight (we use w so as to not confuse with the

spectral function s), and suppose we are interested in using quadrature to approximate

the integral
∫ 1
−1w(λ)f(λ)dλ, for f ∈ C(Ω). Choosing distinct nodes, θ

(m)
j ∈ Ω, and

weights, τ
(m)
j ∈ R, j = 1, . . . ,m, we approximate the integral as

1∫
−1

w(λ)f(λ)dλ ≈
m∑
j=1

τ
(m)
j f

(
θ

(m)
j

)
. (3.49)

The m-point quadrature rule can be written using a discrete weight, w̃, defined as

w̃(λ) =
m∑
j=1

τ
(m)
j δ

(
λ− θ(m)

j

)
, (3.50)

and (3.49) can be written as
∫ 1
−1wf ≈

∫ 1
−1 w̃f . Throughout this section we assume the

quadrature rule has degree of precision d = d(m), so that

1∫
−1

w(λ)f(λ)dλ =

1∫
−1

w̃(λ)f(λ)dλ =
m∑
j=1

τ
(m)
j f(θ

(m)
j ) for all f ∈Pd.

For most interpolatory quadrature rules, d(m) = m − 1, and for Gaussian quadrature,

d(m) = 2m− 1.

In order for (3.49) to be meaningful, we obviously need to put conditions on the

weight w. Since we are most interested in measuring the error in linear combinations

of Dirac distributions, and the Dirac distribution can most generally be seen as an

element of the dual space of continuous functions, this is where we begin the analysis.

Therefore, we consider the quadrature approximation (3.49) for w ∈ (C(Ω))′, and write

w(f) =
∫ 1
−1w(λ)f(λ)dλ for f ∈ C(Ω). Every element of (C(Ω))′ is representable as

a Riemann–Stieltjes integral, i.e., for every w ∈ (C(Ω))′, there exists a function µ, of

bounded variation, such that
∫ 1
−1wf =

∫ 1
−1 fdµ for every f ∈ C(Ω), where

∫ 1
−1 fdµ

is a Riemann–Stieltjes integral [28]. The correspondence between w ∈ (C(Ω))′ and µ

is unique if we impose the normalization conditions µ(−1) = 0 and that µ be right
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continuous. Furthermore, ‖w‖(C(Ω))′ = Var(µ) where

Var(µ) = sup
∑̀
j=1

|µ(xj)− µ(xj−1)|,

is the total variation in µ, with the supremum taken over all partitions, −1 = x0 <

x1 < . . . < x` = 1, ` being arbitrary. In keeping with the terminology of this chapter,

we refer to elements of (C(Ω))′ as weights or measures interchangeably.

To estimate the quadrature error in (C(Ω))′, we need to bound |
∫ 1
−1wf −

∫ 1
−1 w̃f |

for arbitrary f ∈ C(Ω), ‖f‖∞ ≤ 1. In order to accomplish this, we use Jackson type

theorems, as opposed to the decay rate of Chebyshev coefficients which was used for

the case of analytic f . Toward this goal, we introduce the modulus of continuity for a

function f : [−1, 1]→ R,

ωf (δ) := sup{|f(x)− f(y)| | |x− y| ≤ δ, x, y ∈ [−1, 1]}. (3.51)

A function f is continuous if ωf (δ) → 0 as δ → 0 and continuously differentiable if

ωf (δ) = O(δ). The modulus of continuity therefore allows us to measure levels of

continuity which lie somewhere between these extremes, in a similar manner to the

Hölder spaces.

The last ingredient for the Jackson theorem is the best uniform approximation. For

a continuous function f : [−1, 1]→ R, define the best uniform approximation of degree

k, denoted f̃ , as the unique degree k polynomial which satisfies ‖f − f̃‖∞ ≤ ‖f − p‖∞
for all p ∈ Pk. For a proof of existence and uniqueness of best uniform approximates

see [58]. Also, define the error in the best uniform approximation as

Ek(f) := ‖f − f̃‖∞ = inf
p∈Pk

‖f − p‖∞. (3.52)

With the modulus of continuity and best uniform approximation defined, we are

now ready to state Jackson’s Theorem, which gives uniform error bounds for polynomial

approximation. The following is taken from [10].

Theorem 10 (Jackson). Let f : [−1, 1]→ R be continuous. Then, Ek(f) ≤ ωf (π/(k +

1)). Furthermore, if f is Lipschitz continuous, i.e., if there exists a constant L > 0 such
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that |f(x)− f(y)| ≤ L|x− y| for all x, y ∈ [−1, 1], then Ek(f) ≤ Lπ/(2k + 2).

Next, using Jackson’s Theorem, we state another useful lemma pertaining to bounded

linear functionals on the space of continuous functions which vanish on a subspace of

polynomials. This is one characteristic of the error in quadrature routines, which is zero

on all polynomials of degree less than or equal to the degree of precision.

Lemma 6. Let e ∈ (C(Ω))
′

vanish on Pd. Then, for all f ∈ C(Ω)

∣∣∣∣
1∫
−1

e(λ)f(λ)dλ

∣∣∣∣ ≤ ‖e‖(C(Ω))′ ωf

(
π

d+ 1

)
.

Proof. Assume e ∈ (C(Ω))
′

vanishes on Pd, f ∈ C(Ω), and f̃ is the best uniform

approximation to f in Pd. Using the linearity of e and the fact that
∫ 1
−1 ef̃ = 0, we

have ∣∣∣∣
1∫
−1

e(λ)f(λ)dλ

∣∣∣∣ =

∣∣∣∣
1∫
−1

e(λ)
(
f(λ)− f̃(λ)

)
dλ

∣∣∣∣ ≤ ‖e‖(C(Ω))′‖f − f̃‖∞.

By Jackson’s Theorem, ‖f − f̃‖∞ ≤ ωf
(
π/(d+ 1)

)
, giving the desired result.

In most practical cases, we are not interested in using quadrature to approximate all

elements of (C(Ω))′, but rather those with a special property. Namely, that of positivity.

We call w ∈ (C(Ω))′ positive if
∫ 1
−1wf ≥ 0 for all nonnegative f ∈ C(Ω). The following

lemma applies the results of Lemma 6 to the case of a quadrature rule with degree

of precision d, approximating a positive measure. A similar result, in a less general

context, can be found in [14].

Lemma 7. Let w ∈ (C(Ω))
′

be positive, and for τ
(m)
j ∈ R and distinct θ

(m)
j ∈ Ω,

j = 1, . . . ,m, define w̃ ∈ (C(Ω))
′

as w̃(λ) =
∑m

j=1 τ
(m)
j δ

(
λ − θ(m)

j

)
. If w − w̃ vanishes

on Pd for d = d(m) ≥ 0, then for all f ∈ C(Ω)

∣∣∣∣
1∫
−1

(
w(λ)− w̃(λ)

)
f(λ)dλ

∣∣∣∣ ≤ ( m∑
j=1

(
τ

(m)
j +

∣∣τ (m)
j

∣∣))ωf( π

d+ 1

)
.
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Proof. For f ∈ C(Ω) we apply Lemma 6 to w − w̃ to get

∣∣∣∣
1∫
−1

(
w(λ)− w̃(λ)

)
f(λ)dλ

∣∣∣∣ ≤ ‖w − w̃‖(C(Ω))′ωf

(
π

d+ 1

)
. (3.53)

By the triangle inequality, ‖w−w̃‖(C(Ω))′ ≤ ‖w‖(C(Ω))′+‖w̃‖(C(Ω))′ . Next, we show that

‖w‖(C(Ω))′ =
∑m

j=1 τ
(m)
j and ‖w̃‖(C(Ω))′ =

∑m
j=1|τ

(m)
j |, which establishes the result. Let

µ be the function of bounded variation for which
∫ 1
−1wf =

∫ 1
−1 fdµ for all f ∈ C(Ω).

The positivity of w implies µ is monotonically increasing. Because of this, ‖w‖(C(Ω))′ =

Var(µ) =
∫ 1
−1 dµ =

∫ 1
−1w(λ)dλ, i.e., the norm of w is the zeroth moment. Because w−w̃

vanishes on the constants, the zeroth moment is given by
∑m

j=1 τ
(m)
j . The function of

bounded variation, µ̃, for which
∫ 1
−1 w̃f =

∫ 1
−1 fdµ̃ for all f ∈ C(Ω), is given by

µ̃(λ) =



0, λ < θ1,
k∑
j=1

τ
(m)
j , θk ≤ λ < θk+1, k = 1, . . . ,m− 1,

m∑
j=1

τ
(m)
j , λ ≥ θm,

and has total variation ‖w̃‖(C(Ω))′ = Var(µ̃) =
∑m

j=1|τ
(m)
j |.

For a given weight, w, let θ
(m)
j ∈ [−1, 1] and τ

(m)
j ∈ R, j = 1, . . . ,m, be the

nodes and weights respectively of a family of m-point quadrature rules for m = 1, 2, . . ..

A family of quadrature rules is called convergent of class X if
∑m

j=1 τ
(m)
j f(θ

(m)
j ) →∫ 1

−1wf as m → ∞ for all f ∈ X. This definition aligns with intuition; as we include

more quadrature nodes and weights, the quadrature rule should approximate the true

value of the integral more closely. Commonly used function spaces include C(Ω) and

Riemann integrable functions. Lemma 7 shows that if the degree of precision tends to

infinity as the number of points m tends to infinity (true for all interpolatory quadrature

rules), a sufficient condition for the quadrature scheme to be convergent of class C(Ω)

is supm∈N
∑m

j=1|τ
(m)
j | < ∞. This follows from ωf (δ) → 0 as δ → 0 for f ∈ C(Ω),

and
∑m

j=1(τ
(m)
j + |τ (m)

j |) ≤ 2
∑m

j=1|τ
(m)
j |. In fact, in 1933 Pólya showed that these two

conditions are necessary and sufficient for a quadrature rule to be convergent of class

C(Ω) [45]. The condition, supm∈N
∑m

j=1|τ
(m)
j | < ∞ is sometimes referred to as the
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Pólya condition.

Because the sum of the quadrature weights is always the (finite) zeroth moment,

it is desirable to have positive weights since in this case the Pólya condition will auto-

matically be satisfied. As a corollary to Lemma 7, we can say that any interpolatory

quadrature rule with positive weights is convergent of class C(Ω). This is sometimes

referred to as Steklov’s Theorem [28]. Since the Lanczos process corresponds to Gaus-

sian quadrature, which always has positive weights, we know the Lanczos process for

approximating vT f(A)v is convergent for all f ∈ C(Ω). This should come as no surprise,

since for m = n, the m-step Lanczos algorithm creates a symmetric tridiagonal matrix

orthogonally similar to A, i.e., A = VmTmV
T
m , and so vT f(A)v = eT1 f(Tm)e1. What we

would like to focus on now, is the rate at which the Lanczos process converges.

We remark that this is as far as we may proceed while considering the action of

w ∈ (C(Ω))′ on arbitrary f ∈ C(Ω), in the sense that we may only arrive at bounds

which tend to zero, and not on convergence rates. This follows because the modulus of

continuity of a continuous function can decay arbitrarily slow. In [34], it was demon-

strated that for an arbitrary family of quadrature rules which is convergent of class

C(Ω), a continuous function can be constructed such that quadrature error tends to

zero as slowly as desired. Specifically, for any family of quadrature rules convergent of

class C(Ω), and for any sequence of positive numbers tending to zero, {εk}∞k=1, one can

construct a function f ∈ C(Ω), and an increasing sequence {nk}∞k=1, such that the error

in the nk-point quadrature approximation to the integral of f is εk. Therefore, in order

to gain information on the convergence rates of the Lanczos process, we specialize to

the space of Hölder continuous functions.

From Jackson’s Theorem, we know we can bound the error in the best approximation

by the modulus of continuity for a continuous function. The modulus of continuity is

particularly easy to characterize for Hölder continuous functions. This will be useful

when considering Sobolev spaces, since standard imbedding theorems give conditions for

Sobolev spaces to be contained in Hölder spaces. Bounding the modulus of continuity

for Hölder continuous functions is done in the following lemma.

Lemma 8. For f ∈ C0,γ(Ω), ωf (δ) ≤ |f |C0,γδγ.



59

Proof. The inequality obviously holds for δ = 0. For δ > 0, we have

|f |C0,γ = sup
x,y∈[−1,1]

x 6=y

|f(x)− f(y)|
|x− y|γ

≥ sup
x,y∈[−1,1]
|x−y|≤δ
x 6=y

|f(x)− f(y)|
|x− y|γ

≥ sup
x,y∈[−1,1]
|x−y|≤δ

|f(x)− f(y)|
δγ

=
ωf (δ)

δγ
.

Using Lemma 7 and 8 we are now ready to derive error estimates in Sobolev spaces.

From standard Sobolev imbeddings we know that elements of W 1,p(Ω), p > 1, are Hölder

continuous with exponent γ = 1 − 1/p [1, 15]. Therefore, we can apply the results of

Lemma 8 using the exponent 1− 1/p for arbitrary f ∈W 1,p(Ω).

Theorem 11. Let 1 < p ≤ ∞, w ∈ (C(Ω))′ be positive, and for τ
(m)
j ∈ R and distinct

θ
(m)
j ∈ Ω, j = 1, . . . ,m, define w̃ ∈ (C(Ω))′ as w̃(λ) =

∑m
j=1 τ

(m)
j δ(λ − θj). If w − w̃

vanishes on Pd for d = d(m) ≥ 0, and τ = supm∈N
∑m

j=1|τ
(m)
j | < ∞, then there exists

a constant, C > 0, independent of m, such that

‖w − w̃‖(W 1,p)′ ≤
C

(d+ 1)1−1/p
.

Proof. Let f ∈ W 1,p(Ω) for p > 1. Then, there exists a positive constant, independent

of f , such that ‖f‖C0,γ ≤ C‖f‖W 1,p for γ = 1 − 1/p, see, e.g., [1, 15]. From Lemma 7

we have

∣∣∣∣
1∫
−1

(
w(λ)− w̃(λ)

)
f(λ)dλ

∣∣∣∣ ≤ ( m∑
j=1

(
τ

(m)
j +

∣∣τ (m)
j

∣∣))ωf( π

d+ 1

)
.

Using the assumption that the Pólya condition is satisfied, i.e., τ = supm∈N
∑m

j=1|τ
(m)
j | <

∞, we have
∑m

j=1(τ
(m)
j + |τ (m)

j |) ≤ 2τ , with τ independent of m. Additionally, from
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Lemma 8 we have that ωf (π/(d+ 1)) ≤ |f |C0,γ (π/(d+ 1))γ . Combining these results

∣∣∣∣
1∫
−1

(
w(λ)− w̃(λ)

)
f(λ)dλ

∣∣∣∣ ≤ 2τπγ

(d+ 1)γ
|f |C0,γ ,

≤ 2τπγ

(d+ 1)γ
‖f‖C0,γ ,

≤ C

(d+ 1)γ
‖f‖W 1,p ,

which immediately gives the desired result.

Next, we extend the results of the previous theorem to gain error results in
(
W k,p(Ω)

)′
.

For this, we follow [10] and prove Ek(f) ≤ π/(2(k+ 1))Ek−1(f ′) in the case that f and

f ′ are continuous.

Lemma 9. Let f : [−1, 1]→ R be continuous with continuous derivative. Then,

Ek(f) ≤ π

2(k + 1)
Ek−1(f ′).

Proof. Let pk−1 ∈ Pk−1 be the best uniform approximation of f ′ and define pk(λ) =∫ λ
−1 pk−1(θ)dθ. Using p′k(λ) = pk−1(λ), we see that Ek−1(f ′) = ‖(f − pk)′‖∞. Further-

more, f − pk is Lipschitz with Lipschitz constant L = Ek−1(f ′) (follows from the Mean

Value Theorem). Applying Jackson’s Theorem for the case of a Lipschitz function gives

Ek(f) = Ek(f − pk) ≤
π

2(k + 1)
Ek−1(f ′).

Using Lemma 9 we are now ready to extend Theorem 11 to estimates in
(
W k,p(Ω)

)′
.

Theorem 12. Let k ≥ 1 be an integer, 1 ≤ p ≤ ∞ (with p > 1 in the case k = 1),

let w ∈ (C(Ω))′ be positive, and for τ
(m)
j ∈ R and distinct θ

(m)
j ∈ Ω, j = 1, . . . ,m,

define w̃(λ) ∈ (C(Ω))′ as w̃ =
∑m

j=1 τ
(m)
j δ(λ − θj). If w − w̃ vanishes on Pd for

d = d(m) ≥ k − 1 and τ = supm∈N
∑m

j=1|τ
(m)
j | < ∞, then there exists a constant,
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C > 0, independent of m, such that

‖w − w̃‖(Wk,p)′ ≤
C

(d− k + 2)k−1/p
, k ≥ 1, p 6= 1,

and, for any ε ∈ (0, 1),

‖w − w̃‖(Wk,1)′ ≤
C

(d− k + 3)k−1−ε , k ≥ 2, p = 1.

Proof. We first consider the case p 6= 1. With the assumptions on k and p, f ∈W k,p(Ω)

is an element of Ck−1,γ(Ω) for γ = 1− 1/p and satisfies ‖f‖Ck−1,γ ≤ C‖f‖Wk,p for some

constant, C > 0, independent of f . As is the proof of Lemma 6, we have

∣∣∣ 1∫
−1

(
w(λ)− w̃(λ)

)
f(λ)dλ

∣∣∣ ≤ ‖w − w̃‖(C(Ω))′ Ed(f), (3.54)

where Ed(f) (see (3.52)) is the error in the best uniform approximation of f in Pd. Using

the positivity of w, we showed in Lemma 7 that ‖w − w̃‖(C(Ω))′ ≤
∑m

j=1(τ
(m)
j + |τ (m)

j |),
and so by using our assumption that the Pólya condition is satisfied, ‖w−w̃‖(C(Ω))′ ≤ 2τ

where τ = supm∈N
∑m

j=1|τ
(m)
j | is independent of m. Updating the error (3.54) with the

bound on ‖w − w̃‖C(Ω)′ gives

∣∣∣ 1∫
−1

(
w(λ)− w̃(λ)

)
f(λ)dλ

∣∣∣ ≤ 2τEd(f). (3.55)

In order to bound Ed(f), we apply Lemma 9 k − 1 times,

Ed(f) ≤
(π

2

) 1

(d+ 1)
Ed−1(f ′),

≤
(π

2

)2 1

(d+ 1)(d)
Ed−2(f ′′),

...

≤
(π

2

)k−1 1

(d+ 1)(d) · · · (d− k + 3)
Ed−k+1

(
f (k−1)

)
.

(3.56)
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Using,
1

(d+ 1)(d) · · · (d− k + 3)
≤ 1

(d− k + 2)k−1
,

and,

Ed−k+1(f (k−1)) ≤ ωf (k−1)

(
π

(d− k + 2)

)
,

≤
(

π

(d− k + 2)

)γ∣∣f (k−1)
∣∣
C0,γ ,

≤
(

π

(d− k + 2)

)γ
‖f‖Ck−1,γ ,

≤ C

(d− k + 2)γ
‖f‖Wk,p ,

(3.56) becomes

Ed(f) ≤ C

(d− k + 2)k−1+γ
‖f‖Wk,p =

C

(d− k + 2)k−1/p
‖f‖Wk,p . (3.57)

Combining (3.55) and (3.57) completes the claim for p 6= 1. For p = 1 and k ≥ 2,

Sobolev imbeddings tell us f ∈W k,1(Ω) is an element of Ck−2,1−ε(Ω) for any ε ∈ (0, 1).

Hence, we perform the same analysis as before, but apply the results of Lemma 9 k− 2

times, as opposed to the k − 1 times done previously. In this case the bound on the

error in the best uniform approximation to f in Pd satisfies

Ed(f) ≤ C

(d− k + 3)k−1−ε ‖f‖Wk,1 .

We may now apply the results of Theorem 12 to the Lanczos process approximation

of the spectral function. The next corollary follows from Theorem 12 by using d(m) =

2m−1 and noting that because the Gaussian quadrature weights are positive, the Pólya

condition is always satisfied.

Corollary 1. Let A ∈ Rn×n be symmetric with eigenvalues in the interval [−1, 1] and

v ∈ Rn be a unit vector, let k ≥ 1 be an integer, 1 ≤ p ≤ ∞ (with p > 1 in the case

k = 1), let s(λ) be the spectral function corresponding to A and v, and s̃(λ) be the

approximation determined by the m-step Lanczos process with A and v. Then, there

exists a constant, C > 0, independent of m, such that the error in the m-step Lanczos
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approximation to the spectral function is

‖s− s̃‖(Wk,p)′ ≤
C

(2m− k + 1)k−1/p
, k ≥ 1, p 6= 1,

and, for any ε ∈ (0, 1),

‖s− s̃‖(Wk,1)′ ≤
C

(2m− k + 2)k−1−ε , k ≥ 2, p = 1.

In this section we showed that performing the Lanczos process to approximate the

quadratic form vT f(A)v is equivalent to approximating the spectral function s(λ). We

also stated a known error estimate for the Lanczos approximation to vT f(A)v when f

is analytic. Finally, we gave a new bound for the error, s− s̃, in Sobolev spaces which

has not previously appeared in the literature.

3.4 Quadratic Forms for Generalized Systems

Thus far, we have looked at approximating the quadratic form vT f(A)v, which is de-

termined by the inner products of v with the eigenvectors of A, and f evaluated at the

eigenvalues. In this section we look at the equivalent situation where the eigenvalues

and eigenvectors stem from a generalized eigenvalue problem. We are most interested in

finite element discretizations of eigenvalue problems for elliptic operators, which results

in a generalized algebraic eigenvalue problem.

Let A,B ∈ Rn×n be symmetric with B positive definite. Because B is symmetric

positive definite, it can be used to define an inner product (x, y)B = (x,By) = xTBy, for

all x, y ∈ Rn, with corresponding induced norm ‖x‖B =
√

(x, x)B. We are interested in

the analogs of (3.1) and (3.2) using the eigenpairs of the generalized eigenvalue problem

Axi = λiBxi, xTi Bxj = δij , (3.58)

for i, j = 1, . . . , n. LettingX = [x1 . . . xn] and Λ = diag(λ1, . . . , λn), we can rewrite (3.58)

as AX = BXΛ and XTBX = I.

We can rewrite the generalized eigensystem (3.58) as a standard eigenvalue problem

with the matrix B−1A, however, the matrix B−1A is not symmetric with respect to the
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standard Euclidean inner product. Fortunately, it is symmetric with respect to the B-

inner product. So, given a smooth function f and a vector v ∈ Rn satisfying ‖v‖B = 1,

a natural extension of the quadratic form (3.1) for the case of a generalized eigensystem

is

vT fA,Bv =
n∑
i=1

|(xi, v)B|2f(λi), (3.59)

where fA,B, a matrix to be determined, depends on f , A, and B. By developing the

right-hand side of (3.59) it is easily checked that fA,B = BXf(Λ)XTB. The “general-

ized” spectral function in this case is now s(λ) =
∑n

i=1|(xi, v)B|2δ(λ− λi).
In order to investigate approximation of the spectral function corresponding to A, B,

and v, we first transform the generalized eigenvalue problem to a standard eigenvalue

problem, and then relate (3.59) to results of the previous section. Let B = LLT be

the Cholesky factorization of B, where L, the Cholesky factor, is lower triangular with

positive entries on the diagonal. Using the Cholesky factor L, we rewrite (3.58) as(
L−1AL−T

)(
LTxi

)
= λi

(
LTxi

)
,
(
LTxi

)T(
LTxj

)
= δij , (3.60)

for i, j = 1, . . . , n. Therefore, defining C = L−1AL−T and zi = LTxi, i = 1, . . . , n, we

have a standard eigenvalue problem for the symmetric matrix C. The eigenpairs of the

matrix C completely determine the eigenpairs of the generalized system, and vice versa.

With Z = [z1 . . . zn] = LTX and u = LT v (note ‖u‖ = 1 since we have assumed

‖v‖B = 1), we have (xi, v)B = (zi, u) for i = 1, . . . , n. Therefore,

vT fA,Bv =
n∑
i=1

|(xi, v)B|2f(λi) =
n∑
i=1

|(zi, u)|2f(λi),

= (ZTu)T f(Λ)(ZTu) = uT f(C)u.

(3.61)

In other words, by performing the Lanczos process with the matrix C = L−1AL−T and

vector u = LT v, we can approximate the quadratic form vT fA,Bv, and hence the spectral

function s. Next, we show that the Lanczos partial tridiagonalization of C = L−1AL−T

with starting vector u = LT v, is the same as the partial tridiagonalization resulting

from the B-Lanczos algorithm with A, B, and v.
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The m-step Lanczos algorithm applied to C with starting vector u = LT v gives

CUm = UmTm + βmum+1e
T
m, (3.62)

where the columns of Um are an orthonormal basis of the Krylov space Km(C, u), Tm ∈
Rm×m is a symmetric tridiagonal matrix, and βmum+1e

T
m is the rank-one remainder

term. Notice that by premultiplying (3.62) by L and defining Vm = L−TUm and vm+1 =

L−Tum+1, we find

AVm = BVmTm + βmBvm+1e
T
m, (3.63)

which is the B-Lanczos algorithm with starting vector v. Notice that, as expected, the

columns of Vm are B-orthonormal since V T
mBVm = UTmUm = I.

As in Section 3.1, the Lanczos partial tridiagonalization is the Jacobi matrix, and

therefore the nodes and weights of the m-point Gaussian quadrature rule are determined

by the eigenpairs of Tm. Letting θj and yj , j = 1, . . . ,m, denote the eigenvalues and

orthonormal eigenvectors of Tm, respectively, the Lanczos process approximation of the

quadratic form (3.59) is

vT fA,Bv =
n∑
i=1

|(xi, v)B|2f(λi) ≈
m∑
j=1

|(yj , e1)|2f(θj) = e1f(Tm)e1.

Note that the moment matching property for the Lanczos process with matrix C =

L−1AL−T and vector u = LT v states that,

n∑
i=1

|(zi, u)|2λki =

m∑
j=1

|(yj , e1)|2θkj , k = 0, 1, . . . , 2m− 1.

Using the fact that (zi, u) = (xi, v)B, we derive a moment matching property for the

B-Lanczos process applied to the matrix pair A, B, and B-unit vector v

n∑
i=1

|(xi, v)B|2λki =

m∑
j=1

|(yj , e1)|2θkj , k = 0, 1, . . . , 2m− 1. (3.64)

We have discussed two options for using the Lanczos process to approximate the

quadratic form vT fA,Bv:
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1. Perform the Lanczos algorithm on C = L−1AL−T with starting vector u = LT v.

Each iteration requires two linear solves (one with LT and another with L) and

one matrix vector multiplication with A.

2. Perform the B-Lancozs algorithm with A, B, and starting vector v. Each iter-

ation requires one linear solve with B and one matrix vector multiplication with A.

Clearly (2) is the more cost-effective option without even taking into consideration the

cost of computing the Cholesky factor of B.

To summarize, the Lanczos process for approximating the spectral function s(λ) =∑n
i=1|(xi, v)B|2f(λi) using an m-point quadrature rule is:

1. Perform the m-step B-Lanczos algorithm with A, B, and starting vector v, ‖v‖B =

1, to get the symmetric tridiagonal matrix Tm.

2. Compute the eigenpairs of Tm, Tmyj = θjyj , ‖yj‖ = 1, for j = 1, . . .m.

3. vT fA,Bv ≈
m∑
j=1
|(yj , e1)|2f(θj).



Chapter 4

Lanczos Approximation of Joint

Spectral Quantities

4.1 Spectral Quantities

In this chapter we discuss approximating linear combinations of Dirac measures of the

form q(λ) =
∑

iwiδ(λ− λi), where the λi’s are eigenvalues of a symmetric matrix, and

the coefficients, wi, may or may not depend on the eigenvector corresponding to λi.

We refer to q(λ) as a “spectral quantity.” A simple example of a spectral quantity

which we have already encountered is the spectral function corresponding to a symmet-

ric matrix and given vector. In order to approximate spectral quantities, we utilize the

Lanczos process discussed in the previous chapter. We begin by discussing the Lanczos

approximation to the density of states for a matrix, the results of which are known. Af-

terward, we advance to joint spectral quantities, which are spectral quantities involving

the eigenpairs of two separate systems. These are of the form
∑

i,j wijδ
(
λ− (λi + λ′j)

)
,

where the λi and λ′j are the eigenvalues of two different symmetric matrices, and the

coefficients, wij ∈ R, may depend on the corresponding eigenvectors. The two joint

spectral quantities discussed in this chapter are the joint density of states and the joint

spectral function. The joint density of states is a natural extension of the density of

states for two separate eigenvalue problems, and the joint spectral function is of great

utility when determining optical properties of semiconductors. In all cases of spectral

and joint spectral quantities, we first discuss the case of a standard eigenvalue problem,

67
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and then the extension to generalized eigenvalue problems. To the best of the authors

knowledge, the methods presented here for the joint density of states and the joint

spectral function are new. All methods are discussed from a numerical linear algebra

perspective, with applications considered in the next chapter.

Throughout this chapter we use A,A′ ∈ Rn×n to denote symmetric matrices, and

B ∈ Rn×n for a symmetric positive definite matrix. For standard eigenvalue problems,

we use the following notation for eigenpairs

Axi = λixi, xTi xj = δij ,

A′x′i = λ′ix
′
i, x′Ti x′j = δij ,

(4.1)

for i, j = 1, . . . , n, and for the case of generalized eigenvalue problems we use

Axi = λiBxi, xTi Bxj = δij ,

A′x′i = λ′iBx
′
i, x′Ti Bx′j = δij ,

(4.2)

for i, j = 1, . . . , n. In both cases we assume the eigenvalues are in ascending order,

λ1 ≤ λ2 ≤ . . . ≤ λn, and similarly for the λ′i’s. Note in the case of generalized eigen-

systems, the right hand side matrix is B for both systems (as opposed to using B for

one and B′ for the other). This is due to the fact that the generalized systems (4.2)

we are interested in are finite element discretizations of eigenvalue problems for elliptic

operators. In this case, using the same B (Galerkin mass) matrix for the primed and

unprimed systems represents using the same finite dimensional subspace to approximate

infinite dimensional eigenfunctions.

As we saw in the previous chapter, given a vector v ∈ Rn, the Lanczos process can

be used to construct approximations to a measure on the real line which is dependent on

the spectrum of A and the vector v. In this chapter we exclusively refer to this measure

as the “spectral function,” given by

s(λ;A, v) =

n∑
i=1

|(xi, v)|2δ(λ− λi), (4.3)



69

or, in the case of a generalized eigensystem,

s(λ;A,B, v) =

n∑
i=1

|(xi, v)B|2δ(λ− λi), (4.4)

where δ is the Dirac distribution, ( · , · ) and ( · , · )B are the Euclidean and B-inner

products, and the eigenpairs are as in (4.1) or (4.2) respectively. In the last chapter we

showed how to construct an approximation to the spectral function using the Lanczos

process, in addition to giving error estimates. Specifically, we use the m-step Lanczos

algorithm to partially tridiagonalize the matrix A, with starting vector v, to obtain a

symmetric tridiagonal matrix Tm ∈ Rm×m, from which we are able to approximate the

spectral function. Denoting the eigenpairs of the partial tridiagonalization as Tmyj =

θjyj , j = 1, . . . ,m, (note that we suppress the dependence of the eigenpairs on m for

notational convenience), the Lanczos approximation to the spectral function (4.3) is

s̃(λ) = ‖v‖2
m∑
j=1

|(yj , e1)|2δ(λ− θj), (4.5)

where e1 is the first column of the m×m identity matrix. Previously, when discussing

the Lanczos process we assumed v was a unit vector, and so the prefactor, ‖v‖2, was

absent. However, in this chapter we will mostly be dealing with non-unit vectors, and

so the extra term is necessary to incorporate. Note that the Lanczos approximation

to the spectral function (4.4) is the same as above, the only difference being that the

matrix Tm is constructed using the B-Lanczos algorithm and the prefactor becomes

‖v‖2B. Due to the relationship between the Lanczos process and Gauss quadrature, the

Lanczos approximation to the spectral function matches the first 2m − 1 moments of

the spectral function. That is, the Lanczos process approximation satisfies,

n∑
i=1

|(xi, v)|2λki =
m∑
j=1

|(yj , e1)|2θkj , k = 0, 1, . . . , 2m− 1, (4.6)

or, for the case of a generalized system,

n∑
i=1

|(xi, v)B|2λki =
m∑
j=1

|(yj , e1)|2θkj , k = 0, 1, . . . , 2m− 1. (4.7)
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For notational convenience, in this chapter we use 〈 · , · 〉 to denote the dual pairing of

(C(Ω))′×C(Ω), where Ω is an open interval, and its closure, Ω, contains the eigenvalues

associated to the spectral quantity. That is, for a spectral quantity q(λ) =
∑

iwiδ(λ−
λi), with λi ∈ Ω and wi ∈ R for all 1 ≤ i ≤ n, the dual pairing is 〈q, f〉 =

∑
iwif(λi) for

all f ∈ C(Ω). Throughout this chapter we refer to elements of C(Ω) as test functions.

For all spectral and joint spectral quantities discussed in this chapter, the template

for producing Lanczos approximations is the same. First, we relate the spectral quantity

to a spectral function (4.3) or (4.4), depending on whether a standard or generalized

eigenvalue problem is under consideration. We then use the Lanczos process to construct

an approximation to the spectral function. By following this template, we construct

accurate approximations to the spectral quantity of interest. We begin with the Lanczos

approximation to the density of states, which is the simplest example of a spectral

quantity.

4.2 Density of States

The first spectral quantity we approximate using the Lanczos process is the density of

states [33]. Formally, the density of states of the symmetric matrix A is

φ(λ) =
1

n

n∑
i=1

δ(λ− λi), (4.8)

where the eigenvalues, λi, are as in (4.1). This is an example of a spectral quantity

where the coefficients are uniformly equal to 1/n. The density of states is of great

interest in electronic structure calculations as well as in large scale parallel eigenvalue

computations.

We briefly explain one practical use of the density of states. Given a symmetric

matrix A, and real numbers µ < ν, distinct from any eigenvalues of A, suppose we wish

to know how many eigenvalues are inside the interval (µ, ν). Denote this quantity as

N(µ, ν). Classically, one computes N(µ, ν) using the inertia of spectral transformations

of A. As a consequence of Sylvester’s law of inertia, the number of eigenvalues in the

interval (µ, ν) is the difference in the number of positive entries on the diagonal of

Dµ and Dν , where Dµ and Dν are the diagonal matrices in the LDLT factorizations of



71

A−µI and A−νI respectively (assuming they exist) [44]. This generalizes to computing

the LDLT factorization of A− µB and A− νB in the case of a generalized eigenvalue

problem. However, computing LDLT factorizations is prohibitively expensive if the

matrix is large, or if we wish to compute N(µ, ν) for several different values of µ and ν.

On the other hand, using the density of states we can compute N(µ, ν) as

N(µ, ν) =

ν∫
µ

nφ(λ)dλ. (4.9)

Note that the above shows how the density of states is, indeed, a density. Using the

density of states, or an approximation thereof, computing N(µ, ν) for several different

values of µ and ν is simple and inexpensive using (4.9). An approximation to the density

of states can be used, for example, to partition the spectrum of A into subintervals with a

roughly equal number of eigenvalues. That is, by determining values t0 < t1 < . . . < tns ,

such that N(ti, ti+1) ≈ n/ns for i = 0, . . . , ns − 1, we can divide the spectrum into ns

subintervals, each of which contain a similar number of eigenvalues. This is used in the

parallel spectrum slicing software Eigenvalue Slicing Library [31].

Next, we focus on using the Lanczos process to approximate (4.8). If we are able

to construct a unit vector v ∈ Rn equally weighted in the direction of each eigenvector,

i.e., a vector which satisfies (xi, v) = ±1/
√
n for i = 1, . . . , n, then the spectral function

corresponding to A and v would be exactly the density of states. Hence, the Lanczos

process with matrix A and starting vector v would give an accurate approximation of

the density of states φ(λ). However, without complete knowledge of the spectrum of

A a priori, this is not possible. Instead, methods to approximate the density of states

using the Lanczos process rely on a stochastic technique to remove the influence of the

coefficients |(xi, v)|2 (see (4.3)) in the spectral function corresponding to A and v. This

concept is closely related to Monte Carlo trace estimators.

The method of approximating the density of states we discuss utilizes a result of

Hutchinson [24]. Following [32], we refer to a stochastic method which utilizes the fol-

lowing lemma as Hutchinson’s method. We use N (0, 1) to denote the standard normal

distribution, and for a random variable w taking values in Rn, we write w ∼ N (0, 1)
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when the entries of w are drawn from N (0, 1) randomly with independently and iden-

tically distributed (i.i.d.) values. We refer to such vectors as standard normal random

n-vectors.

Lemma 10 (Hutchinson). Let C ∈ Rn×n and w ∼ N (0, 1). Then,

E[wTCw] = tr(C).

Proof. Because w is a standard normal random n-vector, the entries satisfy

E[wiwj ] = E[wi]E[wj ] = 0, i 6= j, and E[w2
i ] = 1.

In other words, E[wwT ] = I, with expectation understood componentwise. Using the

linearity of expectation we find

E[wTCw] = E
[ n∑
i,j=1

cijwiwj

]
=

n∑
i,j=1

cij E[wiwj ]︸ ︷︷ ︸
δij

= tr(C).

We remark that for any n × n matrix C, and random variable w taking values

in Rn with i.i.d. entries drawn from a probability distribution, the only requirement

necessary for E[wTCw] = tr(C) is E[wwT ] = I. The standard normal distribution is

not the only distribution satisfying this property. In fact, it is not difficult to show

that if w has i.i.d. entries drawn from a distribution with mean µ and variance σ2,

then E[wTCw] = σ2tr(C) + µ2
∑n

i,j=1 cij (follows directly from E[wiwj ] = µ2 + σ2δij).

Therefore, if the entries of w are drawn from any distribution with zero mean and

unit variance, then E[wTCw] = tr(C). Another distribution satisfying this property

is the Rademacher distribution, in which random variables take values ±1 with equal

probability. Other distributions which work, along with error bounds for stochastic

trace estimation, can be found in [4].

Next, we apply Lemma 10 to a matrix given by an outer product. This will illustrate

how we intend to use stochastic processes to remove the influence of the coefficients

|(xi, v)|2 in the spectral function.
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Corollary 2. For x, y ∈ Rn and w ∼ N (0, 1), E
[
(x,w)(y, w)] = (x, y). In particular,

if x = y, E
[
|(x,w)|2] = ‖x‖2

Proof. Apply Lemma 10 with C = xyT , noting that tr(C) = (x, y).

Corollary 2 gives the main intuition on how we plan on approximating the density of

states using spectral functions. For a standard normal random n-vector w, Corollary 2

tells us E
[
|(xi, w)|2] = 1, where the xi ∈ Rn, i = 1, . . . , n, are the orthonormal eigenvec-

tors of the matrix A given by (4.1). Therefore, the spectral function corresponding to

A and w, s(λ;A,w), is a linear combination of Dirac deltas concentrated at the eigen-

values of A, with coefficients |(xi, w)|2. Each of these coefficients has an expectation

of unity, and thus matches the coefficients of the density of states on average (disre-

garding the prefactor 1/n). By averaging spectral functions corresponding to several

standard normal random n-vectors, we stochastically approximate the density of states

by removing the influence of the coefficients, |(xi, w)|2, from each individual spectral

function. Next, we proceed more formally in outlining the Lanczos approximation to

the density of states.

Notice that the action of the density of states on any test function f satisfies

〈φ, f〉 =
1

n
tr
(
f(A)

)
,

where we used the property that the trace of a matrix is the sum of its eigenvalues.

Applying Lemma 10 with the matrix C = f(A), we see that 〈φ, f〉 = 1/nE[wT f(A)w]

for any test function f , where w is a standard normal random n-vector. The spectral

function corresponding to A and w, and the quadratic form wT f(A)w, are related by

wT f(A)w = 〈s(λ;A,w), f〉,

for any test function f . Putting everything together, by choosing w ∼ N (0, 1), the

spectral function corresponding to A and w is related to the density of states by

〈φ, f〉 =
1

n
tr(f(A)) =

1

n
E[wT f(A)w] =

1

n
E
[
〈s(λ;A,w), f〉

]
, (4.10)
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for all test functions f . Written another way,

φ(λ) =
1

n
E
[
s(λ;A,w)

]
. (4.11)

What (4.11) shows is that we can approximate the density of states by averaging

spectral functions corresponding to A, and vectors with i.i.d. entries drawn fromN (0, 1).

By averaging spectral functions, s(λ;A,w), for several standard normal random n-

vectors w, we create something near the expected value, which, according to (4.11),

is the density of states. We refer to the standard normal random n-vectors used in

the averaging process as trial vectors. Choosing nv trial vectors, w(k) ∼ N (0, 1), k =

1, . . . , nv, the stochastic approximation to the density of states using spectral functions

is

φ(λ) ≈ 1

nvn

nv∑
k=1

s(λ;A,w(k)) =
1

nvn

nv∑
k=1

n∑
i=1

|(xi, w(k))|2δ(λ− λi), (4.12)

where, as in (4.11), the approximation is an equality with respect to expected value.

Due to the law of large numbers, the more trial vectors we choose, the closer we expect

the right hand side of (4.12) to match the density of states.

Now, with the density of states related to spectral functions through (4.12), we

are primed to use the Lanczos process to approximate the density of states. Since the

Lanczos process produces an approximation to a spectral function, we simply replace all

spectral functions in (4.12) with the corresponding Lanczos approximation. For any one

trial vector w, we perform the m-step Lanczos algorithm on A with w as starting vector,

obtaining the partial tridiagonalization Tm ∈ Rm×m. The eigenvalues, also known as

Ritz values, of Tm, θj , and corresponding orthonormal eigenvectors yj , j = 1, . . . ,m,

determine the nodes and weights for the Lanczos approximation to s(λ;A,w) by

s(λ;A,w) ≈ ‖w‖2
m∑
j=1

|(yj , e1)|2δ(λ− θj). (4.13)

By replacing each spectral function in (4.12) with the approximation from the Lanczos

process, as in (4.13), we stochastically approximate the density of states.

To this end, let w(k) ∼ N (0, 1), k = 1, . . . , nv, denote trial vectors. For each trial

vector we partially tridiagonalize A by performing the m-step Lanczos algorithm on
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A with starting vector w(k), obtaining T
(k)
m ∈ Rm×m. Computing the eigenpairs of

each partial tridiagonalization, T
(k)
m y

(k)
j = θ

(k)
j y

(k)
j , (y

(k)
i , y

(k)
j ) = δij , i, j = 1, . . . ,m, the

Lanczos approximation to the density of states is

φ̃(λ) =
1

nvn

nv∑
k=1

m∑
j=1

∥∥w(k)
∥∥2∣∣(y(k)

j , e1

)∣∣2δ(λ− θ(k)
j

)
. (4.14)

Approximating the density of states using the Lanczos process is summarized in

Algorithm 10. Note that each of the nv Lanczos processes needed to compute (4.14)

are completely independent of the others, making the computation of φ̃ embarrassingly

parallel. For this reason we dispense with the superscripts on all vectors in Algorithm 10.

Algorithm 10 Lanczos Approximation of the Density of States

1: Initialize nv, m, and set k = 0 and φ̃(λ) = 0.
2: while k < nv do
3: Draw trial vector w ∼ N (0, 1).
4: Partially tridiagonalize A with starting vector w to get Tm ∈ Rm×m.
5: Compute eigenpairs Tmyj = θjyj , y

T
i yj = δij , i, j = 1, . . . ,m.

6: φ̃(λ)← φ̃(λ) + ‖w‖2
nvn

m∑
j=1
|(yj , e1)|2δ(λ− θj).

7: k ← k + 1.
8: end while

4.3 Density of States for Generalized Eigenvalue Problems

In this section we are interested in computing the density of states, φ(λ) = 1/n
∑n

i=1 δ(λ−
λi), associated to the generalized eigenvalue system (4.2). The Lanczos approximation

to the density of states for the generalized eigenvalue system is the same as in the stan-

dard eigenvalue problem, with one major exception. Namely, special care must be taken

when determining the starting vector for the Lanczos process. The definitive source for

approximating the density of states for a generalized eigensystem is [67], which our

presentation closely follows.

Assuming the matrices in the generalized eigensystem (4.2) are the result of a finite

element discretization, we first modify the stiffness and mass matrices without altering

the eigenvalues of the system. We do this for two main reasons. First, as with all
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Lanczos methods for generalized eigensystems, we expect to use the B-Lanczos algo-

rithm, which requires a linear solve with B each iteration. Iterative linear solves can

obviously be expected to converge faster if the coefficient matrix is well conditioned.

Second, the methods presented in this section require us to factor the matrix B. Ma-

trix factorization can be prohibitively expensive for large matrices, and so we overview

an economical method to approximate the factorization using Chebyshev polynomials.

When the matrix B is well conditioned, we show that the approximate factorization is

more efficient.

In order to ensure the mass matrix is well conditioned, we utilize a well known fact

about the finite element method. Let D = diag(B) be the diagonal matrix with entries

on the diagonal equal to those of the diagonal of the mass matrix. Because we have

assumed the mass matrix is positive definite, all elements on the diagonal of B are pos-

itive, and therefore all elements of D are nonnegative. Using D, we replace the stiffness

and mass matrix with A ← D−1/2AD−1/2 and B ← D−1/2BD−1/2, transforming the

generalized eigensystem to(
D−1/2AD−1/2

)(
D1/2x

)
= λ

(
D−1/2BD−1/2

)(
D1/2x), (4.15)

where D1/2 is the diagonal matrix with entries equal to the square root of the entries

of D and D−1/2 = (D1/2)−1. The new stiffness and mass matrices, D−1/2AD−1/2

and D−1/2BD−1/2 respectively, are inexpensive to compute at the outset, and the new

mass matrix is well-conditioned. In [62] it was shown that for any conforming mesh of

linear triangles (two-dimensions), the scaled mass matrix has spectral condition number

bounded by four. In three dimensions, for conforming linear tetrahedral elements, the

condition number of the scaled mass matrix is bounded by five. In what follows we

assume the scaling (4.15) has already been performed, and denote the scaled stiffness

and mass matrices by A and B respectively.

Next, we transform the generalized eigenvalue problem into a standard eigenvalue

problem in order to show how the stochastic methods from the previous section trans-

late to the generalized eigenvalue problem. Toward this end, let B = LLT denote a

factorization of B, e.g., the Cholesky factorization or the square root factorization. As

seen previously, using the factorization of the mass matrix, the generalized eigenvalue
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problem becomes the standard eigenvalue problem

Czi = λizi, zTi zj = δij , i, j = 1, . . . , n, (4.16)

where C = L−1AL−T and zi = LTxi.

Because the matrix C has the same eigenvalues as the generalized eigenvalue prob-

lem with A and B, we can apply the methods of the previous section to approximate

the density of states. Choosing a trial vector w ∼ N (0, 1), the spectral function corre-

sponding to C and w equals the density of states in expected value,

φ(λ) =
1

n
E
[
s(λ;C,w)

]
, (4.17)

as in (4.11). We next relate the spectral function s(λ;C,w), to that of s(λ;A,B, v), for

a properly chosen vector v.

For the eigenvectors, zi = LTxi, of C = L−1AL−T (as in (4.16)), notice that for any

vector u ∈ Rn we have

(zi, u) = zTi u = xTi Lu = xTi (LLT )︸ ︷︷ ︸
B

(L−Tu) = (xi, v)B, (4.18)

where v = L−Tu. From (4.18) we are able to relate the spectral function corresponding

to C and trial vector w, and the spectral function corresponding to the generalized

system with A and B, and starting vector v = L−Tw. Indeed, for w ∼ N (0, 1), and

v = L−Tw, by (4.18) we have

s(λ;C,w) =

n∑
i=1

|(zi, w)|2δ(λ− λi) =

n∑
i=1

|(xi, v)B|2δ(λ− λi) = s(λ;A,B, v).

This illustrates the main distinction between the Lanczos approximation to the den-

sity of states for a standard eigenvalue problem and a generalized eigenvalue problem.

For the Lanczos approximation to the density of states of a matrix, the trial vector

w ∼ N (0, 1) is the same as the starting vector for the Lanczos algorithm. On the other

hand, when approximating the density of states for a generalized eigenvalue problem,
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the trial vector and starting vector are different. In summary, when applying Hutchin-

son’s method to a generalized eigenvalue problem we use L−Tw as starting vector for

the B-Lanczos algorithm, where w is a standard normal random n-vector and B = LLT ,

as opposed to using w as the starting vector in the Lanczos algorithm for the standard

eigenvalue problem. Note that by defining v = L−Tw, we have ‖v‖2B = ‖w‖2, and

so when using the Lanczos process to approximate the density of states for a gener-

alized eigensystem, each trial will have a prefactor of ‖w‖2, the same as the Lanczos

approximation to the density of states for a matrix.

As noted previously, we produce an approximation to the density of states by

stochastically averaging spectral functions over many different trial vectors w. By

replacing the spectral functions with their corresponding Lanczos approximation, we

determine a computable approximation to the density of states for a generalized sys-

tem. The recipe for using Hutchinson’s method in conjunction with the Lanczos process

to approximate the density of states for a generalized system is given in Algorithm 11.

Algorithm 11 B-Lanczos Approximation of the Density of States

1: Initialize nv, m, and set k = 0 and φ̃(λ) = 0.
2: Factor B = LLT .
3: while k < nv do
4: Draw trial vector w ∼ N (0, 1).
5: Form starting vector v = L−Tw.
6: Perform B-Lanczos with A, B, and vector v, to get Tm ∈ Rm×m.
7: Compute eigenpairs Tmyj = θjyj , y

T
i yj = δij , i, j = 1, . . . ,m.

8: φ̃(λ)← φ̃(λ) + ‖w‖2
nvn

m∑
j=1
|(yj , e1)|2δ(λ− θj).

9: k ← k + 1.
10: end while

The method for approximating the density of states for a generalized eigensystem,

as presented is Algorithm 11, poses a major issue in that we have to perform a Cholesky

factorization or square root factorization of B. For two and three dimensional problems

this is a significant bottleneck. In order to overcome this issue, we follow [67] and use

a polynomial approximation of the operator L−T .

Let S be the unique symmetric positive definite square root factorization of B, i.e.,

B = S2 with S symmetric positive definite [23]. Note that with the previous notation
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S = L = LT . In order to apply Algorithm 11, we approximate S−1w using Chebyshev

polynomials. In essence, this removes the costly factorization in line 2 of Algorithm 11,

and replaces line 5 with an approximation to S−1w where w is a standard normal

random n-vector. Before diving into the technical details, we note that this amounts to

approximating g(B)w where g(ν) = ν−1/2.

As with all things involving Chebyshev polynomials, the first step is a linear scaling

to the interval [−1, 1]. Let a and b be the minimum and maximum eigenvalues of B

respectively, i.e., a = λmin(B) > 0, b = λmax(B), and a < b (strict inequality is required

since if a = b, then B is a multiple of the identity matrix, in which case this is a standard

eigenvalue problem). By definition, the eigenvalues of B lie in the interval [a, b]. Letting

c = 1/2(b + a) and d = 1/2(b − a), we define the linear scaling λ(ν) = d−1(ν − c)

between the intervals ν ∈ [a, b] and λ ∈ [−1, 1]. After scaling to the interval [−1, 1], we

approximate g(ν) = g(λ) = (c+ dλ)−1/2 using Chebyshev polynomials.

The degree k Chebyshev expansion of g(λ) is given by

gk(λ) =
k∑
j=0

µjtj(λ), (4.19)

where tj(λ) denotes the degree j Chebyshev polynomial of the first kind, and the coef-

ficients, µj , are given by

µj =
2− δj0
π

1∫
−1

tj(λ)g(λ)√
1− λ2

dλ, j = 0, 1, . . . , k. (4.20)

Note that the standard notation for Chebyshev polynomials of the first kind is Tj ,

however we reserve this notation for Lanczos partial tridiagonalizations. An accurate

and economical method to approximate the Chebyshev coefficients is Gauss-Chebyshev

quadrature. The authors in [67] recommend taking a conservative approach and using

a 4k point Gauss-Chebyshev quadrature rule, noting that the quadrature is performed

only once at the outset, and the cost is negligible relative to the total cost of approxi-

mating the density of states. The last free parameter to choose is the polynomial degree

k, which is discussed in Section 4.3.1.

Define the matrix B̂ = d−1(B − cI), and note that the eigenvalues of B̂ lie in
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the interval [−1, 1]. Once the Chebyshev coefficients, µj , j = 0, 1, . . . , k, have been

computed, the approximation to S−1 is given by

S−1 ≈ gk(B̂) =
k∑
j=0

µjtj(B̂). (4.21)

Using (4.21), the factorization of the mass matrix B in Algorithm 11 is skipped, and

in line 5 we use as starting vector for the B-Lanczos algorithm v =
∑k

j=0 µjtj(B̂)w,

where w is the trial vector. The rest of the algorithm proceeds as given. Note that a

matrix approximating S−1 is never constructed as implied by (4.21). Instead, we use

the Chebyshev recurrence relation to construct the approximation to S−1w. Defining

wj = tj(B̂)w, j = 0, 1, . . . , k, the Chebyshev recurrence gives

wj+1 = 2B̂wj − wj−1, j = 1, 2, . . . , k − 1, (4.22)

where w0 = w and w1 = B̂w. Therefore, given a trial vector w0 = w, we construct wj ,

j = 1, . . . , k, using the Chebyshev recurrence (4.22), and the starting vector to be used

in Algorithm 11 is

v =
k∑
j=0

µjwj . (4.23)

In fact, we can form the approximation of S−1w more economically by only storing

three vectors wj = tj(B̂)w at a time. For v defined as in (4.23), v can be recursively

updated, v ← v+µj+1wj+1, where wj+1 is computed using the previous two vectors wj−1

and wj according to (4.22). This is illustrated in Algorithm 12. Next, we give details on

the choice of the polynomial degree k in the Chebyshev expansion of g(λ) = (c+dλ)−1/2.

4.3.1 Choosing Degree of Chebyshev Expansion

Now, we address the important question of what polynomial degree is necessary in the

Chebyshev approximation of the inverse square root of B. While we expect a higher

degree polynomial to correspond to a more accurate approximation of the matrix-vector

product S−1w, a higher degree polynomial also means more matrix vector multiplica-

tions in the formation of each starting vector for the B-Lanczos algorithm. Hence, we
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Algorithm 12 Approximation of S−1w using the Chebyshev Recurrence (see (4.23))

1: Initialize symmetric B̂ ∈ Rn×n with eigenvalues in [−1, 1], coefficients µj , j =
0, . . . , k, and w ∈ Rn.

2: Set w0 = w, w−1 = w1 = 0, v = µ0w0, and j = 0.
3: while j < k do
4: w1 ← B̂w0.
5: if j 6= 0 then
6: w1 ← 2w1 − w−1

7: end if
8: v ← v + µj+1w1

9: w−1 ← w0

10: w0 ← w1

11: j ← j + 1
12: end while

do not want to use a needlessly high degree polynomial. In order to understand the

degree polynomial necessary, we look at how closely the degree k Chebyshev expansion,

gk(λ), approximates g(λ) = (c+ dλ)−1/2. For this, we again turn to the theory of ana-

lytic functions in Bernstein ellipses, as we did in understanding the error in the Lanczos

process for analytic functions.

We begin by looking at where the function g(λ) = (c+ dλ)−1/2 is analytic. Because

we have assumed the B-matrix is symmetric positive definite, it has positive eigenvalues,

i.e., a = λmin(B) > 0, and so the scaling constants c = 1/2(b + a) and d = 1/2(b − a)

satisfy c > d > 0. Therefore, g is analytic in [−1, 1] and has a singularity at λ = −c/d <
−1. Recall, the Bernstein ellipse corresponding to a parameter ρ > 1 is defined as

Eρ = {1/2(z + z−1) | z = ρeiθ for θ ∈ [0, 2π)}. (4.24)

The Bernstein ellipse Eρ is the ellipse in the complex plane with foci at ±1 and semi-

major axis 1/2(ρ + ρ−1) and semi-minor axis 1/2(ρ − ρ−1). The following theorem,

taken from [58], gives the rate of convergence for truncated Chebyshev expansions of

functions which are analytic in the interval [−1, 1], and analytically continuable to the

interior of a Bernstein ellipse Eρ.

Theorem 13. Let a function g analytic in [−1, 1] be analytically continuable to the

interior of the Bernstein ellipse Eρ for ρ > 1. Then, the degree k Chebyshev expansion
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satisfies

‖g − gk‖∞ ≤
2M(ρ)ρ−k

ρ− 1
,

where |g| ≤M(ρ) inside Eρ.

In order to apply Theorem 13 to the expansion (4.19), we need to determine the

value of the ellipse parameter ρ > 1, and a bound, M = M(ρ), for the function g(λ) =

(c + dλ)−1/2 in the interior of Eρ. With knowledge of the singularity at λ = −c/d, we

choose a Bernstein ellipse with semi-major axis, 1/2(ρ+ ρ−1), satisfying

ρ+ ρ−1

2
<
c

d
. (4.25)

Solving the quadratic equation resulting from (4.25), we take any ρ satisfying

1 < ρ < ρ, ρ =
c

d
+

√(
c

d

)2

− 1. (4.26)

Notice that we can write c/d = (κ+ 1)/(κ− 1), where κ = b/a is the spectral condition

number of B. Rewriting the upper bound ρ in terms of the spectral condition number

gives

ρ =
κ+ 1

κ− 1
+

√(
κ+ 1

κ− 1

)2

− 1. (4.27)

The dependence of ρ on κ, as well as plots of several Bernstein ellipses corresponding

to ρ = ρ(κ) for different values of κ are shown in Figure 4.1. We see that the better

conditioned the matrix B, i.e., the closer κ is to unity, the larger the Bernstein ellipse

in which g(λ) is analytic, and hence the faster the Chebyshev expansion of g converges.

This is the main reason the diagonal scaling (4.15) is important.

Next, we determine the maximum value of g(λ) = (c+ dλ)−1/2 inside the Bernstein

ellipse Eρ. The following lemma is taken from [67].

Lemma 11. If c > d > 0 and ρ satisfies (4.26), the maximum modulus of g(λ) =

(c+ dλ)−1/2 inside the Bernstein ellipse Eρ is

M(ρ) =
(
c− dr

)−1/2
,
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Figure 4.1: Bernstein ellipse parameter ρ as a function of the spectral condition number
κ (left). Bernstein ellipses, Eρ̄, for various spectral condition numbers (right).

where, r = 1/2(ρ+ ρ−1), is the semi-major axis.

Combining Lemma 11 and (4.26) with Theorem 13, we bound the uniform error in

the Chebyshev expansion of g in the following theorem.

Theorem 14. Let g(λ) = (c + dλ)−1/2 for λ ∈ [−1, 1] with c > d > 0. The degree k

Chebyshev expansion of g satisfies

‖g − gk‖∞ ≤
2ρ−k

(ρ− 1)
√
c− dr

,

where r = 1/2(ρ+ ρ−1), and ρ is any real number satisfying

1 < ρ <
c

d
+

√(
c

d

)2

− 1.

With the uniform error in the Chebyshev expansion bounded by computable quan-

tities in Theorem 14, we now outline our procedure for determining what degree Cheby-

shev expansion to use. For the first step, we compute, to a high degree of accuracy, the

minimum and maximum eigenvalues of B, a = λmin(B) and b = λmin(B), in order to

scale the matrix to have eigenvalues in the interval [−1, 1]. Note that scaling to the inter-

val [−1, 1] only requires lower and upper bounds on λmin(B) and λmax(B) respectively.

However, since the smallest and largest eigenvalues of a matrix are typically the easiest

to acquire, and these values allow us to compute the rate of decay of the error from

Theorem 14, we find it advantageous to perform this computation. Furthermore, the
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cost of computing the largest and smallest eigenvalues of B is negligible in comparison

to the overall cost of approximating the density of states.

Next, from a and b we determine the scaling constants c = 1/2(b + a) and d =

1/2(b− a), which allow us to scale from the interval [a, b] to [−1, 1], and set

ρ =
c

d
+

√(
c

d

)2

− 1. (4.28)

From (4.26) we know that g is analytic in the Bernstein ellipse Eρ for any 1 < ρ < ρ.

Accordingly, we choose k to be the smallest integer satisfying

2ρ−k

(ρ− 1)
√
c− dr

< τ, (4.29)

where r = 1/2(ρ + ρ−1), and τ is a chosen tolerance. The proper value of k can be

found using any root-finding method, e.g., Newton’s method or bisection, to determine

the real number which makes (4.29) an equality, and then take k to be the smallest

integer larger than this root. To give an idea of standard values of ρ and k, if a = 0.50

and b = 1.48 (these are actual values from a one dimensional finite element mass matrix

corresponding to cubic Lagrange polynomials on a uniform mesh after the diagonal

scaling (4.15) has been performed), then ρ = 3.78. In this case, choosing the tolerance

τ as small as 10−16 results in k = 28, a very manageable request.

4.4 Joint Density of States

Let A,A′ ∈ Rn×n be the symmetric matrices with eigenpairs as in (4.1). In this section

we discuss approximating the joint density of states, J(λ), defined as

J(λ) =
1

n2

n∑
i,j=1

δ
(
λ− (λi + λ′j)

)
. (4.30)

The joint density of states is a joint spectral quantity with uniform coefficients 1/n2,

and is the density of states corresponding to a matrix which has n2 eigenvalues λi +λ′j ,

i, j = 1, . . . , n. We describe this matrix momentarily. The joint density of states has

many uses in solid state physics and semiconductor design [57, 68, 37, 38].
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As a first step towards approximating (4.30), we relate the joint density of states to

the density of states of an n2 × n2 matrix. In order to accomplish this, we recall the

definition of the Kronecker product.

Definition 1. For C ∈ Rm×n and D ∈ Rp×q, the Kronecker product, C ⊗ D, is the

mp× nq block matrix

C ⊗D =


c11D · · · c1nD

...
. . .

...

cm1D · · · cmnD

 .

In this chapter we use many properties of Kronecker products, which we record now.

We do not state these results in their full generality, but rather in the manner in which

we intend to use them. These properties can be found in linear algebra textbooks, see,

for example, [18].

Lemma 12 (Properties of Kronecker Products). Let C,D,∈ Rn×n and U, V ∈ Rn×m.

Then,

1. (C ⊗D)T = CT ⊗DT ,

2. (C ⊗D)(U ⊗ V ) = (CU)⊗ (DV ).

It is straightforward to show that the eigenvalues of the Kronecker product of two

n×n matrices are the n2 products of the eigenvalues of the two matrices. For the joint

density of states, we want a similar result involving sums of eigenvalues, rather than

products. The following linear operator accomplishes exactly this.

Definition 2. For C ∈ Rm×m and D ∈ Rn×n, the Kronecker sum, C ⊕ D, is the

mn×mn block matrix

C ⊕D = C ⊗ In + Im ⊗D, (4.31)

where Ik is the k×k identity matrix. When m = n, we drop the subscript on the identity

matrix and write C ⊕D = C ⊗ I + I ⊗D, the dimension of the identity matrix being

clear from context.

In some references, the Kronecker sum is defined in the opposite manner as In⊗C+

D⊗Im, e.g., [22]. This is not equivalent to our definition since, in general, C⊕D 6= D⊕C.
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The alternate definition is due to the structure of the Sylvester equation, a standard

application of the Kronecker sum. However, the properties of the Kronecker sum we

wish to exploit do not change with the definition (4.31), and, for our purposes, (4.31)

is more satisfactory.

We now state a useful result about the eigenpairs of a Kronecker sum of two matrices,

which can be found in [22].

Theorem 15. For A and A′ be as in (4.1), the eigenvalues of A⊕A′ are λi + λ′j, with

corresponding eigenvectors xi ⊗ x′j, i, j = 1, . . . , n.

Proof. Let Ax = λx and A′x′ = λ′x′ for λ, λ′ ∈ R and nonzero x, x′ ∈ Rn. Then,

(A⊕A′)(x⊗ x′) = (A⊗ I + I ⊗A′)(x⊗ x′),

= (Ax⊗ x′ + x⊗A′x′),

= (λx⊗ x′ + x⊗ λ′x′),

= (λ+ λ′)x⊗ x′,

where in the second equality we used property (2) in Lemma 12.

Theorem 15 tells us that the eigenvalues of A⊕ A′ are the sum of all combinations

of eigenvalues of A and A′. Hence, the joint density of states (4.30) is equivalent to the

density of states of A⊕A′. Therefore, we can think about the joint density of states in

two ways. On one hand, it is the joint spectral quantity corresponding to the matrices

A and A′ with uniform coefficients 1/n2. On the other hand, it is the spectral quantity

corresponding to the matrix A⊕A′ with uniform coefficients 1/n2.

Next, we look at applying the techniques from Section 4.2 to approximate the density

of states for the matrix A⊕A′. We know that by choosing a standard normal random n2-

vector w, the spectral function 1/n2s(λ;A⊕A′, w) is equal to the joint density of states in

expectation, as in (4.11). By stochastically averaging the results of the Lanczos process

applied to A ⊕ A′, we can approximate the joint density of states using Algorithm 10.

The main issue with this method is for n � 1, storing A ⊕ A′, or performing matrix

operations with A⊕A′ is not feasible. Instead, we wish to approximate the joint density

of by performing matrix operations with A and A′ individually. Next, we discuss two
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different methods for approximating the joint density of states, both of which perform

the Lanczos process on A and A′ individually, rather than on the matrix A⊕A′.

4.4.1 Method I

For the method I Lanczos approximation to the joint density of states, we implicitly

perform the Lanczos algorithm on A⊕A′ by performing the Lanczos algorithm on the

individual matrices.

At first glance, one might hope that by performing the Lanczos algorithm on A

and A′ separately, we may then use the Kronecker sum to realize a Lanczos partial

tridiagonalization of A⊕A′. To see why this fails, let v, v′ ∈ Rn be the starting vectors

for an m-step Lanczos algorithm applied to A and A′ respectively, i.e., we have

AVm = VmTm + βmvm+1e
T
m,

A′V ′m = V ′mT
′
m + β′mv

′
m+1e

T
m,

(4.32)

where Tm, T
′
m ∈ Rm×m are symmetric and tridiagonal, the columns of Vm, V

′
m ∈ Rn×m

are an orthonormal basis for Km(A, v) and Km(A′, v′) respectively, and V T
mvm+1 = 0 =

V ′m
T v′m+1. Let the entries of Tm and T ′m be given by

Tm = V T
mAVm =



α1 β1

β1 α2

. . .
. . .

. . .

αm−1 βm−1

βm−1 αm


,

T ′m = V ′m
T
A′V ′m =



α′1 β′1

β′1 α′2
. . .

. . .
. . .

α′m−1 β′m−1

β′m−1 α′m


.

(4.33)
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Using the definition of the Kronecker sum and the Lanczos relations (4.32), we see that

(A⊕A′)(Vm ⊗ V ′m) = AVm ⊗ V ′m + Vm ⊗A′V ′m,

= (VmTm + βmvm+1e
T
m)⊗ V ′m+

Vm ⊗ (V ′mT
′
m + β′mv

′
m+1e

T
m),

= (VmTm ⊗ V ′m + Vm ⊗ V ′mT ′m) +R,

= (Vm ⊗ V ′m)(Tm ⊕ T ′m) +R,

(4.34)

where R = (Vm⊗β′mv′m+1e
T
m+βmvm+1e

T
m⊗V ′m). The main takeaway is that (4.34) does

NOT constitute a Lanczos algorithm applied to A⊕A′ with starting vector v⊗ v′. This

follows because the matrix Tm⊕T ′m is not tridiagonal, but block tridiagonal. Therefore,

in order to perform the Lanczos process on A⊕A′, we must look elsewhere.

While the naive first attempt to perform the Lanczos algorithm on A ⊕ A′ failed,

the idea of performing the Lanczos algorithm on the operators A and A′ independently

in order to partially tridiagonalize A⊕A′ is not without merit. Next, we show that the

spectral function corresponding to the matrix A ⊕ A′ and a rank one starting vector

equals the joint density of states in expected value. Consider the following lemma.

Lemma 13. If w and w′ are independent standard normal random n-vectors, then

E[(w ⊗ w′)(w ⊗ w′)T ] = I.

Proof. Using property (1) and (2) in Lemma 12 we have

E
[
(w ⊗ w′)(w ⊗ w′)T

]
= E

[
(w ⊗ w′)(wT ⊗ w′T )

]
= E

[
(wwT )⊗ (w′w′

T
)
]

= E[wwT ]⊗ E[w′w′
T

] = I ⊗ I = I.

As mentioned in Section 4.2, we choose a trial vector w ∼ N (0, 1) because E[wiwj ] =

δij , or equivalently E[wwT ] = I. This allows us to use Corollary 2 to equate the density

of states and the expectation of a spectral function. Lemma 13 tells us that the same

property, E[(w ⊗ w′)(w ⊗ w′)T ] = I, is satisfied when both random vectors, w and w′,

have i.i.d. entries in N (0, 1). Meaning, the joint density of states is equal in expectation

to the spectral function corresponding to the matrix A⊕A′ and vector w ⊗ w′ (with a
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prefactor of 1/n2). That is,

J(λ) =
1

n2
E
[
s(λ;A⊕A′, w ⊗ w′)

]
, (4.35)

where w,w′ ∼ N (0, 1). Next, we show that for the special case of a rank one starting

vector, the Lanczos algorithm applied to A ⊕ A′, can be deduced from the Lanczos

algorithm applied to A and A′ individually.

The first crucial piece of the puzzle is to notice that the Krylov space Km(A⊕A′, v⊗
v′) is spanned by the columns of Vm ⊗ V ′m, where Vm and V ′m are as in (4.32). This is

detailed in the following theorem.

Theorem 16 (Remark 3.3 in [27] for d = 2). Let A,A′ ∈ Rn×n and v, v′ ∈ Rn×n. Then,

Km(A⊕A′, v⊗v′) ⊂ K⊗m(A, v;A′, v′) := span{u⊗u′ | u ∈ Km(A, v) and u′ ∈ Km(A′, v′)}.

Proof. We proceed with induction. For m = 1 we have equality. Next, assume Km(A⊕
A′, v ⊗ v′) ⊂ K⊗m(A, v;A′, v′). Any u ∈ Km+1(A⊕A′, v ⊗ v′) can be expressed as

u = c
(
A⊕A′

)m
(v ⊗ v′) + um,

for some constant c and um ∈ Km(A⊕A′, v ⊗ v′). By the inductive hypothesis we only

need to focus on the (A⊕A′)m(v ⊗ v′) term. Notice that by the binomial theorem and

property (2) in Lemma 12

(A⊕A′)m =
m∑
k=0

(
m

k

)
Am−k ⊗A′k,

and therefore

(A⊕A′)m(v ⊗ v′) =

m∑
k=0

(
m

k

)
Am−kv ⊗A′kv′,

which is plainly an element of K⊗m+1(A, v;A′, v′).

Next, we show how Theorem 16 allows us to apply the Lanczos algorithm to A⊕A′

with starting vector v ⊗ v′ implicitly. Suppose we perform an m-step Lanczos iteration

on A⊕A′ with starting vector u = v ⊗ v′. Assuming m is less than the grade of v ⊗ v′
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with respect to A⊕A′, we have

(A⊕A′)Um = UmT
⊕
m + β⊕mum+1e

T
m, (4.36)

where the columns of Um = [u1, . . . , um] ∈ Rn2×m form an orthonormal basis for Km(A⊕
A′, v ⊗ v′), and the entries of the symmetric tridiagonal matrix T⊕m ∈ Rm×m are

T⊕m = UTm(A⊕A′)Um =



α⊕1 β⊕1

β⊕1 α⊕2
. . .

. . .
. . .

α⊕m−1 β⊕m−1

β⊕m−1 α⊕m


. (4.37)

We now use Theorem 16 to relate the Lanczos vectors of A⊕A′, Um, to the Kronecker

product Vm ⊗ V ′m, where Vm and V ′m are as in (4.32). In so doing, we determine a

method to compute T⊕m , which is the main ingredient for the Lanczos process. We then

are able to use the Lanczos process to approximate 1/n2s(λ;A ⊕ A′, w ⊗ w′) (which

equals the joint density of states in expected value, see (4.35)), where w and w′ are

standard normal random n-vectors. All this without ever needing to form the matrix

A⊕A′!
Theorem 16 tells us the columns of Vm ⊗ V ′m span Km(A ⊕ A, v ⊗ v′). Hence, the

columns of Um, an orthonormal basis of Km(A⊕A′, v ⊗ v′), can be expressed as

uk =
k∑

i,j=1

γkijvi ⊗ v′j for k = 1, . . . ,m, (4.38)

for some coefficient matrix γk ∈ Rk×k, where vj and v′j are the j-th columns of Vm and

V ′m respectively. We refer to the basis, {vi⊗v′j}, i, j = 1, . . . ,m, of K⊗m(A, v;A′, v′) as the

tensorial basis (here we assume the grades of the vectors v and v′ are such that the term

basis is justified). We assume the tensorial basis vectors are orthonormal, which follows

automatically if the columns of Vm and V ′m are orthonormal, i.e., V T
mVm = I = V ′m

TV ′m.

Given that we know u1 = v1⊗ v′1, i.e., γ1
11 = 1, we now proceed to use (4.36) and (4.38)

to determine the elements of the tridiagonal matrix T⊕m from Tm and T ′m.
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The first step in the Lanczos algorithm involves forming the matrix vector product

(A⊕A′)uk. Meaning, given uk in the tensorial basis as in (4.38), i.e., given the coefficient

matrix γk ∈ Rk×k, we must determine (A⊕A′)uk in the tensorial basis. This can easily

be done using the three-term recurrence formulas for the Lanczos algorithms on A and

A′. Define ηk+1 ∈ R(k+1)×(k+1) to be the coefficients of (A⊕A′)uk in the tensorial basis,

i.e.,

(A⊕A′)uk =
k+1∑
i,j=1

ηk+1
ij vi ⊗ v′j . (4.39)

Inserting the expansion (4.38) into (4.39), and using the three-term Lanczos recurrence

gives

k+1∑
i,j=1

ηk+1
ij vi ⊗ v′j =

k∑
i,j=1

γkij(A⊕A′)(vi ⊗ v′j),

=
k∑

i,j=1

γkij(Avi ⊗ v′j + vi ⊗A′v′j),

=
k∑

i,j=1

γkij

[
(βi−1vi−1 + αivi + βivi+1)⊗ v′j ,

+ vi ⊗ (β′j−1v
′
j−1 + α′jv

′
j + β′jv

′
j+1)

]
.

(4.40)

Re-indexing individual terms in the final summation of (4.40) and adopting the con-

vention that β0 = β′0 = 0 and γkij = 0 for i, j /∈ {1, . . . , k}, we find that the entries of

the matrix ηk+1 are

ηk+1
ij = γkij(αi + α′j) + γki+1 jβi + γki j+1β

′
j + γki−1 jβi−1 + γki j−1β

′
j−1, (4.41)

for i, j = 1, . . . , k + 1.

The next step in the Lanczos algorithm creates the coefficient α⊕k = (uk, (A⊕A′)uk).
Due to the orthonormality of the tensorial basis vectors vi ⊗ v′j , we can now easily

compute α⊕k as

α⊕k =
k∑

i,j=1

γkijη
k+1
ij = (γk, ηk+1)F , (4.42)
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where ( · , · )F is the Frobenius inner product, and again, we have made use of the

convention that γkij = 0 for i, j /∈ {1, . . . , k}.
Define ũk+1 as

ũk+1 = (A⊕A′)uk − α⊕k uk − β
⊕
k−1uk−1, (4.43)

and let the coefficients of ũk+1 in the tensorial basis be γ̃k+1 ∈ R(k+1)×(k+1). From (4.43),

the entries of γ̃k+1 satisfy

γ̃k+1
ij = ηk+1

ij − α⊕k γ
k
ij − β⊕k−1γ

k−1
ij i, j = 1, . . . , k + 1. (4.44)

Using again the convention that γkij = 0 for i, j /∈ {1, . . . , k}, we can rewrite (4.44) in

matrix form as

γ̃k+1 = ηk+1 − α⊕k γ
k − β⊕k−1γ

k−1

= ηk+1 − α⊕k


0

γk
...

0 . . . 0

− β⊕k−1


0 0

γk−1
...

...

0 . . . 0 0

0 . . . 0 0

 .
(4.45)

Finally,

β⊕k =
√

(ũk+1, ũk+1) = ‖γ̃k+1‖F and γk+1 =
1

β⊕k
γ̃k+1, (4.46)

where ‖·‖F denotes the Frobenius norm.

A concise overview of the partial tridiagonalization of (A⊕A′), with rank one starting

vector v ⊗ v′ is given in Algorithm 13. Full orthogonalization is used in the Lanczos

algorithm on A and A′ to ensure the tensorial basis is orthonormal to working precision.

Using Algorithm 13, we are now able to perform the partial tridiagonalization of A⊕A′,
without explicitly forming the matrix A ⊕ A′ ∈ Rn2×n2

. This, along with Lemma 13,

allows us to use the methods in Section 4.2 to approximate the density of states for

A⊕A′, which is equivalent to the joint density of states.

Before utilizing Algorithm 13 to approximate the joint density of states, we comment

on the algorithmic complexity. For this discussion we assume the matrices A and A′ are

sparse, and matrix vector products require O(n) floating point operations (flops). More

generally, for a matrix with at most nz nonzeros per row, matrix vector multiplication
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Algorithm 13 Lanczos Algorithm of Kronecker Sum (full orthogonalization)

1: Initialize v1 = v/‖v‖, v′1 = v′/‖v′‖, β0 = β′0 = 0, v0 = v′0 = 0, γ1
11 = 1.

2: for k = 1, . . . ,m do
3: ṽ = Avk − βk−1vk−1

4: ṽ′ = A′v′k − β′k−1v
′
k−1

5: αk = (ṽ, vk)
6: α′k = (ṽ′, v′k)
7: for i = 1, . . . , k do
8: ṽ ← ṽ − (ṽ, vi)vi
9: ṽ′ ← ṽ′ − (ṽ′, v′i)v

′
i

10: end for
11: βk = ‖ṽ‖
12: β′k = ‖ṽ′‖
13: if βk = 0 or β′k = 0 then stop
14: else
15: vk+1 = ṽ

βk

16: v′k+1 = ṽ′

β′k
17: end if
18: for i, j = 1, . . . , k + 1 do
19: ηk+1

ij = γkij(αi + α′j) + γki+1 jβi + γki j+1β
′
j + γki−1 jβi−1 + γki j−1β

′
j−1

20: end for
21: α⊕k = (γk, ηk+1)F
22: γ̃k+1 = ηk+1 − α⊕k γ

k − β⊕k−1γ
k−1

23: β⊕k = ‖γ̃k+1‖F
24: γk+1 = 1

β⊕k
γ̃k+1

25: end for
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is O(nzn). The standard m-step Lanczos algorithm in exact arithmetic for the matrix

A and vector v has O(mn) complexity. This follows from all steps, in each of the m

iterations, requiring O(n) flops. Therefore, due to the Kronecker sum of A and A′

being an order n2 matrix, applying the standard m-step Lanczos algorithm to A ⊕ A′

with starting vector v ⊗ v′ is O(mn2) complexity. On the other hand, Algorithm 13

performs the Lanczos algorithm on A⊕A′ with rank one starting vector in O(mn+m2)

operations. Assuming m � n, Algorithm 13 has complexity O(mn) which is no more

than the standard m-step Lanczos algorithm for an n× n matrix!

Before approximating the joint density of states with several trial vectors, we review

Hutchinson’s method for the density of states of A⊕A′ with one trial vector. Specifically,

letting w,w′ ∼ N (0, 1), Lemma 13 tells us that E[(w ⊗ w′)(w ⊗ w′)T ] = I, and so we

may apply Lemma 10 with trial vector w ⊗ w′. The spectral function corresponding to

A ⊕ A′ and vector w ⊗ w′, s(λ;A ⊕ A′, w ⊗ w′), is proportional to the joint density of

states in expectation, i.e., 〈J, f〉 = 1/n2E[〈s(λ;A⊕A′, w⊗w′), f〉] for all test functions f

(see (4.35)). With the aid of Algorithm 13, we can approximate s(λ;A⊕A′, w⊗w′) using

the Lanczos process. By forming the Lanczos partial tridiagonalization T⊕m ∈ Rm×m

from (4.37), and denoting the eigenvalues of T⊕m as θj , with corresponding normalized

eigenvector yj , j = 1, . . . ,m, an approximation to the spectral function for A⊕ A′ and

w ⊗ w′ is given by

s(λ;A⊕A′, w ⊗ w′) ≈ ‖w‖2‖w′‖2
m∑
j=1

|(yj , e1)|2δ(λ− θj). (4.47)

The right hand side of (4.47) is an approximation of the spectral function in the sense

that the first 2m − 1 moments of ‖w‖2‖w′‖2
∑m

j=1|(yj , e1)|2δ(λ − θj) match those of

s(λ;A⊕A′, w ⊗ w′).
As in the case of the density of states, we approximate the joint density of states

by averaging the results of many Lanczos processes with independent starting vectors.

Using Algorithm 13 with trial vectors, w(k) ⊗ w′(k), k = 1, . . . , nv, results in nv order

m Lanczos partial tridiagonalizations of A⊕A′. Denoting, respectively, the eigenvalues

and corresponding normalized eigenvectors of the partial tridiagonalizations as θ
(k)
j and

y
(k)
j , j = 1, . . . ,m, and k = 1, . . . , nv, the method I approximation to the joint density
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of states is

J̃(λ) =
1

nvn2

nv∑
k=1

m∑
j=1

∥∥w(k)
∥∥2∥∥w′(k)∥∥2|(y(k)

j , e1)|2δ(λ− θ(k)
j ). (4.48)

The full algorithm for the method I Lanczos approximation to the joint density of states

is given in Algorithm 14.

We remark that the procedure given in this section for performing the Lanczos

algorithm on a Kronecker sum has not, to the best of the authors knowledge, appeared in

the literature. In this thesis, we use the Lanczos algorithm for its relation to the spectral

function and Gauss quadrature. However, the Lanczos algorithm has many uses, and

this new method of performing the Lanczos algorithm on a Kronecker sum with a rank

one starting vector, may be useful in other areas. For example, when approximating

the solution of the Poisson equation in two dimensions with the finite element or finite

difference methods, if the source term is separable, then in many cases the linear system

is of the form (A1 ⊕A2)x = b1 ⊗ b2. When using Krylov methods, such as the Lanczos

algorithm, if x0 is the initial guess, the residual vector r = b1 ⊗ b2 − (A1 ⊕ A2)x0 is

typically chosen as the starting vector. Choosing a zero initial guess gives b1⊗ b2 as the

starting vector, and hence Algorithm 13 can be used to perform the Lanczos algorithm

on A1 ⊕A2 without needing to explicitly form the Kronecker sum.

Algorithm 14 Lanczos Approximation of the Joint Density of States (method I)

1: Initialize m, nv, and set k = 0 and J̃(λ) = 0.
2: while k < nv do
3: Draw trial vectors w,w′ ∼ N (0, 1).
4: Partially tridiagonalize A⊕A′ with starting vector w⊗w′ (Algorithm 13) to get
T⊕m ∈ Rm×m.

5: Compute eigenpairs T⊕myj = θjyj , y
T
i yj = δij , i, j = 1, . . . ,m.

6: J̃(λ)← J̃(λ) + ‖w‖2‖w′‖2
nvn2

m∑
j=1
|(yj , e1)|2δ(λ− θj).

7: k ← k + 1.
8: end while
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4.4.2 Method II

In this section we give a second method to approximate the joint density of states. If Tm

and T ′m are the Lanczos partial tridiagonalizations of A and A′ respectively, we showed in

the previous section that the Kronecker sum, Tm⊕T ′m, is not a partial tridiagonalization

of A ⊕ A′. This follows because the Kronecker sum of two tridiagonal matrices is not

tridiagonal, but block tridiagonal. Therefore, Tm⊕ T ′m can not be used for the Lanczos

process, with its desired moment matching property. However, we show in this section

that we can indeed use the eigenpairs of Tm ⊕ T ′m to determine the nodes and weights

for a quadrature rule approximating a spectral function corresponding to the matrix

A⊕A′, albeit not Gaussian quadrature.

Before introducing method II, we define the convolution of measures on the real line.

Let µ and µ′ be measures with compact support (meaning dµ and dµ′ are zero outside

of some finite interval). Then, the measure µ ∗ µ′ is defined as∫ +∞

−∞
f(λ)d(µ ∗ µ′)(λ) :=

∫ +∞

−∞

∫ +∞

−∞
f(λ+ λ′)dµ(λ)dµ′(λ′), (4.49)

for any test function f , where the integrals in (4.49) are Riemann–Stieltjes integrals [47].

We call µ ∗ µ′ the convolution of the measures µ and µ′. Recall, to each measure there

corresponds an element of the dual space of continuous functions, i.e., to the measure

µ there exists η such that 〈η, f〉 =
∫
fdµ for all test function f . This correspondence is

unique assuming some normalization conventions are satisfied. For the action of η on

a test function f , we write 〈η, f〉 =
∫
η(λ)f(λ)dλ. Let η and η′ be the elements of the

dual space of continuous functions corresponding to µ and µ′ respectively. Then, µ ∗ µ′

corresponds to an element of the dual space of continuous functions, denoted η ∗ η′,
which satisfies∫ +∞

−∞

(
η ∗ η′

)
(λ)f(λ)dλ =

∫ +∞

−∞

∫ +∞

−∞
f(λ+ λ′)dµ(λ)dµ′(λ′). (4.50)

It is straightforward to show that condition (4.50) is satisfied by

(η ∗ η′)(λ) =

∫ +∞

−∞
η(θ)η′(λ− θ)dθ. (4.51)
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With the convolution of measures defined, we now represent the joint density of

states as a convolution. If we write φ(λ) as the density of state of A, and φ′(λ) as the

density of states of A′, the joint density of states is the convolution of φ and φ′, i.e.,

J(λ) = (φ ∗ φ′)(λ) =

+∞∫
−∞

φ(θ)φ′(λ− θ)dθ, (4.52)

see, e.g., [37, 38]. We can write (4.52) as J(λ) = 1/n
∑n

i=1 φ
′(λ−λi). Similarly, because

convolution is commutative, it holds that J(λ) = 1/n
∑n

i=1 φ(λ− λ′i).
The relation (4.52) gives a direct method to approximate the joint density of states.

By replacing both densities of states in (4.52) with approximations from the Lanczos

process, we derive a new Lanczos approximation to the joint density of states, distinct

from that created by Method I. As outlined in Section 4.2, the densities of states φ and

φ′ are constructed using several trial vectors with entries in N (0, 1). For simplicity, we

begin by constructing an approximation to the joint density of states when the densities

of states of A and A′ have been approximated using one trial vector.

Let w,w′ ∼ N (0, 1) be trial vectors. Then, as in (4.11), we know that 1/ns(λ;A,w)

and 1/ns(λ;A′, w′) are equal in expectation to the densities of states φ and φ′ respec-

tively. Let Tm ∈ Rm×m be the Lanczos partial tridiagonalization of A with starting

vector w, and T ′m ∈ Rm×m the Lanczos partial tridiagonalization of A′ with starting

vector w′. Replacing the spectral functions by their corresponding Lanczos approxima-

tions gives the following (single trail vector) approximations to the densities of states

φ̃(λ) =
‖w‖2

n

m∑
j=1

|(yj , e1)|2δ(λ− θj), and φ̃′(λ) =
‖w′‖2

n

m∑
j=1

|(y′j , e1)|2δ(λ− θ′j),

where θj and yj , j = 1, . . . ,m, are the eigenvalues and normalized eigenvectors of Tm

respectively, and θ′j and y′j , j = 1, . . . ,m, are the eigenvalues and normalized eigenvec-

tors of T ′m respectively. The new Lanczos approximation to the joint density of states
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from (4.52) is,

J̃(λ) =
‖w‖2

n

m∑
i=1

|(yi, e1)|2φ̃′(λ− θi),

=
‖w‖2‖w′‖2

n2

m∑
i,j=1

|(yi, e1)|2|(y′j , e1)|2δ
(
λ− (θi + θ′j)

)
.

(4.53)

Notice that the Dirac distributions in (4.53) are concentrated at the m2 eigenvalues

of the matrix Tm ⊕ T ′m, and the coefficients, |(yi, e1)|2|(y′j , e1)|2, are the square of the

first component of the normalized eigenvectors, yi ⊗ y′j . So, while we rejected Tm ⊕
T ′m in the previous section because it is not a Lanczos partial tridiagonalization of

A ⊕ A′, what (4.53) shows is that the eigenpairs of Tm ⊕ T ′m may be used to form an

approximation to the joint density of states. Next, we show in what sense J̃ defined

in (4.53) approximates the joint density of states. First, we state a simple lemma.

Lemma 14. Let λi, λ
′
i, wi, and w′i, i = 1, . . . , n, be given real numbers, and for an

integer, d ≥ 0, suppose θj, θ
′
j, τj, and τ ′j, j = 1, . . . ,m, are real numbers which satisfy

the moment matching criterion

n∑
i=1

wiλ
`
i =

m∑
j=1

τjθ
`
j and

n∑
i=1

w′iλ
′
i
`

=
m∑
j=1

τ ′jθ
′
j
`
,

for ` = 0, 1, . . . , d. Then,

n∑
i,j=1

wiw
′
j(λi + λ′j)

` =
m∑

i,j=1

τiτ
′
j(θi + θ′j)

`,

for ` = 0, 1, . . . , d.

Proof. By the Binomial Theorem (λi + λ′j)
` =

∑`
k=0

(
`
k

)
λ`−ki λ′j

k, and so for any integer
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0 ≤ ` ≤ d,

n∑
i,j=1

wiw
′
j(λi + λ′j)

` =
n∑

i,j=1

∑̀
k=0

(
`

k

)
wiw

′
jλ
`−k
i λ′j

k
,

=
∑̀
k=0

(
`

k

)( n∑
i=1

wiλ
`−k
i

)( n∑
j=1

w′jλ
′
j
k
)
,

=
∑̀
k=0

(
`

k

)( m∑
i=1

τiθ
`−k
i

)( m∑
j=1

τ ′jθ
′
j
k
)
,

=
n∑

i,j=1

∑̀
k=0

(
`

k

)
τiτ
′
jθ
`−k
i θ′j

k
,

=

m∑
i,j=1

τiτ
′
j(θi + θ′j)

`.

Next, we show how Lemma 14, a simple consequence of the binomial theorem,

explains the utility of the joint density of states approximation (4.53).

Theorem 17. Let A,A′ ∈ Rn×n be symmetric and v, v′ ∈ Rn. Additionally, let

Tm, T
′
m ∈ Rm×m, with normalized eigenpairs Tmyj = θjyj and T ′my

′
j = θjy

′
j, j =

1, . . . ,m, be the order m Lanczos partial tridiagonalizations of A with starting vec-

tor v and A′ with starting vector v′ respectively. Then, the first 2m − 1 moments of

‖v‖2‖v′‖2
∑m

i,j=1|(yi, e1)|2|(y′j , e1)|2δ
(
λ− (θi + θ′j)

)
match those of s(λ;A⊕A′, v ⊗ v′).

Proof. Let A and A′ have eigenpairs as in (4.1). The measure ‖v‖2
∑m

j=1|(yj , e1)|2δ(λ−
θj) is the result of the Lanczos process with the matrix A and vector v, and hence an

approximation to the spectral function, s(λ;A, v) =
∑n

i=1|(xi, v)|2δ(λ−λi), in the sense

that the first 2m− 1 moments match (see (4.6)), i.e.,

n∑
i=1

|(xi, v)|2λ`i = ‖v‖2
m∑
j=1

|(yj , e1)|2θ`j , ` = 0, 1, . . . , 2m− 1.



100

The same holds true for all primed quantities,

n∑
i=1

|(x′i, v′)|2λ′i
`

= ‖v′‖2
m∑
j=1

|(y′j , e1)|2θ′j
`
, ` = 0, 1, . . . , 2m− 1.

A straightforward application of Lemma 14 with d = 2m − 1, wi = |(xi, v)|2, w′i =

|(x′i, v′)|2, τj = ‖v‖2|(yj , e1)|2, and τ ′j = ‖v′‖2|(y′j , e1)|2 shows

n∑
i,j=1

|(xi, v)|2|(x′j , v′)|2(λi + λ′j)
` = ‖v‖2‖v′‖2

m∑
i,j=1

|(yi, e1)|2|(y′j , e1)|2(θi + θ′j)
`, (4.54)

for ` = 0, 1, . . . , 2m − 1. The result follows by noticing the left hand side of (4.54) is

the `th moment of s(λ;A ⊕ A′, v ⊗ v′) and the right hand side is the `th moment of

‖v‖2‖v′‖2
∑m

i,j=1|(yi, e1)|2|(y′j , e1)|2δ
(
λ− (θi + θ′j)

)
.

Theorem 17 shows us that J̃ from (4.53) matches the first 2m − 1 moments of the

spectral function 1/n2s(λ;A ⊕ A,w ⊗ w′). In turn, the spectral function 1/n2s(λ;A ⊕
A,w ⊗ w′) is equal in expectation to the joint density of states when w,w′ ∼ N (0, 1).

In other words, by using the Lanczos process to approximate the densities of states for

A and A′, we can form an accurate approximation to the density of states of A⊕A′.
We remark that while Theorem 17 is stated for two order m Lanczos approximations

to the spectral functions s(λ;A, v) and s(λ;A′, v′), the user may also choose different

order approximations for each. In this case, if one produces an order m Lanczos approx-

imation to s(λ;A, v), an order m′ Lanczos approximation to s(λ;A′, v′), and convolve

them (as in (4.53)), the result matches the first 2 min{m,m′}−1 moments of the spectral

function s(λ;A⊕A′, v ⊗ v′).
As in the case of the density of states, for the method II Lanczos approximation

to the joint density of states we stochastically average results over many trial vectors.

To this end, let w(k), w′(k) ∼ N (0, 1), k = 1, . . . , nv, denote trial vectors. For each

trial vector we partially tridiagonalize A and A′ by performing the m-step Lanczos

algorithm with starting vectors w(k) and w′(k) respectively, obtaining T
(k)
m , T ′m

(k) ∈
Rm×m. Denote the eigenpairs of each partial tridiagonalization as, T

(k)
m y

(k)
i = θ

(k)
i y

(k)
i ,

‖y(k)
i ‖ = 1, and T ′m

(k)y′j
(k) = θ′j

(k)y′j
(k), ‖y′j

(k)‖ = 1, for i, j = 1, . . . ,m. Then, the



101

Lanczos approximation to the joint density of states is

J̃(λ) =
1

n2
vn

2

nv∑
k,`=1

m∑
i,j=1

∥∥w(k)
∥∥2∥∥w′(`)∥∥2∣∣(y(k)

i , e1

)∣∣2∣∣(y′j(`)
, e1

)∣∣2δ(λ− (θ
(k)
i + θ′j

(`)
)
)
.

(4.55)

The method II approximation to the joint density of states is summarized in Algo-

rithm 15.

Algorithm 15 Lanczos Approximation of the Joint Density of States (method II)

1: Initialize m, nv.
2: for k = 1, . . . , nv do
3: Draw trial vectors w(k), w′(k) ∼ N (0, 1).

4: Partially tridiagonalize A and A′ with starting vectors w(k) and w′(k) respectively

to get T
(k)
m , T ′(k)

m ∈ Rm×m.

5: Compute eigenpairs T
(k)
m y

(k)
i = θ

(k)
i y

(k)
i , ‖y(k)

i ‖ = 1, and T ′(k)
m y′

(k)
i = θ′

(k)
i y′

(k)
i ,

‖y′(k)
i ‖ = 1, i = 1, . . . ,m.

6: end for
7: J̃(λ) = 1

n2
vn

2

∑nv
k,`=1

∑m
i,j=1‖w(k)‖2‖w′(`)‖2|(y(k)

i , e1)|2|(y′(`)j , e1)|2δ
(
λ− (θ

(k)
i +θ′

(`)
j )
)
.

Finally, we make a few comments on the differences in method I and method II for

producing a Lanczos approximation to the joint density of states. First, we notice that

method I, with one trial vector w⊗w′, is an m-point Gauss quadrature approximation

to the spectral function s(λ;A⊕A′, w⊗w′), while method II is an m2-point quadrature

approximation to the same spectral function. Both methods match the first 2m − 1

moments of s(λ;A⊕A′, w⊗w′), and both methods have positive weights. Hence, both

quadrature rules are convergent of class C(Ω), as Steklov’s Theorem (mentioned in the

previous chapter) stipulates. Both methods post-process Lanczos partial tridiagonal-

izations of A and A′ to create an approximation to the joint density of states. In short,

for both methods we get three spectral quantities for the price of two (the eigenpairs

of Lanczos partial tridiagonalizations giving approximations to the density of states of

A and A′ by Algorithm 10, and by post-processing we get an approximation to the

joint density of states). Method I is optimal in the sense that it recreates the maximal

number of moments for a given number of quadrature nodes (due to its relation to

Gauss quadrature). Method II is ideal because for nv partial tridiagonalizations of A

and A′, we average n2
v approximations to the joint density of states. This is in contrast
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to method I, where nv partial tridiagonalizations of A and A′ results in averaging nv

approximations to the joint density of states.

4.5 Joint Density of States for Generalized Eigenvalue Prob-

lems

In this section we approximate the joint density of states, J(λ) = 1/n2
∑n

i,j=1 δ(λ −
(λi + λ′j)), where the eigenvalues stem from the generalized eigenvalue problems (4.2).

As for the density of states for a generalized eigensystem, the main difference is the

choice of starting vector for the Lanczos algorithm. Instead of using a random vector

with entries in N (0, 1), we need to perform a linear operation on this vector first. Most

of the heavy lifting for this section has already been performed in Section 4.3 and 4.4,

and so we give a simple overview of approximating the joint density of states by method

I and II. As we saw in Section 4.3, by scaling using the diagonal of the mass matrix

(see (4.15)), the new mass matrix D−1/2BD−1/2 is better conditioned. Moving forward,

we assume this scaling has already been performed.

As seen previously, the first step is to factor the mass matrix in order to reformulate

the generalized eigenvalue problem as a standard eigenvalue problem. Letting B =

LLT be the Cholesky or square root factorization of the mass matrix, the generalized

eigensystems in (4.2) become

Czi = λizi, zTi zj = δij

C ′z′i = λ′iz
′
i, z′i

T
z′j = δij ,

(4.56)

for i, j = 1, . . . , n, where C = L−1AL−T , C ′ = L−1A′L−T , zi = LTxi, and z′i = LTx′i.

Note that when transitioning from the generalized eigenvalue problem (4.2), to the

standard eigenvalue problem (4.56), the eigenvalues remain unaltered (in contrast with

the eigenvectors). This tells us the joint density of states corresponding to the pair

of generalized eigenvalue problems (4.2) is the joint density of states for the standard

eigenvalue problems (4.56).

Using the definition of the Kronecker sum, Theorem 15 tells us the joint density of

states for the systems (4.56) is the density of states for C⊕C ′. We are now in position to
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use the results of Section 4.4 to approximate the density of states for C ⊕C ′. Choosing

trial vectors w,w′ ∼ N (0, 1), we know that the spectral function corresponding to the

matrix C ⊕ C ′ and vector w ⊗ w′ satisfies

J =
1

n2
E
[
s(λ;C ⊕ C ′, w ⊗ w′)

]
. (4.57)

Therefore, in order to approximate the joint density of states for the generalized eigen-

value problems (4.2), we use the Lanczos process to approximate the spectral function

s(λ;C ⊕ C ′, w ⊗ w′).
In order to relate s(λ;C ⊕ C ′, w ⊗ w′) to the B-Lanczos method we use the same

device deployed in (4.18). Namely, for any vectors u, u′ ∈ Rn, the eigenvectors of C and

C ′ defined in (4.56) satisfy

(zi, u) = (xi, v)B and (z′i, u
′) = (x′i, v

′)B, (4.58)

where v = L−Tu and v′ = L−Tu′. This shows that the spectral function s(λ;C, u) is

equivalent to the spectral function s(λ;A,B, v) with v = L−Tu. Similarly, s(λ;C ′, u′) =

s(λ;A′, B, v′) with v′ = L−Tu′. We next show how to use B-Lanczos algorithms to

approximate the joint density of states using method I and II of the previous section.

4.5.1 Method I

Method I relies on implicitly forming the Lanczos partial tridiagonalization of C ⊕ C ′.
This is accomplished (see Algorithm 13) by performing the partial tridiagonalization of

C and C ′ individually, and then combining the results to get the partial tridiagonaliza-

tion of C ⊕C ′. Recall from Chapter 2 that the Lanczos partial tridiagonalization of C,

with starting vector u, is the same as the symmetric tridiagonal matrix resulting from

the B-Lanczos algorithm with the matrices A and B, and starting vector v = L−Tu.

Similarly, the Lanczos partial tridiagonalization of C ′, with starting vector u′, is the

symmetric tridiagonal matrix resulting from the B-Lanczos algorithm with matrices A′

and B, and starting vector v′ = L−Tu′. Therefore, we can alter Algorithm 13 to use

the B-Lanczos algorithm, with the proper starting vector, and in this way create the

Lanczos partial tridiagonalization of C ⊕ C ′ with starting vector u ⊗ u′ for arbitrary
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vectors u, u′ ∈ Rn. This is shown in Algorithm 16. Note that while Algorithm 16

involves the matrix vector products L−Tu and L−Tu′, these are to be approximated

using the Chebyshev expansion of the inverse square root of B, discussed at length in

Section 4.3. Also, as in Section 4.4, we use the full orthogonalization variant of the

B-Lanczos algorithm for robustness.

Algorithm 16 B-Lanczos Algorithm on Kronecker Sum (full orthogonalization)

1: Initialize m, v0 = L−Tu, v′0 = L−Tu′, w0 = Bv0, w′0 = Bv′0, v1 = v0/
√
vT0 w0,

w1 = w0/
√
vT0 w0, v′1 = v′0/

√
v′0
Tw′0, w′1 = w′0/

√
v′0
Tw′0, β0 = β′0 = 0, γ1

11 = 1.

2: for k = 1, . . . ,m do
3: w̃ = Avk − βk−1wk−1

4: w̃′ = A′v′k − β′k−1w
′
k−1

5: αk = (w̃, vk)
6: α′k = (w̃′, v′k)
7: for i = 1, . . . , k do
8: w̃ ← w̃ − (w̃, vi)wi
9: w̃′ ← w̃′ − (w̃′, v′i)w

′
i

10: end for
11: Solve Bṽ = w̃ for ṽ
12: Solve Bṽ′ = w̃′ for ṽ′

13: βk = (ṽ, w̃)
14: β′k = (ṽ′, w̃′)
15: if βk = 0 or β′k = 0 then stop
16: else
17: vk+1 = ṽ

βk
and wk+1 = w̃

βk

18: v′k+1 = ṽ′

β′k
and w′k+1 = w̃′

β′k
19: end if
20: for i, j = 1, . . . , k + 1 do
21: ηk+1

ij = γkij(αi + α′j) + γki+1 jβi + γki j+1β
′
j + γki−1 jβi−1 + γki j−1β

′
j−1

22: end for
23: α⊕k = (γk, ηk+1)F
24: γ̃k+1 = ηk+1 − α⊕k γ

k − β⊕k−1γ
k−1

25: β⊕k = ‖γ̃k+1‖F
26: γk+1 = 1

β⊕k
γ̃k+1

27: end for

Using Algorithm 16, we can produce the partial tridiagonalization of C ⊕ C ′ with

starting vector w⊗w′, where w,w′ ∼ N (0, 1) in order to approximate the joint density
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of states. Using the partial tridiagonalization, say T⊕m ∈ Rm×m, we are able to use

the Lanczos process to approximate s(λ;C ⊕ C ′, w ⊗ w′), with the spectral function

s(λ;C⊕C ′, w⊗w′) being equal in expectation to the joint density of states (see (4.57)).

Let the eigenvalues and normalized eigenvectors of T⊕m be θj and yj , j = 1, . . . ,m,

respectively. The method I approximation to the joint density of states (for one trial

vector) is

J̃(λ) =
‖w‖2‖w′‖2

n2

m∑
j=1

|(yj , e1)|2δ(λ− θj). (4.59)

Obviously, by performing the Lanczos process for several trial vectors, and averaging

the result, we produce a more accurate approximation to the joint density of states. This

is included in Algorithm 17 for nv trial vectors.

Algorithm 17 B-Lanczos Approximation of the Joint Density of States (method I)

1: Initialize m, nv, and set k = 0 and J̃(λ) = 0.
2: while k < nv do
3: Draw trial vectors w,w′ ∼ N (0, 1).
4: Partially tridiagonalize C⊕C ′ with starting vector w⊗w′ (Algorithm 16) to get
T⊕m ∈ Rm×m.

5: Compute eigenpairs T⊕myj = θjyj , y
T
i yj = δij , i, j = 1, . . . ,m.

6: J̃(λ)← J̃(λ) + ‖w‖2‖w′‖2
nvn2

m∑
j=1
|(yj , e1)|2δ(λ− θj).

7: k ← k + 1.
8: end while

4.5.2 Method II

For the method II approximation to the joint density of states for generalized eigen-

systems, we convolve the Lanczos approximations to the density of states for the indi-

vidual generalized eigensystems. To make concepts concrete, we start by constructing

the density of states approximations for each eigensystem using one trial vector, before

generalizing to many trial vectors. Let B = LLT be a factorization of the symmetric

positive definite mass matrix, and let w,w′ ∼ N (0, 1) be trial vectors. By performing

the B-Lanczos algorithm on A and B with starting vector v = L−Tw, we obtain the

order m partial tridiagonalization Tm ∈ Rm×m. Similarly, using the B-Lanczos algo-

rithm with starting vector v′ = L−Tw′, we obtain T ′m ∈ Rm×m, the order m partial
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tridiagonalization of A′ and B. Let the eigenvalues and normalized eigenvectors of the

partial tridiagonalizations be given by Tmyj = θjyj , T
′
my
′
j = θ′jy

′
j , for j = 1, . . . ,m. The

Lanczos approximation to the density of states (with one trial vector) for the matrix

pair A and B is

φ̃(λ) =
‖w‖2

n

m∑
j=1

|(yj , e1)|2δ(λ− θj),

and for the matrix pair A′ and B,

φ̃′(λ) =
‖w′‖2

n

m∑
j=1

|(yj , e1)|2δ(λ− θj).

With approximations to the densities of states, we now convolve φ and φ′ to construct

an approximation to the joint density of states given by

J̃(λ) =
‖w‖2

n

m∑
i=1

|(yi, e1)|2φ̃′(λ− θi),

=
‖w‖2‖w′‖2

n2

m∑
i,j=1

|(yi, e1)|2|(y′j , e1)|2δ
(
λ− (θi + θ′j)

)
.

(4.60)

As in method II for the standard eigenvalue problems, the above approximation simply

amounts to multiplying all coefficients from the approximate densities of states, and

adding all combinations of Ritz values. Because the densities of states, φ and φ′, match

the first 2m − 1 moments of s(λ;C,w) = s(λ;A,B, v) and s(λ;C ′, w′) = s(λ;A′, B, v′)

respectively, the approximate joint density of states (4.60) will match the first 2m − 1

moments of s(λ;C⊕C ′, w⊗w′) as shown in Theorem 17. In turn, as illustrated in (4.57),

1/n2s(λ;C ⊕ C ′, w ⊗ w′) equals the joint spectral function in expectation. Therefore,

by approximating the densities of states for both systems, we gain an approximation to

the joint density of states at no (significant) additional expense.

By performing the same approximation using additional trial vectors, we gain a

better approximation to the joint density of states. This is summarized in Algorithm 18.

Note that while the Cholesky factor L is used (B = LTL) in Algorithm 18, in practice

we utilize a Chebyshev approximation L−T in order to form the starting vectors, as

outlined in Section 4.3.
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Algorithm 18 B-Lanczos Approximation of the Joint Density of States (method II)

1: Initialize m, nv.
2: for k = 1, . . . , nv do
3: Draw trial vectors w(k), w′(k) ∼ N (0, 1).

4: Form starting vectors v(k) = L−Tu(k) and v′(k) = L−Tu′(k).
5: Perform B-Lanczos with A and A′ and starting vectors w(k) and w′(k) to get

T
(k)
m , T ′(k)

m ∈ Rm×m.

6: Compute eigenpairs T
(k)
m y

(k)
i = θ

(k)
i y

(k)
i , ‖y(k)

i ‖ = 1, and T ′(k)
m y′

(k)
i = θ′

(k)
i y′

(k)
i ,

‖y′(k)
i ‖, i = 1, . . . ,m.

7: end for
8: J̃(λ) = 1

n2
vn

2

∑nv
k,`=1

∑m
i,j=1‖w(k)‖2‖w′(`)‖2|(y(k)

i , e1)|2|(y′(`)j , e1)|2δ
(
λ− (θ

(k)
i +θ′

(`)
j )
)
.

4.6 Joint Spectral Function

In this section we introduce one final joint spectral quantity. Namely, that of a joint

spectral function for a pair of eigenvalue problems. Let A,A′ ∈ Rn×n be symmetric

matrices with eigenpairs as in (4.1). We define the joint spectral function as

α(λ) =

n∑
i,j=1

|(xi, x′j)|2δ
(
λ− (λi + λ′j)

)
. (4.61)

To produce the joint spectral function exactly, a complete accounting of all eigenpairs

of A and A′ is required. This is in contrast to the joint density of states where only the

eigenvalues are present. We will show that the joint spectral function is the spectral

function for the matrix A ⊕ A′ and vector
∑n

i=1 ei ⊗ ei. It is used in semiconductor

physics, and is important in the determination of optical properties of light emitting

diodes. We will see specific applications of the joint spectral function in the next chapter.

Recall the outline for approximating spectral quantities. We first relate the spectral

quantity to a spectral function, and then use the Lanczos process to approximate the

spectral function. Following this roadmap, we look at spectral functions for the matrix

A⊕ A′. Using results of Theorem 15, we see that the spectral function of A⊕ A′ with

starting vector u ∈ Rn2
is given by

s(λ;A⊕A′, u) =
n∑

i,j=1

∣∣(xi ⊗ x′j , u)
∣∣2δ(λ− (λi + λ′j)

)
. (4.62)
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Equation (4.62) shows that if we choose u such that (x⊗x′, u) = (x, x′) for arbitrary

x, x′ ∈ Rn, then the spectral function corresponding to A ⊕ A′ and u is equal to the

joint spectral function. This would allow us to perform the Lanczos process on A⊕ A′

(potentially utilizing Algorithm 13) in order to approximate the joint spectral function.

It is easily verified that the desired u is given by

u =

n∑
i=1

ei ⊗ ei, (4.63)

where ei is the ith column of the identity matrix of order n.

The starting vector (4.63) poses several issues. First, we see that u is a sum of

rank one vectors. This is problematic because the spectral function is not linear in the

starting vector, i.e., for vectors v, w ∈ Rn,

s(λ;A, v + w) 6= s(λ;A, v) + s(λ;A,w). (4.64)

Another way of saying (4.64) is, (v+w)T f(A)(v+w) 6= vT f(A)v+wT f(A)w for smooth

f in general. Hence, we are unable to perform n Lanczos processes on the matrix A⊕A′

with rank one vectors, ei⊗ei, i = 1, . . . , n, in order to approximate the spectral function

s(λ;A⊕A′, u). In fact, we can show that for any test function f and u given by (4.63)

we have

〈s(λ;A⊕A′, u), f〉 =
n∑

i,j=1

(ei ⊗ ei)T f(A⊕A′)(ej ⊗ ej). (4.65)

While it is possible to approximate bilinear forms vT f(A)w, v 6= w, the standard method

is to use the identity

vT f(A)w = 1/4
(
(v + w)T f(A)(v + w)− (v − w)T f(A)(v − w)

)
,

see, e.g., [17]. This is again problematic because ei ⊗ ei + ej ⊗ ej and ei ⊗ ei − ej ⊗ ej
are rank two for i 6= j, and so do not fit within the framework of Algorithm 13 which

requires a rank one starting vector. Second, even if (4.64) were true, because n � 1

for problems of interest, it would be too costly to approximate s(λ;A ⊕ A′, u) using n

Lanczos processes on the spectral functions s(λ;A⊕A′, ei ⊗ ei), i = 1, . . . , n. Thus, we

must devise a new strategy to approximate the joint spectral function, rather than rely



109

on old tools.

Next, consider the following scenario. Suppose we know the eigenpairs of A′, i.e., we

have exactly computed eigenvalues λ′j ∈ R and corresponding orthonormal eigenvectors

x′j ∈ Rn for j = 1, . . . , n. The spectral function corresponding to A and x′j is given by

sj(λ) := s(λ;A, x′j) =
n∑
i=1

|(xi, x′j)|2δ(λ− λi). (4.66)

Other than shifting by a factor λ′j , (4.66) is the marginal obtained by fixing the index

j in (4.61). In other words,

α(λ) =
n∑
j=1

sj(λ− λ′j). (4.67)

Similarly, if we know the eigenvalues λi ∈ R and corresponding orthonormal eigenvectors

xi ∈ Rn of A, i = 1, . . . , n, then the spectral function corresponding to A′ and xi is

s′i(λ) := s(λ;A′, xi) =
n∑
j=1

|(xi, x′j)|2δ(λ− λ′j),

and the joint spectral function is given by

α(λ) =

n∑
i=1

s′i(λ− λi).

Equation (4.67) tells us that if we know the eigenpairs of A′, then we can obtain

the joint spectral function using the spectral functions corresponding to A and the

eigenvectors of A′. So, by approximating the eigenpairs of A′, and performing n Lanczos

processes on A with the approximate eigenvectors of A′, we can approximate the joint

spectral function. Continuing with our assumption that we know the eigenpairs of A′, let

T
(j)
m ∈ Rm×m be the partial tridiagonalization of A with starting vector x′j , j = 1, . . . , n,

and denote the eigenpairs of the partial tridiagonalization as T
(j)
m y

(j)
k = θ

(j)
k y

(j)
k , k =

1, . . . ,m. Then, the Lanczos approximation to the joint spectral function is given by

α̃(λ) =

n∑
j=1

s̃j(λ− λ′j), (4.68)
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where,

s̃j(λ) =
m∑
k=1

|(y(j)
k , e1)|2δ(λ− θ(j)

k ). (4.69)

While this may seem like an exercise in futility, given that we need to fully diagonalize

a matrix in order to approximate the joint spectral function, our examples in the next

chapter prove otherwise. The reasoning is simple. First, note that we have reduced the

workload by half. Instead of approximating eigenpairs of both matrices A and A′, we

now only need to approximate the eigenpairs of one or the other to estimate the joint

spectral function. Second, in certain situations, we are only interested in approximating

the joint spectral function in an interval [λ, λ]. This means that we are only required

to approximate the eigenpairs of A′ (or of A) for eigenvalues in a certain range. We

discuss specifically which eigenpairs of A′ are required next.

Assume we want to approximate the joint spectral function in the interval [λ, λ]

where λ ≤ λ1 + λ′1, i.e., we are interested in the “bottom” portion of the joint spectral

function (recall the eigenvalues of both A and A′ are in ascending order). Next, we show

that we only need to compute a portion of the spectrum of A′ for the Lanczos process,

dependent on the magnitude of λ. This greatly reduces the complexity of the problem,

and makes the method suitable for two and three dimensional computations.

We begin with a simple observation. Assume for the moment we know the first i

eigenpairs of A and j eigenpairs of A′, i.e., we have eigenvalues λi and corresponding

eigenvectors xi, for i = 1, . . . , i and λ′j and x′j for j = 1, . . . , j, with i, j ≤ n. Using only

these eigenpairs we may approximate the joint spectral function as

α(λ) ≈
i∑
i=1

j∑
j=1

|(xi, x′j)|2δ
(
λ− (λi + λ′j)

)
. (4.70)

Notice, however, that we can only rely on approximation (4.70) for λ between

λ ≤ λ ≤ min(λ1 + λ′
j
, λi + λ′1). (4.71)

The maximum value for which we trust the approximation (4.70) is determined by (4.71)

by the following reasoning: if more eigenvalues of A and A′ are computed, then the new

terms added to the right hand side of (4.70) involve Dirac masses concentrated at
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λi+i + λ′j and λi + λ′
j+j

for i, j ≥ 1, which are all greater than min(λ1 + λ′
j
, λi + λ′1).

Hence, we know that for all values λ satisfying (4.71), the joint spectral function is

unchanged with the addition of these new terms. The conclusion being, if we want to

use (4.70) to approximate the joint spectral function for λ ∈ [λ, λ], we need to compute

enough eigenpairs of A and A′ such that λ ≤ min(λ1 +λ′
j
, λi +λ′1), where λi and λ′

j
are

the largest eigenvalues computed of A and A′ respectively.

Now, we translate the above reasoning to the approximation of the joint spectral

function using the Lanczos process on A with starting vectors equal to the eigenvectors of

A′, as in (4.67). The above reasoning suggests that if we are interested in approximating

the joint spectral function for values of λ ≤ λ, we need to compute all eigenpairs of A′

with eigenvalues less than or equal to λ − λ1. Similarly, if we approximate the joint

spectral function using the Lanczos process on A′ with starting vectors equal to the

eigenvectors of A, then we need to compute all eigenpairs of A with eigenvalues less

than or equal to λ − λ′1. Note that, assuming eigenvalues of A and A′ are positive, λ1

and λ′1 are easy to approximate using a few iterations of the inverse power method, or

other more sophisticated methods. Note also that, in practice, all that is needed are

lower bounds for λ′1 or λ1. However, a poor lower bound will require the computation

of additional eigenpairs to ensure (4.71) is satisfied. Hence, it may be worthwhile to

compute λ1 to reasonable accuracy.

Using the above reasoning, the Lanczos approximation to the joint spectral function

in the interval [λ, λ], with λ ≤ λ1 + λ′1, is summarized in Algorithm 19.

Algorithm 19 Lanczos Approximation to the Joint Spectral Function

1: Initialize m, λ, and set α̃(λ) = 0.
2: Compute lower bound λ̃1 such that λ̃1 ≤ λ1 = λmin(A).
3: Compute eigenpairs of A′ with eigenvalues less than λ− λ̃1, A′x′j = λ′jx

′
j , ‖x′j‖ = 1,

j = 1, . . . , j.
4: for j = 1, . . . , j do
5: Partially tridiagonalize A with starting vector x′j , obtaining Tm ∈ Rm×m.

6: Compute eigenpairs Tmyk = θkyk, y
T
k y` = δk`, for k, ` = 1, . . . ,m.

7: α̃(λ)← α̃(λ) +
m∑
k=1

|(yk, e1)|2δ
(
λ− (θk + λ′j)

)
8: end for
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4.7 Joint Spectral Function for Generalized Eigenvalue

Problems

In this section we present the Lanczos approximation to the joint spectral function

corresponding to a pair of generalized eigenvalue problems. We use the same notation

as in last section, with the only difference being the use of the B-inner product, e.g.,

the joint spectral function becomes

α(λ) =
n∑

i,j=1

|(xi, x′j)B|2δ
(
λ− (λi + λ′j)

)
, (4.72)

where the eigenpairs are as in (4.2). Similarly, the marginal (4.66) becomes

sj(λ) := s(λ;A,B, x′j) =
n∑
i=1

|(xi, x′j)B|2δ(λ− λi). (4.73)

The joint spectral function (4.72) and marginal (4.73) are related by

α(λ) =

n∑
j=1

sj(λ− λ′j). (4.74)

We can use the B-Lanczos process to approximate sj(λ) in (4.73), and by replacing

sj(λ − λ′j) in (4.74) with the corresponding Lanczos approximation, we create an ap-

proximation to the joint spectral function. If we write s̃j(λ) as the Lanczos approxima-

tion to the spectral function s(λ;A,B, x′j), then the approximation to the joint spectral

function is given by

α̃(λ) =

n∑
j=1

s̃j(λ− λ′j). (4.75)

Note that, as in the previous section, if we are only interested in approximating the

joint spectral function for values λ ∈ [λ, λ], we only need to approximate some of the

eigenpairs of the matrix pencil involving A′ and B. The specific number determined by

the value λ− λ1 (here we again assume λ ≤ λ1 + λ′1).

In the case of the density of states and joint density of states, it was necessary to

change the starting vector when transitioning from the standard eigenvalue problem
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to the generalized eigenvalue problem, in addition to using the B-Lanczos method.

However, the situation is simpler in the case of the joint spectral function. The only

modification needed is the use of the B-Lanczos method instead of the standard Lanczos

algorithm. The Lanczos approximation to the joint spectral function corresponding to

a pair of generalized eigenvalue systems is given in Algorithm 20.

Algorithm 20 B-Lanczos Approximation of the Joint Spectral Function

1: Initialize m, λ, and set α̃(λ) = 0.
2: Compute lower bound λ̃1 such that λ̃1 ≤ λ1.
3: Compute eigenpairs of matrix pair A′ and B with eigenvalues less than λ − λ̃1,
A′x′j = λ′jBx

′
j , ‖x′j‖B = 1, j = 1, . . . , j.

4: for j = 1, . . . , j do
5: Perform m-steps of B-Lanczos with A, B, and x′j , to get Tm ∈ Rm×m.

6: Compute eigenpairs Tmyk = θkyk, y
T
k y` = δk`, for k, ` = 1, . . . ,m.

7: α̃(λ)← α̃(λ) +
m∑
k=1

|(yk, e1)|2δ
(
λ− (θk + λ′j)

)
.

8: end for



Chapter 5

Joint Spectral Quantities and

Semiconductor Applications

5.1 Modeling Random Alloys

The opto-electronic properties of semiconductors are governed by electric charge car-

rier distributions and their energy levels. Charge carriers in a semiconductor include

electrons in the conductance band and holes in the valence band. In order to under-

stand the quantum effects governing semiconductor behavior, we model carriers using

the time-independent Schrödinger equation. Solving the Schrödinger eigenvalue prob-

lem for the electron and hole systems is a computationally intense exercise, and for

many practical problems is outside of the capability of even the largest supercomputing

clusters. Therefore, numerical devices which obviate the need for a full diagonalization

of the electron and hole Hamiltonian are necessary. In this chapter we use the Lanczos

process as just such a device.

In this chapter we focus on applying the Lanczos process to approximate joint spec-

tral quantities corresponding to the ternary alloy indium gallium nitride (InGaN or

InXGa1−XN when specifying the indium fraction X). InGaN is a promising semicon-

ductor material with many beneficial properties. Most important is the ability to tailor

the bandgap to a wide range of energies based on the indium composition. InGaN alloys

are used in many industrial applications, including green and blue light emitting diodes

114
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and lasers. When modeling InGaN, the random indium content of the material is crit-

ical [66], and accounts for a phenomena called localization wherein the charge carriers

become concentrated in small regions of the domain. We follow the modeling paradigms

of [30], which are outlined in the upcoming sections.

The fundamental equation we work with when modeling quantum mechanical effects

of random alloys is the Schrödinger equation

− ~2

2
∇ ·
(

1

m
∇ψ
)

+ V ψ = Eψ, (5.1)

where ψ is the wavefunction, E the discrete energy level, V the potential, m the particle

mass, and ~ the reduced Planck constant. The elliptic operator, −~2/2∇·
(
1/m∇

)
+V ,

is referred to as the Hamiltonian, and the Schrödinger equation is an eigenvalue prob-

lem for the Hamiltonian. The eigenfunctions are referred to as wavefunctions, and the

eigenvalues of the Hamiltonian represent discrete energy levels of the quantum system.

Accordingly, in this chapter we use the term eigenvalue and energy interchangeably and

similarly for the terms eigenfunction and wavefunction. Oftentimes, when a single par-

ticle is under consideration, the Hamiltonian is simplified to −~2/(2m)∆+V . However,

in this Chapter we consider a generalization of the Schrödinger equation, referred to as

the effective mass Schrödinger equation, in which the mass term is spatially varying.

Therefore, keeping the reciprocal of the mass inside the divergence term is necessary.

5.1.1 Indium Fraction

When modeling InGaN alloys, we use a periodic cubic lattice in d dimensions (d = 1, 2,

or 3) with lattice spacing a = 2.833 Å. At each lattice point, an InN or GaN cation

is randomly placed using a random Bernoulli trial with probability of success (success

meaning an InN cation is located at the lattice position) equal to X. The value 0 ≤ X ≤
1 is the “bulk” indium content of the random alloy. Pure GaN corresponds to X = 0

and pure InN corresponds to X = 1. Once the InN and GaN are randomly distributed

in the lattice, the spatially varying indium fraction, X(x), is determined by a Gaussian

averaging process. If we let the values {ri}n`i=1 represent the n` lattice coordinates and

χi, i = 1, . . . , n`, boolean indicators of an InN cation in lattice position ri (χi = 1 if

InN is located at lattice position ri and 0 otherwise), the indium fraction at any point
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Figure 5.1: Depiction of two dimensional InGaN lattice with lattice spacing a = 2.833 Å
(left) and corresponding periodic Gaussian averaged indium fraction X(x) (right).

x in the domain is defined as

X(x) =

n∑̀
i=1

χiw(x, ri)

n∑̀
i=1

w(x, ri)

, (5.2)

where w(x, y) = exp(−|x−y|2/2(2a)2) and |x−y| denote the Euclidean distance between

points x and y. Note that periodicity must be taken into account when computing

distances |x − y|. The value of twice the lattice spacing, i.e., 2a, as the standard

deviation in the Gaussian averaging is a modeling choice taken from [30].

An example of a small two dimensional InGaN lattice is shown in Figure 5.1. InN,

shown in red, is useful for producing the infrared portion of the spectrum and GaN,

shown in blue, is commonly used in blue light emitting diodes. When combined, InGaN

alloys are capable of producing an array of colors, depending on the indium concentra-

tion. In Figure 5.1 a 6 × 6 lattice is shown with the bottom left position being (0, 0)

and the top right position as (5a, 5a). The lattice then repeats periodically. In other

words, the lattice positions (ka, 0) are identical to (ka, 6a) for k = 0, . . . , 5. Similarly,

the lattice positions (0, ka) are identically (6a, ka) for k = 0, . . . , 5. The periodic nature
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Figure 5.2: Bandgap of InGaN alloy.

of the lattice is apparent in the spatially varying indium fraction shown in Figure 5.1,

and is a consequence of taking periodicity into account when computing the indium

fraction using (5.2).

5.1.2 Bandgap, Conductance Band, and Valence Band

The distinctive feature of semiconductors is the bandgap energy, Eg, which is the differ-

ence in the discrete energy level between the conduction band, Ec, and the valence band,

Ev. The valence band is the highest energy fully occupied orbital and the conductance

band the lowest energy partially filled orbital. By alloying InN and GaN, engineers are

able to modulate the bandgap for a desired purpose. Figure 5.2 illustrates the bandgap

of InXGa1−XN in reference to that of InN and GaN.

A simple method to estimate the bandgap of InXGa1−XN alloys is to use Vegard’s

law which takes the convex combination of the bandgap of InN, EInN
g = 0.61 eV, and

that of GaN, EGaN
g = 3.437 eV, i.e., to use XEInN

g + (1−X)EGaN
g . A better method is

to use a quadratic correction to Vegard’s law

Eg(x) = X(x)EInN
g + (1−X(x))EGaN

g − γX(x)(1−X(x)), (5.3)

where γ = 1.4 eV, is referred to as the bowing parameter [60].
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Using the definition of the bandgap as the difference in energy level between the con-

ductance band, Ec, and valence band, Ev, we write Eg(X(x)) = Ec(X(x))−Ev(X(x)).

In order to determine the potentials influencing the electrons in the conductance band

and holes in the valence band, we must determine expressions for Ec and Ev. Let

∆Ec(1) and ∆Ev(1) denote the change in energy levels from the conductance and valence

band, respectively, of GaN and InN. Experimentally, one may determine that ∆Ec(1) ≈
2/3(EGaN

g − EInN
g ) and ∆Ev(1) ≈ 1/3(EGaN

g − EInN
g ). Interpolating linearly to values

of the indium fraction between zero and one, we use ∆Ec(X) = 2/3(EGaN
g − Eg(X))

and ∆Ev(X) = 1/3(EGaN
g − Ev(X)), which gives the conductance and valence band

potentials for any value x in the domain

Ec(x) = EGaN
g − 2

3

(
EGaN
g − Eg(x)

)
and Ev(x) =

1

3

(
EGaN
g − Eg(x)

)
. (5.4)

5.1.3 Effective Mass

The last ingredient necessary to write the Schrödinger equations is the mass term.

Because we are dealing with an alloy, we are unable to use the mass of InN carriers or

GaN carriers. Intuitively, it makes sense to use the carrier mass of InN in regions of

dense InN, and similarly for regions of dense GaN. The question is how to “interpolate”

between the two masses in regions mixed with InN and GaN. In order to accomplish

this, we investigate a model one dimensional problem.

For the sake of simplicity, suppose we are interested in determining the energy of a

particle with constant mass m(0) under the influence of a constant potential V0 in one

dimension on the domain (0, π). Solving the time-independent Schrödinger equation

with zero Dirichlet boundary conditions gives energy levels

E
(0)
k = V0 +

~2

2m(0)
k2, k ∈ N. (5.5)

Note that the energies in (5.5) are just the eigenvalues of the Laplacian (scaled by

~2/(2m(0))) plus the value of the constant potential. Similarly, considering the energy

level of a different particle of mass m(1), under the influence of the same constant
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potential energy, results in energy levels

E
(1)
k = V0 +

~2

2m(1)
k2, k ∈ N. (5.6)

Taking the convex combination of the energies (5.5) and (5.6) we find

E
(θ)
k := (1− θ)E(0)

k + θE
(1)
k = V0 +

~2

2m(θ)
k2, k ∈ N, (5.7)

where,

m(θ) :=

(
1− θ
m(0)

+
θ

m(1)

)−1

, (5.8)

for some 0 ≤ θ ≤ 1. Results (5.7) and (5.8) indicate that when determining energy levels

by interpolating between two species, the resulting energy is determined by a particle

which has mass equal to the harmonic mean of the two masses m(0) and m(1).

Applying the above reasoning to the case of an InGaN alloy, we use as masses for

the electrons and holes

me(x) =

(
1−X(x)

mGaN
e

+
X(x)

mInN
e

)−1

and mh(x) =

(
1−X(x)

mGaN
h

+
X(x)

mInN
h

)−1

, (5.9)

where mGaN
e and mInN

e are the electron masses for GaN and InN respectively and mGaN
h

and mInN
h are the hole masses of GaN and InN respectively. We refer to me and mh as

the effective electron and hole mass respectively. The carrier masses for GaN and InN

are all expressible in terms of the electron rest mass, m0
e,

mGaN
e = 0.21m0

e, m
InN
e = 0.07m0

e, m
GaN
h = 1.87m0

e, m
InN
h = 1.61m0

e, (5.10)

where the electron rest mass is approximately 511 keV/c2 with c being the speed of

light.

Finally, we remark that (5.9) should be considered as a first order approximation

to the carrier masses in an InGaN alloy. Higher order approximations to the effective

mass are discussed in [20].
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5.1.4 Effective Mass Schrödinger Equation

With the potentials defined in (5.4) and the effective masses defined in (5.9), we have all

terms necessary to write the Schrödinger equation satisfied by the electrons and holes

in a random alloy:

−}2

2
∇ ·
(

1

me
∇ψe

)
+ Ecψ

e = Eeψe,

}2

2
∇ ·
(

1

mh
∇ψh

)
+ Evψ

h = Ehψh,

(5.11)

where the electron energies and wavefunctions are Ee and ψe respectively, and the hole

energies and wavefunctions are Eh and ψh respectively. Note the change in sign in

front of the second order term in the equation satisfied by the holes. The second order

term represents the kinetic energy of the carriers and the zeroth order term represents

the potential energy. With the potentials and sign conventions of (5.11), the electron

energies are positive (the second order term is positive definite and the conductance

potential is positive) and larger eigenvalues correspond to higher energy quantum states.

On the other hand, the hole energies can be positive and negative. More energetic states

for the holes correspond to negative eigenvalues of increasing magnitude.

Note that the electron and hole energies are measured with respect to the valence

band energy of GaN. As shown in Figure 5.2, we made an arbitrary modeling choice

and defined the reference energy, or the zero on the energy scale, to be the valence

band energy of GaN. We could just as easily defined the valence band energy of InN

to be zero. Independent of the arbitrary reference energy, of fundamental importance

are the energy differences Eei −Ehj , i, j = 1, 2, . . ., which represents the energy required

to excite an electron to the conductance band and create an electron-hole pair. Next,

we discuss a different normalization convention which is more in line with the theory of

joint spectral functions outlined in the previous Chapter.

5.1.5 Normalization Convention

As mentioned in Section 5.1.4, the fundamental quantity of interest is the energy dif-

ference of the electrons in the conductance band and the holes in the valence band.

In this section we reformulate the effective mass Schrödinger equations (5.11) in a way

that leaves the wavefunctions unaltered, but modifies the energies. As we will see, this
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change still allows us to compute the energy differences of interest.

Define a new conductance and valence band potentials as

Vc(x) =
2

3
Eg(x) and Vv(x) =

1

3
Eg(x). (5.12)

Note that relative to the potentials Ec and Ev defined in (5.4), the new potentials satisfy

Vc = Ec −
1

3
EGaN
g and Vv =

1

3
EGaN
g − Ev.

In other words, Vc is simply a shift down of the potential Ec by 1/3EGaN
g , while Vv is a

sign reversal of Ev, followed by a shift up by 1/3EGaN
g . Using the potentials Vc and Vv,

we are interested in solutions to the Schrödinger equation

−~2

2
∇ ·
(

1

me
∇ψe

)
+ Vcψ

e = λeψe,

−~2

2
∇ ·
(

1

mh
∇ψh

)
+ Vvψ

h = λhψh.

(5.13)

Note that our notational use of ψe and ψh in both (5.11) and (5.13) is justified, as

they are equivalent. Both second order terms in (5.13) are positive definite, as opposed

to (5.11), where the second order term in the hole equation was negative definite. Also,

because both potentials Vc and Vv are positive, the energies λe and λh are positive.

Furthermore, it is straightforward to see that the energies of systems (5.11) and (5.13)

are related by

Eei =
1

3
EGaN
g + λei and Ehj =

1

3
EGaN
g − λhj , i, j ∈ N. (5.14)

Therefore, the fundamental quantity of interest, namely the energy required to excite

an electron to the conductance band, is given by

Eei − Ehj = λei + λhj , i, j ∈ N. (5.15)

Moving forward, we will work with numerical discretizations of (5.13). Obviously, if one

is interested in the energies corresponding to the system (5.11), a simple application

of (5.14) transitions from one convention to the other.
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5.1.6 Nondimensionalization

When discretizing the system (5.13), it is convenient to first nondimensionalize the sys-

tem. Nondimensionalization involves choosing a standard length and mass to measure

all others in relation to. To illustrate, we nondimensionalize the system (5.1), with

application to the systems (5.13) straightforward.

First, we choose the InGaN lattice spacing constant, a = 2.833Å, as a characteristic

length and define a new dimensionless length scale as x̂ = x/a. The InGaN lattice, aZd,
becomes Zd, and the new eigenfunctions we are interested in computing are ψ̂(x̂) :=

ψ(x). This change of variables modifies the spatial derivatives according to ∂/∂x̂i =

a∂/∂xi, i = 1, . . . , d, and so the gradient becomes ∇ = a−1∇̂.

Next, we choose the electron rest mass, m0
e ≈ 511 keV/c2, as the characteristic mass.

This is a natural choice since all relevant masses (5.10) are already expressed in terms

of the electron rest mass.

With the characteristic length and mass decided, we choose the characteristic (ref-

erence) energy as

Er =
}2

2m0
ea

2
≈ 0.4747 eV. (5.16)

Using the characteristic length, mass, and energy we can nondimensionalize the remain-

ing variables in (5.1) as

V̂ (x̂) =
V (x)

Er
, m̂(x̂) =

m(x)

m0
e

, Ê =
E

Er
. (5.17)

With all terms nondimensionalized, we can rewrite (5.1) in terms of dimensionless quan-

tities as

− ∇̂ ·
(

1

m̂
∇̂ψ̂
)

+ V̂ ψ̂ = Êψ̂. (5.18)

When performing computations, the discretization of (5.18) is used. Then, when

reporting the results, the energies are converted back to physical units using E = ÊEr,

with the reference energy, Er, given by (5.16). On the other hand, when referencing

spatial variables, e.g., plotting potentials or wavefunctions, we report results with re-

spect to the transformed variable, x̂, rather than transitioning to physical units. For

example, when performing one dimensional computations on a lattice with 5001 cation
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sites, we report results using the domain Ω = [0, 5000], rather than transitioning to

physical units on the domain [0, L], where L = 5000a ≈ 1.4 µm. Obviously, we can

easily transition between one convention and the other using the lattice spacing a.

5.1.7 Spectral and Joint Spectral Quantities

The fundamental optoelectronic properties of InGaN semiconductors are determined by

spectral quantities defined in terms of the eigenpairs of the effective mass Schrödinger

equations (5.13). These are the densities of states,

φe(λ) =
∞∑
i=1

δ(λ− λei ) and φh(λ) =
∞∑
j=1

δ(λ− λhj ), (5.19)

in addition to the joint densities of states and absorption curve (sometimes called the

absorption coefficient),

J(λ) =
∞∑

i,j=1

δ
(
λ− (λei + λhj )

)
and α(λ) =

∞∑
i,j=1

|〈ψei , ψhj 〉|2δ
(
λ− (λei + λhj )

)
, (5.20)

where 〈 · , · 〉 represents the L2(Ω) inner product. Note the resemblance of the absorption

curve and the joint spectral function defined in the previous chapter.

The quantities in (5.19) and (5.20) involve the solution of infinite dimensional prob-

lems, and so are out of reach except in the simplest situations (we describe such a

contrivance in Section 5.3). Hence, in order to understand the properties of an InGaN

alloy, we must first use a robust discretization in order to apply the Lanczos process. We

use the standard finite element method, and discuss the discretization in Section 5.2.

5.1.8 Regularizing the Dirac Delta

In many instances, we would like to visualize spectral quantities (if known), and the

Lanczos approximation of the spectral quantities, both of which involve linear combi-

nations of Dirac distributions. Oftentimes, the Dirac distribution, concentrated at a

value E0, is thought of as a function with unit integral which is zero everywhere, except

at the value E0, where it is infinite. This is illustrated in Figure 5.3 (left). Although

this is not technically correct, since the Dirac distribution is not defined in a pointwise
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Figure 5.3: Visualization of the Dirac distribution concentrated at the value E0 (left)
and a Gaussian with standard deviation σ and mean E0 (right).

sense, we can use a smooth approximation which, in an appropriate limit, also has these

properties. Let σ be a small positive parameter. We “regularize” the Dirac distribution

by replacing it with a Gaussian of standard deviation σ

δσ(E) =
1√

2πσ2
e−

E2

2σ2 . (5.21)

The regularized Dirac distribution, δσ(E − E0), seen in Figure 5.3 (right), is an

approximation to δ(E − E0) in the sense that the following hold:

(i)
+∞∫
−∞

δσ(E)dE = 1 for all σ > 0.

(ii) lim
σ→0

δσ(E) =

0, E 6= 0,

∞, E = 0.

(iii) lim
σ→0

+∞∫
−∞

δσ(E)f(E)dE =
+∞∫
−∞

δ(E)f(E)dE for all f ∈ C∞0 (R).

The first fact is easily established using polar coordinates. For the second, the case

E = 0 follows directly from the definition (5.21). For the case E 6= 0, applying the

Squeeze Theorem to 0 ≤ δσ(E) ≤
√

2πσ2/(2πσ2 + πE2) (follows from ex ≥ 1 + x)

as σ → 0 gives the desired result. For the third fact, using the change of variables,
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Figure 5.4: Visualization of the density of states,
∑7

i=1 δ(E − Ei), using “exact” Dirac
mass (left) and the regularization using Gaussians,

∑7
i=1 δσ(E − Ei), for some regular-

ization parameter σ > 0 (right).

y = E/σ, we have

+∞∫
−∞

δσ(E)f(E)dE =
1√
2π

+∞∫
−∞

e−y
2/2f(σy)dy, (5.22)

where f ∈ C∞0 (R) is arbitrary. Noticing that the integrand in the right-hand side

of (5.22) is dominated by e−y
2/2‖f‖∞ and

∫ +∞
−∞ e−y

2/2‖f‖∞dy < ∞, we can use the

Lebesgue Dominated Convergence Theorem to get

lim
σ→0

1√
2π

+∞∫
−∞

e−y
2/2f(σy)dy =

1√
2π

+∞∫
−∞

lim
σ→0

e−y
2/2f(σy)dy,

=
1√
2π

+∞∫
−∞

e−y
2/2f(0)dy,

= f(0),

=

+∞∫
−∞

δ(E)f(E)dE.

(5.23)

Together, (5.22) and (5.23) give (iii).
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In order to understand how regularization through the use of Gaussians influences

spectral quantities, we use the density of states as an example. Let Ei, for i = 1, . . . , 7,

denote seven positive energy levels, and suppose we want to visualize
∑7

i=1 δ(E − Ei).
Without regularization, the density of states can be visualized as seven spikes, each of

which has unit area, infinite height, and infinitesimally small width. This is shown in

Figure 5.4 (left). Replacing the Dirac distributions with the Gaussian (5.21) of some

finite width results in Figure 5.4 (right). We see that the regularized density of states is

largest where there is a cluster of eigenvalues (the region around E2, E3, and E4), and

smallest where there is a large gap between the eigenvalues (between E4 and E5).

An important property of the Dirac mass is its unit area

E0+ε∫
E0−ε

δ(E − E0)dE = 1, (5.24)

for any ε > 0. By replacing the Dirac distribution with a Gaussian, δσ(E − E0),

the equality becomes and approximation. How well the approximation holds obviously

depends on the ratio ε/σ. If ε/σ � 1, then we expect (5.24) to fail catastrophically, while

if ε/σ � 1, then (5.24) should hold closely. Depending on the precision with which we

require (5.24) to hold will dictate the choice of σ. Figure 5.5 shows the density of states

for four different values of σ. We see that as σ increases, the Gaussian distributions

blur together, while for smaller values of σ we can see each individual Gaussian. In

other words, larger σ corresponds to less detail, while smaller σ corresponds to more

specificity. The correct choice of σ depends on the level of precision with which we want

to emulate the Dirac distribution.

There are many ways to approximate the Dirac distribution, and we have made an

arbitrary choice in using (5.21). Other commonly used choices include

δ̃σ(E) =


1

2σ , |E| < σ

0, otherwise
, or δ̃σ(E) =


C
σ exp

(
σ2

|E|2−σ2

)
, |E| < σ

0, otherwise
,

where the constant C is a normalization factor. Note that both approximations, δ̃σ, have

finite support, as opposed to using a Gaussian, δσ, with infinite support. More generally,
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σ1 σ2

σ3 σ4

Figure 5.5: Regularized density of states corresponding to different levels of regulariza-
tion σ1 > σ2 > σ3 > σ4. The maximum height of the graphs satisfies h1 < h2 < h3 < h4.

finite width approximations of the Dirac distribution are known as approximations of

unity (the Dirac distribution being the identity with respect to convolution) [63]. The

specific choice of approximation will alter how the spectral quantities appear graphically.

Note that thus far, we have been discussing visualization of the exact density of

states, and not an approximation. When discussing the approximation, there are other

factors to consider. Namely, smaller values of σ will require us to perform more Lanczos

iterations since we are, in a sense, trying to recreate the exact position of each energy.

On the other hand, larger values of σ allow for easier approximation, since we are only

trying to emulate the bulk properties of the spectral quantity.
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Lastly we remark that if E has units of energy, then δ(E) has units of reciprocal

energy. This follows because multiplying δ(E) by an infinitesimal energy dE and sum-

ming (integrating), gives a dimensionless constant. Also, the parameter σ will also have

units of energy since it measures a standard deviation, i.e., width, in energy space. The

units of energy we use in this chapter are electron volts, or eV, and so a value σ = 0.01

corresponds to 10 meV.

5.1.9 On the Choice of σ and m

Previously, we discussed the choice of regularization parameter, σ, with respect to the

exact spectral quantity. Here we discuss the impact of σ with respect to the Lanczos

approximation and the choice of the Krylov parameter m, which represents the number

of Gram–Schmidt orthogonalization steps. This is an important and nuanced issue. In

order to understand the relationship between σ and m we examine a simple example

illustrating the finer points.

We start with a matrix related to the discretization of the one dimensional Laplace

operator using central differences (or finite elements with mass lumping)

A =


2 −1

−1 2
. . .

. . .
. . . −1

−1 2

 ∈ Rn×n. (5.25)

The matrix A has eigenvalues

λi = 4 sin2

(
iπ

2(n+ 1)

)
, i = 1, . . . , n, (5.26)

and (unnormalized) eigenvectors which are the columns of the matrix with entries

sin

(
ijπ

n+ 1

)
, i, j = 1, . . . , n.

Denote the normalized eigenvectors of A as xi, i = 1, . . . , n. Choosing a vector v with

entries drawn from the standard normal distribution which has been normalized, the
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σ = 0.01 σ = 0.05

σ = 0.10 σ = 0.20

Figure 5.6: Spectral function for the matrix defined in (5.25) and a vector with entries
drawn from N (0, 1) which has been normalized.

spectral function

sσ(λ) =

n∑
i=1

|(xi, v)|2δσ(λ− λi),

is shown in Figure 5.6 for values of σ ranging from 0.01 to 0.20 and n = 2000.

We focus on the regularization parameter σ = 0.05, and investigate the Lanczos

approximation of sσ for different values of the Krylov space parameter m. Denote the
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regularized approximation to sσ from the Lanczos process by

s̃σ(λ) =

m∑
j=1

|(yj , e1)|2δσ(λ− θj),

where the θj ∈ R (Ritz values) and yj ∈ Rm (‖yj‖ = 1) are the eigenpairs of the Lanczos

partial tridiagonalization of A with starting vector v. First, we purposely choose a

value of m which is insufficient, i.e., too small. Figure 5.7 (left) shows the Lanczos

approximation of the spectral function depicted in Figure 5.6 for Krylov dimension

m = 25 and σ = 0.05. The Ritz values, θj , j = 1, . . . ,m are shown on the x-axis with

dotted vertical lines up to the Lanczos approximation s̃σ. Also shown in Figure 5.7

(right) is the error in the Lanczos approximation, s̃σ − sσ, along with the Ritz values.

Two important details about the Lanczos process are illustrated in Figure 5.7. First,

the spectral function is approximated well at the extremities, and poorly in the interior.

This is related to the fact that Gaussian quadrature nodes cluster at the endpoints

of the interval of integration. Because the quadrature nodes are more dense at the

endpoints of the interval, the Lanczos process matches the spectral function closely

there. The second detail to be noted is the Lanczos approximation oscillates around

the exact spectral function in the interior where the gap between Ritz values is largest.

This is easily explained by the moment matching property, which requires

n∑
i=1

|(xi, v)|2λ`i =
m∑
j=1

|(yj , e1)|2θ`j , ` = 0, 1, . . . , 2m− 1. (5.27)

When m/n � 1, the weights, |(yj , e1)|2, must be relatively large in order for (5.27) to

be satisfied. Due to this overcompensation, the Lanczos approximation is larger than

the spectral function at the Ritz values. This is clearly be seen in Figure 5.7 (right),

where the oscillations in the error have large positive amplitudes at the Ritz values, and

large negative amplitudes midway between Ritz values.

With these two details, one, that the Lanczos approximation oscillates around the

exact solution, and two, that the Lanczos approximation converges from the extremities,

it is straightforward to devise a strategy to approximate any one spectral function

accurately for a given value of σ. Namely, by continuing with the Lanczos process
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Figure 5.7: Lanczos approximation to a spectral function for Krylov dimension m = 25
and regularization parameter σ = 0.05.

until the difference in Ritz values is small enough, to be made precise momentarily, we

can determine how accurately we have approximated a given spectral function. How

small the gap in Ritz values needs to be depends on the value σ. For smaller values of

σ, we need Ritz values (quadrature nodes) to be closer together in order to avoid the

oscillations seen in Figure 5.7. Therefore, it makes sense to choose τ ∈ R, a multiple of

σ, and continue with the Lanczos process until the gap between Ritz values is smaller

than τ .

Using this methodology, Table 5.1 shows the results for τ = 2.5σ = 0.125. The

value m is chosen to be the largest integer for which max1≤i≤m−1|θi − θi+1| < τ , and

then θ is set equal to θm. In other words, because the Ritz values θ1 ≤ . . . ≤ θm = θ

are clustered sufficiently close together, we can trust the Lanczos approximation to the

spectral function for λ ≤ θ. The error, ‖sσ − s̃σ‖L∞(0,θ) = supλ∈(0,θ)|sσ(λ) − s̃σ(λ)|,
shown in the final column of Table 5.1, is seen to be stable for this fixed value of τ .

m m θ ‖sσ − s̃σ‖L∞(0,θ)

20 3 0.15 3.23× 10−2

30 7 0.45 3.55× 10−2

40 11 0.64 1.01× 10−2

50 16 0.86 2.91× 10−3

60 60 4.00 3.70× 10−3



132

Table 5.1: Uniform norm of error in Lanczos approximation to spectral function for
τ = 2.5σ and σ = 0.05.

Similar results occur for smaller values of τ , and can bee seen in Table 5.2 for

τ = 1.5σ = 0.075. We see that the error, ‖sσ − s̃σ‖L∞(0,θ), for tolerance τ = 1.5σ

is a few orders of magnitude smaller than for τ = 2.5σ. Again, the uniform error

in the interval (0, θ) is quite stable. Clearly, larger values τ require few iterations of

the Lanczos process (smaller values of Krylov parameter m), while smaller τ (tighter

tolerances) requires larger values of m, and hence is more computationally intensive.

m m θ ‖sσ − s̃σ‖L∞(0,θ)

60 15 0.54 1.76× 10−4

70 22 0.85 1.97× 10−4

80 26 0.92 3.28× 10−5

90 37 1.41 2.68× 10−5

100 100 4.00 7.09× 10−6

Table 5.2: Uniform norm of error in Lanczos approximation to spectral function for
τ = 1.5σ and σ = 0.05.

By considering the gap between Ritz values in relation to the regularization parame-

ter σ, we are able able to accurately determine when to stop the Lanczos process. When

there are large gaps, relative to σ, the Lanczos approximation will oscillate about the

exact spectral function as in Figure 5.7. Because solving for the eigenvalues of small

symmetric tridiagonal matrices is efficient, we can inexpensively ensure the Lanczos

process produces an accurate approximation to the spectral function by terminating

the Lanczos algorithm when the gap between Ritz values is smaller than τ for a prop-

erly chosen τ ∈ R. Smaller values of τ correspond to tighter tolerances, more Lanczos

iterations, and a more accurate approximation. Conversely, larger values of τ require

fewer iterations and produce a less accurate approximation.

5.2 Finite Element Discretization

In this section we use the standard H1-conforming Lagrange finite elements to discretize

the effective mass Schrödinger equation [9, 12, 11]. We first write Equation (5.18) in
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weak form, which is the natural place to begin the finite element method. Multiply-

ing (5.1) by a smooth function ϕ, and integrating by parts over a domain Ω ⊂ Rd, we

have ∫
Ω

(
1

m
∇ψ · ∇ϕ+ V ψϕ

)
−
∫
∂Ω

1

m

∂ψ

∂ν
ϕ = λ

∫
Ω

ψϕ, (5.28)

where ν is the outward unit normal vector on ∂Ω and ∂ψ/∂ν = ∇ψ · ν. Assuming

periodic boundary conditions, the boundary term vanishes. Let H1
per(Ω) denote the

subset of H1(Ω) = {u ∈ L2(Ω) | ∂u/∂xi ∈ L2(Ω) for i = 1, . . . d} satisfying periodic

boundary conditions. Writing (5.28) in terms of bilinear operators, we are solving for

the energies λ ∈ R and wavefunctions ψ ∈ H1
per(Ω), such that

a(ψ,ϕ) = λ〈ψ,ϕ〉 for all ϕ ∈ H1
per(Ω), (5.29)

where a : H1(Ω)×H1(Ω)→ R is given by

a(ψ,ϕ) =

∫
Ω

(
1

m
∇ψ · ∇ϕ+ V ψϕ

)
. (5.30)

Let T denote a shape regular conforming triangulation of the domain Ω, and for a

fixed natural number p, define the finite element space

Xp = {f ∈ C0(Ω) | f |T ∈Pp(T ) for all T ∈ T } ∩H1
per(Ω). (5.31)

Posing the infinite dimensional problem (5.29) over the finite dimensional space Xp

using the standard Galerkin method, the problem becomes: find ψ̃ ∈ Xh and λ̃ ∈ R
such that

a(ψ̃, ϕ) = λ̃〈ψ̃, ϕ〉 for all ϕ ∈ Xh. (5.32)

Choosing a basis for the function space Xp, {ϕk}nk=1 say, the finite dimensional prob-

lem (5.32) becomes

Ax = λBx, (5.33)

where Aij = a(ϕj , ϕi) is the stiffness matrix and Bij = 〈ϕj , ϕi〉 is the mass matrix. The

mass matrix is symmetric positive definite, and assuming the potential is positive, the

stiffness matrix is as well. Therefore, the eigenvalues, or energies, of the system (5.33) are
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positive. The eigenvectors of the system (5.33) are the coefficients of the eigenfunctions

ψ̃ in terms of the basis {ϕk}nk=1.

When performing the finite element discretization for the systems (5.13), we arrive

at two generalized eigensystems, one for the electrons and another for the holes,

Aexei = λeiBx
e
i and Ahxhj = λhjBx

h
j . (5.34)

Note that we use the same notation in (5.34) for the energies of the discretized system,

λe and λh, as we did for the exact energies in (5.13). This is done to avoid a deluge of

extra tildes throughout this chapter. Both electron and hole eigenvectors are assumed

to be B-orthonormalized, i.e., (xei , x
e
j)B = δij and (xhi , x

h
j )B = δij where ( · , · )B is the

B inner product.

Next, we overview the spectral and joint spectral quantities (5.19) and (5.20) in light

of the finite element discretization (5.34). The density of states for the systems (5.34)

are

φe(λ) =
1

n

n∑
i=1

δ(λ− λei ) and φh(λ) =
1

n

n∑
j=1

δ(λ− λhj ). (5.35)

Similarly, the joint density of states is given by

J(λ) =
1

n2

n∑
i,j=1

δ
(
λ− (λei + λhj )

)
. (5.36)

For the absorption curve, notice that the approximations to the wavefunctions of the

systems (5.13) are given by

ψei ≈ ψ̃ei =

n∑
k=1

(xei )kϕk and ψhj ≈ ψ̃hj =
n∑
k=1

(xhj )kϕk. (5.37)

Therefore, using the relation 〈ψ̃ei , ψ̃hj 〉 = (xei , x
h
j )B, the approximate absorptions curve

is

α(λ) =

n∑
i,j=1

|(xei , xhj )B|2δ
(
λ− (λei + λhj )

)
, (5.38)

which is exactly the joint spectral function for the generalized eigensystems in (5.34).

In the rest of this chapter we approximate the spectral quantities (5.35) and the joint
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spectral quantities (5.36) and (5.38) using the Lanczos process.

For all of the following problems we use the FEniCS finite element software [35] to

assemble the stiffness and mass matrices and use the PETSc and SLEPc libraries [8, 21]

for the solution of linear systems and eigenvalue problems respectively. When computing

the absorption curve, we first need to approximate several eigenpairs of the electron (or

hole) eigensystem. In SLEPc, a Krylov-Schur method is employed for the solution of all

eigensystems, which for a symmetric matrix, is the thick-restart Lanczos algorithm [65].

The generalized eigenvalue problem uses the same method, with the only difference in

the use of operator and inner product.

5.3 Homogeneous Alloys

Before modeling random alloys, we first look at the simple case of homogeneous alloys.

For homogeneous alloys, we assume the indium fraction is constant throughout the

domain. That is, we replace the spatially varying indium fraction, X(x), with the bulk

indium fraction X. This removes the spatial dependence of the conductance and valence

band potentials, making them constant. The effective masses for the electrons and holes

are similarly constant. Because the potentials and effective masses are constant, the

effective mass Schrödinger equation becomes the Laplace eigenvalue problem, which we

can solve analytically. By understanding homogeneous alloys, which model so called

“bulk” properties, we are able to understand and explain different phenomena that

occur with random alloys.

For the homogeneous alloy, we choose the domain to be Ω = [0, L]d, in dimension

d, where the domain length L depends on the number of lattice sites and the lattice

spacing. Specifically, for N lattice sites with lattice spacing a, the domain length is

given by L = (N − 1)a. We choose to impose zero Dirichlet boundary conditions for

simplicity.

In what follows we fix the indium fraction to be X = 0.2. Vergard’s Law with

bowing parameter (5.3) gives a bandgap energy of Eg = 2.65 eV, from which we can

determine the conductance and valence potential, Vc = 2/3Eg and Vv = 1/3Eg. The
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effective masses are

me =

(
1

5mInN
e

+
4

5mGaN
e

)−1

≈ 0.15m0
e,

mh =

(
1

5mInN
h

+
4

5mGaN
h

)−1

≈ 1.81m0
e,

where m0
e is the electron rest mass 5.11× 105 eV/c2.

With all values in the Schrödinger equation specified, we are prepared to write

the electron and hole wavefunctions , and corresponding energies. Using multi-index

notation, the L2(Ω) normalized solutions at x = (x1, . . . , xd) ∈ Ω are given by

ψeµ(x) =

(
2

L

)d/2 d∏
i=1

sin
(µiπxi

L

)
, Eeµ = Vc +

~2π2

2meL2
|µ|2,

ψhν (x) =

(
2

L

)d/2 d∏
i=1

sin
(νiπxi

L

)
, Ehν = Vv +

~2π2

2mhL2
|ν|2,

(5.39)

for µ, ν ∈ Nd. In (5.39) we use the notation |µ|2 =
∑d

i=1 µ
2
i for µ ∈ Nd.

By the orthogonality of sinusoids,

(ψeµ, ψ
h
ν ) = δµν =

1, µ = ν,

0, otherwise,

which means that most terms in the absorption curve are zero. Only those terms where

the electron and hole multi-index are identical survive. Defining Eµν as the sum of the

electron and hole energies, from (5.39) we have

Eµν := Eeµ + Ehν = Eg +
~2π2

2L2

(
|µ|2

me
+
|ν|2

mh

)
. (5.40)

The densities of state, joint density of state, and absorption curve for a homogeneous
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alloy are then given by

φe(E) =
∑
µ

δ
(
E − Eeµ

)
, φh(E) =

∑
ν

δ
(
E − Ehν

)
,

J(E) =
∑
µ,ν

δ
(
E − Eµν

)
,

α(E) =
∑
µ

δ
(
E − Eµµ

)
,

(5.41)

where all energies are given as in (5.39) or (5.40), and the summations are taken over

all multi-indexes in Nd.
When defining the density of states for a matrix, or joint density of states for a pair

of matrices, we add a normalization factor, 1/n for the density of states or 1/n2 for

the joint density of states, in front of the summation, where n is the matrix size. In

the case of infinite dimensional solutions like (5.39), this normalization is nonsensical.

Instead, we plot the spectral densities for energy values less than or equal to 4 eV, and

normalize each by the number of summands with energy values less than 4.5 eV (we

extend beyond 4 eV because when using the Gaussian in place of the Dirac mass, terms

with energy beyond 4 eV contribute to the value of the spectral quantity for energy

values less than or equal to 4 eV). We denote the number of summands in the electron

density of states, hole density of states, joint density of states, and absorption curve as

ne, nh, neh, and nα respectively. These values, along with the domain length used for

each dimension, are given below in Table 5.3. The spectral and joint spectral quantities

for homogeneous alloys in one, two, and three dimensions can be seen in Figures 5.8, 5.9,

and 5.10 respectively. All plots are shown with regularization parameter σ = 100 meV.

d N ne nh neh nα

1 5001 1479 5913 4,043,948 1170

2 201 2693 43,699 20,032,672 1671

3 51 1445 104,176 7,870,992 681

Table 5.3: Homogeneous InGaN spectral quantity data.
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Figure 5.8: Electron DOS (top left), hole DOS(top right), JDOS (bottom left), and
absorption curve (bottom right) for a one dimensional uniform InGaN alloy with twenty
percent indium. Plotted using σ = 100 meV.

Figure 5.9: Electron DOS (top left), hole DOS(top right), JDOS (bottom left), and
absorption curve (bottom right) for a two dimensional uniform InGaN alloy with twenty
percent indium. Plotted using σ = 100 meV.
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Figure 5.10: Electron DOS (top left), hole DOS(top right), JDOS (bottom left), and
absorption curve (bottom right) for a three dimensional uniform InGaN alloy with
twenty percent indium. Plotted using σ = 100 meV.

5.4 Joint Spectral Approximation Workflow

In this section we describe the workflow used to approximate the absorption curve for

a random InGaN alloy in d-dimensions. The outline is listed below:

1. Create random InGaN lattice, compute fundamental energy of electron and hole

eigensystems, and minimal and maximal eigenvalue of scaled stiffness matrix.

2. Use the Lanczos process to approximate the electron and hole density of states.

3. Using the densities of states, determine how many and which eigenpairs need to

be computed.

4. Compute eigenpairs.
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5. Approximate absorption curve by performing the Lanczos process with each com-

puted eigenvector as starting vector.

The first step, creating the random lattice, is where we compute the spatially de-

pendent indium fraction X(x). With the indium fraction, we are able to compute the

conductance and valence potentials Vc and Vv, as well as the effective masses me and

mh. These terms give us all the ingredients to form the stiffness matrices for the elec-

trons and holes Ae and Ah. Note that the mass matrix is independent of the specific

random realization for the InGaN lattice, and only depends on the choice of tessella-

tion and piecewise polynomial basis. Once the matrices have been assembled, we begin

approximating spectral quantities.

Before beginning with any Lanczos type methods, we first compute several pre-

liminary eigenvalues. The first are the fundamental energies of the electron and hole

eigensystems. These allow us to use the density of states (discussed shortly) to deter-

mine how many eigenpairs to compute. Recall, if we were computing the absorption

curve exactly, need to compute ne electron and nh hole eigenpairs so that

E ≤ min(λe1 + λhnh , λ
e
ne + λh1), (5.42)

is satisfied, where E is the maximal energy we are interested in viewing the absorption

curves. This way, we know that computing more eigenpairs does not change the ab-

sorption curve for energies less than E. We choose E = 4 eV throughout this chapter

because this is slightly above the bandgap of GaN, and, as we will see, all of the interest-

ing phenomena occur between the bandgap of InN and GaN. Condition (5.42) similarly

applies to using the Lanczos process, except that we only need to compute one set of

eigenpairs or the other. By knowing the fundamental electron and hole eigenvalues to

very high accuracy, we can then determine the number of electron and hole eigenpairs

necessary using

ne =

∫ E−λh1

0
nφe(λ)dλ and nh =

∫ E−λe1

0
nφh(λ)dλ. (5.43)

In practice, we replace the spectral densities in (5.43) with the regularized approxima-

tions (replace Dirac delta with a Gaussian of variance σ as in (5.21)) from the Lanczos
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process, and use a simple composite trapezoidal rule to approximate the integrals. More

details on the choice of σ are given in Section 5.5.

In addition to the fundamental electron and hole energies, we compute the largest

and smallest eigenvalues of the mass matrix. The mass matrix does not change from one

random realization to the next, and so the extremal eigenvalues can be stored and reused

if many computations are performed using the same mesh and polynomial basis. We

compute these values for use in the density of states computation. Using the minimal

and maximal eigenvalues of the stiffness matrix, we are able to determine the degree

Chebyshev expansion with which to approximate S−1 where S is the square root of the

stiffness matrix B. This was discussed at length in the previous chapter, and so here we

highlight the computations performed without explanation. If a and b are the smallest

and largest eigenvalues of B, then we define c = 1/2(b+ a), d = 1/2(b− a), and set

ρ =
c

d
+

√(
c

d

)2

− 1.

We choose a Chebyshev expansion of degree k, where k is the smallest integer satisfying

2ρ−k

(ρ− 1)
√
c− dr

< 10−16,

where r = 1/2(ρ + ρ−1). The value k is determined using a bisection algorithm. The

values of k, a, and b, along with the domain, Ω, and degree finite elements p, used in

this chapter for each dimension are shown in Table 5.4.

d Ω p a b k

1 [0, 5000] 3 0.50 1.48 28

2 [0, 200]2 3 0.29 2.01 48

3 [0, 50]3 2 0.25 4.35 81

Table 5.4: Degree Chebyshev expansion to use for approximating inverse square root of
B.

Next, we perform Step (2), which is to use the Lanczos process to approximate the

densities of states for the electron and hole systems. For each system, we perform nv
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trials with starting vectors with entries drawn independently from the standard normal

distribution as in Algorithm 2. Using the approximations to the densities of states φ̃e

and φ̃h for the electrons and holes respectively, we can approximate the required number

of electron and hole eigenpairs necessary according to (5.43). Call these approximations

ñe and ñh.

Assuming ñe < ñh, we compute ñe electron eigenpairs in Step (3). Note that for

InGaN alloys, it is always the case that ñe < ñh, by a considerable factor. This is due

to the higher mass of the holes in comparison to that of the electrons. The density

of hole eigenpairs at lower energies can be seen explicitly in the densities of states for

the homogeneous alloys in Figures 5.8, 5.9, 5.10. We include the computation of ñh in

this thesis for completeness. Also, we need the hole density of states approximation in

order to form the joint density of states approximation using method II described in

the previous chapter. So, the only “unnecessary” work performed is the computation

of the fundamental electron eigenvalue, and the approximation of nh by (5.43). The

timing of these two steps is negligible when compared to the total timing of computing

the approximate absorption curve.

Once the ñe electron energies, λei , and eigenvectors, xei , i = 1, . . . , ñe, are computed,

we then perform the Lanczos process with the matrices Ah, B, and starting vector xei ,

to approximate the marginals

shi (λ) := s(λ;Ah, B, xei ) =

n∑
j=1

|(xei , xhj )|2δ(λ− λhj ) for i = 1, . . . , ñe. (5.44)

If the Lanczos approximation to the marginal shi (λ) is denoted s̃hi (λ), then the approx-

imation to the absorption curve is

α̃(λ) =

ñe∑
i=1

s̃hi (λ− λei ). (5.45)

Similarly, if it were the case that ñh < ñe, we would compute ñh hole eigenvalues λhj

and corresponding eigenvectors xhj for j = 1, . . . , ñh. Then, we use the eigenvectors xhj
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as the starting vectors for the Lanczos process to approximate the marginals

sej(λ) := s(λ;Ae, B, xhj ) =
n∑
i=1

|(xei , xhj )|2δ(λ− λei ). (5.46)

Denoting by, s̃ej , the Lanczos approximation to (5.46), the Lanczos approximation to

the absorption curve is then

α̃(λ) =

ñh∑
j=1

s̃ej(λ− λhj ). (5.47)

5.5 1D Random Alloys

We begin with the simple one dimensional case. For all computations we use a lattice

with 5001 lattice spaces (the first lattice space being equal to the last due to the choice

of periodic boundary conditions), meaning our computational domain is Ω = [0, 5000].

In terms of physical units this is a domain of length 5000× 2.833 Å ≈ 1.4 µm. For all

computations we use unit length intervals to discretize the domain, and use degree three

polynomials on each interval for the finite element method. The resulting matrices have

dimension 15, 000 × 15, 000, which is small enough so that we can compute the exact

absorption curve.

The absorption curves for varying levels of indium concentration can be seen in

Figure 5.11. These are computed using the number of electron and hole eigenpairs

displayed in Table 5.5. For each of the four indium concentrations, ne × nh overlap

integrals are computed, and the absorption curve with as many summands is evaluated

at an array of points.

X ne λe1 (eV) nh λh1 (eV)

0.05 1133 1.41 3867 0.58

0.10 1164 1.27 4096 0.52

0.15 1202 1.10 4353 0.42

0.20 1233 0.93 4582 0.32

Table 5.5: One dimensional absorption curve data.
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Figure 5.11: 1D absorption curves using σ = 10 meV for indium concentrations between
5% and 20% (left). Zoom into energy levels around 3 eV (right).

We begin by explaining the discrepancy in the absorption curve for a random alloy

(shown in Figure 5.11) and that of a homogeneous alloy (shown in Figure 5.8) in one

dimension.

5.5.1 Spike near 3 eV

Here we discuss numerically the spike in the 1D absorption curve, which does not

appear in the case of homogeneous alloys. In order to verify that the spike is indeed

physical, and not a numerical artifact, we give results pertaining to quantum wells

in 1D which justify the presence of the spike. All computations done in this section

are performed by discretizing the effective mass Schrödinger equation, and solving the

resulting generalized algebraic eigenvalue problem directly. No Lanczos approximations

are used in this section, and the numerical discretization is done with enough precision

so that we can consider the computed eigenpairs to be exact.

First we look at the densities of states for the four random realizations which give

the results displayed in Figure 5.11. These densities of states can be seen in Figure 5.12.

In both the electron spectral density (top figures) and hole spectral densities (bottom

figures) we see an additional spike which is not present in the densities of state for

homogeneous alloys. The electron densities for the four bulk indium concentrations

plotted, exhibit a concentration of energies near 2.05 eV, while the hole densities exhibit

one near 0.96 eV. Adding these energies together gives 3.01 eV, which corresponds to

the location of the spike in the absorption curve.
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Figure 5.12: Electron and hole densities of states for varying bulk indium concentration
X. The electron density of states (top left) and zoom into the region around 2.05 eV
(top right). The hole density of states (bottom left) and zoom into the region around
0.96 eV (bottom right).

To investigate what is special about the electron and hole energies 2.06 and 0.95, we

perform an experiment. We simplify the problem to have 101 lattice points where the

arrangement is 50 GaN cations, 1 InN cation, and another 50 GaN cations. The indium

fraction for this specific arrangement is shown in Figure 5.13 (left). The black dashed

lines indicate three standard deviations (six lattice spaces) from the InN position at

x = 50. Here the standard deviation is in reference to the Gaussian averaged indium

fraction. From basic properties of the normal distribution, 99.73% of the area under the

indium fraction is accounted for within the region enclosed by the black dashed lines.

With the indium fraction determined for this special arrangement of GaN and InN,

we next determine the bandgap Eg(x) according to (5.3). This is the blue line shown

in Figure 5.13 (right). The dashed black lines again show six lattice positions to the

left and right of the InN cation at position x = 50. Outside of region enclosed by the
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Figure 5.13: Indium fraction for a one dimensional lattice with fifty GaN cations, one
InN cation, and another fifty GaN cations (left). Black lines indicating three standard
deviations, or six lattice spaces, for the Gaussian averaged indium fraction to the left
and right of the InN cation. Spatially dependent bandgap (see (5.3)) and fundamental
electron and hole eigenfunction superimposed.

dashed black lines, the bandgap is essentially that of GaN, EGaN
g = 3.437 eV. Close to

the InN cation, the bandgap drops to a minimum of 2.65 eV, which is the bandgap for

a twenty percent indium fraction. With the conductance and valence potentials being

proportional to the bandgap, both exhibit a minima at x = 50. This situation is similar

to the classical finite square well potential studied in most quantum physics texts. The

main difference being the conductance and valence energies are smooth, as opposed to

the discontinuous finite square well. The L2 normalized fundamental electron and hole

eigenfunctions are plotted along with the bandgap in Figure 5.13 (right). The height of

the electron and hole wavefunctions is their respective energy level.

We see that, indeed, both are localized in the region of low potential induced by the

presence of the InN cation. We also see that the fundamental electron wavefunction

“leaks” out of the region of low potential. Physically, this represents a probability of

the electron being outside the region of low energy. This phenomena is referred to as

quantum tunneling, see, e.g., [46]. Most importantly, the fundamental electron and hole

energies are approximately 2.05 eV and 0.96 eV respectively, which matches the peaks

in the electron and hole spectral densities.

When moving to the more complicated situation of 5001 lattice positions, the same
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Figure 5.14: Four instances of electron and hole pairs with large overlap where the
electron eigenfunctions have energy approximately 2.05 eV and the hole eigenfunctions
have energy approximately 0.96 eV.

situation of one InN cation surrounded by many GaN cations occurs many times, result-

ing in a spike in the absorption curve around 3.01 eV. We look at the case of X = 0.05,

and show four occurrences in Figure 5.14 which are similar to the case of one InN cation

surrounded by fifty GaN cations on either side. In all four instances, while the bandgap

is more complicated, the end result is the same. The electron and hole wavefunctions

localize in a local minima of the bandgap, and have energies of 2.05 eV and 0.96 eV

respectively.

Additionally, due to the numerous random configurations of InN and GaN, there

are additional eigenmodes contributing to the spike in the absorption curve. A few

instances of these are shown in Figure 5.15.
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Figure 5.15: Additional examples of electron and hole eigenmodes adding to the spike
in absorption curve at 3.01 eV.

5.5.2 One Dimensional Walk-through

Now that we have explained the discrepancy in the one dimensional absorption curve

for homogeneous alloys and random alloys, we step through through the workflow out-

lined in Section 5.4 for the Lanczos approximation of the absorption curve and joint

density of states. For these problems, the matrix sizes are sufficiently small so that the

exact solution is computable. Therefore, we are able to compute errors in the Lanczos

approximation to the absorption curve and joint density of states. Using techniques

and parameter values given in this section, we will be able to approximate absorption

curves in two and three dimensions, where the exact solutions are too computationally

expensive to compute.

The example we use is an InXGa1−XN alloy with twenty percent indium concen-

tration. We again use a lattice containing 5001 sites (the first being equal to the last)

and the standard finite element method with cubic polynomials, which results in stiff-

ness and mass matrices of order n = 15, 000. For the random lattice realization in this

example, the spatially varying indium fraction is displayed in Figure 5.16 (top left). A

zoom in of the region [10, 30] is also shown in Figure 5.16 (top right). By superimposing

the lattice, we are able to see how the Gaussian averaging process is effected by indi-

vidual InN cations in the lattice. With the indium fraction determined, we are able to

construct the spatially varying bandgap, and hence the potentials and effective masses

required for construction of the stiffness and mass matrices. The bandgap, shown in



149

Figure 5.16: Indium fraction for example with 5001 lattice positions and X = 0.20 (top
left). Zoom into the region [10, 30] with arrangement of InN and GaN cations on lattice
(top right). Bandgap (bottom left) and zoom into the region [10, 30] (bottom right).

Figure 5.16 (bottom left), oscillates between the bandgap of GaN and InN, varying

with the indium composition. A zoom of the bandgap in the region [10, 30] is shown in

Figure 5.16 (bottom right).

The next step in the workflow is the approximation of the electron and hole densities

of states. These are shown in Figure 5.17 for two different values of σ. Ten trials were

performed and a Krylov parameter of m = 150 (m = n/100) was used. Note that we

used a constant Krylov parameter, rather than increasing m until the gap between Ritz

values is small enough, as discussed at the end of Section 5.1.9. We do this because a

coarse approximation to the density of states is more than sufficient for our purposes.

We next show that for this value of Krylov parameter, while the Lanczos approximation

to the density of states (especially in the electron case) is not accurate, the integral of
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Figure 5.17: Lanczos approximation to the electron and hole densities of state using 10
trials and m = 150.

the density of states, i.e., the counting function, is accurate enough for our purposes.

The next step is to approximate the number of electron eigenpairs needed to ap-

proximate the absorption curve using the Lanczos process. The number of electron and

hole eigenpairs necessary, ne and nh respectively, is defined by (5.43). For this exam-

ple, the fundamental electron and hole energies are 0.93 eV and 0.32 eV respectively.

Using the fundamental energies and criterion (5.42), we need to compute all electron

eigenpairs up to energy level 4 − 0.32 = 3.68 eV, or all hole eigenpairs up to energy

level 4− 0.93 = 3.07 eV. The exact values of electron and hole eigenpairs necessary are

ne = 1233 and nh = 4582 respectively. The approximation of these numbers is com-

puted by replacing the exact density of states in (5.43) with the Lanczos approximation

using several values of regularization parameter σ. The integrals in (5.43) are approxi-

mated using a composite trapezoidal rule. Once the electron eigenpairs are computed,

we can easily check that we have computed enough using (5.42).
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σ (meV) ne dñee nh dñhe

10 1117 4485

130 1142 4557

260 1233 1189 4582 4549

380 1205 4522

500 1202 4463

Table 5.6: Approximation of the values ne and nh defined in (5.43) using the Lanczos
approximation to the densities of states for several values of σ.

The approximations to ne and nh, ñe and ñh respectively, are shown in Table 5.6.

From Table 5.6 we see that using a larger value of σ allows us to approximate the

number of electron eigenpairs necessary. For visualization of the density of states, a

larger value of σ blurs out details. Yet, for approximating the value ne, larger values of

σ, produce more accurate approximations. In order to ensure enough electron eigenpairs

are computed we implement a five percent fudge factor, and request d1.05ñee = 1263

electron eigenpairs from SLEPc. A five percent fudge factor and a value of σ = 500

meV is used in all subsequent computations in the approximation of ne.

Because the number of electron eigenpairs necessary to compute the absorption curve

is much smaller than the number of hole eigenpairs, we use the electron eigenpairs for

the Lanczos process. Once the electron eigenpairs have been computed using SLEPc,

we are ready to approximate the spectral functions, shi (E), defined in (5.44) for each of

the computed eigenvectors, with the absorption curve a sum of such approximations (as

in (5.45)). Before approximating these spectral functions, we view the exact first term

in the absorption curve expansion, sh1(E − λe1), seen in Figure 5.18 in linear and log

scale. We see an interesting discrepancy between the spectral function on a linear scale,

and on a log scale. On the linear scale we see three spikes of decreasing amplitude, while

on the log scale, several more spikes are present which are indiscernible on the linear

scale. Also to be noted, is the trailing edge in the spectral function in the log scale

after approximately 2.1 eV. Next, we investigate the qualitative aspects of the spectral

function corresponding to the fundamental electron wavefunction, and its approximation

using the Lanczos process.

We approximate the spectral functions, sh1(E − λe1), using the Lanczos process in
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Figure 5.18: Exact spectral function corresponding to the fundamental electron eigen-
function and hole eigensystem, sh1(E−λe1), on linear scale (left) and log scale (right) for
σ = 10 meV.

Figure 5.19 for σ = 10 meV and Krylov parameters m = 25 and m = 200. There are

two items to note in Figure 5.19 with regard to the Lanczos approximation. First, that

the small value of m = 25 does an exceptional job of capturing the details of the exact

spectral function. Second, there does not appear to be much of a discrepancy between

using m = 25 and m = 200. We investigate the difference in using m = 25 and m = 200

in more detail momentarily. We describe the “spikey” nature of the spectral function

next.

As seen in Figure 5.16 for the simple case of fifty GaN cations, one InN cation, and

another fifty GaN cations, the fundamental electron and hole eigenfunctions “localize” in

the region of the domain where the bandgap, Eg(x), is minimal. In the case of a random

alloy, these finite wells occur many times and eigenfunctions localize at the local minima

of the bandgap (local maxima of the indium fraction). The lowest energy eigenfunctions

occurring where a large cluster of InN cations occur in the lattice. The L2 normalized

eigenfunctions responsible for the qualitative structure of the spectral function, sh1(E −
λe1), are plotted in Figure 5.20. Because lower energy hole eigenfunctions each localize

to their own respective well, the overlaps with the fundamental electron eigenfunction,

|(ψe1, ψhj )|2, are essentially zero except for those hole wavefunctions localizing in the same

well as ψe1. The overlaps responsible for the first two spikes in the spectral function are

|(ψe1, ψh1 )|2 = .83 and |(ψe1, ψh88)|2 = .14 and occur at energies λe1 + λh1 = 1.25 eV and

λe1 + λh88 = 1.58 eV respectively. Interestingly, we can see that ψh1 and ψh88 are the first
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Figure 5.19: Lanczos approximation to spectral function corresponding to the funda-
mental electron eigenfunction and hole eigensystem for m = 25 (left) and m = 200
(right) on linear scale (σ = 10 meV).

Figure 5.20: Eigenfunctions responsible for the qualitative aspects of the spectral func-
tion sh1(E − λe1) (left) and the exact spectral function on a log scale (right).

and third mode corresponding to the well where ψe1 localizes. Therefore, the overlap

corresponding to the second mode is relatively insignificant, and cannot even be seen in

Figure 5.19. We can check that the second mode for this well, ψh11, produces an overlap

of |(ψe1, ψh11)|2 = 6.85× 10−4 at energy λe1 + λh11 = 1.42 eV .

Next, we investigate the trailing edge in the spectral function corresponding to the

fundamental electron eigenfunction. As seen in Figure 5.20, the overlaps determining

the first five or so spikes are caused by hole eigenfunctions localized in the same region

as the electron eigenfunction. Once we move to higher energies, we see a trailing edge in

the log plot of sh1(E−λe1) beginning around 2.1 eV, as can be seen in Figures 5.18 (right)
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Figure 5.21: Participation ratio of for hole eigenfunctions, ψhj (ordinate) corresponding

to energies λe1 +λhj (abscissa) showing contribution of delocalized eigenfunctions to trail-

ing edge (left). Barcode plot of spectral function sh1(E−λe1) and Lanczos approximation
for m = 25 (right).

and 5.20 (right). We show this is due to higher energy delocalized hole eigenfunctions.

One measure of localization of a function φ : Ω→ R is the participation ratio given

by

1

|Ω|

( ∫
Ω φ

2
)2∫

Ω φ
4

, (5.48)

where |Ω| is the volume of the domain. This may also be considered a relative participa-

tion ratio due to the factor of |Ω|−1. Notice that the participation ratio of a constant is

unity, while the participation ratio of the characteristic function of a subdomain Ω0 ⊂ Ω

is |Ω0|/|Ω|. In other words, the smaller the support of φ, the closer to zero the partici-

pation ratio. In Figure 5.21 (left), the participation ratio of the hole eigenfunctions,ψhj ,

is plotted on the y-axis, with energies λe1 + λhj shown on the x-axis. We can see that

the hole eigenfunctions delocalize, i.e., begin to be supported on the entire domain,

around 2.1 eV, which is exactly where the trailing edge begins in the spectral function

sh1(E−λe1). We remark that the participation ratio of sinusoids in one dimension is 2/3,

which is close to where the participation ratio of the hole eigenfunctions asymptotes.

Another way to visualize the spectral function (and Lanczos approximation) is shown

in Figure 5.21 (right). At each energy λe1 + λhj , j = 1, . . . , nh, a thin black line is

shown with height equal to the overlap |(ψe1, ψhj )|2. Also shown in red is the Lanczos
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approximation to the spectral function for m = 25. The red stripes are located at

energies λe1 + θj , for j = 1, . . . ,m, where the θj ’s are the Ritz values for the Lanczos

process, and have heights equal to |(yj , e1)|2, where yj is the eigenvector corresponding

to θj . With this “barcode” plot, we are able to again see the trailing edge near 2.1 eV.

Furthermore, we see that the Lanczos approximation is able to match the first and third

spike (almost) exactly, while the weights, |(yj , e1)|2, for energies higher than 2 eV are

larger than the exact overlaps in order to satisfy the moment matching criterion.

In order to further investigate the effectiveness of the Lanczos process in approxi-

mating the absorption curve, we look at the Lanczos approximation to the first spectral

function, sh1(E − λe1), on a log scale for various values of the Krylov parameter m. This

is shown in Figure 5.22 and 5.23 for regularization values σ = 10 meV and σ = 50 meV

respectively. Figure 5.22 shows how truly remarkable the Lanczos process is. Even

for the small value m = 25, the Lanczos approximation captures the first overlap to

high accuracy. Then, as m is increased, more and more of the character of the spectral

function is captured. Figures 5.22 and 5.23 also show how the Lanczos approximation

is influenced by the magnitude of the regularization parameter σ. The more blurring

present, i.e., the larger σ is, the easier the absorption curve is to approximate.

Finally, we are ready to approximate the absorption curve for a one dimensional

InGaN alloy. The Lanczos approximation to the absorption curve works by approxi-

mating several spectral functions, each corresponding to one of the computed electron

eigenfunctions (see (5.45)). We have gone into great detail of the spectral function cor-

responding to the fundamental electron eigenfunction, the others being similar. The

Lanczos approximations to the absorption curve are shown in Figure 5.24 for several

values of Krylov dimension m. The figures on the left are the absorption curve on a

standard (linear) scale, while the figures on the right correspond to a log scale. As in

the case of the Lanczos approximation to the spectral function corresponding to the

fundamental electron eigenmode (Figure 5.22), the Lanczos process captures the initial

take off from zero very well, even for small values of m. That is, the convergence is

from low energy to higher energy. The more precisely we want to capture higher energy

phenomena, the larger we need to take the Krylov dimension m.

The last part of the computation is that of the joint density of states. We review

the two methods for approximating the joint density of states next.
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m = 25 m = 50

m = 100 m = 200

Figure 5.22: Lanczos approximation to the spectral function corresponding to the fun-
damental electron eigenfunction on a log scale for σ = 10 meV and various values of
Krylov dimension m.

m = 25 m = 50

m = 100 m = 200

Figure 5.23: Lanczos approximation to the spectral function corresponding to the fun-
damental electron eigenfunction on a log scale for σ = 50 meV and various values of
Krylov dimension m.
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m = 25 m = 25

m = 50 m = 50

m = 100 m = 100

m = 200 m = 200

Figure 5.24: Lanczos approximation to the absorption curve for a one dimensional
InGaN alloy with twenty percent indium for various Krylov dimensions m and σ = 10
meV.
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5.5.3 Joint Density of States Comparison

In this section we compare and contrast method I and method II for approximating

the joint density of states. Recall, method I is based on Gaussian quadrature, and so

recreates a maximal number of moments for a given Krylov parameter m. Method II is

based on the convolution of the Lanczos approximations to the densities of state for the

electrons and holes, and matches the same number of moments as method I. As discussed

in the previous section (and visualized in Figure 5.17) we need approximations to the

electron density of states in order to know how many electron eigenpairs to compute

in order to approximate the absorption curve, i.e., we need to approximate ne defined

in (5.43). Therefore, we are able to reuse the electron density of states computation for

the method II approximation to the joint density of states.

For the first test, we again consider the same twenty percent indium content alloy

on domain Ω = [0, 5000] used in the previous section. For the Monte Carlo method,

we use ten trial vectors, and compute approximations to the joint density of states

using Krylov parameter m = 800. Note that this value is significantly higher than that

used in the approximation of the electron density of states for use in approximating the

number of electron eigenpairs less than or equal to a certain energy (m = 800 versus

m = 150). This is due to the fact that the exact joint density of states has 15, 0002

energies, as opposed to the exact density of states, which has 15, 000 energies. The

method I and method II Lanczos approximations to the joint density of states can be

seen in Figure 5.25, along with the exact joint density of states.

From Figure 5.25 we see that both methods approximate the exact joint density

of states for large values of σ, e.g., σ = 100 meV. However, when we decrease σ, in

order to gain more resolution, we see the standard Lanczos phenomena occur in the

method I approximation. Namely, that of oscillating about the exact solution due to

an insufficiently small Krylov parameter. This is easy to explain when we consider

how method I is approximating the joint density of states. Because method I relies on

performing the Lanczos process on a matrix which is a Kronecker sum of two matrices

of size 15, 000 × 15, 000, we are performing the Lanczos process on a matrix of order

15, 0002 = 225, 000, 000. This is a large matrix indeed! Therefore, taking a Krylov

parameter of m = 800, or approximately 3.56 × 10−4% of 225, 000, 000, is woefully

inadequate for a high resolution approximation to the joint density of states. Because
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σ = 100 meV σ = 75 meV

σ = 50 meV σ = 25 meV

Figure 5.25: Comparison of method I and method II for approximating the joint density
of states with 10 trials and m = 800.

of this weakness in the method I approximation, we choose to use method II in the rest

of this Chapter when approximating joint densities of state.

Next, we consider how small we can take the Krlov parameter m, and still obtain

an acceptable approximation to the joint density of states. Figure 5.26 shows the ap-

proximations of the joint density of states by method II for several values of m with the

regularization parameter fixed at σ = 50 meV. From Figure 5.26, we see that decreasing

the value of m quickly compromises the method II joint density of states approximation.

Note that this is not unique to the Lanczos approximation to the joint density of states,

and also occurs in the Lanczos approximation to the density of states [33, 67].

Note that, while the approximation to the joint density of states is (visually) of
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m = 800 m = 600

m = 400 m = 200

Figure 5.26: Method II of approximating the joint density of states for fixed regulariza-
tion parameter σ = 50 meV, 10 random trials, and various values of the dimension of
the Krylov space m.

poor quality, the integrated joint density of states is still quite accurate. This is similar

to approximating the number of electron eigenpairs needed for the Lanczos process.

Figure 5.17 shows that the while the Lanczos approximation to the density of states

may be inaccurate, Table 5.6 shows the integrated density of states can be quite accurate.

We look at the similar case for the joint density of states. We denote the integrated

joint density of states as

NJ(E) =

∫ E

0
n2J(λ)dλ =

n∑
i,j=1

U
(
E − (λei + λhj )

)
, (5.49)
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Figure 5.27: Integrated joint density of states and Lanczos approximation using σ = 50
meV with m = 400 and ten trials on linear scale (top left) and log scale (top right).
Zoom into the region of initial take off (bottom left) and middle region (bottom right).

where U(E) is the Heaviside step function. For a given energy E, NJ(E) tells us

how many terms in the absorption curve have energy less than E. In Figure 5.27 the

exact integrated joint density of states is shown in blue. Also, shown in Figure 5.27

is Lanczos approximation to NJ(E), computed by replacing the exact joint density of

states in the integral (5.49) with the method II Lanczos approximation using m = 400,

σ = 50 meV, and ten trials (same as Figure 5.26 (bottom left)). The integral in (5.49)

is approximated using a composite trapezoidal rule. We see from Figures 5.26 and 5.27

that while the joint density of states may be inaccurate, in that it oscillates about the

exact joint density of states, the integrated joint density of states approximation can be

quite accurate.



162

5.6 2D Random Alloys

Now that we have given an overview of the Lanczos approximation of absorption curves

and joint densities of states in one dimension, where we are able to compute the spectral

quantities exactly, we move to the two dimensional case, where the exact solution is too

costly to compute. Two dimensional random alloys are of practical interest, and are

often used as one part of a larger three dimensional computation, or to simulate layered

materials.

For each of the following computations, we use a 201 × 201 lattice, making the

computational domain Ω = [0, 200]2. The mesh is obtained by uniformly discretizing the

domain into unit squares, with each unit square further subdivided into two triangles.

On each triangle, we use cubic Lagrange finite elements. Hence, the stiffness and mass

matrices are of order 360, 000 (360, 000 being equal to (3× 200)2). For matrices of this

size, the first step is to determine the number of electron eigenpairs needed for accurate

representation of the absorption curve. For the Lanczos approximation of the densities

of states, sixty-four trial vectors and a Krylov dimension of m = 400 are used. Again,

we use a large regularization parameter σ = 500 meV when replacing the exact densities

of states in (5.43) with the corresponding Lanczos approximation. Using the Lanczos

approximations to the densities of state, Table 5.7 shows the approximate number of

electron eigenpairs necessary, as well as the exact number required. We again use a

five percent fudge factor, and request d1.05ñee electron eigenpairs from SLEPc. This

ensures we compute more than enough electron eigenpairs, and allows us to report the

exact number of electron eigenpairs, ne, necessary for the satisfaction of criterion (5.42).

Table 5.7 shows the value of the fundamental electron and hole energies, the exact

number of electron eigenpairs needed, and the approximate number of electron and hole

eigenpairs needed using the Lanczos approximation to the density of states (no five

percent fudge factor present). Again, we see a pronounced difference in the number of

electron and hole eigenpairs necessary for absorption computations. Indeed, for the four

cases displayed in Table 5.7, on average, we need 10.3 times as many hole eigenpairs as

electron eigenpairs, i.e., ñh/ñe ≈ 10.3. Hence, there is significant advantage in using the

Lanczos process to approximate the absorption curve, which requires either the electron

or hole eigenpairs, but not both.
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σ = 80 meV σ = 40 meV

σ = 20 meV σ = 10 meV

Figure 5.28: Two dimensional absorption curves for InXGa1−XN on a lattice of size
201× 201 with adaptively chosen Krylov dimension using tolerance τ = 25 meV.

X λe1 (eV) λh1 (eV) ne dñee dñhe

0.05 2.07 0.94 1162 1176 10706

0.10 1.93 0.87 1306 1312 12980

0.15 1.78 0.79 1434 1428 15425

0.20 1.60 0.66 1581 1577 18258

Table 5.7: Two dimensional InXGa1−XN absorption curve computation data.

Once the electron eigenpairs are determined, we are prepared to use the Lanczos pro-

cess to approximate the absorption curves. This is done for bulk indium concentrations

of five, ten, fifteen, and twenty percent. The results are shown in Figure 5.28. For the

two dimensional case, we adaptively determine the correct Krylov dimension m using
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σ = 10 meV σ = 20 meV

Figure 5.29: Lanczos approximation of two dimensional absorption curve for InGaN
alloy (X = 0.20) with an adaptively chosen Krylov dimension (using tolerance τ = 25
meV) and fixed Krylov dimension m = 200.

the tolerance τ = 2.5σ with σ = 10 meV, as discussed in Section 5.1.9. This is accom-

plished by starting the Lanczos algorithm with an electron eigenvector, xe, and every

ten iterations we compute the Ritz values, and check if the gap between Ritz values less

than 4−λe is smaller than τ = 25 meV where λe is the eigenvalue corresponding to xe.

If so, the computation is terminated, if not, the computation is continued for another

ten iterations before another check is performed. Because of our choice of τ = 25 meV,

we have confidence in our absorption curves for regularization parameter as small as

σ = 10 meV.

A natural question one might raise: is it necessary to use a variable Krylov dimen-

sion? The answer depends on the level of specificity in which we wish to approximate

the absorption curve. Figure 5.29 shows two absorption curves for an example with

a twenty percent indium fraction (same as that seen in Figure 5.28 for X = 0.20 and

σ = 10 meV). The absorption curve in blue adaptively chooses the Krylov dimension

using τ = 25 meV, and the dashed curved in red uses a small fixed value m = 200. For

the variable case, the maximum Krylov dimension is m = 1510 (for the fifth electron

eigenfunction) and decreases down to m = 130. The exact value of the Krylov dimension

for each energy level can be seen in Figure 5.30 (right). From Figure 5.29, we see that

the absorption curve computed using m = 200 matches the absorption curve computed

using variable m at the take off of the curve, and oscillates around it for the remainder
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Figure 5.30: Relative error of two curves seen in Figure 5.29 (left). Krylov dimension
for two dimensional absorption curves (see Figure 5.28) using tolerance τ = 25 meV
(right).

of the curve. But, when using a slightly larger regularization factor σ, these oscillations

are eliminated, and we see how well using a small value of m performs, for much less

work. The relative error in the absorption curve using a variable Krylov dimension and

a small fixed value is seen in Figure 5.30 (left). We see that even for σ = 10 meV,

the relative error in the two curves stays below seven percent. When considering the

relative error when using regularization factor of σ = 20 meV, the error stays below

one percent. Based on this example, it seems unnecessary to perform the extra work of

using a variable Krylov dimension. Oftentimes, one is interested in averaging absorp-

tion curves over many different random realizations of the InGaN lattice. If this is the

purpose, rather than computing one realization with high fidelity, then using a small

fixed value of the Krylov parameter may be a better use of resources.

Lastly, we investigate the joint density of states computation using method II in

two spatial dimensions. The joint density of states for several values of regularization

parameter σ are shown in Figure 5.31. These are computed using 64 trial vectors and

a Krylov dimension of m = 400. One thing to note is the small values on the y-axis in

Figure 5.31. This is due to the prefactor of 1/n2 in the definition of J(E). For these

two dimensional problems n = 360, 000, and so the factor of 1/n2 is of order 10−12.

In Figure 5.31 we see that for small values of σ, e.g., σ = 10 meV or σ = 20 meV,

the Lanczos approximation to the joint density of states is highly oscillatory. This is

especially prevalent for the regularization parameter σ = 10 meV. This is due to the
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σ = 80 meV σ = 40 meV

σ = 20 meV σ = 10 meV

Figure 5.31: Two dimensional Lanczos method II approximation to the joint density of
states for InXGa1−XN lattice of size 201× 201 using Krylov dimension m = 400 and 64
trial vectors.

smaller value of the Krylov parameter m = 400. Recall for the one dimensional case,

we needed a Krylov dimension of m = 800 to match the exact joint density of states for

the regularization parameter σ = 50 meV (see Figure 5.26). Here the matrix sizes are

much larger, and so if we require a high accuracy approximation to the joint density of

states, then we need to compensate for this fact with a larger value of m.

5.7 3D Random Alloys

Finally we are ready for a full three dimensional realization of InXGa1−XN lattices.

In this section we use a 51 × 51 × 51 lattice for bulk indium fractions between five



167

σ = 200 meV σ = 150 meV

σ = 100 meV σ = 50 meV

Figure 5.32: Three dimensional absorption curves for InXGa1−XN on a lattice of size
51× 51× 51 using Krylov dimension m = 2000.

and twenty percent. For the spatial discretization, each unit cube is subdivided into six

tetrahedron, and quadratic Lagrange finite elements are used on each tetrahedron. This

results in matrices of order n = 1, 000, 000 = (2× 50)3. The Lanczos approximation to

the absorption curve for Krylov parameter m = 2000 are shown in Figure 5.32. The

statistics for the four computations are shown in Table 5.8. For the four cases listed

in Table 5.8, on average, ñh/ñe = 29.7. In other words, we need thirty times as many

hole eigenpairs as we do electron eigenpairs to satisfy the criterion (5.42). Therefore,

the Lanczos approximation becomes more economical as the spatial dimension increases

due to the increasing number of hole eigenpairs required.
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X λe1 (eV) λh1 (eV) ne dñee dñhe

0.05 2.15 0.94 462 518 12453

0.10 2.01 0.90 516 572 16282

0.15 1.89 0.83 620 648 20155

0.20 1.76 0.79 624 687 24212

Table 5.8: Three dimensional InXGa1−XN absorption curve data.

One thing to note from the absorption curves in Figure 5.8 is the larger regularization

parameter used compared to one and two dimensional computations. The reason for

using a larger regularization parameter is simple. If we consider the twenty percent bulk

indium fraction case, for the first ne = 624 electron eigenvalues computed, the largest

spectral gap is given by

max
i
|λei+1 − λei | = 0.088 eV. (5.50)

We take a closer look at the eigenvalues responsible for this spectral gap in Table 5.9.

We see that there is a cluster of energies near 2.87 eV and another near 2.96 eV, but a

relatively large gap between the two. Individual clusters of energies can be seen in the

absorption curve in Figure 5.32 for σ = 50 meV. These clusters of energies with gaps

in between are due to the small size of the lattice, i.e., the gaps are due to the small

number of possible random configurations of InN and GaN. With a larger lattice more

configurations are possible, e.g., regions dense with InN or GaN, and as a consequence of

additional configurations, there will be no gaps in the energies of the system. Therefore,

while we are attempting to model a physical system using the effective mass Schrödinger

equation, due to the small lattice size, we are seeing results which are nonphysical.

λe457 2.8707 λe462 2.9611

λe458 2.8711 λe463 2.9616

λe459 2.8716 λe464 2.9624

λe460 2.8718 λe465 2.9628

λe461 2.8726 λe466 2.9632

Table 5.9: Gap in electron energies.
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Figure 5.33: Participation ratio of first 757 electron wavefunctions and 77 hole wave-
functions for X = 0.20 on a 51× 51× 51 lattice.

The participation ratio, see (5.48), for the first 757 electron wavefunctions and 77

hole wavefunctions for the X = 0.20 case is shown in Figure 5.33. The first thing to

notice in Figure 5.33 is the magnitude of the participation ratio for the fundamental

electron wavefunction. Recall the participation ratio of a constant is unity. Figure 5.33

tells us the fundamental electron wavefunction is nearly constant, or rather, a small

perturbation of a constant. The remaining electron eigenfunctions, have an average

participation ratio of 0.34, which is close to, (2/3)3 ≈ 0.30, the participation ratio of

sinusoids in three dimensions. Essentially, the electron wavefunctions are the solutions

of the Laplace eigenvalue problem on a cube with periodic boundary conditions. We also

see that the hole wavefunctions, while initially localized, begin to delocalize immediately.

However, on a larger lattice, there would be more local minima in the valence band

energy, and hence more localized hole wavefunctions.

The behavior of the electron wavefunctions is a consequence of two factors. The first

being the small lattice size, the second being the lack of variation in the indium fraction.

As mentioned regarding the gap in electron energies, the small lattice allows relatively

few InN and GaN configurations, and in particular, there is no region dense with InN

in the lattice, which would create a region of low potential surrounded by high barriers
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for the electron wavefunctions to localize inside. Secondly, due to the chosen modeling

paradigms, the indium fraction is averaged over cations within two lattice spaces. As the

spatial dimension increases, the averaging is performed over more lattice sites. Recall

the one dimensional example of one InN cation surrounded by fifty GaN cations on

both sides. The indium fraction for this example, seen in Figure 5.13, reached twenty

percent. For a similar three dimensional example on an 11 × 11 × 11 lattice with one

InN cation in the center, and all remaining lattice sites occupied by GaN, the indium

fraction reaches a maximum of approximately 0.83%. Because there are more nearest

neighbors in a three dimensional lattice, as opposed to a one dimensional lattice, there

will be decreased fluctuation in indium fraction. This will in turn cause less fluctuation

in the conductance and valence band energies, and less localization will occur.

Lastly, the joint density of states for the four bulk indium fractions can be seen

in Figure 5.34. For these computations, a Krylov dimension of m = 500 was used for

twenty trial vectors. Notice the difference in the two dimensional joint density of states

approximations seen in Figure 5.31 and the three dimensional ones seen in Figure 5.34.

For larger values of the regularization parameter σ, the two and three dimensional

curves look qualitatively similar. On the other hand, for smaller values of σ, e.g.,

σ = 10 meV, there is significantly less oscillations. This is due to a smaller gap in the

nodes for the Lanczos approximation to the joint density of states in three dimensions.

To investigate, we consider one of the electron density of states approximations and

one of the hole density of states approximations. Recall, to create the joint density of

states approximation by method II, we add all possible combinations of the nodes and

multiply all possible combinations of the weights. This results in 25, 000 = 5002 nodes

and weights. For one specific realization, of the 25, 000 nodes, 483 of them are less

than E = 4 eV, and the largest gap between these 483 nodes is approximately 14 meV.

Assuming the other trials have similar results, this is why we see some small oscillation

in Figure 5.34 for σ = 10 meV, and none for σ = 20 meV and larger.
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σ = 80 meV σ = 40 meV

σ = 20 meV σ = 10 meV

Figure 5.34: Three dimensional joint densities of state for InXGa1−XN on a lattice of
size 51× 51× 51 using twenty trials and Krylov dimension m = 500.



Chapter 6

Conclusion

In this thesis we analyzed the Lanczos process for approximating spectral functions,

and proposed methods for extending the Lanczos process for the computation of joint

spectral quantities. The joint spectral quantities examined were the joint density of

states and the joint spectral function, both of which have practical applications in semi-

conductor modeling. Two methods for approximating the joint density of states were

proposed and applied to a random alloy modeled using the effective mass Schrödinger

equation. The first method relies on realizing the joint density of states as the density

of states for a larger matrix, while the second relies on the notion of convolution of mea-

sures. The other joint spectral quantity considered is the joint spectral function, which,

if computed exactly, requires complete knowledge of the spectrum of two operators. The

Lanczos approximation of the joint spectral function, is realized by rewriting the joint

spectral function as a sum of spectral functions, each of which can be approximated by

the Lanczos process. At the heart of both methods is a deep connection between the

Lanczos algorithm for partially tridiagonalizing a matrix and Gauss quadrature.

The Lanczos type methods devised were seen to be accurate and efficient for ap-

proximating joint spectral quantities pertaining to a random InGaN alloy. This was

determined by comparing the Lanczos methods with the exact solution in one (spatial)

dimension. Using the knowledge gained from one dimension, we were able to approxi-

mate joint spectral quantities in two and three dimensions. For these cases, little work

has been done due to the high cost of diagonalizing Schrödinger operators.

With the advantages of the Lanczos process, there remain a few drawbacks which

172



173

must be mentioned. First and foremost, is the loss of orthogonality in the Lanczos

vectors when performing Lanczos partial tridiagonalizations. The beauty of the sim-

ple three-term Lanczos recurrence is lost when moving from theory to finite precision

computations. In order to avoid the loss of orthogonality, full Gram–Schmidt orthogo-

nalization was used in this thesis. While not the most economical, essentially dismissing

the advantages of symmetry (using the Arnoldi algorithm on a symmetric operator), it

is the most robust. However, this use of full orthogonalization requires storage of all

Lanczos vectors, and each iteration more orthogonalization steps are necessary.

One feature lacking in the Lanczos process is a posteriori error estimates. When

working with semiconductor applications to spectral and joint spectral quantities, ex-

perience was necessary to determine the correct Krylov dimension and number of trial

vectors to use. While we developed a heuristic for determining when the Lanczos ap-

proximation to a spectral function is adequate, namely that of continuing with the

Lanczos process until the gap between Ritz values fell below a certain tolerance, this

heuristic requires a priori knowledge of the operator spectrum. More beneficial would

be computable error bounds determined by a Lanczos partial tridiagonalization of some

order and a regularization parameter determining how closely we wish to approximate

the Dirac measure.

For the computation of joint spectral function, one set of eigenpairs or the other

is required. This essentially halves the work, with the joint spectral function requiring

eigenvalues and eigenvectors of two distinct operators. However, for large problems,

solving for the eigenpairs of any operator is a challenging task. It would be nice to

determine a Monte Carlo type method for approximating the joint spectral function,

similar to how densities of state and joint densities of state are approximated.

There are many avenues for continuing work described in this thesis in the areas

of numerical analysis and engineering applications. One such application is in the

computation of local densities of states. For a Hamiltonian with energies, Ei, and

corresponding wavefunctions, ψi, i = 1, 2, . . ., the local density of states is given by

LDOS(x,E) =
∑

i|ψi(x)|2δ(E − Ei). With the wavefunctions L2 normalized, it is easy

to see that the density of states is the integral of the local density of states over the

domain. The local density of states is a quantity of great interest to physicists and

engineers, and a Lanczos process type method seems natural for approximation.
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Another area of work includes comparing the Lanczos type methods described in

this thesis with the Kernel Polynomial Method (KPM). This thesis focused exclusively

on using the Lanczos process to approximate joint spectral quantities. However, several

methods devised in this thesis naturally lend themselves, without modification, to ap-

proximation by the KPM. Naturally, it makes sense to compare these two methods in

terms of computational timing and accuracy of approximation. The KPM method may

be advantageous in that it does not require costly Gram–Schmidt orthogonalization,

the main weakness of the Lanczos process.

In conclusion, the Lanczos type methods for approximating joint spectral quantities

are reliable and economical. The main purpose of the Lanczos process is to avoid costly

eigenvalue solves, which the approximation methods derived in this thesis accomplish

for the joint density of states. For the joint spectral function, we reduce the problem

in half, and only require the spectrum of one operator. When only interested in the

joint spectral function for a small range of values, only a portion of the spectrum of one

operator is required. This was seen to be extremely beneficial in random InGaN alloy

applications, where far fewer eigenpairs for the electron Hamiltonian were required than

for the hole Hamiltonian.
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