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ABSTRACT

In this thesis, we study the approximation properties of three low order mixed finite elements
which preserve the incompressibility condition for incompressible fluids. More precisely, we study
the mixed finite elements P"~P"~1 for n = 1,2, 3 for which the velocity space consists of continuous
piecewise polynomials of degree at most n and the pressure space consists of discontinuous piecewise
polynomials of degree at most n—1. In addition to its practical applications, the study of the elements
sheds light upon questions in the approximation theory of divergence-free piecewise polynomials and
continuously differentiable piecewise polynomials.

The performance of the P"~P"~! elements depends on the mesh configuration and the analysis
of their stability and convergence is far from complete. In this thesis, we extend the existing theory
to many new analytical and computational results.
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Chapter 1

INTRODUCTION

1.1. Problem and Motivations

In this thesis, we mainly study the approximation properties of some low order mixed finite
elements that preserve the incompressibility condition for incompressible fluids. Our principal
equations in this work are the Stokes equations

Au—l—‘Vp f ‘1n Q, (1.1.1)
divu =0 in €,
where w = (uq, uz) is the velocity of the fluid, p is its pressure, f = (f1, f2) is the external force, and
Q2 is a polygonal domain in R2. More precisely, the mixed finite elements P*~P"~! for n = 1,2, 3,
i.e., the velocity space, consisting of continuous piecewise polynomials of degree n, and the pressure
space consisting of discontinuous piecewise polynomials with degree n — 1, are investigated in this
work. It is known, by the work of Scott and Vogelius [21], that for n > 4 these elements are stable and
have optimal rate of convergence for almost all of the regular mesh configurations. However, there
are very few results, see Scott and Vogelius [22], that are valid for these three low order elements—
mainly due to the uncertain stability of the elements on different mesh families. In this thesis, we
present many new theoretical results and numerical experiments concerning these elements.

Let us first discuss our motivations in undertaking an in depth study of the P*~P"~! elements.
First of all, the P"—P"~! elements are simple in structure and relatively easy to implement, and
they often achieve good approximation in practical computations. For example, the P?~P1 element
has been used in viscoplastic analysis, see Lee and Dawson [16] and Kitahama and Dawson [15].
Numerical experiments on P?~P! element for the Stokes equations also show that this element
does provide good approximation for the velocity and sometimes for the pressure as well. In the
other words, this finite element method is able to provide numerical solutions with an optimal
rate of convergence even though the method fails the stability test in general. This suggests that
a gap sometimes exists between error estimates based on the classical stability theory and the
true approximation properties of mixed finite element methods. Implementation of these elements
are relatively simple in practical computations. Since the pressure space does not impose any
interelement continuity, the finite element discretization of system (1.1.1) can be approximated by
the penalty method, leading to a positive definite system for the velocity. Then the pressure can be
recovered easily triangle by triangle.

Second, all the three elements preserve the incompressibility condition of the incompressible
fluids. This is a direct consequence of the fact that the divergence of each velocity function in any
of the three finite element spaces belongs to the corresponding pressure space. Almost all of the
low order finite elements (see, e.g., Girault and Raviart [11], Brezzi and Fortin [7]) for the Stokes



equations do not have this property—this is because the usual way to achieve stability of a low
order element is to relax the incompressibility condition, thereby sacrificing the incompressibility of
the numerical solutions.

Third, the three elements provide examples in which the stability and convergence of finite
element solutions depend heavily on the mesh configuration, a situation which has not been fully
understood yet. As will be seen, they provide a remarkably rich set of behaviors depending on the
boundary conditions and especially mesh geometries.

Finally, by analyzing the error estimates of the finite element solutions provided by these
elements, we can understand the approximation properties of the space of all the divergence-free
functions of the continuous piecewise linear, quadratic, or cubic polynomials. Via the introduction
of a stream function, the best approximation to the velocity by P"~P"~! element for n = 1,2, 3 is
intimately related to the best approximation of C'' piecewise polynomials of P**! to a C'! function.

1.2. Stability and Approximability of Mixed Finite Elements

To simplify the exposition we are assuming that the Stokes equations (1.1.1) is subject to
either the homogeneous Dirichlet boundary conditions, w = 0 on 912, or to the traction boundary
conditions du/0n — pn = g on J2, where n is the outward normal unit to 2.

For the Dirichlet condition, the weak formulation of (1.1.1) seeks (u,p) in
V x P:= H'(Q) x L?(Q) such that

/Vu:V'u—/pdiV'u:/f-'u7 Yv eV,
Q Q Q

/qdivuzO7 Vg € P.
Q

Note that the velocity w is uniquely determined but the pressure p is only determined up to an
additive constant—if (u, p) solves (1.1.1) then (u,p+ ¢) also solves (1.1.1) for any constant c¢. To
obtain a unique pressure, we impose the side condition

/sz.
Q

For the traction boundary condition, the weak formulation of (1.1.1) is given by following
with the space V' x P is taken to be H!(Q) x L*(9):

/Vu:Vv—/pdivv:/f-v—l—/ g-v, YveV,
Q Q Q a0

/qdivuzO7 Vg € P.
Q

The pressure p is unique under the traction boundary condition but the velocity w is determined
only up to an additive constant vector.

In the following, we always refer to the Stokes equations with the Dirichlet boundary condition
unless stated otherwise. Parallel discussions can be carried out quite similarly for the traction
boundary condition.

On the finite element level, we consider solving a discrete analogue of the system (1.2.1) in a
finite element space Vj, X P), contained in V x P:

/Vuh:Vv—/phdivv:/f-v, Yv € Vi,
Q Q Q
/qdivuhzo7 Vg € Py.
Q

(1.2.1)

(1.2.2)



Here the parameter h usually refers to the meshsize. The velocity uy, is still unique, but the pressure
pp, may be determined up to addition of any function in the kernel

Nh:{pePh\/pdivv:Q Yo € V,,},
Q

of the discrete gradient operator. The nonconstant pressure modes in N, are called spurious pressure
modes. In order for (1.2.2) to be a reasonable discretization, the spaces V), and P, will have to
be appropriately chosen; not just any combination will work. Loosely speaking, we want to choose
V), and Py, so that the resulting method is both stable and accurate in some sense. These demands
tend to be in conflict and one has to find a reasonable compromise. Many low order finite elments
for (1.2.2) are known to be both stable and accurate, however almost none of them can provide a
divergence-free numerical solution wp,.

The stability properties of the finite element method based on Vj, x P is determined by the
inf-sup condition (or Brezzi’s condition, or LBB condition), see Brezzi [6]: that the inf-sup constant

) Jopdive
vy = inf sup —————— > 0.
ozpepy 0zvev; 0llallpllos

(The circumflex in Ph indicates the subspace of P, consisting of functions with a mean value of zero
for Dirichlet problems; P, is used instead of P, for traction problems.) If the finite element space
Vi, X Py satisfies the inf-sup condition and some other assumptions, we then have the following
classical error estimates:

C
— <— inf — C inf — , 1.2.3
lu —unll1,0 < UlélvhH" v|lie+ qlenPhHP qllo,0 (1.2.3)
C C
— <—= inf [|lu—"v 4+ — inf — , 1.2.4
I~ pilos <5 inf = vlho + = D = dlos (1:2.4)

where C' is a generic constant which may vary in different locations, but it is independent of h. See
Brezzi [6], Brezzi and Fortin [7], and Girault and Raviart [11].

A finite element method is called stable if there exists v > 0 independent of h such that
~n 2> = holds for any mesh of Q and for any meshsize h > 0. Similarly, a finite element is said to be
stable for a mesh family if v; can be bounded below by a positive number for any mesh of the mesh
family. For a stable finite element method, the combination of (1.2.3) and (1.2.4) gives an estimate
of the finite element solution (wuy, pp) as

C . C .
= willo+ I = pallo < 5 inf = vlhat = inf = gloa.  (1:25)

Therefore, for a stable finite element method, the good convergence of the finite element solution is
guaranteed as long as the finite element space Vj X P, has good approximation properties. It is easy
to achieve the stability by simply taking V} large enough; the real challenge is to achieve a good
balance between Vj, and P,. Since the estimate of the finite element solution is tied together with
the approximation properties of both the velocity and pressure spaces, shown by (1.2.5), a large V),
will not improve the error estimate in any way.

The three finite elements considered, i.e., P"=P"~! for n = 1,2,3, have divergence-free
velocity solutions and well matched velocity and pressure spaces in the sense of approximation
abilities of the two spaces. However the stability of these elements does not hold for general mesh
families. As we shall see the inf—sup constant =, is zero for some meshes, while for certain mesh



families ~;, will be shown to tend to zero with h, and while for other mesh families +;, will be shown
to be positive and bounded above zero uniformly.

When v, = 0, the pressure space P} contains spurious pressure modes. A natural idea is to
define the reduced pressure space M) as the L*-orthogonal complement of N} in P}, so there are
no spurious pressure modes in M. The reduced inf—sup constant is defined by

] Jopdive
Yp = inf sup e,
ozpe, 0zvevy, [0llallPllog

and is always positive. Consequently, the pair (wn,pn) € Vi, X M) which solves (1.2.2) with P,
replaced by M}, is uniquely determined. With a simple calculation one can show that @, equals up,
and py is the orthogonal part of p, to N,. A finite element is said to be reduced-stable if there is
~ > 0 such that v, > ¥ uniformly for all the regular meshes of €. It is obvious that stability implies
reduced stability. Applying the classical error estimate theory to V3 x M}, we shall see that the
approximation of w;, to w and pj to p depends on %; and the approximation properties of V}, and
My,

The three elements we consider are stable on some mesh families. Therefore, the classical
theory can be applied. But stability fails on many mesh families for these elements. To determine
the reduced stability and the approximation properties of M), is valuable but difficult. The structures
of the reduced pressure space My and Nj are far from being understood for general mesh families.
If the elements are reduced-stable on some mesh families, we are able to conclude that

C
_ < = _
o= wilha < = inf f[u = oll

which implies that w) is the best approximation of w in the velocity space V. However the estimate
for p — pp, is determined by the approximation property of the reduced pressure space My. As
shown in late chapters M) does have nice approximation ability on many mesh families, namely,
the pressure py, is a good approximation for p for a lot of cases. The computation for (up,py) is
usually not practical because M) does not usually admit a local basis, but fortunately we can solve
(wp, pr) in Vi, x Py, instead of (uy, pp) in Vi, X M), as long as there is an inexpensive post-processing
procedure (or filtering) to compute p;, from p,. If even reduced stability fails, we will see that
velocity (also pressure) may or may not converge optimally.

1.8. The Organization of This Thesis

In this work, we study the three finite elements theoretically, and also investigate the numerical
performance of the P?~P1! element. Each of the three elements has its own character, but they share
many common properties. We shall recall some basic knowledge of Stokes equations and present the
major tools used in our analysis in the next two chapters, then treat each of the elements afterward.
The organization of this thesis and the content of each chapter are as following.

In Chapter 2 we recall some theoretical results on the Stokes equations which shall be used
frequently in this thesis. Most of these can be found in Brezzi and Fortin [7] and Girault and
Raviart [11]. More specifically, the theorems on the uniqueness, existence, and error estimates of
finite element solutions of Stokes equations shall be introduced in this chapter.

Chapter 3 concerns macroelement techniques for verifying the inf-sup condition. The main
idea of such techniques (see, e.g., Boland and Nicolaides [2], [3], Stenberg [24], [25], and Brezzi and
Fortin [7, § VI.5.3]) is to reduce the stability analysis of a finite element discretization to the analysis



of the stability on macroelements composed of only a few triangles, combined with some minimal
global information. Qur approach is based on several types of macroelement techniques.

Chapter 4 contains some theoretical results on the P?>~P! finite element. The approximation
order for this finite element space is 2; that is, the error in the best approximation of (u,p) in
H'(Q) x L*(€) by functions in Vj, x P tends to zero like O(h?). However, the convergence and
stability properties of the P?~P! finite element method depend essentially on the mesh family used.

Based on the analysis of the Fraeijs de Veubeke-Sander element by Ciavaldini and Nedelec
[10], Mercier [17] observed that for a triangulation composed of convex quadrilaterals each of which
is partitioned into four triangles by its two diagonals, u; converges to u with optimal order A% in
H'. We shall strengthen this result by showing that for such meshes the pair Vj, x M), is actually
stable, and that the subspace M), gives the same order of approximation as P, does. The recovery
of py from py, is quite simple in this case.

A negative result can be deduced from the work of de Boor and Héllig [5]; see also de Boor
and Devore [4]. They considered the triangulation of the unit square obtained by subdividing it into
equal subsquares and then bisecting each of these by its positively sloped diagonal. They showed
that for this mesh family the space of C'! piecewise cubic polynomials has approximation properties
that are one order suboptimal, which is equivalent to suboptimal approximation of w by w;. (The
norms considered by de Boor and Héllig are not exactly those pertinent to this discussion. However
their argument can be adapted. Cf., Babuska and Suri [1].) It is known that the dimension of N},
is 6 for this diagonal mesh. We explicitly determine a basis for Nj,.

For a triangulation of the unit square, which is a mixture of diagonal and crisscross subdivi-
sions, i.e. a partition into equal small squares with each of the squares divided either by its positively
sloped diagonal or by both its diagonals, what is the approximation property and reduced stability
of the P>~P! element? We know that the element has optimal approximation for both velocity
and pressure if the mesh is formed only by crisscross subdivisions; but on the other extreme, the
element has only suboptimal approximation for the velocity if the mesh is diagonal. Our main result
is that the element is both reduced-stable and optimal after the removal of local spurious pressure
modes associated with the singular vertices, as long as the proportion of crisscross subdivisions is
not vanishingly small in any part of the domain.

We also show that for some mesh families the P?>~P! finite element method is stable, and
consequently the velocity and the pressure converge with optimal order.

Chapter 5 continues the investigation of the P2-P! element, mostly based on numerical
experiments. In particular we show extensive numerical computations of the inf-sup and reduced
inf-sup constants, as well as numerical computations of the finite element solutions. Some of these
results serve to verify the theoretical considerations of the previous chapter, but for some cases the
finite element solution is more accurate then we are able to explain theoretically.

In Chapter 6 we consider the P3~P? element. Generally, P3>~P? element performs better
than the P?-P! element, and the results of Chapter 4 carry over to this element. Using ideas
similar to those of the proofs in Chapter 4, we show that the P3~P? element is reduced-stable on the
irregular crisscross family and as well on the mixed family of crisscross and diagonal subdivisions.
The P3-P? element is stable on many mesh configurations, for example on barycentric trisected
triangulations.

Chapter 7 is devoted to the P!-P° element. This element is probably the simplest finite
element that preserves the incompressibility of fluids. However, this element is not reduced-stable
for almost any mesh since the system is over constrained. The best mesh we known of is the
crisscross mesh. Even on this mesh Vj x M} is unstable and c¢h < 7, < C'h with ¢ and C two
positive constants independent of h. However, with further analysis, we can show that, on the
crisscross mesh, this simplest element provides optimal approximations for the velocity w and the
pressure p. We also prove some similar results for a general mesh family of a polygonal domain.



An interesting relation between the stabilities of the quadrilateral element Q1-PY and the
P1-P0 is also established in this chapter. Because of the relation, if the element Q'-P? is stable
on a family of partitions Qj for a polygonal domain, then the P!-P° element is reduced-stable on
a corresponding mesh family. More precisely, the reduced inf-sup constant is bounded below by a
fixed positive number on the triangulations 7, resulting from dividing each quadrilateral in Q, by
its two diagonals. Moreover the numerical solution for velocity converges with the optimal rate and
the pressure can be recovered by a simple postprocess. We have obtained some theoretical results
on the Q'-PY element. Since this element does not preserve the incompressibility condition, we
will not discuss these results in this thesis.



Chapter 2

STOKES EQUATIONS AND THEIR FINITE
ELEMENT APPROXIMATIONS

In this chapter, we briefly introduce some fundamental concepts and theorems underlying
the Stokes equations and their mixed finite element discretization. In Section 1 we discuss the
Stokes equations and their weak formulation. In Section 2 we present some abstract approximation
results for the mixed formulation of the equations. In Section 3 we recall some basic approximation
properties of finite element spaces of piecewise polynomials; these properties will often be used in
our analysis. Finally, in Section 4 we give a short introduction to the three finite elements considered
in this thesis. All results stated in this chapter are for the Stokes equations with Dirichlet boundary
conditions, however they are also valid for the same problem with traction boundary conditions.

2.1. The Stokes Equations and Their Weak Formulation

Consider the Stokes equations
—Au+Vp=Ff in

divu =0 in Q, (2.1.1)

with either the Dirichlet or traction boundary conditions. Here €2 is a bounded polygonal domain
in R%. The velocity and the pressure of the fluid governed by the equations are denoted by w and
p respectively.

As our model problem we consider (2.1.1) with Dirichlet boundary condition. The weak
formulation of this problem is

a(u,v) —b(v,p)=(f,v), YveV,

2.1.2
blu,q)=0, Vge P ( )

This is obtained by multiplying the equations of (2.1.1) by v € V and ¢ € P, integrating them over
Q, and using the Green’s formula. Here

V x P:= H'(Q) x L*(Q),

a(u,v) = / Vu: Vu, for any w,v €V,
Q

b(u,q) = / gdivu, forany we V,ge€ P, and
Q

(f,v) 3=/Qf-u7 for any f,veV.

The formulation (2.1.2) is usually called the mixed formulation of (2.1.1). It is known that finding
a solution (u,p) € V X P of (2.1.1) is equivalent to finding a solution (u,p) € V x P of (2.1.2).



Obviously, the velocity w € V is unique and the pressure p is determined only up to an additive
constant.
Let
N::{qEP‘b('u,q):O7 Vv € V}

denote the kernel of the gradient operator. Let Z denote the space of all divergence-free functions
in V. Since the divergence of each function in V' belongs to P, the space Z can be defined by

Z={veV|bv,q =0, VqeP}.

If we choose velocity functions in (2.1.2) from the space Z, then the second equation of (2.1.2)
is automatically satisfied. Consequently, the solution w of (2.1.2) satisfies

alu,v) = (f,v), YveZ. (2.1.3)

The formulation (2.1.3) is a simpler formulation of the model problem than (2.1.2) in that it
results in a much smaller positive definite system. However, finding a discretization of Z is quite
hard in practical computations.

2.2. Abstract Approximation Results

We devote this section to the study of solutions of (2.1.2) from a finite dimensional space
Vi, x P,. We shall first introduce the main theorem on the approximability of the solutions, then
discuss two parallel techniques of checking the inf-sup condition. The results stated in this section
can be found in Brezzi and Fortin [7, §1I] and Girault and Raviart [11, §I11.1.1-3].

Let h denote a discretization parameter (usually the mesh size) tending to zero. For each h
let V), C V and P, C P be two finite dimensional spaces. V), is called the velocity space and P,
the pressure space. The discretization of (2.1.2) based on Vj, x P, is

alup,v) —b(v,py) = (f,v), Yv eV,

2.2.1
b(uh7 (]) = 07 Vf] € Ph- ( )

The velocity uy, is uniquely determined since a(-,-) corresponds to an elliptic operator, but pj, is
not. The algebraic system that results from (2.2.1) is symmetric and indefinite.
As on the continuous level in the previous section, we define a finite dimensional space Z),
corresponding to Z by
Zy={veV,|bv,g=0, Vge P}

Clearly, Z; may not be contained in Z, i.e., u; may not satisfy the incompressibility condition.
However, solving for u;, from (2.2.1) is equivalent to solving for u;, € Z; from

alup,v) = (f,v), Yv € Z,. (2.2.2)
The uniqueness, existence, and error estimates for the solution of (2.2.1) are established in
the following theorem.
Theorem 2.2.1. Assume that the following conditions hold:
(1) There exists a constant o > 0 such that
a(v,v) > o||v||1 0, Vv € Zy; (2.2.3)
(2) there exists a constant v}, > 0 such that

inf  sup CI = . (2.2.4)

0#peP, 02vev; l[vlliallpllo.q



Then (2.2.1) has a unique solution (wy,pp) € Vi, X Py such that

|| o] .
<l1 — inf — 2.2.

lu —unll1,0 (+ EZhHU zllie + = qlenthP qllo.a; (2.2.5)

a b bl .
lu —wunlli0 §(1+—H H)( H H) f flu- v\!1,9+—H s lp = 4qlloe, and

o ) wev, o a€h (2.2.6)

el ( HbH) .

w— wy 14+ —] inf - . 2.2.7

lp = pullo.o < I 1,0 - quth qllo,0 (2.2.7)

Proof. Because of the condition (2.2.3) and the formulation (2.2.2), there exists a unique u;, which
satisfies (2.2.1). The pressure py, of (2.2.1) must be also unique since if py, € Py, (pn # Pp) is another
solution for the pressure, then we have

b(’l)7ph _ﬁh) = 07 Vo € Vh7

which obviously violates the condition (2.2.4).
Let z be an arbitrary vector of Zj, then v = uj, — z belongs to Z;, C V}, and

a(v,v) = (f,v) - a(z,v). (2.2.8)
Since v € V3, from (2.1.2) we have

a(“v ’U) - b(vvp) = (f7 ’U). (229)
Combining (2.2.8) and (2.2.9) we get

a(v,v)=a(u— z,v) - b(v,p)
=a(u— z,v)—blv,p—q).

The Z-ellipticity of the operator a and the continuity of the operators a and b yield

a b
ol < M — a0+ P - g

Therefore we have

el

fu=wnlie < (140 = 2pn+ Bl — g

for any z € Zj and ¢ € Py,. This proves (2.2.5).
In order to derive the estimate (2.2.6), we need only prove that

b
inf |lu—zliq< (1—|—M) inf [Ju— vl 0. (2.2.10)
zEZp Yh ] vEWVR

Let v be an arbitrary vector in Vj,. By condition (2.2.4), there exists a unique w in the H!
complement of Zj, (a subspace of V},) such that

b(w,q) =blu—v,q), Vg€ Py,
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and

1 b(u — v 1
folia < - sup 22D o Lypina o) 0.
i qebn 4o Yh

If we set z = w + v, we have
b(z,q) =blu—v,q)+b(v,q) =0, Yq€ P
This shows that z is in Z). Furthermore,

lu =zl < llu = vllio+[wlhe

[0l B
< (14 2w - wlh0.
Th

Since v is arbitrary, the above estimates prove (2.2.10).
It remains to estimate ||p — ppjo,. From (2.1.2) and (2.2.1) we are able to derive

b('v,ph—q):a(u—uh,v)—l—b('u,p—q), V’UEV}“ V(]EP}L
Therefore the condition (2.2.4) ensures

1
lpr — ¢lloo < — sup
Yh vevy, [10]l10

{a(u —up,v) +b(v,p—q)}

IN

1
%{\!a\!\!u = il + 0[P = glloo}-

Hence

a by .
o= pllos < 1w = wnfia+ (1420 ing - glon 0
Yh Yh qEP,
Remark 2.2.1. Under the assumption (2.2.3), we have

a .
lu—upli 0 < (1—|— %) zleanhHu—zHLQ. (2.2.11)

Moreover, under the assumptions (2.2.3) and (2.2.4), if Z), is contained in Z, then we have following
estimate:
lu—upll1.0 < (1 + M) (1 + M) inf |Ju—v|;q. (2.2.12)
o Yh ] vEWVR

The condition (2.2.4) in the above theorem, called the Brezzi’s condition (or LBB condition, or
inf-sup condition), plays a crucial role in the uniqueness and error estimate for the solution (ws, ps).
From the estimates (2.2.6) and (2.2.7), we can see that the estimate for ||p—ps||o.o depends on 1/737,
but the one for ||u—upl|; o only depends on 1/v; (73 is called the inf-sup constant). Therefore, the
inf-sup constant affects the error estimate for the pressure much more than it does for the velocity
if vy, is small. The inf-sup condition is a measure of the compatibility between the velocity space V},
and the pressure space Py. If Py is too large, v5 = 0, and if P}, is too small the rates of convergence
for both velocity and pressure fall. The finite dimensional spaces V}, and Pj, have to be carefully
chosen such that 7, does not tend to zero when h goes to zero, or at least not too quickly. Checking
whether the inf-sup condition holds is a primary step in analyzing the approximation properties of
a finite element.

The following theorem due to Fortin offers a criterion for checking the inf-sup condition.
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Theorem 2.2.2. The inf-sup condition holds for Vi, X Py, if and only if there exists a linear operator
Iy, : V — Vj satisfying
b(v—1lyv,q) =0, VYge P, YveV, (2.2.13)

and
o]0 <C|lv|iq VYveV, (2.2.14)

with a constant C' > 0.

Proof. Suppose such an operator I1;, exists. From (2.2.13) we conclude

b(v7q) b(Hhvvq) b(vvq)

su > sup ———% = su
e ol = vev Mvllia vy [Mavlie’

for all ¢ € Pj,. Since the inf-sup condition holds on the continuous level, (2.2.14) implies

b b
sup (v, q) > (' sup 7(1)7 9

> ]
veEV HHh'UHLQ veV HUHLQ = HQHO,Q

Therefore (2.2.4) follows with v, > C.
Conversely, suppose (2.2.4) holds with a constant v; > 0. For each v € V there exists a
unique vector Il,v € Zi‘ such that

b(Hhv7q):b(U7q)7 V(]GP}H

and

b(v,q) 1
[po]l1e < — < —lollfv]1 0
Vh qep, llalloe = v

Clearly, Il is a linear operator and satisfies (2.2.14). O
Another useful way to state the inf-sup condition (2.2.4) is given in the following theorem.

Theorem 2.2.3. The inf-sup condition (2.2.4) is equivalent to the condition: for each q € Py
there exists a v € V), such that

b(v,q) = [l4ll3 q (2.2.15)

1
lv]l1,0 < 77“{7“0,9- (2.2.16)

Proof. 1f the inf-sup condition (2.2.4) holds, then for any ¢ € P}, there exists a v € V), such that

b(v, q)
Io]]1.0

> 7nll4llo,o-

Let v be a multiple of © such that
b(v,q) = ll4ll6 «-

Then

1 b(v, g

1
lvllie < — < —llqllo.q-
Yu llglloa ~ vn

The proof for the other direction is trivial. O

~—

This result is also valid on the continuous level.



12
The above two theorems are useful in checking the inf-sup condition for mixed finite element

discretizations. The former is popularly used in stability analysis of finite element methods, while
the latter is frequently employed in developing macroelement techniques.

2.3. Approximation Properties of Piecewise Polynomials

If we know the approximation properties of the finite dimensional spaces V) and P, the
right hand sides of the estimates (2.2.5)—(2.2.7) can be simplified. In this section, we present some
approximation results for finite element spaces of piecewise polynomials.

Let ©Q be a polygonal domain and 7, be a triangulation of € such that
Q= U, ey, 7 For any triangle 7 € Ty, we define

h; = the diameter of 7 (the longest side of 7),

p- = the diameter of the circle inscribed in 7,

and set h = max;e7, hr. A family of triangulations of Q is said to be quasi-uniform if there is a
positive number 3 independent of h such that the quasi-uniformality constant

B = - < B, (2.3.1)

min;e7, by

for every triangulation 7, in the family. A family of triangulations is said to be regular if there is
a positive number 4 independent of h such that

7>, (2.3.2)

for every triangle 7 € T, and for every triangulation 7, in the family (The condition (2.3.2) is also
called the shape constraint). Roughly speaking, this condition means that no angle of any triangle
in 73, is too small or too big.

On a triangulation 7 of €, we define finite element spaces

MTZH(’Th) ={felC™(Q) ‘ f|+ is a polynomial with degree < [ ,V7 € T}},
My (Ta) = {f € My, (Ta) | flog = 03,
where [ > 0 and m > 0 are integers. Ml_l(’Th) denotes the space of all discontinuous piecewise

polynomials with degree < [.
The following results can be found in Ciarlet [9, §3] and Johnson [12, §4].

Theorem 2.3.1. Assume that the triangulation Ty, is regular. If function w € H'TY(Q), then

inf lu—oll.0 <CAH T |ullig1 0,
vEM(T)

inf  flu vl < CH* ullgr.a,
veML (Ty)

where r s 0 or 1 and [ is a nonnegative integer. Similarly, if u € IO{H'l(Q), we have

inf  lu— ol <CA* T |ullig1 0,
veEM{(T)
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Jorr =0 or 1. Here C is a generic constant which depends only on 8, the degree |, and the domain

Q.

For the elements considered in this thesis, the best error estimate, also called the optimal
estimate, of [[u — w1, + ||p — prllo,q is O(R™) for P*—P"~1 n=1,2,3.

For convenience, we denote M! (T3) x M. (T,) by M} (T,) in this thesis. Most of the time
we use M, to denote M. (T3).

2.4. Pr—P"~1 Elements for Stokes Equations

In this section, we will define the elements P?—P"~! for n = 1,2,3, and discuss their sta-
bility or reduced stability. The stability and performance of these elements depend on the mesh
configurations in most of the cases.

The mixed finite elements P*P7~! are defined as
V, = M§ (or MJ) and P, = M"T,

for n = 1,2,3. For P"=P"~1 elements the degrees of freedom in each triangle are distributed as
shown in Figure 2.1. For example, any velocity function for the P?~Pl element is a continuous
piecewise quadratic polynomial which is determined on each triangle by its values at the three
vertices and the three middle points of the edges of the triangle; any pressure function for the P?-
P! element is a discontinuous piecewise linear polynomial which is determined on each triangle by
its values at three interior points of the triangle.

Analogous to the continuous level, we define

Py={qe Py | /q=0}7
Q
Ny={q€ Py |bv,q)=0, YveWV}, (2.4.1)
Z,={vevVv ‘ b(v,q) =0, Vg€ P},
M}, = the L? orthogonal complement of Ny in Pj.

Here M), is called the reduced pressure space of Pj,.

Due to the finite element discretization, N, may contain some nonconstant functions. For
many meshes this happens for the three finite elements defined above and it causes a lot of trouble
in the analysis.

Since the divergence of any function in Vj, is in Py, Z}, is a subspace of Z for these elements.
Namely, all these three elements preserve the incompressibility condition of incompressible flows.
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Figure 2.1. P"—P"~! elements.

In order to study V) x Ph and Vi, X M}, we consider inf-sup constant -, and define the
reduced inf—sup constant
b
Yn = inf sup (v, 9)

0#pe; 02vev; [[Plliallpllon

It is clear that vy, is always positive, v, = v, if and only if Ny = N, and v, = 0 if and only if N
contains some nonconstant functions.

A finite element method is said to be stable (resp. reduced-stable) on a mesh family of Q if
there is a fixed positive lower bound for all the inf-sup constants v, (resp. 7).

The solution (wp,pr) € Vi, X Pj, of

a(ufuv) - b(v7ph) = (f7’U)7 Vo € Vh7 (2 4 2)
b(uh,(])zo, VQEP}L, o

and the solution (up, pp) € Vi, x M, of

a(up,v)—b(v,py) = (f,v), Yv e Vy,
(wn,v) (7 pr) = (f,v) h (2.43)
b(ufm (]) = 07 vq € Mh7
satisfy the relations
u = up and ph/Nh:]ah-

Here p;, is determined only up to addition of a constant of N, and pj /N, denotes the uniquely
determined part of p, in Njt. The convergence of (wp,py) could be analyzed by studying the
reduced stability and the approximation properties of the space Vj x M}, if v, = 0. However, the
analysis is usually difficult because of two reasons: first, to check the reduced stability is not easy
and second, the approximation properties of M) are not always known and may be different from
those of Pj,.
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Chapter 3

TECHNIQUES FOR CHECKING THE INF-SUP CONDITION

A major part in analyzing any mixed finite element method for the Stokes equations is to
check the stability of the element. In this thesis the main technique used to check the stability of
the three finite elements is the use of macroelements to localize the stability condition. Namely, the
stability is tested by checking local stabilities and a relatively simple global stability. Many variations
of the macroelement technique have been introduced; see for example, Boland and Nicolaides [2]
and [3], Stenberg [24] and [25], and Brezzi and Fortin [7, §VI.5.3]. In this chapter, we present
some different versions and some lemmas to justify them. First we shall state two results about
the macroelement technique, one for the case of macroelement partitions, and the other one for the
coverings by overlapping macroelements. Secondly we shall introduce a criterion for checking the
inf-sup condition by testing subspaces of the velocity and pressure spaces. Finally we provide some
technical lemmas for checking the local inf-sup condition.

In this chapter, we consider a finite element space V), x P, for h > 0 with V}, C Hl(Q) (the
velocity space) and P, C L*(2) (the pressure space) over a triangulation 7y, of a polygonal domain
Q. All the related definitions, like Ny, My, Z;, etc., are defined as in Section 2.4.

3.1. Some Concepts about Macroelements

Given a triangulation 7, of a polygonal domain Q, a macroelement with respect to 7, is
a polygonal region U formed by some triangles in 7,. The triangles of 7T, which are contained
in U form a triangulation of U, denoted by 7,¥'. A macroelement covering is a covering of Q by
macroelements. Such a covering is called a macroelement partition if the intersection of a pair of
distinct, nondisjoint macroelements is either a single vertex of the triangulation 7} or a connected
set consisting of some edges of the triangulation. Usually we denote a macroelement partition or
covering by Uj,.

For a macroelement U we define localizations to U of the finite element spaces V3, P, Ny,
and M, (see (2.4.1)) as follows:

VhU:{'UEVh‘ spt’uCU}7

Pl={\xYplpen},

Ny ={pe P/ |bv,p)=0 YveVl},

MY = the L*-orthogonal complement of N in PY.
Here Y denotes the characteristic function of U and sptwv is the support of v.

Given a macroelement covering U, of Q, for any e € &, the set of edges of triangles in Ty,
we define L, to be the number of macroelements in U}, that contain e in their interior. The covering
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is said to possess the overlap property if L. > 1 for all edges e of éh, which is the set of all the
interior edges in 7. The quantity max, L. is called the covering constant of U,.

3.2. Macroelement Partition Theorem

This section deals with the macroelement partition theorem. The macroelement partition
theorem is based on local stabilities over macroelements and the stability of a special element over
the 7. It is a useful tool to check the inf—sup condition of a mixed finite element.

Theorem 3.2.1 (Macroelement partition theorem). Let U, be a macroelement partition of
with respect to some triangulation Ty,. Let Vi, X Pj, be a finite element defined on T,. We define

b
7}[{ = inf sup &7 (3.2.1)
0zpem? ozvevy |[Vll1allPlloq
for each U € Uy,, and
b
By, = inf sup &
0#peQs 0£vevy [lvll1allpllo.c
Here
Qn:={q€ Z N}[L]‘ /qr:O Vr € Ny} (3.2.2)
Q

Ueldy,

If B, > 0, then the reduced inf-sup constant %y is strictly positive. Moreover, if o is a positive
lower bound for 8y, and 7Y for all U, then ¥y, can be bounded below by a positive constant depending
only on «.

Proof. Assume « is a positive lower bound for all ¥ and 3. Since x\Y P, = NY + M/, for any
g € My and U € U, we have

XYa=qi +a7,
for some ¢} contained in N and ¢¥ contained MY. Since ¢¥ is orthogonal to N and xY N, is
contained in N}[L]7 we have ¢ L Nj,.

Putting
q;i = Z v fori=1,2,
Ueldy,

we have a decomposition for ¢: ¢ = ¢ + ¢». Here fQ ¢gor = 0 for all » € Nj,. Therefore, fQ nr =
Jo (g —q2)r =0 for all » € Nj, so q1 € Qp. Moreover, the following hold:

/ q1q2 = 0,
Q

lall5.0 =Na1ll5.q + 2150,

lanlle =D lar'lls.o,

Ueldy,

H‘]2H(2),Q = Z Hng(%U

Ueldy,
By Theorem 2.2.3, there exists a function v; € V}, such that

1
b(vi,q1) = |lqlls.,  and  Jloifle < ﬁ—thhHo,ﬂ-
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Similarly, for each U there is a function v¥ € V,U such that

1
b(v”,¢y) = llas 5.0, and  [lv"[lia < qugHo,U-

Setting

Vo = E ’UU7

Ueldy,
we have

1
b(ve, 2) = l2llg,0,  and  [lvallia < lazllog-
Put v = Avy + v, where A > 0. We get
b(v,q) = b(Av1 + v2,¢1 + ¢2)

= Ab(v1,q1) + b(va, g2) + Ab(v1, 2)
= AMlallg o + ll2ll§.o + Ab(v1, g2)

V2
> Mg + llells.q - ﬁ—thlHo,QH%HO@
V2 1
> Mg + llells.q - ﬁ—h(GHQIHg,Q + ;H%H%@)
V2¢ V2
> A1 = X910l 0 + (1= Y229 1ga] 2
> A 5 Mallo,q + ( 4€ﬁh)HQ2Ho,m

for any € > 0 and A > 0. The special choice € = (3,,/(2v/2) and A = 37 /2 gives

(v,q) > ZHQIHO,Q + 5”‘]2"0,9 2 mm(?’ 5)”‘]”0,9- (3.2.3)

On the other hand,

[vlle <Alvillie + llv2llie
2
=D fofua + sl

B 1
< llaillo.a + —llazllo.c (3.2.4)

Br 1
< max(77 a)(HQIHO,Q + [lg2ll0.2)

1
<Vamax(2, Lglloa.

Now, (3.2.3) and (3.2.4) combine to give

b(v,p)

Z C, Vp € Mh7
ozvev; [vllallPlloe

where C' is dependent on «a and 3. O
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Remark 3.4.1. If \YP, C P, for all U € Uy, then (3.2.2) in the above theorem is equivalent to

Qn:=My(] > N (3.2.5)

Ueldy,

This can be seen from the above proof. Since ¢¥ is orthogonal to NY and xY Ny, is contained in
NP, ¢5 is orthogonal to xY Ny. That is, ¢¥ € XY P, C Py is orthogonal to Ny,. therefore, we have
¢5 € My. In particular, ¢y is in M), and then, ¢ = q — qo is in My N EUthNf[L]- Since all the
Pr—Pn=L elements have discontinous pressure space, we use (3.2.5) instead of (3.2.2) sometimes
in this thesis.

There are two major concerns regarding the application of this theorem. The first is whether
there exists a common positive lower bound for all v, and the second is how to handle the stability
of the composite element V,, x ). The first question can be answered easily if we only consider
special meshes (for example if all the macroelements in ), are congruent). However, the second
question may not be simple if dim N}[L] > 1. All these issues will be addressed in later sections.

3.3. Macroelement Covering Theorem

In order to present the result on overlapping macroelement coverings we need to assume
an approximation property of the velocity space Vj,: For each w € H'(Q) there exists a function
wy, € V), such that

b w —wills 4 D> b Hw = whllg . + lwilli o < Cllwllf o, (3.3.1)
TETH e€&y

where h, is the diameter of 7, h. is the length of e, and ' is a positive number independent of h.
This holds, for example as long as M} C Vj, (Scott and Zhang [23]).

The covering theorem is more flexible than the partition theorem in terms of the choice of
macroelements, and therefore more arbitrary triangulations can be treated by using this theorem.

Theorem 3.3.1 (Macroelement covering theorem). Let U}, be a macroelement covering of a
quasi-uniform and regular triangulation T, satisfying the overlap property. For each U € U, define
Y by (3.2.1). Assume that Vi, satisfies (3.3.1) and

pe MY +RYY, Vpe M, (3.3.2)

Then the reduced inf-sup constant vy, is strictly positive. Moreover, if o is a positive lower bound for
the "yﬁ], then %, can be bounded below by a positive constant depending only on o and the covering
constant for Uy,.

Proof. By (3.3.2), any p € M}, can be decomposed as
XUp=pi +p7,

on each U e Uy, pY e RYY, p¥ € MY.
On any macroelement U we define a seminorm over P}EJ by

o= S RV, + 3 ke / 9.2 ds,

TEThU eeén'g
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for each p € PY. Globally we define

g =S RIVaE, + 3 he / Jo[2ds.

TETH eegh

Here 5}[{ is the set of interior edges in ’ThU and [p]. is the jump of p across the edge e. By using the
inverse inequality, it is easy to show that

Iplg.0 = Clpli,

with constant C' independent of h. Therefore the local inf-sup constant on each macroelement is
also bounded below by a multiple of  in terms of the seminorm. This implies that for each p¥
there exists a function v¥ € VhU such that

b, 8) > Y1 and eVl < S lo-
Namely
o) > ol and (o7 < lple
By setting v = Sy, v, we have
vop)= Y b p) > Y Iplt = Cillpli o (3.3.3)
Uel, Uel,

with (7 depending on the covering constant and «. Moreover

C
U J—
ol < D llohe <= > bl < Cllpllng, (3.3.4)
Uelt, Uelt,
where (5 depends only on « and the covering constant. Inequalities (3.3.3) and (3.3.4) together
imply
b(w, p pllno
aip 200 > Cylpla = o (c:ALE2),
ozvevi [1]l10 12llo.2

where C's depends only on the covering constant and «.
Since p € M), C L*(Q), there is a function w € H'(Q) such that
b(w, p) = Cullpll§ o and [lw]lLe < llpllog-

By the second assumption, for the function w there is a wj; € V}, such that the condition (3.3.1)
holds. Therefore, we have

b(wp, p) = b(wy, — w, p) + b(w, p)
> b(wy, —w,p)+ C4HPH(2) Q

>3 [w—w)- Vot 3 [ wn =) niGlds + Cullalia

TETH eegh
— _ 1/2
(> by —wld+ > A ws — wll ) Pl + Callplli g
TeTh eégh

=Csllwll.allpllng + Cillplls o

v

v

> HpH(Z) Q<C4 _ 05 Hth@)‘
’ 1pllo.2

vV
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Considering the following inequality

lwillie < Csllpllog,

we then have

b(wy,
W P) e (Cr — Gy (3.3.5)
w10 1pllo.e
Combining (3.3.4) and (3.3.5), we have
b(v, .
sup (v, p) > min[max(C7 — Cst, Cs5t)]||pllo.0
ozvev;, (vl — 1
= B
ERCENAL

Taking v = C5C7/(Cs + Cg), ¥ > . Obviously, v is only dependent on « and the covering
constant. [

Allowing overlapping in U, makes the analysis easier in applications. However, (3.3.2) is a
strict condition, and many meshes fail to fulfill it.

3.4. Subspace Theorem

We present a more abstract theorem for checking the inf-sup condition in this section. The
main idea of the theorem is to find two subspaces in each of the velocity and pressure spaces, and
to check whether the four subspaces satisfy some conditions.

Let V}, C H! be the velocity space and P, C L? the pressure space.

Theorem 3.4.1 (Subspace theorem). Let V| and V; be two subspaces of Vi, and Py and Py be
two subspaces of Py. Let the following four conditions hold:

(1)
P,=P+5,

(2) there exists ay > 0 such that

b(vq,
sup w > ai|lgi]lo,q, Va1 € P, (3.4.1)

viev: [lvillia
(3) there exists oy > 0 such that

b(vs,
sup blvz: 42) > aal|g2|lo,0, Va2 € P, (3.4.2)

voeVy [lv2fl10
(4) there exist 81,32 > 0 such that

1b(v1, @2)| <Pillvilliellelloqn, VoL € Vi and Vg € P,
1b(v2, q1)| <B2llv2]l1.ellrllo.q, Vo2 € Va and Vg1 € P,

with
B1B2 < ajas.
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Then Vi, X Py, satisfies the inf-sup condition with the inf-sup constant depending only on oy, as, f1,
and 3.

Proof. The idea is to construct a v € Vj, for each ¢ € P, such that

> Cllgllo.q; (3.4.3)

where C' is a positive constant.
For each ¢ € Py, there exist ¢ € P, and ¢o € P such that

0=q -+ q. (3.4.4)
By Theorem 2.2.3, the condition (3.4.1) is equivalent to

for any ¢ € Py, there is v1 € V] such that

1 (3.4.5)
b(vi,q1) = |q1ll§ o and [oifl1e < a—lehHo,ﬂ-

Similarly, the condition (3.4.2) implies that for each g, € P, there exists a vy € V5 such that

1
b(vy, @2) = l2ll5.o  and  [Jwsfl1 < a—2HfZ2Ho,ﬂ- (3.4.6)

For the ¢ in (3.4.4), we are going to construct a v such that (3.4.3) holds. There are two

cases, 1 + B2 =0 (81 = B2 = 0) and S + B2 # 0.

Case 1. ;1 =0, =0

Let vy and vy be the functions corresponding to ¢; and ¢ in (3.4.4) such that the condition
(3.4.5) and (3.4.6) hold. Setting

v = v + v,

we have

b(’U, (]) = b(vl + v2,q1 + (]2)
=b(vi,q1) + b(v2, @)
= lall§ .0 + [le2(3 0

Since
|vllie = [lvi + v2(l10

llvill.a + [lvall1,0

IN

A

1 1
< —llallog + —llelloq
aq (0]

1 1
max(— —)(lalloa + o)

IN

we get

b(v,q) S "‘]1"(2),9‘|‘"‘]2"(2),Q

lollie = max(Z5, 25) (laillo.e + llazllo 2)

1

- Qmax(a%,a%)
1
T L)H‘]HO,Q-

Oll7 QAo

(Ilg1llo.2 + llgzllo.2)

v

2 max(
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Case 2. f1+ 3, #0
Without loss of generality, we assume 35 # 0. Setting

v = v + ovy,
where o is a scalar, we immediately have

b(v,q) = b(vi + ov2, 1 + @)
= b(vy, q1) + 0b(vy, q2) + b(v1, q2) + ob(v2, 1)
= HQ1H(2),Q + UHQQH(Q),Q + b(v1, q2) + ob(va, q1).

Since
1b(v1, q2) + ob(v2, q1)| <Billvillrellealloq + obalvzlliallglo.

51 052

<(—+ —)laillo.allello.a
aq (0]
Bi 0B 2 1 2

< L - -

_(041 + -~ Jellqillo o + 46HQ2HO,Q)

1
<e(Ar+ o) @l o + E(Al + o) |21l 0

where Ay := 1 /ay and Ay := 5 /as, we have
1
b(v,q) > [1 = e+ od)llallsa + o = (A + od)llaalle o
We hope to choose o > 0 and ¢ > 0 such that
1
I—€eAi+0X)>0 and o— 4—(/\1 +0oXy) > 0.
€

Namely, to choose ¢ > 0 and € > 0 such that

1

€<m and 4oe > A + o).
Therefore ¢ must satisfy
4o > A+ oA
AL+ oAy BRI
Simplifying the above inequality, we get
Ao? 4+ (200 — 4)o + A7 < 0. (3.4.7)

The inequality (3.4.7) implies
M2+ (20 — Dt + A =0,

has two different real roots. This is equivalent to the fact that Ay and Ay satisfy the inequality
(2X1 0 — 4)2 —4XIN2 > 0,

or
Aty < 1.
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Namely, a1, as, 1, and Gy satisfy the relation

B1B2 < ajas.

Picking o as

2= M+ 2VT AN
- 0 7

g

and selecting € such that

A1—|—O'A2 << 1
4o ¢ A1—|—O'A27

we have
b(v,q) > min(Cy, Co)([|a1llg 0 + le2115.0)-

Here €y =1 —€(A; + 0X2) and Cy = 0 — 4¢(A + 0A3)/(4€). On the other hand, we have

[vlli0 = |lvr + ovall1 0

lvill1.0 + vzl

IN

A

1 o
< —llallog + —llelloq
aq (83

1

g
max(1= Z)(lalloq + o )

IN

Finally,
b(v,q) S min(C4, Cy)

ol ~2max(5;, )

(Ilg1llo.2 + llg2(lo.2)

min 01702
2 2(—10)Hqu,g- O
max(cy—17 a—g)

As an application, we use this subspace theorem to prove the macroelement partition theorem.
Define

V=V, Py = Qy,
Vo= Y Vi, P= ) MY
Ueldy, Uely

For this choice of spaces we will show that the four assumptions of the subspace theorem are satisfied
under the assumptions of the macroelement partion theorem. Then the inf-sup constant is bounded
below by a positive number with independent of h. Therefore the macroelement partition theorem
holds. By the assumptions in the partition theorem, conditions (1) and (2) hold. Since b(v,p) =0
holds for any v € V3 and any p € Py, 2 = 0. Consequently, condition (4) holds. It only remains to
verify condition (3). According to the definition of P, any p € P, can be written as

p=>_p",

Ueldy,

with some pY € M}[L] For each pY there is a vV ¢ VhU such that

1
b ") =llg" 6o and  [0"llLe < —ll¢"[lo.e-
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Taking v = Sy, v, we have

bo,p)= > be",p") = > IPl50 = Pl

Uel, Uel,

and

1 1
o]l 0 = I e <= > Ip7150=—5lPl o
o o
Uel, Uelt,

Therefore condition (3) holds. This proves the macroelement partition theorem.

Another application of the subspace theorem is to prove that results on stability or reduced
stability of a finite element method for the Stokes equations with Dirichlet boundary conditions
are also valid for the equations traction boundary conditions. To simplify the exposition, we only
consider P"—P"~1 elements in the following discussion (similar arguments work for other elements).
In order to distinguish the finite element spaces for problems with different boundary conditions,
we use Vj, Py, Np, and M), to denote the spaces in problems with the Dirichlet condition and use
VhN7 P}]LV (which actually equals Py), N}]L\f7 and M}]LV to denote the corresponding spaces for traction
boundary condition problems.

Theorem 3.4.2. If a finite element V), x P, is stable, so is VN x PN,

Proof. Since Vj, x P, is stable, N}, only contains constants. Define

‘/1 = Vh7 Pl = Mh7
V, =VY, P :=R.
Obviously, conditions (1) and (2) of the subspace theorem hold.
For any constant ¢ € P> (without loss of generality we assume ¢ > 0), we have

b(u,c)

e > () > 0,
[ellallelloq

where w = (z,0). Therefore, V5 x P, is stable i.e. the third condition holds.
Since b(v, ¢q) = 0 holds for any v € V; and ¢ € P», the condition (4) of the subspace theorem
holds.

Hence, the proof. O
Theorem 3.4.3. If V), X P}, is reduced-stable and dim N;, = dim N}]LV + 1, then VhN X P}]LV is stable.

Proof. Since V}, x P, is reduced-stable and more importantly since dim N;, = dim NV 41, NN+ R =
Ny, and M}]LV = M, + R. Define

‘/1 = Vh7 Pl = Mh7
V, =VY, P :=R.

The theorem results from applying similar arguments as in the proof of Theorem 3.4.2 to the above
four spaces. O
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3.5. Support Lemmas

In order to apply the macroelement partition or covering theorem to a finite element method
on some mesh families, we have to check if there is a common positive lower bound for every local
inf-sup constant. In this section, we present some technical lemmas designed for checking the local
inf-sup condition on various macroelements.

3.5.1. Equivalence Classes of Macroelements

We shall introduce the concepts of macroelement equivalence classes and equivalence classes
under certain sets in this subsection. All these concepts are important in the analysis of the three
finite elements.

Let Ty, and 73, be two triangulations of Q. Let U, denote a set of macroelements for 7j,,,
for:=1,2.

A pair of macroelement U in U, and O in U}, are called equivalent if the number of triangles
in the two macroelements are equal, if ’Thllj consists of triangles 7,7, ..., 7, and if ’Thoz consists of
triangles wy, ws, ..., wy so that there is a 1-1 continuous map H of U onto O which maps 7; to w;,
such that H is linear on each triangle 7;. We call such a mapping H a topological mapping.

Let G denote a set of topological mappings that map a macroelement U to some other
macroelements O. The macroelement equivalence class of U under the set GG is defined as

E(U,G):={H(U)| H € G}.
Any two macroelements U, O € E(U, ) are called G-equivalent and denoted by

G
~

U~O.

3.5.2. The Equivalence Class under Invertible Linear Mappings

In this subsection, we investigate several equivalence classes of macroelements that correspond
to some subsets of the set of all invertible linear mappings.
We consider an affine linear map from the coordinate system (z,y) to (§,¢) given by

(5(9079)):(6111 d12)($)+(d1)
C(z,y) dyr  dao y dy )’
A macroelement U is transformed to U under this map. Here the matrix of the mapping, denoted

by D, is an invertible matrix with constant coefficients, and dy, and dy are two constants. We let

VhU and VU denote the velocity spaces and P}EJ and PU denote the pressure spaces for the two
macroelements
Define

5(¢,¢) = v((€,0), (6 0), Vv e V)|
q(¢,¢) = q(x(£,0),y(&.Q), Vg € Py
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We assume that

vl = (o vevy
=100 | W (3.5.1)
Ph = {f] ‘ q € P}
We also assume R R
vV = {Av ‘ veVV} and VU ={Av ‘ veVly, (3.5.2)

for any 2 X 2 nonsingular matrix A with constant coefficients. This assumption is valid for most of
the mixed finite elements used for the Stokes equations, which reflects the symmetric structure of
the two components of the velocity function v.
Our first goal is to analyze the relation between the reduced inf-sup constants over the two
macroelements U and U. For this, we need to compute the inf-sup constant explicitly.
It is easy to verify that
Vv = (Vo)D,

and

/qdivv:/ Gdiv(Dv)Jp-1 :JD—1/ Gdiv(Dwv) (3.5.3)
U g g

where Jp-1 stands for the absolute value of the determinant of D!,
Similar computations show that

lalle,c = llg ¢ (3.5.4)
and
lvli = / Vv : Vv = / (Vo)D : (V&)DJp-
U U
= Jp-:[|(V&) D%
Here || D|| ¢ denotes the Frobenius norm of the matrix D.
Since VDo = DV0, we have
Vo = D'V Ds.
Hence,
ol =Joms [ D71V D8) DI (3.5.5)
U
Combining (3.5.3), (3.5.4), and (3.5.5), we get
Jpadive Jiradive _ Jir 4div(D3d) (3.5.6)
- 1/2 - _ . 1/2) A e
eholldor ([ 1veld) lallow (Jo 1D (VDS DIE) il o
Since
|D~1 (YD&) D]l < (D)
where k(D) = || D71 ¢||D||F is the condition number of the matrix D with respect to the Frobenius
norm, we have
divw 1 ~ g div (Do
Jud S Jord ) (3.5.7)

(S IVl Plallos — 7P ([ >

Now we are in the position to state some lemmas based on (3.5.6).

o(1%) Ml
(
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Lemma 3.5.1. Let F be the set of all invertible linear mappings. For any U in E(U, F), we have,
under assumptions (3.5.2) and (3.5.1),

dim VY = dim V7,

dim PP = dim P,

dim N = dimN}?, and

dim MY = dim M7

Proof. By assumption (3.5.1) and the equalities (3.5.3) and (3.5.6), we can clearly see that the
lemma holds. O

Lemma 3.5.2. Let Iy C F denote the set of all linear mappings with orthonormal matrices. For

any U € E(U, ),
W=

holds under assumptions (3.5.2) and (3.5.1).

Proof. Since we have ||[D™Y (VDo) D||p = ||VD%

r, the equality (3.5.6) becomes

Jiadive _ Jir G div(Do)
1/2 - N 1/2
(Lo 9012 P lallow (S IVD8)12)Y

The lemma then follows by (3.5.2). O

2 5 .
F o,

Lemma 3.5.3. Let Fy, C F be the set generated by all translations, dilations, reflections, and
rotations. Then for any U € E(U, Iy), we have

Th =T
under the assumptions (3.5.2) and (3.5.1).

Proof. Since reflections and rotations correspond to orthonormal matrices, the previous lemma
proves the result in these cases.

For dilations, the corresponding matrices are multiples of the identity matrix. We can then
conclude that the reduced inf-sup constant does not change (equality (3.5.6)).

Since any translation corresponds to the identity matrix, the lemma holds trivially. 0O

The previous two lemmas are mainly for some special subsets. The question is whether we
can conclude anything about the reduced inf-sup constant of the macroelements in E(U, F). The
answer is yes. However, since some triangles of ’ThU for U € E(U, F) could be degenerate, we need
to add more restrictions to E(U, I') in our discussion. Only a part of E(U, F) is allowed to appear
in triangulations 7;, where h can be any small positive number.

Let Ey(U, F') denote the subset of all the macroelements in I(U, F') such that each of them
satisfies the regularity assumption (2.3.2). That is, there is a positive number # such that for any
triangle 7 in any macroelement of Ey(U, F)

pr
759
h, =

where p, is the diameter of the inscribed circle in 7 and h; is the longest edge of 7.
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Lemma 3.5.4. Under assumptions (3.5.2) and (3.5.1), there exists oy > 0 with

:yUZOéU, VﬁGEQ(U7F)

Proof. Let uq, ..., uy denote the vertices of U and i, ..., & be the vertices of any U in Eq(U, F).
Here i; corresponds u; for i = 1,..., k, under some mapping in F.

Since translations or dilations leave the reduced inf-sup constant unchanged, we assume
iy = (0,0) and max__g{h,} = 1 for any U in Fy4(U, F). Define

W = {(?ALh,?ALk) ‘ (7 € EQ(U7F)}7
which is a set in R2*.

We first show that W is a closed set in R?**. Suppose there is a sequence of macroelements
U @ B that converges to U. That is, the vertices ﬁ(ln), .. ‘7?15;1) of U™ converge to the

vertices 4y, ...,y of U respectively as n goes to infinity. Since any triangle 7(*) in U satisfies
pf'(") Z 07
hsony
we have p
-
>4
ha— -

for the corresponding triangle 7 in U. Therefore the triangles in U satisfy (2.3.2).

It is quite straightforward to see that there is a continuous, 1-1, and onto mapping H of U to
U such that H is linear on each triangle. Let H,, denote the linear mapping that maps U to U™,
Our goal is to prove that H is a linear mapping over the whole of U. If that is the case, W is closed.

Let D,, denote the matrix associated with H,, and D, denote the matrix associated with H |,
for each 7 in ’ThU. For any triangle 7 in ’ThU, we assume that 7 has vertices uy, uo, and us. We know
that

H,|-(u;) = Hl|:(u;) as n — oo,

for ¢ = 1,2, 3. This implies

Dn(u2 - ul) — DT(UZ - u1)7 and
Dn(U3 — ul) — DT(Ug — U1)7

as m — 0o0. Since ug — uq and us — uq are linearly independent vectors,
D, = D, as n — oo.

Consequently, we have
DTi = Dq—j,VTZ‘7 Tj € ,ThU.

Similarly, we can show that the constant vector associated with H|, is also same for all 7 in T,V.
Hence, we have proved that H is a nonsingular linear mapping.
Since

o Ly ) —1/2 5 4—1pt ag—1/2
’Yh(ulv---vuk)—\/AdimN}_{H(MU By Ay By My, )
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(please see the relevant sections of Chapter 5) and the entries of matrices My, Ay, and By, depend

continuously on vertices 44, ..., g, 70 must continuously depend on the vertices in U. Since W is
a bounded closed domain, there is ay; such that

3 > au, VU € Eo(U, F). O

3.5.3. Stability of Finite Elements on Macroelement Partitions

When applying the macroelement partition theorem, we have to estimate the stability of
Vi, X (M, N Spew, NY). In this section, we state some basic results that can be used to analyze this
stability.

Let U, be a macroelement partition of a triangulation 7, of Q. Let V), be the velocity space
with Mé“ C Vj, and let P, := M! be the pressure space.

Lemma 3.5.5. If NY = \YR for any U € U,,, then

(1) Vi x (My, N Xy, NY) is stable for k > 1, and
(2) Vi x (M, N Spew, NF) is stable for k = 1 if the intersection of any pair of nondisjoint
macroelements in U, is either a single vertex or a connected set of at least two edges in Tp,.

Proof. We consider statement (1) first. Define

‘/1 - M(;g7
P =M.

It is well known that V] x P; is stable for & > 1. Since

My, NYCcM®, and V,D W,
Ueldy,

we have V}, x (M}, N Xpew, NY) is stable for & > 1.
For the statement (2), we need to consider the stability of the finite element V; x P; on the
macroelement partition Uy, where

Vi= Még(uh)v
Py = M2, (Uy,).

Because of the special property of the macroelement partition, it is easy to show that V; x P is
stable (see Stenberg [24] and [25]). This proves that V}, x (M), N Syrey, NY) is stable for k = 1. O
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Chapter 4

STABILITY AND APPROXIMATION PROPERTIES OF
THE P?-P! ELEMENT

In this chapter, we discuss some theoretical results on the P2-P! element for the Stokes
equations. The P?-P1 element is defined by

V, = MZ(T,) and P, =M (7).

As we mentioned before, the stability and approximability of this element depend on the mesh
configuration. Namely, the element is stable for some mesh family but unstable for others.

The main issue in this chapter is the analysis of the performance of this element on different
mesh families. In Section 1, we introduce some known results on this element—a negative result due
to de Boor and Héllig for diagonal meshes and a positive one due to Mercier for crisscross meshes.
In Section 2, we analyze the spurious pressure modes on diagonal and crisscross mesh structures
and display them explicitly. Studying spurious pressure modes is a crucial step in understanding the
reduced stability and the approximation properties of the reduced pressure space of a finite element.
We study the stability and approximation properties of the finite element on irregular crisscross
meshes in Section 3. As we will see, the rate of convergence for both velocity and pressure is
optimal on this mesh family.

In Section 4, we deal with a mixed mesh family—a mixture of diagonal and crisscross struc-
tures. On these meshes we prove that the reduced inf—sup constant can be bounded away from zero
by a positive number (independent of i) as long as there is a nonvanishing proportion of crisscross
structures uniformly distributed throughout the mesh.

In Sections 5 and 6, we discuss two mesh families with no singular vertices. On these two
families the P?—P! element is completely stable, so both velocity and pressure have optimal rates
of convergence.

4.1. Known Results

In this section, we present two known results on the P?~P1! element. One is a negative result
which shows, by an example, that the numerical solution for velocity has at most suboptimal rate
of convergence on a type of mesh, and the other one is positive stating that the rate of convergence
of the numerical solution for velocity is optimal on another mesh family.

4.1.1. A Negative Result: Diagonal Meshes

Let the domain € be the unit square. Let the triangulation 7, of Q be formed by dividing
the unit square into A= ( h = 1/n, n is a positive integer) small squares where each of them is
partitioned by its positively sloped diagonal, see Figure 4.1. The mesh 7, is called a diagonal mesh.
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Figure 4.1. Diagonal mesh of the unit square (h = 1/4).

On diagonal meshes, a negative result can be deduced from the work of de Boor and Héllig [5],
see also de Boor and Devore [4]. They showed that the space of C'! piecewise cubic polynomials has
approximation properties which are one order suboptimal. This implies that the rate of convergence
of uy, to w is suboptimal. (The norms considered by de Boor and Héllig are not exactly those
pertinent to this discussion. However, their argument can be adapted. Cf. Babuska and Suri [1].)

Theorem 4.1.1 (C. de Boor, 1990). Let T;, be a diagonal mesh on the unit square Q. For
f € HYQ), we have
inf 1 = wlloa < C B fllag:
wEMf’

Moreover, there exists a function g € C'™° such that

inf g = wlloq > Ch.
wEMf’

Here C' is a constant independent of h.

This result implies that the rate of convergence of finite element solution for the velocity of
the Stokes equations with traction boundary conditions is one order less than the optimal. Moreover,
the result cannot be improved. It is believed that the poor approximation property of the element
on the diagonal mesh is caused by the special mesh structures—only three types of lines appear in
Th.

For the Stokes squations with Dirichlet boundary conditions, we cannot expect a better result
than the one offered by Theorem 4.1.1. Essentially, the rate of convergence of the finite element
solution for the velocity is no better than suboptimal. We will give some numerical evidence in
Chapter 5.

The above theorem does not say anything about the approximation property of the finite
element solution for pressure. However, from Theorem 2.2.1 we can infer that the reduced inf-sup
constant is at least as small as O(h). Therefore, no meaningful error estimate for the pressure can
be obtained by using Theorem 2.2.1.

4.1.2. A Positive Result: Irregular Crisscross Meshes

Mercier [17] has proved a positive result on irregular crisscross meshes for the P?~P*! element
by using the Fraeijs de Veubeke-Sander elements [10].

Let Q be any polygonal domain. Let 7 be the triangulation of Q that results from partitioning
Q into quadrilaterals and then dividing each quadrilateral by its two diagonals, see Figure 4.2. This
type of mesh is called an irregular crisscross mesh.
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Figure 4.2. Irregular crisscross mesh.

Theorem 4.1.2 (Mercier, 1978). Let T), be an irregular crisscross mesh on Q. Ifu € ﬁI3, then
we have

inf |lu—wv < ChY||lu
inf [lu=vlha < CFllulls e,
where C' is a constant independent of h and Zj, is the space of all the divergence free functions in

Vi (= Mg (Th))-

The proof of the theorem is based on the C'! Fraeijs de Veubeke-Sander element.

On irregular crisscross meshes, Mercier’s theorem guarantees that the solution for the velocity
from the P2-P! element converges optimally. However, there is no estimate for the pressure in the
above theorem. Also, the theorem says nothing about the reduced stability of this element on
irregular crisscross meshes.

We define a singular vertex as the intersection of exactly two segments in a triangulation 7j,.
For example, in Figure 4.3, the vertex s is a singular vertex. It is believed that the P?-P! element
possesses good approximation properties on irregular crisscross meshes due to the presence of the
singular vertices. The more singular vertices a mesh possesses, the more divergence-free functions
are there in V3. This can be seen from the following lemma.

Figure 4.3. Singular vertex.

Lemma 4.1.1. Let uw = (u,v) be a function on the quadrilateral which is
(1) continuous on the quadrilateral shown in Figure 4.3. and
(2) differentiable on each triangle 7; for i =1,2,3,4.

Then we have
4

> (=1)¥(divul,)(s) = 0. (4.1.1)

i=1
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Proof. Let ny = (n11,n12) and my = (n21, na2z) denote the two unit vectors which are parallel to
the diagonals of the quadrilateral in Figure 4.3 respectively. For convenience, we denote u on each
triangle 7; by w; = (ug, v;).

Simple calculations show that

= 8%1 ) — 8%4 (8) o 8u1 ) — 8u2 (S)

8711 8711 ' ' 8n2 8n2 '

i Juz gy Ous = sy Qg
8711 8711 8n2 8n2

We define matrix D by

5)

Therefore, we have
J=m(ant) (20)-m(ains)
|D|\ n21a+mnq11b )’ %Ly? |D| \ n21c+nyib )’
ou

(
(
1 [ ngec—niad SA(s)\ 1 (ngsa —nyad
)=m(eim) (£0)=mlmaine)

Z(—w%(s):o and Z(—1)i%(s):o, (4.1.2)

Clearly,

hold for j = 1,2. Similar arguments show that the equalities (4.1.2) hold if we replace u by wv.

Finally we have
4

D (-1)i(dive

i=1

) =0. O

Since div uw automatically satisfies the equation (4.1.1) at each singular vertex, the dimension
of the space Z), is increased by one wherever there is a singular vertex in the triangulation 7.
Hence, conclude that the approximation properties of Z, improve with any increase of the number
of singular vertices in 7.

4.2. Spurious Pressure Modes

In this section, we display explicitly the spurious pressure modes for the diagonal and irregular
crisscross mesh families. We study spurious pressure modes to determine the rate of convergence
of the finite element solution from the space Vj, x Pj,. Specifically, in order to determine the
approximation properties of M}, and the stability of Vj, x M} we need to know the spurious pressure
modes.

4.2.1. Spurious Modes on Diagonal Meshes

Consider a diagonal mesh 7}, of the unit square (h = %, integer n > 2). Let K; ;,1 <4,j < n,
denote the (4, )" square in this mesh (Figure 4.4). Let each K; ; be bisected by its positively sloped
diagonal (see Figure 4.4).
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Ky, K,

)

I(l 1 I(n 1

)

Figure 4.4. Diagonal mesh.

The following lemma (see Chui and Schumaker and Wang [8] and Scott and Vogelius [22])
gives the dimension of the space Nj, for the diagonal mesh family.

Lemma 4.2.1. On the diagonal mesh Ty, (n = 1/h, n > 2) of the unit square, we have

Before we explicitly show that Nj has 6 independent functions, we introduce some notations.
For any pressure function p in P}, (see Figure 4.5), we denote the values of p at the vertices of K ;

by pg}j), pg?j), pf’j), ql(}j), ‘]2(,2]')7 and ‘]2(,3]')- For convenience, on square K; ; we define 5 functions ®;, ®,,
®3, ¢4, and 5 (Figure 4.6).

qu) qz(,lj)
)
g
) )

Figure 4.5. Values of p.

Theorem 4.2.1. On the diagonal mesh Ty, we define

\IIZ|K,')]- = (1)17 VI(Z‘J', fOT [ = 1, 2, 37

Dy, K,
Uylk,, = {

0, otherwise,
s | @5, K1
51K ; = .
e 0, otherwise, and

Wslr,; = P5 +4(i — 1)(P1 — o) +4(j — 1) (P2 — ®3), VK ;.

For n > 2, the functions V;, 1 = 1,2,...,6 form a basis of Nj,.
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0 1 0 1 0 0 0 0 d
0 1 0 0 1 10 0
D, D, Ds
—3 1 4 0 0 |

1 0
0 0 —3
@4 q)5

Figure 4.6. Definition of &;.

Proof. We prove the independence of W; for ¢ = 1,2,...,6 first. Assume there are constants «;, for
1=1,...,6, such that
6
> @ =0, on Ty, (4.2.1)
=1

We need to show that a; = 0 for 7 = 1,...,6. By considering (4.2.1) on K, 1, we get a system of

linear equations:
ay =0,

a4+ (4n — 4)ag = 0,

az — (4n+ 4)ag = 0,

o +as +ag =0,

ay — 3as + (4n — T)ag = 0,
az + a5 — (4n — 2)ag = 0.

Solving the above system, we get

o] =y = a3 = a5 = ag = 0.
On the other hand, considering (4.2.1) on K ,, we have

a1 =y =az =ay = ag = 0.

The above two results combine to complete the proof for the independence of {W;}%_,.

We now show that each W; belongs to Nj. For the space 1\0402, there are 4 types of basis
functions. One is piecewise linears on six triangles (first figure of Figure 4.7) and the remaining
three types are all piecewise quadratics on the shaded triangles in the rest of the figures of Figure
4.7. For convenience, we denote these four basis functions by ¢4, ¢y, ¢., and ¢4 respectively. If
we can prove that the first order derivatives of these basis functions with respect to z and y are
orthogonal to all ¥;, then we are done.
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Because of the special shape of spt{¢,}, spt{¢s}, and spt{¢,}, it is easy to show that

/ 8(blxpk_o and / 8(blxpk_o
spt{or} 0T spi{er) O

for I = a,b,d and for k =4, 5.

Figure 4.7. Supports of basis functions.

Since ¢. = —4(z —1)yn? in spt{¥s } N K, 1 and ¢, = —4z(y — 1)n? in spt{Ws} N Ky ,, simple

calculations show that
/ a(bc\pk =0 and / 8¢c\pk = 07
spt Wi Oz spt Wy 8y

for k = 4,5. Thus, we have shown that ¥, and W5 are in Ny,
Since constants are always in Nj, we only need to show that Wy, Wy, and Wg are in Nj,.
Let the macroelement U be formed by four small squares K; ;, K41 ;, Ki j41, and Kiyq j41.

If we can prove

forl=a,b,c,dand k =1,2,6, then we are done.
On U we define

U= a(ba + b(bb + C(bc + d(bd
For any p € Ph, we have

(3) (1) (2) (3)
i, —I_pz,] + 2pz,] — 411 g qz—|—1,] qu—l—l,j)d—l_

=(-
(p!")
(pm+1 pz,]+1 - (]Z( ]) + (]Z( ]))b—l— (4.2.2)
(»!!

(3) (1) (2) (3)
P+ = e = pE s - et

2 3
f]z(,j) + f]z(,j) + f]z(,j) - ‘]2(4-)1,]' - ‘]2(4-)1,]' - qz(-|—)1,j>a7

and
1

(3) (1) (2) (3)
6n ) +

=(2p!) + 91 + 01 —241) — ) — %))e

(i 2]) pm - qz(+)1,y + qz(+)1 J)d+
2 3 4.2.3
( - 2p27]+1 PE ])-|-1 p§7]')_|_1 + 2(12(7]') + (]2(7]') + (]2(7]'))194‘ ( )

1 2 3
10Z J —I—pz J +p§) PE,]')H - PE,]')H - Pg,j)+1‘|‘

1 2 3
qz(+)1,j + qz(+)1,j + qz(+)1,j - ‘Zz(+)1,j+1 - ‘Zz(+)1,j+1 - qz(+)1,j+1)“-
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Taking v to be equal to ®; or ®; in either (4.2.2) or (4.2.3), we get zero for any choice of a, b, ¢,
and d. Therefore, ¥; and W, are in Ny,

The values of W in U are

(3) _

1 . o .
pgd.) =41 -3, pij = 4(] — Z) -3, Pi; = —47 + 5,
qz(,lj) =47 — 4, qz(?j) = 4(j — i), ‘]f}) = )44,
1 . 2 . . 3 .
pg"')lvj =4+l p§‘|‘)17] =4 -1 -7, P§-|-)1,j =—45+5,
1 : 2 . 3 )
‘Zz(+)1,j = 4, ‘]z(+)1,] =4(j—1) -4, q§+)17]. = —4j + 4,
g =ai-a, P =40 -0, ¢ =4,
W a1, P —ag—iy—3, PP =it
Pit1j+1 7= v Pigrg41 = =U v Pifr 41 = J )
1 . 2 . . 3 .
qi+)1vf'+1 =4, qz(+)1,j+1 =4(j — 1), ‘]z(+)1,j+1 = —4j.

Plugging W for v into (4.2.2) and (4.2.3), we find that both (4.2.2) and (4.2.3) are zeros. Therefore
W is in Vy,.

Thus, we have shown that Wy, ..., Wg are in N and are independent. Since the dimension
of Ny is 6 (by Lemma 4.2.1), {¥,;}%_, forms a basis for N,. O

The spurious modes ¥, ¥y, W3, and Vg all have 7, as their support. The modes ¥, and
W5 have a small local support if we consider P} as the pressure space. On the other hand, they are
globally supported if P}, is considered.

There are 6 independent pressure modes in Nj associated with the Stokes equations with
Dirichlet boundary conditions. Since the Stokes equations with traction boundary conditions has the
velocity space Mg (7}), all the 6 pressure modes are wiped out by the presence of MZ(7},). Hence,
for the Stokes equations with traction boundary conditions, Nj only contains the zero function.
Since there is no spurious pressure mode for the traction boundary condition problems, the inf—sup
constant is positive on diagonal meshes. However, the element is unstable (see Theorem 4.1.1).

4.2.2. Spurious Modes Around a Singular Vertex

In this subsection, we prove that there is a locally supported spurious pressure mode asso-
ciated with each singular vertex. More general results on irregular crisscross meshes appear in the
next section.

We first consider the spurious pressure modes supported on a macroelement U, which is an
arbitrary quadrilateral divided by its two diagonals (the first figure in Figure 4.8). Let a, b, ¢, and
d denote the lengths of the interior edges of U. Without loss of generality, we assume that one
diagonal of U lies on the z-axis (since rotations and translations do not change the dimension of N
). This assumption simplifies the computations. If we denote the directions of the two diagonals by
n; = (1,0) and ny = (ny, ny), then the coordinates of the four vertices of the quadrilateral U are
given by

(a,0), (bny,bny), (—¢,0), and (—dnq, —dnsy).
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Figure 4.8. Macroelement U and spurious mode §V.

The following result is due to Morgan and Scott [19].
Lemma 4.2.2. Lel

Nu(U) == {p € M5 (U) | b(v,p) = 0,Yv € MY(U)}.

Then for 1 > 1, dim N (U) = 1.

For the P?~P! element, we number all the vertices of U in a manner shown in the first figure
of Figure 4.9. Any u € MZ(U) can be expressed as

13

U= Z(unvi)Cbn

i=1

where (u;,v;) € R?%, for ¢ = 1,2,...,13, and {¢;}}12, is the set of nodal basis functions. Let
p € ML, (U) be such that its values at the vertices of the four triangles of U are as shown in the
second figure of Figure 4.9.

Our objective is to obtain a linear system of equations from fUpdivu = 0 for any u €
M¢E(U). Obviously, the solutions of the system are the spurious pressure modes. This is a system
of 26 equations in 12 unknowns and it has 6 parameters. It is difficult to find solutions of the
system in this form. To this end, we first solve a subsystem corresponding to fUpdiV u = 0 for any

u € MO2 (U). Then, we substitute the solutions obtained from the subsystem into the system to find
the solutions we want.

q1 P2
92 q3fps M
51 31ty ty
S9 tl

Figure 4.9. Vertices in 7, and values of p.

We set
0:6/pdivu:: I + I, (4.2.4)
U
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for any w; = (u;, v;) for ¢ = 9,10, ...,13, with

I =na(bpyr — bps + dty — dis)ug+
n2 (bp1 + 2bpy + bps — 2bgy — bgz — bgs)uio+
bga + bgs — dsy + dss)uii+
dsy — 2dsy — dss + 2dty + dty + dts)ui2+
ny(bpy +bpy + bps — bgy — bgy — bgs — dsy — dsy — ds3 + dty + dty + dtz)uys,

9
9

(
(-
(-
(

and

Iy = (2apy + aps + aps — aty — 2aty — ats — ny (bpy — bps + dty — dts))ve+

apy — aps + cqr — cqz — ny (bpy + 2bpy + bps — 2bqy — bgy — bgs))vio+

cqi + 2cqy + cqz — 2¢51 — ¢sy — 53 — ny (=bgy + bgs — dsy + ds3))vi+

—cSy + ¢s3 — aty + ats — ny(—dsy — 2dsy — dss + 2dty + dt; + dts))via+

apy + aps + aps + cq1 + ¢q2 + ¢q3 — €51 + —¢S — ¢s3 — aly — aly — als

—nq (bp1 + bpay + bps — bgy — bgy — bgs — dsy — dsy — dsz + dty + dty + dt3))vy3.

(
(
(
(

Since ny # 0, so the equations obtained from Iy do not depend on ny. Since each equation from I,
contains a multiple of an equation from I; as a part, we can eliminate this part in each equation from
I5. Eventually, (4.2.4) implies that the system of equations obtained from Iy and I are independent
of ny and ny. This subsystem consists of 10 equations in 12 unknowns and it has 4 parameters, a,
b, ¢, and d.

Solving the subsystem, we obtain two independent solutions. One is the constant vector 1,
and the other, called ¢V, is shown in the second figure of Figure 4.8.

For some nonzero w € Mg (U), [, divu # 0. For all w € M§(U), we have [;; 6V divu = 0.
Therefore, there is only one independent spurious pressure mode §Y on U. The previous discussion
proves the following theorem.

Theorem 4.2.2. For any marcoelement U (see Figure 4.8), §Y is a basis function for the space of
spurious pressure modes supported by U.

If a singular vertex lies on the boundary of a triangulation 7}, it has to fall in one of the cases
shown in Figure 4.10. The dark lines indicate the boundary edges. We call any singular vertices on
the mesh boundary a boundary singular vertex. A boundary singular vertex contributes to spurious
pressure modes if and only if any function in V}, vanishes on the two boundary edges which meet at
the boundary singular vertex. Spurious pressure modes associated with a boundary singular vertex
are multiples of the cut off of the mode shown in Figure 4.8.

Figure 4.10. Different boundary singular vertices.
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4.3. Stability and Approximability on Irregular Crisscross Meshes

In this section, we analyze the stability and approximation properties of the P?~P"! element on
the irregular crisscross meshes. By Mercier’s result, the finite element solution for velocity converges
with optimal order to the true solution on this type of mesh. We show here that the P?>~P1! element
is reduced-stable on the irregular crisscross mesh and that the pressure can be recovered. This
recovered pressure has an optimal rate of convergence.

Let © be a polygonal domain and 7, be a irregular crisscross mesh on €2 satisfying the
regularity assumption (2.3.2) (see Figure 4.2). Singular vertices appear in every quadrilateral in
Tn. For convenience, we let ¢ denote the number of singular vertices in 7.

Theorem 4.3.1. Let V}, := MZ(T,) and Py, := M, (T,). Then we have the following:
(1) dim N = o + 1,
(2) Consider a regular family of irreqular crisscross meshes parametrized by h tending to zero.
Then the reduced inf-sup constant v, > o > 0 with a independent of h.

(3) If (wp, pr) and (up, pp) are the numerical solutions from Vj, x Py, and Vi, X M}, respectively,
then

lw — ]y + [lp = Brllo < CB* ([lulls + [lpll2)-

Here we assume (w,p) € H*(Q) x H*(Q) is the solution of (2.1.1).

Proof. Let U, denote a macroelement partition of 7;, such that each macro U in U, is a quadrilateral
formed by four triangles of 7 and the only interior vertex of U is a singular vertex.

By Theorem 4.2.2, for each macroelement U in U}, there is a spurious pressure mode §¥ € N},
with spt 6Y = U. Therefore, dim N, > o. Since the global constant 1 is in N}, we have

dim Ny, > o+ 1.

In order to prove (1), we need to show that, any p € Nj, must be a linear combination of the
constant function 1 and §Y for some U € Uj,. Let p € Nj, be arbitrary. Since xUp € NV, for each
U €Uy, we have

XUp =516 + 57N

Here Y and Y are two constants. Since 6V is in N}, for each U € U),, we need to show that
P= 2 veu, BYSY = > veu, BY\Y is a constant. Namely, we need to prove that V}, x M°, (U),) has
no spurious pressure modes. This is true since V}, x M?, (73,) is a stable finite element. This proves
that any p € N, is a linear combination of the constant function 1 and 6V for some U € U),. Hence,
dim N, = o+ 1.

Since the mesh family is regular, all meshes of the family must satisfy the shape constraint
(2.3.2) for some positive number 6 independet of h. Let Sy denote the set of all the macroelements of
all U},’s for the meshes of the mesh family. Let the vertices of a macroelement U € Sy be numbered
U1, ..., us such that us is the singular vertex (see Figure 4.11). Since translations or dilations leave
the reduced inf-sup constant unchanged, we assume us = (0,0) and max,;c{h,} = 1 for any U in

Ss. Define
W = {(U17...7U5) ‘ Ue SQ)},

then it is a closed set in R1°.
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Figure 4.11. Macroelement U.

By Theorem 4.2.2, for any two macroelements U and U in S¢, we have
dim V¥ = dim V,¥ = 10,
dim NV = dim NV = 2,
dim P}{] = dim PY =12, and
dim MY = dim MY = 10.

Therefore,

:)/f[L](/Uq? .. .7U5) = \/A3<M[;1/2BUA[_]1B%]M[;1/2)7

for any U € Sy (please see the relevant sections of Chapter 5). Since the entries of matrices My,
Ay, and By depend continuously on vertices uy, ..., us of U, the reduced inf-sup constant Y must
continuously depend on the vertices of U. Since W is a bounded closed domain, there is a positive
number @ independent of h such that

V' > &, YU € Sq.

Since

Qu=My[] > N MU C M2 (Th),
Ueldy,

and Vj, x M%,(T},) is stable, there exists a 3 > 0 independent of i such that the inf-sup constant
from V), X @}, is greater than or equal to §. Let a = min(a, 3), then (2) follows by using the
macroelement partition theorem.

By Theorem 2.2.1, we get

_ _ 5 <C(inf |ju— inf [|p— .
lu=willia+ o= palloa < CCnE Jlu=olha+ inf [p=qloa)

Now we analyze the approximation properties of the spaces M}y and V. Obviously, V} has optimal
approximation properties. Since M1, (U},) C M}, M), also has optimal approximation properties. If
we assume that the solution (w,p) of (2.1.1) is in H3(Q2) x H?*(Q), then (3) follows. O

For irregular crisscross meshes it is also easy to compute py once a represent for py, which
is determined modulo Ny, is known. This is done on each macroelement U by the formula

5U
Pn=pn — AY8Y, A= Jupid (4.3.1)

fU((SU)2 ’
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assuming that pj has already been normalized to have mean value zero.

It is easy to see that for the Stokes equations with traction boundary conditions on irregular
crisscross meshes dim Ny = o. By Theorem 3.4.3, Theorem 4.3.1 also holds for traction boundary
condition problems with dim N, = o.

4.4. Stability and Approximability on a Mixed Type of Meshes

We have seen that singular vertices play an important role in the approximation properties
of numerical solutions. On the diagonal mesh (with no singular vertex except those at the two
corners), the velocity has only suboptimal rate of convergence. On the other hand, for the crisscross
mesh, the numerical solution is optimal for both the velocity and the pressure. In this section, we
investigate the intermediate situation.

For convenience, we assume the domain €2 to be the unit square in this section. However,
similar arguments can be carried out for more general domains.

We only consider a particular class of triangulations of the unit square Q. Let Qj denote
the partition of Q into n* equal subsquares of length A = 1/n (with n > 2 an integer). The meshes
Th considered in this section are obtained from Qj by subdividing each of the squares by some of
their diagonals. Specifically, we assume that each square is either subdivided into two triangles by
its positively sloped diagonal, which we will call a diagonal subdivision, or into four triangles by
both its diagonals, a crisscross subdivision (see Figure 4.12). A mixed mesh is a mesh of diagonal
and crisscross subdivisions.

K, K,

Ky, K,

Figure 4.12. Mesh mixed with diagonals and crisscrosses.

If every square is subject to a diagonal subdivision, then Nj has dimension 6. From the work
of de Boor and Héllig cited in subsection 4.1.1, we can deduce that even after eliminating the modes
of Nj,, the method is unstable. However, if every square is subdivided by two diagonals, then we
have seen that the method is stable after the pressure modes associated with the singular vertices
have been removed.

We now consider the case of mixed meshes. OQur main result is that the P?~P! method is
stable on mixed mesh family after the removal of local pressure modes associated with the singular
vertices, as long as the proportion of crisscross subdivisions is not vanishingly small in any part of
the domain.

Let us call a macroelement from the triangulation 7, a k-square if it is a square of side kh.
Thus, Qp is the set of all 1-squares. Note that there must always be at least two singular vertices
in the triangulation, since either the upper left and lower right corners are singular vertices, or the
1-squares containing them are crisscross subdivided and therefore contain singular vertices.
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Again, we assume Vj, := MZ2(T;) and Py, := ML, (T}). For convenience, we define

’ThD : = the diagonal mesh of the unit square, and

7,° : = the crisscross mesh of the unit square.

Theorem 4.4.1. Let T;, be a mized mesh of the unit square. Let o denote the number of singular
vertices in T},.

(1) Ifo > 3, thendim N, = 041, and N}, is spanned by the constant function 1 and the locally
supported pressure modes associated with the singular vertices.

(2) Consider a family of mized meshes T;, parametrized by h tending to zero. Suppose that there
exists a number k such that every k-square contains at least one 1-square which is crisscross
subdivided. Then there exists a positive constant v depending only on k such that 4 > 7.

Proof. Let Uy, Us, ..., Uy, denote all the K; ; of Q) which have exactly one interior singular vertex,
and let §Yi represent the spurious pressure modes on U; for i = 1,2,...,m.
Let p € Nj, be arbitrary. Define

k
]3 =p—- ZAUi(SUi7
i=1

where

AVi = _fUi p(sUi
fUi (5Ui)27

fori=1,2,...,m. Clearly, pisin Nj.
Since YYip € N}[L]Z YYip=xYe, fori=1,2,...,m, with ¢; a constant. Obviously,

pE Nh('ThD).

Therefore,
6
p= Z aiqli7
i=1

where {¥;}%_,, defined in Theorem 4.2.1, is a basis for N, (T,”).
Since there are at least three singular vertices in 7, we can assume that U; = K;; with

(2,7) # (1,n) and (¢,7) # (n,1). On Uy, we have
cr =¥y +agWy + azVs + agWs.

By the definitions of the ¥;, the above equation implies that oy = as = a3 = ¢1, and ag = 0. That
is,
p=oyWy+asVs +c;.
Regarding the structure of K5 , or K, 1, we have the following two cases.

Case 1. Neither of K; , and K, ; contains an interior singular vertex.
In this case,

p=oyWy+ asWs 41 + Z/\UWSU"-
i=1

Case 2. At least one of K, and K, ; contains an interior singular vertex.
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Assume that only U; = K, ,, is a crisscross subdivision. On U,, we have
2 = oWy + ey,

which gives ¢ = ¢q, and ay = 0. Now we can conclude that

p=oas¥s + ¢ +Z/\Ui5Ui-

i=1

Similarly, if K, 1 is a crisscross subdivision, then we have

P = 044\114 + (4] —|—ZAUi(SUi.

i=1

If both Ky, and K, ; are crisscross subdivisions, then clearly we have

k
p=a —I—Z/\U"(SU".

i=1

Combining the cases 1 and 2, we proved (1).

The proof of the second part is based on the macroelement covering theorem with a slightly
complicated choice of macroelements. We associate a macroelement U to each (k 4 2)-square S as
follows. The vertices on the boundary of S are never singular, except possibly the vertices at the
upper left and lower right corners of .S, which are singular or not depending on whether a diagonal
or crisscross subdivision is applied to the 1-square in S which contains them. If neither corner
vertex is singular then we take U = 5. If both corner vertices are singular we take U = S\ (11 UTy)
where 71 and 7 are the triangles of 7, in .S which contain these corners. If only one corner vertex
is singular we only excise the corresponding triangle from S. But however for K, and K, ;, we
always keep them in U if S contains them. In this way we obtain a macroelement covering U}, which
satisfies the overlap property. Figure 4.13 displays several macroelement configurations which may
arise for k = 2.

Figure 4.13. Different macroelement configurations.

Macroelements constructed in this way may differ due to which corners are excised and the
particular pattern of diagonal and crisscross subdivisions. However, since k is a fixed integer, there
is a fixed finite number of macroelement configurations such that every macroelement in U}, for any
h, is obtained by dilation and translation from one of these. Since ¥V is invariant under dilation
and translation, we can bound it from below by a positive number independent of h.
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It remains to verify hypothesis (3.3.2) of the macroelement covering theorem. Every macro-
element U € U} contains a k-square in its interior, and hence, by hypothesis, contains an interior
1-square which is crisscross subdivided. Reasoning as in the proof of the first part of the theorem,
we find that NV is spanned by xU and the locally supported pressure modes from the singular
vertices. Thus hypothesis (3.3.2) holds. O

Combining Theorem 4.4.1 and Theorem 2.2.1, we have the following theorem.

Theorem 4.4.2. Let (u,p) € H?(Q) x H*(Q) solve (2.1.1). Under the assumptions of Theorem
4.4.1, we have

o~ wunllo <C inf [fu— vl < CF ulls (14.1)
vEV,
1P = prllog <CR*|lulls.0 +C inf lp = qllo.s- (4.4.2)
qeM},

Moreover, if Ky ,, and K, ; are crisscross subdivisions, then

Ip = Prllog < Ch*([|lulls. + [Ipll2.0)- (4.4.3)

If Ky, and K, ; are crisscross subdivisions, then M1 (Qn) C My, and we can obtain (4.4.3)
from (4.4.2). If p is orthogonal to the spurious pressure modes associated with the boundary singular
vertices in 7Ty, then p can again be approximated by p, € M) with an optimal order. We do not
know the approximation properties of pj, if p is not orthogonal to the spurious pressure modes
associated with the boundary singular vertices in 7y,

The recovery of the pressure is completely similar to that for irregular crisscross meshes.
Therefore, p, can be computed from p;, by an inexpensive postprocess.

For this mixed mesh family, the finite element velocity space for the Stokes equations with
traction boundary conditions makes the spurious modes around the boundary singular vertices and
the global constant functions in Ny disappear. Therefore, the dimension of the kernel of the discrete
gradient operator is equal to the number of all the interior singular vertices in 7,. Applying the
subspace theorem a few times and combining the results in Theorem 4.4.1 and 4.4.2, we have the
following theorem for the Stokes equations with traction boundary conditions.

Theorem 4.4.3. Assume V), := ME(T,) and P, := M1,(7}). Suppose that the T, is a mived
mesh on the unit square, and that (u,p) € H?(Q) x H*(Q) solves (2.1.1). Then we have,

(1) dim Ny, is the number of all interior singular vertices in Ty.

(2) Consider a family of mized mesh Ty, parametrized by h tending to zero, on the unit square.
Suppose that there exists a number k such that every k-square contains at least one 1-square
which is crisscross subdivided. Then the element is reduced stable for this mesh family, and
Sfurthermore,

I = wnlla + [Ip = Prllo. < CR* (lulls @ + [IPll2.0)-

4.5. Stability and Approximability on Distorted Crisscross Meshes

It might appear that singular vertices are responsible for the good performance of the P-P!
finite element method on the crisscross mesh family. However, this is not the whole story. In this
section, we will display a sequence of distorted crisscross meshes for the unit square such that the
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P2—P1 element is stable and has optimal rate of convergence for both the velocity and the pressure.
These meshes have no singular vertices.

Let Q) denote the partition of the unit square € into n x n (h = 1/n) equal small squares.
Let 75 be obtained from Qj by dividing each small square of @, into 4 triangles as shown in the
first figure of Figure 4.14. This is equivalent to moving the interior vertex of a crisscross subdivision
vertically down a fixed distance, for instance h/4. A small square with such a division is called a
distorted crisscross subdivision.

7 6 5
v 52 S1
12 11 ty :
<t P4 Ss
1333
1 " 3
9 1 2 » q1
1 2 3

Figure 4.14. Macroelement.

Let Uy, be a macroelement covering of 7j, such that any 2 x 2 distorted crisscross subdivisions
(four small squares) of 7, form a macroelement in ¢}, (see the third figure of Figure 4.14). We will
prove that Vj, X P, is stable and that dim N;, = 1.

In order to prove that dim N;, = 1, we first show that N only contains constant functions
for any U in U),. If this is the case, then we have, for any p in Nj, xYp is a constant for any U in
U;,. Since Uy, is a macroelement covering satisfying the overlap property, p must be a constant on
the whole domain.

We figure out the spurious pressure modes on a single distorted crisscross subdivided square
S first. We assume that the vertices in S have coordinates (0,0), (1,0), (1,1), (0,1), and (0.5,¢).

Let u € VhS be expressed as
13

U = Z(qui)@

=9

and p € P? in the manner shown in the second figure of Figure 4.14. Set

6/ pdivu = (—tpy — tpy — 2tps + tty + to + tty — ts + 2tt3)ug+
s

tp1 +tp2 + 2tps — 1 — tq1 — tq2 + g3 — 2tq3)urot

—q1+tq1 — 2q2 +tq2 — g3 + 2tqs + 51 — ts1 + sz — sy + 253 — 2ts3)uir+
—s1 4151 — Sg +tS2 — 253 + 2tss + 2ty — tty + to — tty + t3 — 2tt3)ura+
—q1 — @2 — g3+t + to + t3)u13+

3p1 4 p2 — th — bty — 2t3)vg /24

P1+3p2 — @1 — g2 — 2q3)v10/2+

01+ @2 + 2q3 — 351 — s9)v11/2+

—s1 — 35y +t1 + b3 + 2t3)v12/24

(p1 +p2+ps —s1— 52— s3)vi3 =0,

(
(
(
(
(
(
(
(

for any (u;,v;) for ¢ = 9,10,11,12,13. Solving the system that results from the above equality, we
find two independent solutions. One is p{ = 1 and the other one is p5 with
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p1:1—3t7 p221—3t7 p3:3—3t,

g =1, 92 :4_7t7 q3 :_3t7
81:1—3t7 8221—3t7 83:3—3t7
th=4—Tt ty=t, t5 = —3t,

where 0 <t < 1/20r 1/2 <t < 1.

For any p € Ny, x°pis a linear combination of p{ and p5. Moreover, for any U € Uy, YYp is
a linear combination of 8 functions. By some algebraic manipulations, we can verify that y¥p must
be a constant.

Thus we have proved that dim NY =1 for any U € Uj,. Consequently, we have dim N, = 1.

Theorem 4.5.1.

(1) Suppose that the triangulation T}, is obtained from Qy, by partition each small square in Qy,
with a same distorted crisscross subdivision. Then N, only contains constant functions.

(2) Consider a family of such triangulations Ty, parametrized by h tending to zero. Then V}, x Py,
s stable and

[ = wnllLe + [Ip = prllo. < Ch* ([lulls @ + [Ipll2.0)-
Here we assume (w,p) € H*(Q) x H*(Q) is the solution of (2.1.1).

Proof. Since all the macroelements in Uy, are translations or dilations of a distorted crisscross
subdivision for all meshes 7, we have a common positive lower bound independent of h for all
the local reduced inf-sup constants. Further, since V) contains .7\;1017 all the conditions in the
macroelement covering theorem hold. This proves that Vj x P} is stable and

lu—wnllio + P = pulloe < CR ([ullse +[pl20). O

Remark 4.5.1. Let T, be a distorted crisscross mesh obtained from a crisscross mesh by distorting
each square of the crisscross mesh in exactly the same way. Then we can prove that the element is
stable on T, and has optimal rates of convergence for the velocity and the pressure.

Distorted crisscross meshes are better than crisscross meshes in the sense of stability. Both
types of meshes have exactly the same topological structure, but one has a lot of spurious pressure
modes, while the other one doesn’t have any. We conclude that spurious pressure modes can be
removed by distorting the mesh.

4.6. Stability and Approximability on Barycentric Trisected Meshes

In this section, we examine the P?~P1 finite element method on barycentric trisected trian-
gulations. We show that there are no spurious pressure modes on this type of mesh, and moreover,
the method is stable. Consequently, the rates of convergence for velocity and pressure are both
optimal.

A barycentric trisected triangulation 7Tj, is obtained from a arbitrary triangulation Sy, of a
polygonal domain Q by connecting the three vertices of each triangle in &, to its barycenter (see
the third figure in Figure 4.15).
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P3

j4i P2

Figure 4.15. Barycentric trisected partition.

We will prove the stability and approximability of the P?~P! element on this barycentric
trisected mesh family by using the macroelement partition theorem. Let i} be a macroelement
partition of 7, such that each macroelement U in U, is a triangle in §,. In order to use the
macroelement partition theorem, we first need to show that there is a common positive lower bound
independent of A for the local inf-sup constant ¥ for all U in Uy, and secondly to prove that the
inf-sup constant for V, x (M}, N Xpey, N}[L]) is bounded away from 0.

Pick any U in U, and let the vertices of U be numbered in the manner shown in the first
figure of Figure 4.15. Any u € VU can be expressed as

10

U= Z(unvi)Cbn

=7

where ¢;, 1 = 7,8,9, 10, are nodal basis functions.

We denote the values of p in P/ at the vertices of the triangles of U in the manner shown in
the second figure of Figure 4.15.

It is clear that i), C E(U, I'), where I’ is the set of all invertible linear mappings. Without
loss of generality, we assume that the vertices 1, 2, and 3 of U have coordinates (0,0), (1,0), and
(0, 1) respectively.

If 7}, satisfies (2.3.2), then by Lemma 3.5.4 there is a positive lower bound oY independent
of h, such that

30 > oV, YU € Ey(U, F).
Let p € NY be arbitrary. For any w € V,V| we have

18/ pdivu =(—p1 — p2 — 2p3 + 51 + 455 — s3)ur+
U

pL+p2+2ps —4q1 — g2 + g3)us+

2q1 — 5qy — q3 + 551 + 253 + s3)ug+

3q1 — 3q> — 3q3 + 351 + 352 + 3s3)us0+ (4.6.1)
4py 4 p2 — p3 — 51 — 52 — 253)Ur+

2p1 +5p2 + ps — b1 — 2¢2 — q3)vs+

—q1 —4q2 + g3 + 51 + 53 + 283)v9+

3p1 +3p2 + 3ps — 3q1 — 3q2 — 3q3)vi0 = 0.

=(
(
(
(
(
(
(
(

Solving the linear system obtained from (4.6.1), we have

P1=P2=P3 =41 = G2 = 43 = 51 = S2 = S53.
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Hence, NV is the one dimensional space of constant functions. By Lemma 3.5.1, we know that for
any U in Uy, NY contains only the constant functions. If p is in Ny, then p is in Ny, (Uy,) since

Xﬁp € NKU is a constant for U in Uy,. Since V), x M2, (Ty,) is stable, Vj, x M2, (U),) is stable, and
therefore Ny, (U},) contains only the constant functions. We know that

Vix (Mu()Y NFY =V (B[] D NY) = Vi x M2 (Un),
Uely Uely

and therefore V), x (M}, N Xpey, NY) is stable.
From the above discussions, we have that V), x P} is stable on 7,. Furthermore, since the
finite element space Vj x P} has optimal approximation properties, the following theorem holds.

Theorem 4.6.1.

(1) If the mesh Ty, is a barycentric trisected triangulation, then N, only consists of constant
functions.

(2) Consider a regular family of barycentric trisected meshes T;, parametrized by h tending to
zero. Then Vi, x Py is stable and

lw —uplh g <C inf |lu—ol1q < CR|ulls.q,
vEV),

12 = prllo.e <CR*[|ulls o + C inf llp—dllog < Ch* (Jlulls.o + lIpll2.0)-
h

Here we assume (w,p) € H*(Q) x H*(Q) is the solution of (2.1.1).

Remark 4.6.1. Actually, we can prove similar results by almost the same arguments as we used
in this section for any triangulation T, formed by connecting the three vertices of each triangle of
Sp, to any interior point such that T), satisfies the condition (2.3.2).

Remark 4.6.2. Following the idea in the Section 4, we consider a mized type of meshes of the unit
square from the square partition Q) (see the definition in the Section 4) by refining each square of
Qy, with either a diagonal subdivision or a barycentric trisected subdivision. A barycentric trisected
subdivision is the barycentric trisected parttition of a diagonal subdivision. Then the only spurious
pressure modes are from the corner verices. We can prove similar results as stated in Theorem
4.4.1, Theorem 4.4.2, and Theorem 4.4.3 for this type of meshes.
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Chapter 5

NUMERICAL COMPUTATIONS ON THE P?-P! ELEMENT

This chapter contains two classes of numerical computations on the P?~P! element for the
Stokes equations. One class is on the stability (or reduced stability) of the P?~P! element, and the
other is on rates of convergence of numerical solutions.

Supporting the theoretical analysis of the P*~P! element in Chapter 4, numerical results
presented in this chapter reflect that the performance of the element depends on mesh configurations.
We do numerical computations not only on the meshes for which we understand theoretically, but
also on some meshes for which we do not have theoretical results.

In Section 1, we introduce an eigenproblem and its variations associated with the inf-sup
constant of a mixed finite element. In Section 2, we discuss some properties of the eigenproblem on
both the continuous and the discrete level. In Section 3, we present a model problem to be employed
in our numerical computations for testing rates of convergence of numerical solutions. Finally, we
present some analysis, tables, and figures for different mesh configurations in Section 4.
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5.1. An Eigcenproblem Associated with the inf-sup Condition

The stability of a mixed finite element method for the Stokes equations can be studied by
investigating some eigenvalues of an associated eigenproblem. In this section, we will show that
the inf-sup or reduced inf-sup constant is equal to the square root of a certain eigenvalue of an
eigenproblem.

As usual, we denote the finite element velocity space by V,, and the pressure space by Pj.
Spaces Nj, and M), are defined as in (2.4.1). Let {4;}"_; be a basis of V},, {¢;}\_; be a basis of
Ny, and {#;}{2,, be a basis of Mj,. For convenience, we set k = m — [, and make the following
definitions.

(5.1.1)

g
li
S~
S
T
©-
o
+
N
2
A
??‘u

B' =

2
N Nt N N TN N

S—

? A

%

—

12

<

Ay

Clearly, matrices A, My, and My; are symmetric positive definite, and matrix B}, has a full
column rank. The following lemma describes a relation between the reduced inf-sup constant and
the minimum eigenvalue of a matrix.

Lemma 5.1.1. Using the definitions (5.1.1), we have

di _1 _
Ap = inf sup M = \//\min(MM% By A-1BYy, M

1
2
o 02 TollsalPlom )

My = My and Apin (M2 Bar A= B, My,

(NI

_ 1
where M ) denotes the smallest eigenvalue of the

matriz.
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Proof. By the definition of 7, we have

¥ = inf sup (o, By /5)
0£5eR* 0ackn (A, @)V2 (M3, B)1/?
v, A-L1/2 gt
= inf sup _ (70471 . Mﬁ)l 5
0#BER" 0£a=A1/2a€Rn (@, @) / (Mn3, ) /
(A2 By 8, A7 By 5)' /2

= inf
o per (Mai, B)72
_ —1/25 ,_ -1/2 5
_ o (A 1/2B}5\4MM/ @7{1 1/2B}5\4MM/ ﬁ)1/2
0#3=M,/peR* (3, B)1/?

_1
2

— (M By A=V By, M), O

It is difficult to figure out the structure of the spaces Nj, and M}, in most cases. Fortunately,
the reduced inf-sup constant can be computed directly from the matrices A, B, and M.

Theorem 5.1.1. Let \{ < Ay < --- < A, denote all the eigenvalues of the matrix M~ BA-1BIM~3,
Then Ay = Ay =---=X; =0 and
Yn = V/\l-l-l > 0.

Proof. Simple calculations show that the generalized eigenproblem
A B'y\/u 0 0 u
(5 0)G) =20 )G (.12

M~ 2BA™'B'M~2p = \p, (5.1.3)

and the eigenproblem

have exactly the same set of eigenvalues. Similar calculations show that the eigenvalues from

(o ) =20 o) (), 514

a d l e eige Vall]es f (0}
1
— 4

My By A~ By, M2 p = Ap, (5.1.5)

are the same. Moreover, neither (5.1.4) or (5.1.5) has zero eigenvalues.
By definitions of B and M, if we set

_ (PN )
pi=(2V).
then eigenproblem (5.1.2) is equivalent to
Au+ Bipu 0
0 =A| —MnpN

Baru —~Muypumr
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Clearly, eigenproblems (5.1.2) and (5.1.4) have the same nonzero eigenvalues. That is, eigenprob-
lems (5.1.3) and (5.1.5) have the same nonzero eigenvalues. Since dim N}, = [, eigenproblem (5.1.3)
has exactly [ zero eigenvalues. The above arguments show that

_1
2

_1
Al—I—l = Amin(]\4]\/[ BMA_IB}L\/[MMQ)7

where
M=XA=--=X=0.
By Lemma 5.1.1, the proof is complete. [

For any invertible matrices '€ R™*™ and () € R™*", since

M™2BA™'B'M~2p=\p
< BA™'B'p=\Mp with p= M~ 2p
< BAT'B'Tp=IMTp with p=T"1p
< T'BAT'B'Tp=I\T'MTp
= (T'BQ)(Q'AQ)~ (Q'B'T)j = N(T'MT)p,
the statement of Theorem 5.1.1 holds for any choice of basis functions for V,, or Pj,.
The following statements are useful in practical computations.

Lemma 5.1.2. Using the definitions, the nonzero eigenvalue of the following eigenproblems are
equal.

)

) A"2BIM~'BA~3u = \u.
) BAT!B'p = AMp.

) B'M~1Bu = Mu.

)

(5 a) () =0-0(5 5)()
with o > 0 such that 1 B
(B aM)

is symmetric positive definite.

Proof. (1)<=(3), (2)<=(4), (5)<=(6), (3)<=(5), and (4)<=(5) are immediate. This proves the
lemma. O

The eigenproblems (1), (2), (3), and (4) in the above lemma involve inverses of matrices, but
the size of each problem is small. In contrast, (5) and (6) do not contain the inverse of any matrix,
but their size is large.

In our computations, we used LAPACK to solve the generalized eigenproblem

BA™'B'p = AMp, (5.1.6)
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from the P2-P! element on the unit square. Two velocity spaces Vj, := MZ(T;) and Vj, := MZ(T;)
were tested on various mesh configurations.

If the finite element velocity space V}, is a subspace of ﬁl(Q), then we use | -|; o as the norm
in the analysis. Therefore, the corresponding reduced inf-sup constant is defined by

B ) prdivv
Y = inf sup ——
0#peM, 0£vevy |01.allplloq

and the matrix A is defined by

A= (/Q Vi :vipj)lg’m. (5.1.7)

5.2. Properties of an Eigenproblem

In this section, we discuss some properties of the eigenproblem

(g l?)t)(Z):A(g —?M)(Z) (5.2.1)

which is associated with the inf-sup constant of a finite element V), x P},. Here V,, is a subspace of

H'(Q) and the matrix A is defined as in (5.1.7). These properties are not essential to the stability

analysis or to the numerical computations in this thesis, but we include them here for integrity.
On the discrete level, (5.2.1) corresponds to

a(u,v)+b(v,p)=0 Yv eV,

5.2.2
b(u,q) = —A(p,q) Vq€ Py (5:22)
On the continuous level, we have
Au+ Vp=0,
divu = —Ap, (5.2.3)
’LL|QQ =0.

Here w € V := HY(Q) and p € P := L*(Q). If A = 0 in (5.2.3), then divw = 0. Therefore,
divergence free functions are eigenfunctions of (5.2.3) corresponding to A = 0. The following
theorem describes some properties of the eigenproblem (5.2.3).

Theorem 5.2.1. If A is an eigenvalue of (5.2.3), then

(1) 1= X is a slso an eigenvalue, and moreover,

(2) xelo,1].
Proof. We only need to show that (1) holds for A # 0. The eigenproblem (5.2.3) is equivalent to

a(u,v)+b(v,p) =0, YveV,

b(u,q) = =Alp,q), VYgeP. (5.2.4)

Since div' V' C P, there is a function p € P such that

p= —Xdivu7



55
if A # 0. Putting p into the first equation of (5.2.4), we have
—Aa(u,v) + (divu,dive) =0, YveV. (5.2.5)
Simple calculations show that if {\, w = (uy,uz)} is an eigenpair of
—Xa(u,v) + (divu,dive) =0, Yo = (v,0) €V,
then {1 — X\, u = (—uz,u1)} satisfies
—(1 = Na(u,v) + (diva,dive) =0,

for all v = (vg, —v1) € V. Hence, (1) follows.
Obviously, (5.2.4) implies A > 0. Combining with (1), we prove (2). That is, if A is an
eigenvalue of (5.2.3), then A € [0,1]. O

The following theorem is due to Mikhlin [18].

Theorem 5.2.2. The eigenvalues of the eigensystem (5.2.3) are situated on the interval [0,1] and
can condense only at the points 0, 1/2, and 1. Furthermore, 0 and 1 are eigenvalues of infinite
multiplicity.

On the discrete level, the properties of the eigenvalues in Theorem 5.2.1 are preserved if the
divergence of any function in the velocity space Vj}, is a function in the pressure space F,. We have
the following analogue of Theorem 5.2.1.

Theorem 5.2.3. Let (5.2.2) be considered in the finite element space Vi, X Py, such that div V), C P,.
If X is an eigenvalue of the eigenproblem (5.2.2), then

(1) 1— X is a also an eigenvalue of (5.2.2), and moreover,

(2) A €[o,1].

Proof. This theorem is proved analogously to the proof of Theorem 5.2.1. O

5.3. The Problem for Numerical Tests

We test the P?~P! element on a penalized system of the Stokes equations:

—Au+Vp=Ff, on €2
divu = ep, on (5.3.1)

ulsg =0,

with © = [0, 1] x [0, 1], where € is a small positive number.
The exact solution (u,p) of (5.3.1) and the forcing function f are taken to be:

w=— (_(bqﬁx) —e(w—OCZ)(y—y?)(i)?

p:x—x2—|—y—4xy—|—2w2y—y2—|—2xy2,

r=(%)



56

Here

¢=(z —2")*(y - y*)?,

fi =1 — 22 — 1222 4 2423 — 122* — 202y 4 4822y — 4823y + 242ty — 10y*+
72wy2 — 72$2y2 + 8y3 — 48$y3 + 48$2y3 — 2ye + 2y2e,

fo =1 — 8z + 142% — 8% — 2y + 282y — 7222y + 482°y 4+ 12y — 48zxy* + 7222y —
4823y — 24y° + 48zy° 4+ 12yt — 242y* — 22e + 227

We can see that the velocity u is divergence free when ¢ = 0.

The finite element formulation of (5.3.1) is

alup,v) —b(v,py) = (f,v), Yv eV,

5.3.2
b(un,q) = €(pr,q), Yq € Py. ( )

An advantage of using (5.3.2) is that the pressure p, is automatically in M),. Therefore, we do not
need to filter out spurious pressure modes from the numerical solution for the pressure.

5.4. Numerical Computations

We will present some numerical results for the P>~P! element in this section. As we men-
tioned before, the numerical tests focus on the inf-sup (or reduced inf-sup constant) and rates of
convergence of numerical solutions on different mesh configurations.

We do tests on the stability of the P?>~P! element for both Dirichlet and traction boundary
conditions. Namely, the velocity space V}, is taken to be Mg and M} are considered in numerical
computations. All the spurious pressure modes corresponding to Vj, = M¢ are locally supported.

The tests on rates of convergence of the numerical solutions are carried out by computing
the penalized system (5.3.1) of the Stokes equations. We choose different values for € such as 0.002,
0.0002, and 0.00002 in our numerical experiments. Since the second equation of (5.3.2) keeps p;, in
My, the pressure pj, from (5.3.2) can be regarded as p;, of (2.4.3) as € tends to 0. If € is small, the
second equation of (5.3.1) forces u;, to be an almost divergence free function. The behavior of the
numerical solution of (2.4.3) is reflected by the behavior of u, and p; from (5.3.2).

This section is organized as follows. In each subsection, we discuss one mesh configuration.
For each mesh configuration, supported tables and figures are organized in the following way: first,
we give a table of the reduced inf-sup constants for the Stokes equations with either the Dirichlet
or the traction boundary conditions. Secondly, we list four diagrams of the distributions of inf-sup
eigenvalues of (5.1.6), for h = 1/2, 1/4, 1/6, and 1/8 (Dirichlet boundary condition only). Finally,
we display rates of convergence of numerical solutions for different € in three tables (Dirichlet
boundary condition only).

In Figure 5.1, we list only a basic 2h x 2h pattern for each mesh 7j of the unit square. T,
is formed by translating this pattern around, therefore 7, is a periodic mesh. For example, the
diagonal mesh 7,, h = 1/4, is formed by four submeshes which are congruent to pattern 1.
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A

Figure 5.1. Different 2k x 2h mesh patterns.

5.4.1. Mesh 1

For this diagonal mesh, Table 5.4 shows that the reduced inf-sup constant is about O(h)
for both Dirichlet and traction conditions. Furthermore, all spurious pressure modes are glob-
ally supported for Dirichlet boundary conditions. The number of independent spurious pressure
modes remains unchanged as h goes to zero. The eigenvalues are in [0, 1] and they are distributed
symmetrically as told by Theorem 5.2.3.

As € becomes smaller and smaller, the rate of convergence of the solution becomes worse and
worse. It is quite clear that the rate of convergence is 2 for the velocity in the H' norm and no
convergence at all for the pressure in the L? norm.

5.4.2. Mesh 2

On this mesh, the behavior is quite similar to that on the diagonal mesh. The reduced inf-
sup constant is about O(h), the velocity converges suboptimally, and there is no convergence for
the pressure. However, the number of spurious pressure modes grows in the order of O(h™1) and
all of them are globally supported. This indicates that the number of globally supported spurious
pressure modes is not always fixed as h goes to zero.

5.4.3. Mesh 3

The reduced inf-sup constant is about O(h) for both boundary conditions. However, the
velocity space Z), C MO2 has optimal approximation properties. Since the reduced inf-sup constant
is about O(h), by Theorem 2.2.1, only suboptimal rate of convergence of the numerical solution for
the velocity can be expected. This mesh clearly shows that the inf-sup condition can not tell the
whole story about approximation properties of finite element solutions. The numerical solution for
the pressure converges in a suboptimal fashion, and this agrees with estimates in Theorem 2.2.1 if
we assume that the numerical solution for the velocity has an optimal rate of convergence.
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5.4.4. Mesh 4

The reduced inf-sup constant is independent of h and the numerical solution converges op-
timally as predicted by Theorem 4.4.1 and 4.4.2. It is hard to see the jump between the zero
eigenvalues and the one corresponding to the inf-sup constant in Figure 5.5. However, Table 5.13
shows that the reduced inf-sup constant is bounded away from zero by a positive number as h goes
to zero.

5.4.5. Mesh 5

Like mesh 4, the reduced inf-sup constant is independent of h and the numerical solution
converges optimally as predicted by Theorem 4.4.1 and 4.4.2. There is a sharp jump between zero
eigenvalues and the the first nonzero eigenvalue which is the square of the reduced inf-sup constant.

5.4.6. Mesh 6

This is the crisscross mesh. The reduced inf-sup constant is independent of h and the
numerical solution converges optimally. The strange behavior of the rate of convergence for the
pressure shown in Table 5.24 is due to the effect of the locally supported spurious pressure modes.
The second equation of (5.3.2) definitely guarantees that the velocity u; is almost divergence free
if € is small. However, in numerical computations, it is difficult to remove spurious pressure modes
completely from p, when ¢ is very small.

5.4.7. Mesh 7

Theorem 4.5.1 guarantees everything is fine for this mesh. Although the element is stable on
this mesh, the inf-sup constant is smaller than the reduced inf-sup constant for crisscross meshes,
and the error is also larger for this mesh. This mesh is a distortion of the crisscross mesh. All the
zero eigenvalues of the crisscross mesh, except for the first one, are shifted away from zero for this
mesh.

5.4.8. Mesh 8

Theorem 4.6.1 guarantees everything is fine for this mesh. The jump between the first and
the second eigenvalue is quite significant.
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Table 5.1. Mesh 1
V, = MO2 V, = MO2
L/h Y o (yn = Ch?) | dim(Ny) Y a (Y = Ch?) | dim(Ny)
0.13093082 6 0.32807883 0
4 0.07811972 0.745046 6 0.15713876 1.062003 0
0.05302801 0.955501 6 0.10402865 1.017259 0
0.04004810 0.975866 6 0.07787991 1.006313 0
10 0.03214701 0.984845 6 0.06226484 1.002813 0
12 0.02684083 0.989434 6 0.05187360 1.001456 0
14 0.02303584 0.991710 6 0.04445796 1.000748 0
16 0.02017052 0.994740 6 0.03889871 1.000384 0
INnfs-sup eigenvalue distribution Inf-sup eigenvalue distribution
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Figure 5.2. Mesh 1
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Table 5.2. Mesh 1, ¢ = 0.002

1/h| L*:u—uy Rate | H':u —uy Rate L? :p—pp Rate
2 0.7768649E-02 | 0.0000 | 0.5514695E-01 | 0.0000 | 0.2120587E400 | 0.0000
4 0.2574038E-02 | 1.5936 | 0.3011311E-01 | 0.8729 | 0.1587661FE400 | 0.4176
6 0.1075027E-02 | 2.1534 | 0.1874462E-01 | 1.1692 | 0.1373761E4+00 | 0.3569
0.5634911E-03 | 2.2454 | 0.1306806E-01 | 1.2539 | 0.1240383E400 | 0.3550

10 0.3339049E-03 | 2.3451 | 0.9652103E-02 | 1.3578 | 0.1122738E4-00 | 0.4466
12 0.2136238E-03 | 2.4497 | 0.7387039E-02 | 1.4669 | 0.1012928E4-00 | 0.5645
14 | 0.1441573E-03 | 2.5515 | 0.5797876E-02 | 1.5714 | 0.9111821E-01 | 0.6867
16 0.1012507E-03 | 2.6459 | 0.4641168E-02 | 1.6665 | 0.8185191E-01 | 0.8032
18 0.7339893E-04 | 2.7312 | 0.3776486E-02 | 1.7504 | 0.7353794E-01 | 0.9094
20 0.5460377E-04 | 2.8076 | 0.3116297E-02 | 1.8237 | 0.6615707E-01 | 1.0039

Table 5.3. Mesh 1, ¢ = 0.0002

1/h| L?:u—uy Rate | H!:u —uy Rate L?:p—py Rate
2 0.7951619E-02 | 0.0000 | 0.5641579E-01 | 0.0000 | 0.2183801E400 | 0.0000
4 0.2695047E-02 | 1.5609 | 0.3159246E-01 | 0.8365 | 0.1674108E400 | 0.3834
6 0.1172162E-02 | 2.0534 | 0.2053628E-01 | 1.0623 | 0.1520498E4-00 | 0.2374
0.6485122E-03 | 2.0576 | 0.1515959E-01 | 1.0552 | 0.1465195E4-00 | 0.1288

10 0.4092134E-03 | 2.0634 | 0.1196239E-01 | 1.0615 | 0.1431243E400 | 0.1051
12 0.2802384E-03 | 2.0765 | 0.9830597E-02 | 1.0765 | 0.1403170E400 | 0.1087
14 | 0.2028898E-03 | 2.0952 | 0.8300850E-02 | 1.0972 | 0.1376360E+00 | 0.1251
16 0.1529061E-03 | 2.1181 | 0.7145656E-02 | 1.1222 | 0.1349172E400 | 0.1494
18 0.1187770E-03 | 2.1444 | 0.6240096E-02 | 1.1505 | 0.1321037E400 | 0.1789
20 0.9446839E-04 | 2.1733 | 0.5509801E-02 | 1.1813 | 0.1291789E400 | 0.2125

Table 5.4. Mesh 1, e = 0.00002

1/h| L?:u—uy Rate H':u—uy, Rate L? :p—pp Rate
2 0.7970498E-02 | 0.0000 | 0.5654720E-01 | 0.0000 | 0.2190493E400 | 0.0000
4 0.2707860E-02 | 1.5575 | 0.3174966E-01 | 0.8327 | 0.1683506F4-00 | 0.3798
0.1183031E-02 | 2.0423 | 0.2073784E-01 | 1.0505 | 0.1537239E4-00 | 0.2242
0.6587578E-03 | 2.0352 | 0.1541369E-01 | 1.0314 | 0.1492804FE400 | 0.1020

10 0.4191188E-03 | 2.0265 | 0.1226977E-01 | 1.0223 | 0.1472468E400 | 0.0615
12 0.2898892E-03 | 2.0220 | 0.1019000E-01 | 1.0187 | 0.1460850E4-00 | 0.0434
14 | 0.2123130E-03 | 2.0203 | 0.8710130E-02 | 1.0180 | 0.1452750E+00 | 0.0361
16 0.1621077E-03 | 2.0205 | 0.7602139E-02 | 1.0189 | 0.1446619E400 | 0.0317
18 0.1277545E-03 | 2.0219 | 0.6740761E-02 | 1.0210 | 0.1440946E4-00 | 0.0334
20 0.1032163E-03 | 2.0243 | 0.6051404E-02 | 1.0239 | 0.1435860E400 | 0.0336




Table 5.5. Mesh 2
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V), = M} V), = M}
1/h T o (Yo = Ch”) | dim(Np) T o (Yn = Ch?) | dim(Np)
0.20795310 6 0.30566117 0
4 0.05863438 1.826440 8 0.15138448 1.013716 0
0.03991015 0.948764 10 0.10156855 0.984274 0
0.03010133 0.980462 12 0.07633846 0.992613 0
10 0.02413752 0.989505 14 0.06110630 0.997393 0
12 0.02013604 0.994158 16 0.05092200 0.999991 0
14 0.01727165 0.995419 18 0.04364023 1.001069 0
16 0.01511787 0.997436 20 0.03817525 1.001952 0
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Table 5.6. Mesh 2, ¢ = 0.002

1/h| L*:u—uy Rate | H':u —uy Rate L? :p—pp Rate
2 0.7827469E-02 | 0.0000 | 0.5553850E-01 | 0.0000 | 0.1814816F400 | 0.0000
4 0.2276989E-02 | 1.7814 | 0.2821522E-01 | 0.9770 | 0.1545140E+00 | 0.2321
6 0.9323356E-03 | 2.2022 | 0.1719538E-01 | 1.2214 | 0.1355382E400 | 0.3232
0.4719867E-03 | 2.3663 | 0.1165177E-01 | 1.3528 | 0.1209970E4-00 | 0.3945

10 0.2704707E-03 | 2.4952 | 0.8377875E-02 | 1.4783 | 0.1078016E+4+00 | 0.5175
12 0.1678418E-03 | 2.6170 | 0.6253839E-02 | 1.6038 | 0.9566816E-01 | 0.6549
14 | 0.1101634E-03 | 2.7315 | 0.4795010E-02 | 1.7231 | 0.8470728E-01 | 0.7894
16 0.7543446E-04 | 2.8360 | 0.3754478E-02 | 1.8320 | 0.7497856E-01 | 0.9136
18 0.5342020E-04 | 2.9298 | 0.2991550E-02 | 1.9286 | 0.6645087E-01 | 1.0251
20 0.3889089E-04 | 3.0128 | 0.2419819E-02 | 2.0131 | 0.5903328E-01 | 1.1234

Table 5.7. Mesh 2, ¢ = 0.0002

1/h| L?:u—uy Rate | H!:u —uy Rate L?:p—py Rate
2 0.7957833E-02 | 0.0000 | 0.5645769E-01 | 0.0000 | 0.1843129E400 | 0.0000
4 0.2400072E-02 | 1.7293 | 0.2971926E-01 | 0.9258 | 0.1647176FE4-00 | 0.1622
6 0.1034219E-02 | 2.0763 | 0.1910097E-01 | 1.0902 | 0.1540154E400 | 0.1657
0.5602323E-03 | 2.1310 | 0.1388588E-01 | 1.1084 | 0.1491634FE400 | 0.1113

10 0.3472561E-03 | 2.1434 | 0.1082731E-01 | 1.1150 | 0.1456732E+00 | 0.1061
12 0.2344187E-03 | 2.1553 | 0.8813224E-02 | 1.1289 | 0.1424343E400 | 0.1233
14 | 0.1676939E-03 | 2.1730 | 0.7380946E-02 | 1.1505 | 0.1391470E+00 | 0.1515
16 0.1250617E-03 | 2.1967 | 0.6306360E-02 | 1.1783 | 0.1357333E400 | 0.1860
18 0.9622360E-04 | 2.2256 | 0.5468131E-02 | 1.2109 | 0.1321834E400 | 0.2250
20 0.7584801E-04 | 2.2584 | 0.4794873E-02 | 1.2470 | 0.1285143E400 | 0.2672

Table 5.8. Mesh 2, ¢ = 0.00002

1/h| L?:u—uy Rate H':u—uy, Rate L? :p—pp Rate
2 0.7971123E-02 | 0.0000 | 0.5655142E-01 | 0.0000 | 0.1846018FE400 | 0.0000
4 0.2413400E-02 | 1.7237 | 0.2988210E-01 | 0.9203 | 0.1658870E4-00 | 0.1542
0.1046080E-02 | 2.0618 | 0.1932363E-01 | 1.0751 | 0.1562713E400 | 0.1473
0.5715279E-03 | 2.1013 | 0.1417355E-01 | 1.0774 | 0.1529677E400 | 0.0743

10 0.3582082E-03 | 2.0937 | 0.1117922E-01 | 1.0635 | 0.1513855E4+00 | 0.0466
12 0.2450786E-03 | 2.0817 | 0.9226363E-02 | 1.0530 | 0.1503879E400 | 0.0363
14 | 0.1780667E-03 | 2.0721 | 0.7851361E-02 | 1.0469 | 0.1496183E+00 | 0.0333
16 0.1351399E-03 | 2.0658 | 0.6829650E-02 | 1.0441 | 0.1489601E400 | 0.0330
18 0.1059971E-03 | 2.0623 | 0.6039662E-02 | 1.0437 | 0.1483084FE400 | 0.0372
20 0.8530750E-04 | 2.0610 | 0.5409928E-02 | 1.0451 | 0.1476816FE4-00 | 0.0402
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Table 5.9. Mesh 3

V, = M} V, = M
1/h Yh o (, = Cha) dlm(Nh) Yh o (Y, = Cha) dlm(Nh)
0.18856362 6 0.36897215 0
4 0.04583754 2.040450 7 0.12790970 1.528386 0
0.03773950 0.479440 9 0.08733081 0.941194 0
0.03315796 0.449888 11 0.06553816 0.997875 0
10 0.02940221 0.538724 13 0.05230870 1.010425 0
12 0.02610038 0.653351 15 0.04348080 1.013831 0
14 0.02324586 0.751362 17 0.03718494 1.014693 0
16 0.02083267 0.820816 19 0.03247599 1.014015 0
18 0.01880611 0.868888 21
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Table 5.10. Mesh 3, e = 0.002

1/h| L*:u—uy Rate | H':u —uy Rate L? :p—pp Rate
2 0.7806727E-02 | 0.0000 | 0.5538587E-01 | 0.0000 | 0.1885378E400 | 0.0000
4 0.1710856E-02 | 2.1900 | 0.2199915E-01 | 1.3321 | 0.1316194E400 | 0.5185
6 0.7921602E-03 | 1.8990 | 0.1472190E-01 | 0.9906 | 0.1039612E4-00 | 0.5818
0.3981966E-03 | 2.3909 | 0.9953791E-02 | 1.3605 | 0.8496312E-01 | 0.7015

10 0.2191918E-03 | 2.6754 | 0.7029048E-02 | 1.5591 | 0.6772022E-01 | 1.0165
12 0.1303492E-03 | 2.8506 | 0.5169715E-02 | 1.6851 | 0.5378526E-01 | 1.2636
14 | 0.8260550E-04 | 2.9591 | 0.3936732E-02 | 1.7675 | 0.4310016E-01 | 1.4367
16 0.5513345E-04 | 3.0279 | 0.3085865E-02 | 1.8237 | 0.3501082E-01 | 1.5567
18 0.3838965E-04 | 3.0732 | 0.2477647E-02 | 1.8638 | 0.2885602E-01 | 1.6415
20 0.2768175E-04 | 3.1038 | 0.2029509E-02 | 1.8936 | 0.2411611E-01 | 1.7031

Table 5.11. Mesh 3, ¢ = 0.0002

1/h| L?:u—uy Rate | H!:u —uy Rate L?:p—py Rate
2 0.7955532E-02 | 0.0000 | 0.5644056E-01 | 0.0000 | 0.1928962FE400 | 0.0000
4 0.1828947E-02 | 2.1209 | 0.2342794E-01 | 1.2685 | 0.1608916E400 | 0.2617
6 0.8616662E-03 | 1.8562 | 0.1604169E-01 | 0.9341 | 0.1189821E400 | 0.7442
0.4492187E-03 | 2.2642 | 0.1125326E-01 | 1.2324 | 0.9962953E-01 | 0.6170

10 0.2554750E-03 | 2.5292 | 0.8196958E-02 | 1.4201 | 0.8238935E-01 | 0.8515
12 0.1559943E-03 | 2.7057 | 0.6171928E-02 | 1.5563 | 0.6779845E-01 | 1.0691
14 0.1009821E-03 | 2.8211 | 0.4783021E-02 | 1.6538 | 0.5610603E-01 1.2280
16 0.6858462E-04 | 2.8973 | 0.3799526E-02 | 1.7239 | 0.4691476E-01 | 1.3398
18 0.4846204E-04 | 2.9485 | 0.3082648E-02 | 1.7752 | 0.3969507E-01 | 1.4188
20 0.3538980E-04 | 2.9836 | 0.2546495E-02 | 1.8135 | 0.3398434E-01 | 1.4742

Table 5.12. Mesh 3, ¢ = 0.00002

1/h| L?:u—uy Rate H':u—uy, Rate L? :p—pp Rate
2 0.7970891E-02 | 0.0000 | 0.5654969E-01 | 0.0000 | 0.1933527E400 | 0.0000
4 0.1845137E-02 | 2.1110 | 0.2362248E-01 | 1.2594 | 0.1663078E400 | 0.2174
0.8699926E-03 | 1.8542 | 0.1620007E-01 | 0.9302 | 0.1214737E400 | 0.7748
0.4554328E-03 | 2.2498 | 0.1141209E-01 | 1.2178 | 0.1017890E+4+00 | 0.6146

10 0.2601162E-03 | 2.5101 | 0.8346248E-02 | 1.4021 | 0.8459875E-01 | 0.8290
12 0.1594605E-03 | 2.6839 | 0.6306374E-02 | 1.5371 | 0.7012081E-01 | 1.0295
14 | 0.1036076E-03 | 2.7972 | 0.4902056E-02 | 1.6342 | 0.5853946E-01 | 1.1711
16 0.7061293E-04 | 2.8712 | 0.3904550E-02 | 1.7038 | 0.4948074E-01 | 1.2590
18 0.5006136E-04 | 2.9203 | 0.3175580E-02 | 1.7545 | 0.4236105E-01 | 1.3190
20 0.3667562E-04 | 2.9531 | 0.2629206E-02 | 1.7920 | 0.3675297E-01 | 1.3479
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Table 5.13. Mesh 4
V), = M} V), = M}
1/h Yh o (Y ICha) dlm(Nh) Yh o (Yn ICha) dlm(Nh)
2 0.08401291 4 0.36827590 1
4 0.06252127 0.426263 0.19808347 0.894679 4
6 0.06942132 -0.258190 11 0.16842156 0.400080 9
0.07152600 -0.103819 18 0.15660271 0.252911 16
10 0.07220782 -0.042516 27 0.14925967 0.215218 25
12 0.07242354 -0.016361 38 0.14513215 0.153810 36
14 0.07248848 -0.005813 51 0.14258373 0.114922 49
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Table 5.14. Mesh 4, ¢ = 0.002

1/h| L*:u—uy Rate | H':u —uy Rate L? :p—pp Rate
2 0.7653364E-02 | 0.0000 | 0.5460609E-01 | 0.0000 | 0.2803161E400 | 0.0000
4 0.1661853E-02 | 2.2033 | 0.2159634E-01 | 1.3383 | 0.1118130E400 | 1.3260
6 0.6736845E-03 | 2.2269 | 0.1309262E-01 | 1.2343 | 0.8138313E-01 | 0.7834
0.3097648E-03 | 2.7007 | 0.8445776E-02 | 1.5238 | 0.5857912E-01 | 1.1429

10 0.1607243E-03 | 2.9404 | 0.5795396E-02 | 1.6877 | 0.4248801E-01 | 1.4392
12 0.9184545E-04 | 3.0692 | 0.4186577E-02 | 1.7836 | 0.3164466E-01 | 1.6161
14 0.5655427E-04 | 3.1457 | 0.3150115E-02 | 1.8452 | 0.2424870E-01 1.7269
16 0.3692376E-04 | 3.1928 | 0.2448133E-02 | 1.8880 | 0.1906022E-01 | 1.8030
18 0.2526652E-04 | 3.2210 | 0.1952824E-02 | 1.9192 | 0.1531155E-01 1.8593
20 0.1796713E-04 | 3.2359 | 0.1591391E-02 | 1.9425 | 0.1253006E-01 | 1.9028

Table 5.15. Mesh 4, ¢ = 0.0002

1/h| L?:u—uy Rate | H!:u —uy Rate L?:p—py Rate
2 0.7960191E-02 | 0.0000 | 0.5664472E-01 | 0.0000 | 0.3149452FE400 | 0.0000
4 0.1739691E-02 | 2.1940 | 0.2261937E-01 | 1.3244 | 0.1189032E+400 | 1.4053
6 0.7189004E-03 | 2.1796 | 0.1399218E-01 | 1.1846 | 0.8777856E-01 | 0.7485
0.3354605E-03 | 2.6495 | 0.9168235E-02 | 1.4695 | 0.6429613E-01 | 1.0822

10 0.1756276E-03 | 2.9001 | 0.6348980E-02 | 1.6467 | 0.4712652E-01 | 1.3922
12 0.1009580E-03 | 3.0367 | 0.4611497E-02 | 1.7537 | 0.3531675E-01 | 1.5823
14 0.6242348E-04 | 3.1188 | 0.3481649E-02 | 1.8232 | 0.2716695E-01 1.7019
16 0.4087388E-04 | 3.1712 | 0.2711687E-02 | 1.8717 | 0.2140868E-01 | 1.7839
18 0.2802395E-04 | 3.2045 | 0.2166046E-02 | 1.9075 | 0.1722844E-01 1.8444
20 0.1995220E-04 | 3.2244 | 0.1766625E-02 | 1.9346 | 0.1411512E-01 1.8917

Table 5.16. Mesh 4, ¢ = 0.00002

1/h| L?:u—uy Rate H':u—uy, Rate L? :p—pp Rate
2 0.7995464E-02 | 0.0000 | 0.5688633E-01 | 0.0000 | 0.3194573E400 | 0.0000
4 0.1747998E-02 | 2.1935 | 0.2272968E-01 | 1.3235 | 0.1197054E400 | 1.4161
0.7238222E-03 | 2.1745 | 0.1409049E-01 | 1.1793 | 0.8848563E-01 | 0.7453
0.3383146E-03 | 2.6438 | 0.9248827E-02 | 1.4634 | 0.6494617E-01 | 1.0751

10 0.1773027E-03 | 2.8955 | 0.6411504E-02 | 1.6420 | 0.4765370E-01 | 1.3874
12 0.1019896E-03 | 3.0330 | 0.4659840E-02 | 1.7503 | 0.3574128E-01 | 1.5777
14 | 0.6309136E-04 | 3.1157 | 0.3519540E-02 | 1.8206 | 0.2750012E-01 | 1.7004
16 0.4132517E-04 | 3.1686 | 0.2741901E-02 | 1.8698 | 0.2169446E-01 1.7759
18 0.2833992E-04 | 3.2025 | 0.2190544E-02 | 1.9061 | 0.1745635E-01 | 1.8454
20 0.2018017E-04 | 3.2229 | 0.1786788E-02 | 1.9336 | 0.1430210E-01 | 1.8916




Table 5.17. Mesh 5
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Figure 5.6. Mesh 5

V), = M} V), = M}
1/h Vh a (Y =Ch?) | dim(Np) Vh a (7, = Ch?) | dim(Np)
2 0.20811636 3 0.49430817 2
4 0.23235417 -0.158935 9 0.32119961 0.621941 8
6 0.23346135 -0.011724 19 0.31458925 0.051287 18
0.23352492 -0.000946 33 0.31238342 0.024459 32
10 0.23354274 -0.000342 51 0.31133469 0.015070 50
12 0.23354745 -0.000111 73 0.31075441 0.010232 72
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Table 5.18. Mesh 5, ¢ = 0.002

1/h| L*:u—uy Rate | H':u —uy Rate L? :p—pp Rate
2 0.7723748E-02 | 0.0000 | 0.5535357E-01 | 0.0000 | 0.2611621E400 | 0.0000

4 0.3272425E-03 | 4.5609 | 0.6767890E-02 | 3.0319 | 0.2201140E-01 | 3.5686

6 0.2050705E-03 | 1.1526 | 0.5239677E-02 | 0.6312 | 0.1643526E-01 | 0.7205

0.9538154E-04 | 2.6608 | 0.3264758E-02 | 1.6444 | 0.1034445E-01 | 1.6093

10 0.4943521E-04 | 2.9453 | 0.2147079E-02 | 1.8781 | 0.6772225E-02 | 1.8984
12 0.2836374E-04 | 3.0471 | 0.1498053E-02 | 1.9742 | 0.4674001E-02 | 2.0338
14 | 0.1760915E-04 | 3.0924 | 0.1096933E-02 | 2.0217 | 0.3377803E-02 | 2.1070
16 0.1161759E-04 | 3.1146 | 0.8345603E-03 | 2.0472 | 0.2535205E-02 | 2.1489
18 0.8039450E-05 | 3.1257 | 0.6546501E-03 | 2.0615 | 0.1962539E-02 | 2.1738
20 0.5780468E-05 | 3.1309 | 0.5264049E-03 | 2.0694 | 0.1558278E-02 | 2.1892

Table 5.19. Mesh 5, ¢ = 0.0002

1/h| L?:u—uy Rate | H!:u —uy Rate L?:p—py Rate
2 0.8016939E-02 | 0.0000 | 0.5738908E-01 | 0.0000 | 0.2709437E400 | 0.0000

4 0.3324486E-03 | 4.5918 | 0.6869803E-02 | 3.0624 | 0.2238294E-01 | 3.5975

6 0.2086490E-03 | 1.1489 | 0.5325060E-02 | 0.6282 | 0.1676416E-01 | 0.7129

0.9712402E-04 | 2.6580 | 0.3319968E-02 | 1.6423 | 0.1056238E-01 | 1.6057

10 0.5033806E-04 | 2.9453 | 0.2183219E-02 | 1.8784 | 0.6916237E-02 | 1.8976
12 0.2887282E-04 | 3.0488 | 0.1522745E-02 | 1.9761 | 0.4772711E-02 | 2.0346
14 0.1791765E-04 | 3.0951 | 0.1114534E-02 | 2.0245 | 0.3447498E-02 | 2.1101
16 0.1181576E-04 | 3.1180 | 0.8475747E-03 | 2.0506 | 0.2586314E-02 | 2.1524
18 0.8172917E-05 | 3.1296 | 0.6645743E-03 | 2.0651 | 0.2001717E-02 | 2.1754
20 0.5873918E-05 | 3.1350 | 0.5341720E-03 | 2.0732 | 0.1588630E-02 | 2.1937

Table 5.20. Mesh 5, ¢ = 0.00002

1/h| L*:u—uy Rate H':u—u, Rate L?:p—pp Rate
2 0.8047549E-02 | 0.0000 | 0.5760180E-01 | 0.0000 | 0.2719665FE400 | 0.0000

4 0.3329827E-03 | 4.5950 | 0.6880260E-02 | 3.0656 | 0.2242889E-01 | 3.6000

6 0.2090161E-03 | 1.1485 | 0.5333823E-02 | 0.6279 | 0.1681126E-01 | 0.7110

0.9730300E-04 | 2.6577 | 0.3325641E-02 | 1.6421 | 0.1060076E-01 | 1.6029

10 0.5043084E-04 | 2.9453 | 0.2186933E-02 | 1.8784 | 0.6932015E-02 | 1.9036
12 0.2892515E-04 | 3.0490 | 0.1525282E-02 | 1.9763 | 0.4811630E-02 | 2.0026
14 0.1794935E-04 | 3.0954 | 0.1116343E-02 | 2.0248 | 0.3456612E-02 | 2.1456
16 0.1183612E-04 | 3.1184 | 0.8489106E-03 | 2.0509 | 0.2661629E-02 | 1.9572
18 0.8186623E-05 | 3.1299 | 0.6655928E-03 | 2.0655 | 0.2132414E-02 | 1.8821
20 0.5883508E-05 | 3.1354 | 0.5349687E-03 | 2.0735 | 0.1630709E-02 | 2.5459




Table 5.21. Mesh 6
V), = M} V), = M}
1/h Vi a (Y =Ch?) | dim(Np) Vh a (7, = Ch?) | dim(Np)
0.37842003 5 0.45842007 4
4 0.38287631 -0.016890 17 0.41892314 0.129985 16
0.38448853 -0.010363 37 0.40583929 0.078256 36
0.38505027 -0.005075 65 0.40073334 0.044011 64
10 0.38520295 -0.001777 101 0.39827226 0.027607 100
INnfs-sup eigenvalue distribution Inf-sup eigenvalue distribution
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Table 5.22. Mesh 6, ¢ = 0.002

1/h| L*:u—uy Rate | H':u —uy Rate L? :p—pp Rate
2 0.1005075E-02 | 0.0000 | 0.1320204E-01 | 0.0000 | 0.3322399E-01 | 0.0000
4 0.1506689E-03 | 2.7378 | 0.3935345E-02 | 1.7462 | 0.9595745E-02 | 1.7918
6 0.4438982E-04 | 3.0140 | 0.1779524E-02 | 1.9574 | 0.4179567E-02 | 2.0498
0.1853301E-04 | 3.0362 | 0.1004275E-02 | 1.9886 | 0.2316299E-02 | 2.0517

10 0.9426854E-05 | 3.0294 | 0.6433142E-03 | 1.9960 | 0.1470369E-02 | 2.0366
12 0.5433241E-05 | 3.0223 | 0.4468800E-03 | 1.9984 | 0.1016161E-02 | 2.0265
14 | 0.3412525E-05 | 3.0171 | 0.3283549E-03 | 1.9993 | 0.7446319E-03 | 2.0168
16 0.2282055E-05 | 3.0133 | 0.2514065E-03 | 1.9997 | 0.5691130E-03 | 2.0131
18 0.1600749E-05 | 3.0107 | 0.1986447E-03 | 1.9999 | 0.4492570E-03 | 2.0078
20 0.1165872E-05 | 3.0087 | 0.1609018E-03 | 2.0000 | 0.3633780E-03 | 2.0136

Table 5.23. Mesh 6, ¢ = 0.0002

1/h| L?:u—uy Rate | H!:u —uy Rate L?:p—py Rate
2 0.1010621E-02 | 0.0000 | 0.1329874E-01 | 0.0000 | 0.3341842E-01 | 0.0000
4 0.1518431E-03 | 2.7346 | 0.3966055E-02 | 1.7455 | 0.9658056E-02 | 1.7908
6 0.4471876E-04 | 3.0149 | 0.1792761E-02 | 1.9583 | 0.4205323E-02 | 2.0506
0.1866700E-04 | 3.0368 | 0.1011557E-02 | 1.9892 | 0.2330390E-02 | 2.0520

10 0.9494196E-05 | 3.0298 | 0.6479196E-03 | 1.9964 | 0.1477964E-02 | 2.0407
12 0.5471808E-05 | 3.0225 | 0.4500568E-03 | 1.9986 | 0.1022237E-02 | 2.0221
14 | 0.3436665E-05 | 3.0172 | 0.3306801E-03 | 1.9995 | 0.7507656E-03 | 2.0023
16 0.2298160E-05 | 3.0135 | 0.2531821E-03 | 1.9998 | 0.5739014E-03 | 2.0118
18 0.1612020E-05 | 3.0108 | 0.2000443E-03 | 2.0000 | 0.4544753E-03 | 1.9809
20 0.1174084E-05 | 3.0087 | 0.1620357E-03 | 2.0000 | 0.3676320E-03 | 2.0127

Table 5.24. Mesh 6, ¢ = 0.00002

1/h| L?:u—uy Rate H':u—uy, Rate L? :p—pp Rate
2 0.1011183E-02 | 0.0000 | 0.1330852E-01 | 0.0000 | 0.3343757E-01 | 0.0000
4 0.1519616E-03 | 2.7343 | 0.3969154E-02 | 1.7454 | 0.9664517E-02 | 1.7907
0.4475195E-04 | 3.0150 | 0.1794096E-02 | 1.9584 | 0.4213521E-02 | 2.0474
0.1868054E-04 | 3.0369 | 0.1012294E-02 | 1.9893 | 0.2350809E-02 | 2.0284

10 0.9500990E-05 | 3.0298 | 0.6483843E-03 | 1.9964 | 0.1503727E-02 | 2.0024
12 0.5475694E-05 | 3.0226 | 0.4503769E-03 | 1.9987 | 0.1187676E-02 | 1.2941
14 | 0.3439099E-05 | 3.0172 | 0.3309146E-03 | 1.9995 | 0.8064395E-03 | 2.5113
16 0.2299784E-05 | 3.0135 | 0.2533611E-03 | 1.9999 | 0.8506894E-03 | -0.4000
18 0.1613162E-05 | 3.0108 | 0.2001861E-03 | 2.0000 | 0.1061703E-02 | -1.8813
20 0.1174910E-05 | 3.0088 | 0.1621497E-03 | 2.0001 | 0.5771693E-03 | 5.7848
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Table 5.25. Mesh 7

V, = M} V, = M
1/h Yh o (, = Cha) dlm(Nh) Yh o (Y, = Cha) dlm(Nh)
0.02971885 1 0.13656013 0
4 0.03317544 -0.158737 1 0.10915819 0.323116 0
0.03393715 -0.055986 1 0.10628716 0.065736 0
0.03431836 -0.038829 1 0.10549365 0.026049 0
10 0.03454750 -0.029823 1 0.10512783 0.015567 0
INnfs-sup eigenvalue distribution Inf-sup eigenvalue distribution
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Table 5.26. Mesh 7, ¢ = 0.002

1/h| L*:u—uy Rate | H':u —uy Rate L? :p—pp Rate
2 0.3014704E-02 | 0.0000 | 0.2476800E-01 | 0.0000 | 0.6090089FE400 | 0.0000
4 0.2905354E-03 | 3.3752 | 0.6779345E-02 | 1.8693 | 0.7403896E-01 | 3.0401
6 0.6802263E-04 | 3.5808 | 0.2724821E-02 | 2.2480 | 0.2118930E-01 | 3.0856
0.2590725E-04 | 3.3555 | 0.1449227E-02 | 2.1947 | 0.9473957E-02 | 2.7981

10 0.1257219E-04 | 3.2402 | 0.8966557E-03 | 2.1516 | 0.5341458E-02 | 2.5681
12 0.7042354E-05 | 3.1787 | 0.6088533E-03 | 2.1231 | 0.3437124E-02 | 2.4181
14 | 0.4338970E-05 | 3.1418 | 0.4402247E-03 | 2.1037 | 0.2403656E-02 | 2.3201
16 0.2861551E-05 | 3.1174 | 0.3330298E-03 | 2.0898 | 0.1778611E-02 | 2.2553
18 0.1986178E-05 | 3.1002 | 0.2606892E-03 | 2.0793 | 0.1371292E-02 | 2.2081
20 0.1434645E-05 | 3.0874 | 0.2095827E-03 | 2.0711 | 0.1089966E-02 | 2.1792

Table 5.27. Mesh 7, ¢ = 0.0002

1/h| L?:u—uy Rate | H!:u —uy Rate L?:p—py Rate
2 0.6719451E-02 | 0.0000 | 0.4848047E-01 | 0.0000 | 0.1517234E401 | 0.0000
4 0.4051824E-03 | 4.0517 | 0.8356635E-02 | 2.5364 | 0.1391006E4-00 | 3.4472
6 0.7959061E-04 | 4.0138 | 0.3030482E-02 | 2.5017 | 0.3272426E-01 | 3.5689
0.2835446E-04 | 3.5877 | 0.1556938E-02 | 2.3151 | 0.1268597E-01 | 3.2940

10 0.1340365E-04 | 3.3577 | 0.9494533E-03 | 2.2165 | 0.6571177E-02 | 2.9479
12 0.7418214E-05 | 3.2448 | 0.6400312E-03 | 2.1630 | 0.4027499E-02 | 2.6851
14 | 0.4541423E-05 | 3.1832 | 0.4608448E-03 | 2.1307 | 0.2738078E-02 | 2.5033
16 0.2983757E-05 | 3.1458 | 0.3477197E-03 | 2.1094 | 0.1990369E-02 | 2.3885
18 0.2065962E-05 | 3.1209 | 0.2717092E-03 | 2.0942 | 0.1516706E-02 | 2.3075
20 0.1489798E-05 | 3.1032 | 0.2181702E-03 | 2.0829 | 0.1197651E-02 | 2.2416

Table 5.28. Mesh 7, ¢ = 0.00002

1/h| L?:u—uy Rate H':u—uy, Rate L? :p—pp Rate
2 0.7901120E-02 | 0.0000 | 0.5652194E-01 | 0.0000 | 0.1809305E401 | 0.0000
4 0.4402355E-03 | 4.1657 | 0.8777998E-02 | 2.6868 | 0.1577987E400 | 3.5193
0.8285582E-04 | 4.1192 | 0.3094145E-02 | 2.5717 | 0.3596016E-01 | 3.6474
0.2892351E-04 | 3.6584 | 0.1574908E-02 | 2.3474 | 0.1354682E-01 | 3.3935

10 0.1356180E-04 | 3.3942 | 0.9570675E-03 | 2.2321 | 0.6873233E-02 | 3.0407
12 0.7479359E-05 | 3.2641 | 0.6441494E-03 | 2.1717 | 0.4168668E-02 | 2.7426
14 | 0.4570933E-05 | 3.1945 | 0.4634254E-03 | 2.1361 | 0.2828023E-02 | 2.5171
16 0.3000285E-05 | 3.1529 | 0.3494966E-03 | 2.1130 | 0.2118015E-02 | 2.1650
18 0.2076220E-05 | 3.1257 | 0.2730136E-03 | 2.0968 | 0.1723186E-02 | 1.7516
20 0.1496637E-05 | 3.1067 | 0.2191710E-03 | 2.0849 | 0.1304367E-02 | 2.6429




Table 5.29. Mesh 8
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Vi, = M} Vi, = M}
1/h T o (Yo = Ch”) | dim(Np) T o (Yn = Ch?) | dim(Np)
0.20795310 6 0.30566117 0
4 0.05863438 1.826440 8 0.15138448 1.013716 0
0.03991015 0.948764 10 0.10156855 0.984274 0
0.03010133 0.980462 12 0.07633846 0.992613 0
10 0.02413752 0.989505 14 0.06110630 0.997393 0
12 0.02013604 0.994158 16 0.05092200 0.999991 0
14 0.01727165 0.995419 18 0.04364023 1.001069 0
16 0.01511787 0.997436 20 0.03817525 1.001952 0
INnfs-sup eigenvalue distribution Inf-sup eigenvalue distribution
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Figure 5.9. Mesh 8
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Table 5.30. Mesh 8, ¢ = 0.002

1/h| L*:u—uy Rate | H':u —uy Rate L? :p—pp Rate
2 0.4924357E-02 | 0.0000 | 0.5574921E-01 | 0.0000 | 0.9184468E-01 | 0.0000
4 0.9057119E-03 | 2.4428 | 0.2039738E-01 | 1.4506 | 0.4609004E-01 | 0.9947
6 0.2872449E-03 | 2.8323 | 0.1052742E-01 | 1.6313 | 0.2705094E-01 | 1.3142
0.1213476E-03 | 2.9952 | 0.6406711E-02 | 1.7263 | 0.1763931E-01 | 1.4863

10 0.6104881E-04 | 3.0787 | 0.4302078E-02 | 1.7847 | 0.1236641E-01 | 1.5916
12 0.3452796E-04 | 3.1258 | 0.3084057E-02 | 1.8256 | 0.9129844E-02 | 1.6643
14 0.2124193E-04 | 3.1514 | 0.2316660E-02 | 1.8561 | 0.7004532E-02 | 1.7190
16 0.1392393E-04 | 3.1631 | 0.1802466E-02 | 1.8795 | 0.5536283E-02 | 1.7616
18 0.9590133E-05 | 3.1658 | 0.1441417E-02 | 1.8978 | 0.4481176E-02 | 1.7951
20 0.6872228E-05 | 3.1629 | 0.1178379E-02 | 1.9124 | 0.3698028E-02 | 1.8231

Table 5.31. Mesh &8, ¢ = 0.0002

1/h| L?:u—uy Rate | H!:u —uy Rate L?:p—py Rate
2 0.4957966E-02 | 0.0000 | 0.5603657E-01 | 0.0000 | 0.9267383E-01 | 0.0000
4 0.9164134E-03 | 2.4357 | 0.2060163E-01 | 1.4436 | 0.4678206E-01 | 0.9862
6 0.2913243E-03 | 2.8265 | 0.1066306E-01 | 1.6243 | 0.2754603E-01 | 1.3063
0.1232595E-03 | 2.9899 | 0.6501095E-02 | 1.7200 | 0.1799437E-01 | 1.4801

10 0.6208082E-04 | 3.0736 | 0.4370956E-02 | 1.7791 | 0.1262913E-01 | 1.5867
12 0.3514193E-04 | 3.1211 | 0.3136308E-02 | 1.8206 | 0.9330575E-02 | 1.6603
14 | 0.2163393E-04 | 3.1471 | 0.2357536E-02 | 1.8516 | 0.7163638E-02 | 1.7144
16 0.1418807E-04 | 3.1593 | 0.1835243E-02 | 1.8755 | 0.5664538E-02 | 1.7583
18 0.9775904E-05 | 3.1624 | 0.1468241E-02 | 1.8943 | 0.4586025E-02 | 1.7932
20 0.7007494E-05 | 3.1600 | 0.1200705E-02 | 1.9092 | 0.3789378E-02 | 1.8110

Table 5.32. Mesh 1, ¢ = 0.00002

1/h| L?:u—uy Rate H':u—uy, Rate L? :p—pp Rate
2 0.4961365E-02 | 0.0000 | 0.5606565E-01 | 0.0000 | 0.9275284E-01 | 0.0000
4 0.9175019E-03 | 2.4350 | 0.2062244E-01 | 1.4429 | 0.4686275E-01 | 0.9849
0.2917407E-03 | 2.8259 | 0.1067693E-01 | 1.6236 | 0.2763237E-01 | 1.3028
0.1234549E-03 | 2.9894 | 0.6510763E-02 | 1.7194 | 0.1807164E-01 | 1.4761

10 0.6218644E-04 | 3.0731 | 0.4378019E-02 | 1.7785 | 0.1266614E-01 | 1.5927
12 0.3520483E-04 | 3.1206 | 0.3141671E-02 | 1.8201 | 0.9411686E-02 | 1.6289
14 0.2167412E-04 | 3.1467 | 0.2361733E-02 | 1.8512 | 0.7293812E-02 | 1.6537
16 0.1421517E-04 | 3.1589 | 0.1838610E-02 | 1.8751 | 0.5799270E-02 | 1.7172
18 0.9794970E-05 | 3.1621 | 0.1470997E-02 | 1.8939 | 0.4792618E-02 | 1.6187
20 0.7021383E-05 | 3.1597 | 0.1202999E-02 | 1.9089 | 0.4020225E-02 | 1.6680
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Chapter 6

STABILITY AND APPROXIMATION PROPERTIES
OF THE P?-P? ELEMENT

This chapter is devoted to the P3~P? element for the Stokes equations. The P>~P? element
is defined for a polygonal domain Q C R? as

V, = M3(T,) and P, =M>,(Th),

where 7, is a triangulation of Q. The spaces M) and N, are defined accordingly for this element.
With the many supporting evidences that will be displayed in this chapter, we will conclude that
this element performs better than the P?~P! element. For n > 4, the P*~P"~! elements are stable
on almost all meshes, see Scott and Vogelius [21].

To the best of our knowledge, there are only a few known results on the P3~P? element. The
work of Douglas and Dupont and Scott and Percell [14] implies that the P?>~P? element provides
an optimal approximation for the velocity on irregular crisscross and barycentric trisected mesh
families. In this chapter, we show that the numerical solution for the pressure can be optimally
recovered as well on irregular crisscross meshes, and that the element is stable on the barycentric
trisected mesh family.

In addition to the discussion on stability and approximation properties of the irregular criss-
cross and the barycentric trisected mesh families, we will study the element on mixed mesh family
of diagonal and crisscross structures. It is shown that the P*~P? element provides optimal approx-
imations for both the velocity and the pressure on this mixed mesh family.

In the first section we introduce spurious pressure modes corresponding to diagonal and
irregular crisscross meshes. As we will see, the number of independent pressure modes in Ny, is 4
for the diagonal mesh. Therefore, the P*~P? element also suffers from spurious pressure modes on
these diagonal meshes. However, it is better than the P2-P! element in that there are 6 independent
pressure modes in V.

The technique used in this chapter is almost the same as the one used in Chapter 4. That
is, we determine spurious pressure modes first, and then use the macroelement technique developed
in Chapter 3 to determine the reduced stability of the finite element. Since all the results, proofs,
and techniques of this chapter are similar to the ones in Chapter 4, we omit detailed discussions or
proofs in order to keep this chapter shorter.

6.1. Spurious Pressure Modes

We shall determine spurious pressure modes of the P>~P? element on the diagonal and the
crisscross meshes in this section. On the diagonal mesh, there are four independent modes in Ny,
for the Stokes equations with Dirichlet boundary conditions. However, on an irregular crisscross
mesh 7}, there are O(h=?) locally supported spurious pressure modes for the Stokes equations with
either the Dirichlet or the traction boundary conditions.
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6.1.1. Spurious Pressure Modes on a Diagonal Mesh

Let the unit square Q = [0, 1] x [0, 1] be partitioned into n X n equal small squares with n a
positive integer and h = 1/n, and name each small square exactly in the way shown in Figure 4.4.
Let 7} be the diagonal mesh of the unit square. Restricting any pressure function p € Pj, on K; ;,

Eg and ql(f])., for{ =1,2,---,6. Here pgg are values of p at
the vertices of the lower triangle of K ;, and ql(fj are the values on the upper triangle of K; ; ( see
Figure 6.1). Let U}, be a macroelement covering of 7, such that any macroelement in U, is formed

by 2 x 2 small squares.

we can represent p by 12 real numbers p

(3) (2) (1)
TG Ty 15/
irj

“4) (6
odi; 4 pg?j) PE?‘

)

(5)
27]
A ) o

) )

Figure 6.1. Values of p.

We will show that dim Nj, equals 4 and display a basis for Nj explicitly in the following
theorem. For convenience, we define 3 independent functions ®,,®,, and @5 of P}{””' =M, (K; )
(view K ; as a macroelement) in the manner shown in Figure 6.2.

Theorem 6.1.1. Define

Uy =1, VI(Z‘J',
W, | { Dy, K,
Ki; = :
21K 0, otherwise,
| { ®,, Ky
31K, = :
T 0, otherwise,

Uylg,, = 3, VK; ;.
Then Wy, Wy, U3, and W, form a basis for Ny,.

24 —1 4 0 0 0 1 0 -1
0 4 1
-1 4 o U o0 O
o 0 4 1 0 0
4 0 —1
0 0 0 4 —1 24 1 0 1
031 ®, Py

Figure 6.2. Definition of &;.
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Proof. Clearly, the functions W; are linearly independent. Therefore, we need to show that first any
function in N, must be a linear combination of the four functions, secondly these fouctions are in
Ny.

Let U; ; be a macroelement formed by K, ;, K415, K; 41, and K;pq j41. Let VhUi’j =
]\;Ig’(Um) and Pgi’j := M2, (U; ;) be the velocity and the pressure space over U; ; respectively.
Solving p from the system obtained by setting

/ pdive =0, Yv e VhU"”'7
U

Ui . . o .
we have p € N, and p is a linear combination of following four pressure modes over U; ;.

i Py, Kijv
=

0, elsewhere in U; ;,
pi’j . ¢27 I(H‘Lj
2 0, elsewhere in U; ;,

p;’] = (1)3, VI(Z‘J' € U@j,

pyt =1, VKi; €U
Therefore, for any p € Ny, p is a linear combination of pi’j, pé’j, p;’j, and pi’j on any macroele-
ment U; ; formed by 2 X 2 small squares. Since each macroelement overlaps with at least 3 other

macroelements, the following argument is evident enough for us to conclude that p must be a linear
combination of Wy, Wy, W3, and ¥,.

Figure 6.3. Overlaping macroelements.

We assume that the first submesh in Figure 6.3 is formed by two overlaping macroelements
U; ; and U; j41, and that the second one in Figure 6.3 by U, ,,, and Uj11 5. The area of the overlap
is shaded as indicated in Figure 6.3. For any p € N}, p satisfies

4 4
_ § : LY INRN] _ § : 4J+1 6, 5+1
P Ui,j - ak pk i P Ui,j+1 - ak pk ’
4 4
_ Lym lom _ +1,m I4+1,m
p|Ul,m = ap Pr s p|Ul+1,m = a, Pg .

Since U; ; and U; ;41 are overlaping, simple calculations show that

6 _ 6§ o hj+l 6§ i+l G+l
a’ =0, a3’ =a3’", a7 =ay", and a, =0.
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Similarly, U, and Ujgq p, gives

+1 l +1
+1,m 7m_a4+7m

lym lym +1,m _
ay, =0, a3 =ay sy = =0.

, and ay
Repeatly applying the above arguments, we are able to show that any p € Nj must be a linear
combination of Wy, Wy, W3, and ¥,.

It only remains to show that W; is in N, for ¢ = 1,2, 3, 4. It is easy to see that ¥; € N, for
v = 1,2,3. For any nodal basis function in V,, its support is contained in some macroelement, so
W, is L? orthogonal to the divergence of any nodal basis function of V},. Therefore, ¥, belongs to
Ny, O

It is interesting to see that the P>-P? element has only 4 independent pressure modes in
Ny, on the diagonal mesh. As a matter of fact, only Wy affects the inf-sup constant and the rates
of convergence of the numerical solutions. The function W equal to 1 globally does not hurt the
stability and approximability of the element, neither do ¥y and W5 (as long as the actual pressure
is zero at these two corners). The functions Wy and W3 are induced by the two conner singular
vertices of the triangulation 7j,.

It is easy to conclude that there are no spurious pressure modes for the Stokes equations with
traction boundary conditions on the diagonal mesh family.

6.1.2. Spurious Pressure Modes around a Singular Vertex

Let U be a macroelement formed by partitioning a quadrilateral by its two diagonals (the
first graph of Figure 6.4). Letters a, b, ¢, and d represent the lengths of the four interior edges of
U.

4/(cd)

-4/(bc)

-4/(da)

-4/(bc)

-4/(da)

-1/(ab) -1/(ab)

-4/(da)
-4/(bc)

4/(ab) 7

4/(ab)

Figure 6.4. Macroelement U and spurious mode §Y
Again, we solve a linear system obtained from
/Updivv =0, YweVl/:= .7\0/_fg’(U)7
for the spurious pressure modes p € N}[L]. With some calculations, we find that p is a linear

combination of the constant function ¥ and 6Y. Here §V is displayed in the second gragh of Figure
6.4. In order to check whether p is in N, we put p into

/ pdiv v,
U
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and see if the integral equals zero for all v € Mg (U). The verification shows that only 6V is in Nj.

Considering an irregular crisscross triangulation 7, of a polygonal domain Q (see Figure
4.2), we find that for each singular vertex, there is a locally supported spurious pressure mode
like 6V (others are multiples of this mode). Therefore, locally supported spurious pressure modes
are distributed uniformly in this type of mesh. Namely, N; contains about O(h~%) independent
spurious pressure modes for either of the two boundary conditions. On the irregular crisscross mesh
family, it is known (Douglas and Dupont and Scott and Percell [14]) that the numerical solution for
the velocity has an optimal rate of convergence. In the next section, we will show that the recovered
pressure also converges optimally.

6.2. Stability and Approximability on Irregular Crisscross Meshes

In this section we will formally discuss the stability and approximation properties of the P3-
P? element on irregular crisscross meshes. Again, let 7;, be an irregular crisscross triangulation of
a polygonal domain € and ¢ be the number of singular vertices of 7,. For convenience, we let U,
denote the macroelement partition of 7T, such that each U € U, has a structure like the first graph
of Figure 6.4.

Based on the analysis in Section 6.1.2, we have the following lemma.

Lemma 6.2.1. On an irreqular crisscross mesh Ty, if V3, = Mg(’Th) and Py, := M?*,(T,), then
dim N, =0+ 1,

and moreover, all §Y together with the constant function 1 form a basis for Ny.

Proof. Since the constant function 1 and 6V are in Ny, for all U € U, dim N, > ¢ + 1 . In order
to prove dim Nj, < 0 4 1, we need to show that if there is p € N) orthogonal to éV for all U € U,
then p must be a globally constant.

It is easy to see that such a p must be a piecewise constant function over the macroelement
partition U}, (since Y and Y form a basis for N). Since V,, x M2, (U},) is a stable mixed finite
element, p must be globally constant.

Hence, the constant function 1 and all the 6V form a basis for Nj,. O

The next theorem is about the stability and approximability of the P3~P? element on irregular
crisscross meshes. The proof of this theorem is almost identical to the proof of Theorem 4.3.1, and
is therefore omitted.

Theorem 6.2.1. On a regular family of irregular crisscross meshes Ty, we have

(1) the reduced inf-sup constant 7, > o > 0, where « is independent of h,
(2) if (wp,pn) and (up, pp) are numerical solutions of (2.4.2) and (2.4.3) from V}, x P, and
Vi, X My, respectively, then

lw = wnlly + [lp = Brllo < CB*([lulls + llplls)-

Here we assume (u,p) € H*(Q) x H?(Q) solves (2.1.1). Moreover, p;, can be easily recovered
from the solution py,.

The reduced pressure pj, can be recovered from p;, just by filtering out the spurious pressure
modes by using the process stated in (4.3.1).
The above theorem is also valid for the Stokes equations with traction boundary conditions.
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6.3. Stability and Approximability on Mixed meshes

This section is devoted to the P>~P? element on mixed triangulations of diagonal and criss-
cross structures. The analogous result for the P*~P1 element on the mixed mesh family is stated in
Section 4.4 of Chapter 4. Again, we only consider the unit square as the domain 2. Definitions for
triangulations 7, the partition Q of the unit square, crisscross subdivisions, diagonal subdivisions,
k—squares, and some related concepts are described in Section 4.4 of Chapter 4.

Theorem 6.3.1. Suppose that the triangulation Ty, is obtained by triangulating each square in Qp
with either the diagonal or the crisscross subdivision, and that there is at least one interior singular
vertex of Tp. Let o denote the number of singular vertices of Ty,.

(1) Then dim Ny, = o 4+ 1. Moreover, there exists a locally supported spurious pressure mode
around each singular vertex of Ty,.

(2) Consider a family of such triangulations Ty, parametrized by h tending to zero. Suppose
that there exists a number k such that every k-square contains at least one 1-square which
s crisscross subdivided. Then there exists a positive constant v depending only on k such

that 4y, > 7.
Proof. Following the notations in Section 4.4 of Chapter 4, we let Uy, Us, - -+, U}, denote all the K; ;
such that each of them has an interior singular vertex. For convenience, we denote the spurious
pressure mode (shown in Figure 6.4) on U; by 6V, i =1,2,--- k. Let T, denote the corresponding

diagonal triangulation of the unit square with the same mesh size h. Since 7} can be viewed as a
refinement of 7,2, V},(T,P) C V,(Ts) and P,(T,P) C Pu(Th).

If we can show that any p € N} is a globally constant provided p is L? orthogonal to all
§Yi then (1) is proved. Suppose p € N, is orthogonal to all the §Yi | then p must be a constant on
each U;. Therefore, p € Nh(’ThD). That is, p is a linear combination of W,;, for ¢ = 1,2,3,4. The
independence of Wy, Wy, W5 and W, guarantees that p is a globally constant.

The proof of (2) is exactly the same as the proof for the third statement of Theorem 4.4.1. O

Similar to Theorem 4.4.2, we have

Theorem 6.3.2. Assume (u,p) € H*(Q) x H*(Q) solves (2.1.1) and (wp,pn) € Vi, X M), solves
(2.4.3). Under the assumptions of Theorem 6.3.1, we have

o~ wunllo <C inf [fu— vl < CF ull o (63.1)
vEV,
1P = Brllo,o <CP|lullie +C inf [Ip = qllog- (6.3.2)
qeM},

If Ky, and K, 1 are crisscross subdivisions, then
? ?

Ip = prlloe < CR(lullsg + [Iplls.0)- (6.3.3)

If Ky, and K, 1 are crisscross subdivisions, then M?,(Q;) C M. Therefore, (6.3.2) implies
(6.3.3). If T has one or two corner singular vertices, then the actual pressure p can be approximated
by pn € My with an optimal rate of convergence provided p is orthogonal to the spurious pressure
modes associated with the corner singular vertices of 7Tj,.

The pressure is recovered exactly in the way it was for the irregular crisscross meshes.

For the Stokes equations with traction boundary conditions, Theorem 6.3.1 holds and the
estimate, under the assumptions of Theorem 6.3.1, is

I = wnlle + [Ip = Prllo. < Ch (ullig + [Iplls.0)-
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6.4. Stability and Approximability on Barvcentric Trisected Meshes

We shall prove that the P3-P? element is stable on barycentric trisected triangulations in
this section. Namely, the space Nj contains only constant functions, and the inf-sup constant =, is
bounded from below by a positive number independent of h.

Let S;, be a regular triangulation of a polygonal domain € and 7} be a refinement of S, by
connecting the three vertices of each triangle in &, to its barycenter. We call such a triangulation
Thn a barycentric trisected triangulation. Let U, be a macroelement partition of 7, such that each
U € Uy, is a triangle in Sy.

Let U be the triangulation of the reference triangle 7 by connecting the three vertices of 7
to its barycenter. Clearly, any U € Uj, is a image of U under a linear mapping. Some algebraic
computation shows that N}[L] contains only constant functions. Therefore, by Lemma 3.5.1, N}[L]
contains only constant functions for any U € Uj,. Applying the macroelement partition theorem
(Theorem 3.2.1), we have the following theorem.

Theorem 6.4.1. Consider a family of regular barycentric trisected triangulations T, parametrized
by h tending to zero. Then

(1) The P3>-P?* element is stable on this mesh family.

(2) Assume (u,p) € HY () x H3(Q2) solves (2.1.1) and (wp,pp) € Vi, X Py, solves (2.4.2). Then

llw — wpllr.o <C inf |lu—v|l1q < CR3||ul|sq,
vEV),

Ip = prllo.e <CH*([[ullsg + [Iplls.2)-

Combining Theorem 4.6.1, Theorem 6.4.1, and the result by Scott and Vogelius [21], we can
conclude that P"—P"~1 element is stable on barycentric trisected triangulations for n > 2 for the
Stokes equations with either the Dirichlet or the traction boundary conditions.

Remark 6.4.1. The P3-P? element works fine on mived meshes of diagonal subdivisions and
barycentric trisected subdivisions (see Remark 4.6.2) of the unit square. The only spurious pressure
modes are from the corner verices on these meshes. We can prove similar results as stated in
Theorem 6.3.1 and Theorem 6.3.2 for this type of meshes.
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Chapter 7

STABILITY AND APPROXIMATION PROPERTIES
OF THE P'-P° ELEMENT

In this chapter, we will present some theoretical results on the P'~P° element for the Stokes
equations. The P1-P° element is defined by

Vi = M (7;) and P, = M2, (Th),

on any triangulation 7,. In other words, the velocity space of this element consists of continuous
piecewise linear polynomials and the pressure space consists of discontinuous piecewise constants.

This element is probably the simplest finite element for the Stokes equations that preserves
the incompressibility condition. Unfortunately, the pressure space P} is too large on many meshes
so that the numerical solution for the velocity is always zero, for example, on the diagonal mesh of
the unit square. However, for some meshes this element does have optimal rate of convergence for
the velocity, and moreover the pressure can be recovered.

This chapter is organized as follows. First, we introduce Powell’s result on the approximation
property of C'' quadratic polynomials over crisscross meshes. Secondly, on the crisscross mesh family
of the unit square, we show that the reduced inf-sup constant is C'h. Namely, the element is not
reduced stable. However, we can prove that the finite element solution for the velocity converges
optimally, and that the solution for the pressure can be recovered. Next, we present some similar
approximation results for a general mesh family of a polygonal domain. Furthermore, we display a
basis for the space Z; of all the divergence-free functions in V}, over the crisscross mesh of the unit
square, and show that Zj; has optimal approximation properties for any divergence-free functions
in H. Finally, we exhibit a relation between the stabilities of the P1-P° element and the Q'-P°
quadrilateral element.

7.1. Known Results

A known result on the P1-PY element is by Powell [20] who considers approximation prop-
erties of C'! quadratic polynomials on the crisscross mesh family. However, Powell’s result can
be adapted for the P1—P° element on the crisscross mesh of the unit square. That is, the P*-P°
element provides a numerical solution for the velocity with an optimal rate of convergence for the
Stokes equations with traction boundary conditions. We show also that the P'~P° element works
for the Stokes equations with Dirichlet boundary conditions.

7.2. Spurious Modes around a Singular Vertex

For the P1-P? element, there exist spurious pressure modes around each singular vertex of a
triangulation 7. In this section, we explicitly display these modes associated with a singular vertex.
The way to determine a spurious pressure mode is similar to that used for the P?~P! element.
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We consider spurious pressure modes on a macroelement U which is a quadrilateral divided
by its two diagonals (see the first figure of Figure 7.1). Letters a, b, ¢, and d denote the lengths of
the four interior edges of 7V. Let the nodal basis functions corresponding to vertices 1, 2, 3, 4,
and 5 be denoted by ¢1, ¢2, @3, ¢4, and ¢s respectively. Since rotations and translations do not
change the inf—sup constant, we assume that one diagonal of U lies on the z-axis. For convenience,
we denote the directions of the two diagonals of U by (1,0) and (ny,ny). The coordinates of the
five vertices of T,U are

(a,0), (bny,bny), (—¢,0), (—dnq,—dny), and (0,0).
Any arbitrary w € VU can be written as

5

U= Z(qui)@-

i=1

For any p € P}EJ, its values in the four triangles of ’ThU are denoted by p¥, p¥, p¥, and pY, starting
from the triangle with vertices 1, 2, and 5, and moving in a counterclockwise direction.

Figure 7.1. Macroelement U and spurious pressure mode.
Set

2 [ pdivie = ma(apd + bmapd )y + a8~ dpf ek
U

na (—dpl — bpY + 0pY + dp)us + (—ap — epl)vi+
ny (—dpl — bpS v + (ap§ + epl)vs + nq (bp§ + dp Jvat
(api + dnypt — apy +onip¥ — epy — bnapl + cpi — dnipf)vs = 0,

for any w € V,U. Solving the system obtained from the above equation, we have

1 1 1
pgjz_@7 pg:%v pil’)]:_Ev p}l]:£7 (721)
as a representative of all the spurious pressure modes around the singular vertex of T,V (see the
second figure in Figure 6.1). If we solve the linear system corresponding to us and vz, then the
solution space is spanned by yY and the one shown in (7.2.1)—this fact is frequently used in latter
sections.
If the macroelement U is a square or a parallelogram, then

P?I_L pg:L pil’)]:_lv péllsz
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is a basis function of all the spurious pressure modes associated with the singular vertex of 7,V.

7.3. Stability and Approximability on Crisscross Meshes

In this section, we show that on the crisscross mesh the P1—P? element is unstable even after
all spurious pressure modes are removed from the pressure space F,. That is, V}, x M}, is unstable.
Specifically, we will show that the reduced inf—sup constant v, is C'h. Therefore, we do not expect to
get any meaningful estimates for the numerical solution if the standard analysis is directly applied
to Vi, x Mj,. However, with a deeper consideration we show that the numerical solution for the
velocity converges optimally and that the pressure can be recovered as well.

For convenience, we consider the unit square Q = [0, 1] X [0, 1] as the domain in this section.
Let Qj, denote a partition of Q which has n X n equal small squares with h = 1/n and n a positive
integer. The crisscross triangulation 7, of Q is obtained by dividing each small square of @, by its
two diagonals. A vertex in 7y is denoted by («, §) if the vertex has coordinates (ah, 8h).

7.83.1. Space of Spurious Pressure Modes

In order to analyze the P'~P° element on the crisscross mesh family on the unit square, we
first need to determine the structure of the space Nj on this family. As we have seen in Section 2,
for each singular vertex (14 1/2,j+ 1/2) of the triangulation 7j, there is a spurious pressure mode
denoted by ;112 j+1/2, With four triangles as its support (see the second figure of Figure 7.1).
Therefore, all d;41 /2 j41/2 are in Nj. We will show that in addition to the d;11 /2 j41/2’s there is also
a globally supported spurious pressure mode in Np. Surprisingly, locally and globally supported
spurious pressure modes occur simultaneously for the crisscross mesh family.

If p € Ny, is orthogonal to all 6,412 j41/2, then p must be a constant in each small square in
Qy,. For convenience, we denote the value of p by p; 15 j11/2 in asmall square with (:+1/2,5+1/2)
as its center vertex.

Let w € Vj, be arbitrary. We have

u= Y (wigoigdigt D (Wil s Vit ) Pied it ds
1<i,j<n—1 0<i,j<n—1
where ¢; ; and @412 ;41,2 are all the nodal basis functions in V},. Hence,
/ pdivu = Z [(—PH—%,H% +pi—%,j+% ‘I'pi—%,j—% —Pi+§,j—%)ui7j‘|‘
£ 1<i,j<n—1 (7.3.1)

(=Pir 2 = Pimbes FPimt ot P - 1)vig)-

=N

Since w; ; and v; ; are arbitrary, by setting (7.3.1) to zero we have the following linear system

“Pipdrt TPt TPy L~ Pipt -1 =0,

2 2
“Pit i+t TPt TPl TP o1 =0,

2 2

for 1 <+¢,7 <n — 1. Therefore, we have
Pivfj+s =Pi-4,i-%>

Pi-1,j+1 =Pitlj-1
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for1<e,7<n—1.
If we require pr =0, then p;11/2 4172 = —Pi—1/2,j41/2, for 1 <i<n—-Tland 0 <5 <n-—1.
Now we are able to conclude that p is a globally supported checkerboard-like spurious pressure
mode (see Figure 7.2) denoted by dq.

Figure 7.2 Global checkerboard dq, h = 1/4.

Theorem 7.3.1. On the crisscross mesh Ty, of the unit square with h = 1/n, we have
dim N, = n? + 2.

Moreover, any function in Ny, can be written as a linear combination of the global constant function
1, the 0;11/2, 54128, and the pressure mode 0g.

The proof of the above theorem is immediate.

On the crisscross mesh, the structure of N, for the P1-PY element is a little different from
the one for the P*~P! element. For the P?—P! element, all spurious pressure modes are locally
supported. As we will see later on, the globally supported mode dq and its localized version which
appears in each macroelement are the major sources of trouble for the analysis of the approximability
and the stability of the P'~P? element.

7.3.2. Reduced inf-sup Constant

In this section, we will prove that the reduced inf-sup constant 7;, for the P1-P° element is
about C'h on the crisscross mesh family of the unit square. First we prove that the reduced inf-sup
constant 7y is at least C'h, and then we show that 7 is at most C'h by an example.

Lemma 7.3.1. Let T} be the crisscross mesh. Then Vi, x M) is unstable, and moreover, the
reduced inf-sup constant
:yh Z Ch7

where constant C' is independent of h.

Proof. Let Qp, be a macroelement partition of 7. Obviously, each macroelement in Qj, is a trans-
lation of any other macroelement in Q. Therefore, the local inf-sup constant of VhU X M}[L] is O(1)
for any macroelement U € Q. Since M} contains only constants for any macroelement U € Q,
the reduced inf-sup constant is at least & if we can prove that Vj, x Q, (Q := M%,(Q},) N M},) has
a inf-sup constant greater than Ch.

For any p € @), and u € V},, we have

. h
/ pdivu = 5 E [(—PH—%,H% +pi—%,j+% ‘I'pi—%,j—% —Pi+§,j—%)ui7j‘|‘
£ 1<i,j<n—1 (7.3.2)

(=Pir 2 = Pimbes FPimt ot P - 1)vig)-
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In particular, pick w € V}, such that

Ui, j :h(_pi-l—%,j-l-% +pi—%,j+% ‘I'pi—%,j—% - pi-l—%,]’—%)?
Ui,j :h(_pi-l—%,j-l-% —Pi-1j+i tPio1 -1 +pi+%,j—%)7
and
Uit djrd =0,
Vit g j+4 =0

Then, we have

o )
/dewu:7 Z [(_PH—%,H% +pi—%,j+% ‘HW-%,;’-% _pi-l—%,]'—%) +

1<ij<n—1
(=Pip 2 = Pimyid FPioy o +Pigy 1)) (7.3.3)
=0y (g s = Picy o)+ sy s i o))
1<ij<n—1

Define the right hand side of (7.3.3) to be the square of a seminorm of p, denoted by |p|s. It
is easy to show that
Jullie < CA7Hullon < Clpln.

Hence, the last inequality together with (7.3.3) implies

If we can show that
hllpllo.a < Clpln, (7.3.4)

for any p € Qp,, then we are done.
In order to prove (7.3.4), we need to show

D [Wirges = picy o)’ + Gicpjed TPy -2)’]
1<i,j<n—1

2 2
>Cht Y] Piydj+s
0<i,j<n—1

(7.3.5)

The left hand side of (7.3.5) can be split into two parts: a part containing all the terms with ¢ 4 j
even and another with all the terms with ¢ + j odd. Each p;1 /3 ;41,2 appears in either one of the
two parts at most 4 times, and each part has O(h™%) terms. If Pit1/2,j+1/2 18 zero for at least
two vertices (i 4+ 1/2,j + 1/2) one with i + j even and another witj 7 + j odd, then (7.3.5) holds.
Since |1|, = 0 and |dq|;, = 0, we can add a function ¢ which is a linear combination of the constant
function 1 and dg to p such that p+ ¢ vanishes at two pairs of (¢ + 1/2, 7+ 1/2) with i 4 j is even
and odd each. Hence,

Iplls.o =P+ dllto = lldlda < llp+all§o < CR2Ip+qlf = CR™[pl}.

(The proof of (7.3.5) can be found in the book by Girault and Raviart [11, § 11.3.3] and the paper
by Johnson and Pitkdranta [13].) This proves the lemma. O
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Lemma 7.3.2. On the crisscross mesh, there is ¢ € M}, such that the reduced inf-sup constant 7y,
of Vi X Py, satisfies
:yh < Ch7

where constant C' is independent of h.

Proof. We will find a specific ¢ € M), such that

b
sup & < Ch.

vevi [[ollalllloq =

The example is exactly the same as the one in Girault and Raviart [11,§ 11.3.3] for the Q!-P°
element.

Without loss of generality, we consider = [—1,1] X [-1,1]. Let 7, denote the crisscross
triangulation with h = 1/(2n), and let Qs denote the macroelement partition of 7, such that every
macroelement has size 2h X 2h and is made up of 16 triangles. A macroelement in Qs is denoted
by U; ; if (ih, jh) are the coordinates of the center vertex of the macroelement. Let dy, , denote a
pressure function which is zero outside of U; ; and has values on U; ; as shown in Figure 7.3.

Figure 7.3. &y

it

Define

q = Z Z'(SUW. .

U; ; €EQan

One can easily verify that ¢ is in M}, since ¢ is orthogonal to Nj. After some calculations, we have

b
sup _bwa) <V6h. O
vev, [vllalldllo

Combining Lemmas 7.3.1 and 7.3.2 we have the following theorem.

Theorem 7.3.2. On the crisscross mesh, the space Vi, x M}, is unstable and the reduced inf-sup
constant vy, of Vi, X Py, satisfies
Yo = Ch7

where constant C' is independent of h.

The above theorem implies that we can not directly apply the standard techniques of error
analysis to Vj, x M}, since 7, = O(h) makes error estimates meaningless. At this point, we don’t
know whether the numerical solution fails to converge or our analysis is not sharp enough to unveil
the real property of the numerical solution. We will give a positive answer to this question in the
next section.
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7.3.3. Approximation Properties

In this section, we show that the numerical solution approaches the actual solution at a rate
of h in the H' norm. Moreover, we will display a way to recover the numerical solution for the
pressure. Since Vj X M)} is unstable, this means that M, is still too large. Therefore, we need to
remove more modes from M} and still try to preserve the good approximation properties for the
remaining pressure space. It is then necessary to define a new velocity space Wj C Vj, such that
not only is W), x 5}, stable but also the velocity from W), x S, is exactly the same as the w) from
Vi, X M. Of course, the space W}, should possess good approximation properties.

The crucial matter here is to determine the bad modes in M. Let h = 1/n and n = 4k
for some positive integer k, and let 7, be the crisscross mesh of the unit square. Let Q4 be a
macroelement partition of 7;, such that every U € Qyy, has 16 h x h squares. Therefore, TV consists
of 64 triangles. From the analysis of Section 7.3.1, we know that N} is the space spanned by the
functions YV, &7, and 8it1/2,j+1/2, Where (i +1/2,5 4 1/2) is a singular vertex in T.U (see Figure
7.4 for ThU and dy7). Obviously, 8;41/2,j+1/2's are not in M. Since dq € span{dy, VU € Qup}, we
need to remove span{dy, VU € Qy,} from My.

Define _

N, = span{1,5i+%7]’+%,5U71 <i4,j<n-1,YU € Qq},
S, =L*? orthogonal complement of Ny in Py,

Wh = {’U € Vh ‘ b(’l),q) = 07vq € Nh}7

Sf[L] = XUSh7

WY ={veW,|sptvCU}.

Figure 7.4. Macroelement U and a bad pressure mode over U.

Theorem 7.3.3. Let Tj, be a crisscross mesh of the unit square. Assume (w,p) € H?(Q) x H (Q)
solves (2.1.1) and (uyp,, pp) € Wy, x S, solves (2.4.2), then

lw = anllia < Chllu|zq,
1P = Prllo.a < Ch(llullz.0 + [IPllLe)-
Proof. 1t is easy to verify that
N, C Nh, Mol ('Tgh) C Wy, and MEl(QM) C 5.

Therefore, W}, x S}, has good approximation properties. It only remains to prove that Wj x S}, is
stable.
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Define )
NV ={qe s/ ‘ b(v,q) =0,Yv € wly.

Then the analysis of Section 7.3.1 implies that N}EJ contains only constant functions. Therefore,
Wy, x (Si N (Uvegy, NY)) is stable by the fact that Mg (725) x M2, (Qyy) is stable. Finally, by
using the macroelement partition theorem we have that W, x Sy, is stable. [

Theorem 7.3.4. Let T, be the crisscross mesh of the unit square with h = 1/(4k) for some positive
integer k. If (u,p) € H*(Q) x H'(Q) solves (2.1.1), then the solution (wp,pn) € Vi, X Py, of (2.4.2)
satisfies

lu —upll 0 < Ch||lul)zq,

P = Pn + N,

and the pressure can be recovered as a postprocess from py,.

Proof. Clearly, the solution (up,pp) € Vi x Py of

a(uhvv) + b(vvph) = (fvv)v Vo € th
b(uh7 (]) = 07 Vf] € Ph
satisfies
a(uhvv) + b(vvph) = (fvv)v Vo € Wh7

7.3.6
b(uth):07 Vf]e Sh- ( )

Since wj, € W), and p;, = (pn/Ny) + ny, for some n;, € Ny, (7.3.6) implies

a(uhvv) —|—b('U,ph/Nh) = (f,’l)), Vo € Wh7
b(up,q) =0, VYgq€Sy.

Since the solution of (2.4.2) in W), X S}, is unique, we have
u,=u, and p,/Nj = pp.

By Theorem 7.3.3, the velocity u;, and recovered pressure pj have optimal rates of convergence. It
is simple to recover py from py, since we know N, explicitly. O

7.4. Stability and Approximability On a General Mesh Family

The P1-P° element is analyzed on a general mesh family in this section. On this general
mesh family, it is shown that the finite element solution for the velocity converges at a order h and
the pressure can be recovered by a simple postprocess.

The triangulation 7}, is formed in the following way. First, we partition the polygonal domain
Q into quadrilaterals. This quadrilateral partition is denoted by Qgp. Secondly, each quadrilateral
in Qg is divided into four subquadrilaterals by linking the intersection of its two diagonals to the
middle point of each edge, so Qs is formed. Repeating the above process to all quadrilaterals in
Qsp, we have Q. Finally, partitioning each quadrilateral in @y, into 4 triangles by its two diagonals,
we obtain the triangulation 7. The first figure in Figure 7.5 shows how to partition a quadrilateral
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in Qg into 4 quadrilaterals in Qs}, the second figure shows a macroelement in Qg with 64 triangles

in 7p.

Figure 7.5. Form Qj from Qyy.

We will show that on the triangulation 7, the numerical solution u; has an optimal rate of
convergence and a pressure with an optimal rate of convergence can be recovered from pj. The
measure to achieve this objective is quite similar to what we used for the crisscross mesh. We first
remove all possible “bad modes” from P, and then consider the pressure in the remaining pressure
space. The key issue is to determine bad pressure modes in P,. We know that spurious pressure
modes associated with each singular vertex must be removed from the pressure space P,. However,
this is not enough to guarantee the stability according to our experience with the crisscross mesh.
Since the crisscross mesh is a special case of T, we definitely need to remove those pressure modes
which may degenerate to local spurious modes. Based on this consideration, we will remove all

multiples of the mode (shown in Figure 7.6) on each macroelement in Qs from the pressure space
Py.

Figure 7.6. “Bad pressure mode” over Usy,.

For convenience, we denote a quadrilateral in Qj by Uy, a quadrilateral in Qyp by Uy, one
in Q5 by Uy, and the mode shown in Figure 7.6 by ér,, . Let 0y, denote the spurious pressure
mode associated with the singular vertex in Uy € Qp. We can easily conclude that

/5U2h = 07

for any 7 € Tap,, any Usp, € Qap,.
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Define _
Ny, = span{l, v, , dur,,,, VU € Qp,VUszp € Qap},
Sj, = L* orthogonal complement of N, in Py,
W,={veV, ‘ b(v,q) = 0,Yq € N}, },
Sy = XU Sy,
W}?‘”‘” ={veWw, ‘ sptv C Uyp}.
Theorerrol 7.4.1. Let T}, be a reqular triangulation defined at the beginning of this section. If
(u,p) € H*(Q) x HY(Q) solves (2.1.1) and (uy, pr) € W), X S, solves (2.4.2), then
lw = anllia < Chllu|zq,
1P = Prllo.a < Ch(llullz.0 + [IPllLe)-

Proof. 1t is expected that N, C Nj,. This is the case if 7}, is a crisscross mesh. Since ’ThU‘”’ has a
special structure, we can show that

M®,(Qun) C Sy and My (Tan) C Wi,

Therefore, W), x 55, has good approximation properties. If we can prove that W), x S, is stable,
then we will be done.
Define
N}[L]‘“" ={q¢€ S}[L]‘”“ ‘ b(v,q) =0,Yv € W}EJ‘”’}

We need to show that N}[L]‘”’ contains only constant functions. If it does for any Uy, € Qup, then

W, % (SN (Uuy, 0., N}L]‘”’)) is stable by the fact that Mg (7T25) X M2,(Q4;) is stable. Therefore,
by using the macroelement partition theorem we can prove that W, x 5}, is stable.

We show that dim Z\Nfg“h = 1. Since dy, € Ny, if q € N}[L]“h, then ¢ is a constant on each
Uy, in Uyp,. Hence, ¢ must be a constant on each Usy in Uy, since we already removed 6, from
the pressure space. Therefore, ¢ must be a constant on each of the four Uy, in Uyp. A simple
computation shows that ¢ must a constant on Uy,. O

Theorem 7.4.2. Let T}, be the triangulation defined at the beginning of this section, then the
numerical solution (uyp, pp) € Vi, X Py, satisfies

lu —upll 0 < Ch||lul)zq,

and py, /Ny, = py,. Here we assume (u,p) € H*(Q) x HY(Q) solves (2.1.1).

Proof. Use similar arguments in the proof of Theorem 7.3.4. [

7.5. A Space of Divergence-Free Functions on the Crisscross Mesh

In this section, we display a basis for the space Zj of all divergence-free functions of contin-
uous piecewise linear polynomials on the crisscross mesh 7. All the basis functions have a very
small local support and the space Z; has optimal approximation properties.

Let the domain € be the unit square and Q,, h = 1/n and n is a positive integer, be a
partition of  which contains n x n equal small squares. The triangulation 7}, is obtained from Q,
by dividing each small square in Qj, by its two diagonals.



92

Define i
\Z :MOI (,Th)v

Z, ={v eV, | divo =0}.

A simple calculation shows that
dim V}, = 4n® — 4n + 2.

In order to study Zj, we define a “pressure” space P, as
Py = M2 (Th).

Therefore, the analysis of the properties of Z; can be carried out using the frame work of the
analysis of the P'~P? finite element for the Stokes equations with Dirichlet boundary conditions.
Since div V), C Py, we have

Zy={veV,|dive=0}={veV,|bv,q)=0,Yg€ P,}.
Lemma 7.5.1. On the crisscross triangulation T, with h = 1/n,
dim Z), = (n — 2)*.

Proof. Since dim P, = 4n* and dim Nj, = n® + 2 (see Theorem 7.3.1), the lemma follows. [

In order to find a basis for Zj, we first consider a small macroelement U with size 3k X 3h
(see Figure 7.7).

7 8 9
1 |

4 5 6
1

1 2 3

Figure 7.7. Macroelement U.

We denote all the interior vertices of U by 1,2, -, 13, as shown in Figure 7.7, and denote the
nodal basis functions by ¢1, @2, - - - , ¢13 accordingly. Let V}U denote the subspace of V}, such that all
the functions in VhU have supports contained in U. We look for functions v = $13 | (u;, v;)¢; € VhU
such that dive = 0 in U. Namely, we need to solve a system of 36 linear equations in 26 unknowns.
Since dim Z}[L] = 1, we know that this system has one-dimensional solution space. After some
algebraic computations, we find that the solution space is

ZY = span{z"},

where 2V = (¢, ) and
§ =02 — @5 + P10 + O11 — P12 — P13,

N =— ¢4+ ¢ — d10 + O11 — P12 + P13.
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See Figure 7.8 for graphs of £ and 7.
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Figure 7.8. The shape of the two components of zV.

Since there are exactly (n — 2)? different macroelement with size 3h x 3h in 7, the set of

all these macroelements is named by Up—we find a basis for Zj. By the results of Section 7.3, we
have

Theorem 7.5.1. Let T}, be the crisscross mesh of the unit square with h = 1/n. Then
{zV | VU e U},

form a basis of Z),. Furthermore, if u € H2(Q) and divuw = 0, then

inf [Ju—ov|io<Chllulzq.
vEZ}

7.6. A Relation between the P1—P°% and 9!—PY Elements

In this section, we shall study the relationship between the P'~P% and Q'-P? finite elements.
The domain € under consideration could be any polygonal domain. We denote a quadrilateral
partition of by @, and its corresponding irregular crisscross triangulation by 7, which is obtained

by dividing each quadrilateral in Q;, by its two diagonals. We assume 7T}, is a regular triangulation.
The finite element Q'—PY is defined as

vV, = {veC’(Q) ‘ vl, € QA7 € Qp,v|sq =0},
Py ={qe L*(Q) | I € R},
Ny={qe P, ‘ b(v,q) =0,Yv € V},},
M, =L* orthogonal complement of Ny in P.
Here
Q,={woF! ‘ w € Q1(7)},

7 is the reference square, F; is the bilinear mapping from 7 to 7, and Q(7) is the space of all
bilinear functions on the reference square 7.

For the P1-P° element we use the notations Vj,, Py, Ny, M, and etc.
It is obvious that

]Sh C Py
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Lemma 7.6.1. For a polygonal domain Q, let Q; be a quadrilateral partition of Q. If T, is the
corresponding irreqular crisscross mesh for Qy, then

Nh C Ny.

Proof. We state a very simple but important fact first. For any v € Vj,, there exists a w € V}, such
that

b(v,q) = b(w, q),Yq € Py. (7.6.1)

Similarly, for any w € Vj,, there is v € Vj, such that (7.6.1) holds.

Since any function w € Vh is linear on all the edges of @}, there exists a function v € Vj,
such that v — w vanishes on all the edges of Q. Therefore, (7.6.1) follows by using the Green’s
formula.

From (7.6.1), the lemma follows. O

In order to study the structure of Ny, we consider Q) as a macroelement partition of 7j.
For any quadrilateral U € Qj, there is a spurious pressure mode in P, associated with the singular
vertex of T,V (see Figure 7.1). For convenience, the spurious pressure mode is denoted by d;.

Lemma 7.6.2. )
Np, = Np, + span{dy ‘ for all quadrilaterals U € Q), }

Proof. Clearly, 5y € Ny, for any U € Q. Since N contains only linear combinations of ¥ and

oy for each U € Qp,, any function ¢ € N, must be in P, provided ¢ is orthogonal to all §;;’s. By
(7.6.1), g € Np,. Hence, the lemma follows. O

Corollary 7.6.1. ) )
M, NP, = M,,.

Theorem 7.6.1. For a polygonal domain Q, let Q, be a quadrilateral partition of Q and T, the
corresponding irregular crisscross mesh for Q. Assume Ty, is regular. If 7, and ¥y, denote the
reduced inf-sup constants of Vi, X P, and V}, X Py, respectively, then

Cn <an < C719,

where C' is a constant independent of h.

Proof. Let Qj, be a macroelement partition of 7. On each macroelement U € Q),, we have

dimVV =2, dim P/ =4,
dim MY =2, dim NY =2.

Following the arguments of Theorem 4.3.1, we can bound the local inf-sup constants on all macroele-
ments in Qp by a positive number which is independent of k. Applying the macroelement parti-
tion theorem, we know that the reduced inf-sup constant 7; is determined by the stability of
Vi, X (M N ZUGQh N}[L]) =V, x M, (by the corollary). This implies that V3, x M}, has exactly the

same stability as V), x M. If we can prove that V), x Mh and ‘N/h X Mh have the same stability,
then we are done.
We first show that
Y > CHp,. (7.6.2)
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For any ¢ € M, by Theorem 2.2.3, there exists a function w € Vj, such that

b(w,q) = l4l3

C (7.6.3)
w10 < —ll4llo,q-

Th

If we can construct a function v € Vj, such that

b(v,q) = lallg 0,

C
o]0 < —llglloa
Th

then (7.6.2) is proved.

Let I, := (Iy, 1) : Vi, — V}, be the interpolation operator such that Ig and g agree at every
vertex in 7, for any g € Vj,. Therefore, for any function g € Vj, the interpolation error g — I),g
vanishes at all the edges of the quadrilateral partition Q. We will show that there is a constant C'
independent of h such that

lg = Tngll1.a < Cllglle, (7.6.4)

for any g € V. If this is the case, by taking v = Iyw, then
[ollra < flw=vliLe+[wlie < Cllw|e.

According to the arguments in the proof of Lemma 7.6.1 and (7.6.3), we have
b(v, q) = b(w, q) = [14/[5 o-

C
lv]l1.0 < —llgllo.q-
Th

This proves (7.6.2) with the assumption (7.6.4).
Let U € Qj be a macroelement. If we can show that

lg = Ingllo,v < Cllgllo,v (7.6.5)
lg — Inglio < Clgh,u,

for any ¢ € Qu, any U € Qp, and any h > 0 with constant C' independent of h, then we are done.
Let E@(U) denote the set of all the equivalence macroelements of the unit square U/ satisfying the
shape constraint (2.3.2). Obviously, translations and dilations of U do not affect (7.6.5) and (7.6.6).
Therefore, for simplicity, we assume that the length of the longest diagonals of each macroelement in

FE4(U) is one unit, and that the intersection of the two diagonals of any macroelement in Fy(U) has

coordinates (0,0). For any macroelement U in I5(U), we name the intersection of its two diagonals
by vs and the rest four vertices by vq, ve, vs, and vy clockwise. Hence, S = {(vy, va, vs, V4, v5) ‘ Ue

E@(U)} is a closed set in R'0. Let ¢ € Qy be arbitrary and it values at v; be g; for i = 1,2, 3, 4.
For convenience, we denote (g1, g2, g3, 94)" by g. Since (Ig)(v;) = g; for i = 1,2,3,4 and (I,9)(vs)
is determined by g1, g2, g3, and ¢4, we have
lg = Ingllg, = 9" Avg,
lgll3,c = 3" Bug.
g — Inglt v = 'Cug,
9o =3'Dug.
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Here Byr is a symmetric positive definite and Ay, Cyr, and Dy, are symmetric positive semi-definite.
Clearly, the entries of Ay, By, Cyr, and Dy are continuous functions of (vq, va, vs, va, vs5).
Since S is a bounded closed set in R, there exists a constant C independent of i such that

lg — Irgllo,v < Cillgllo,v, (7.6.7)
for any U € Eg(U).

It is easy to see that only the constant functions make the both sides of (7.6.6) zeros. Hence,
matrix Dy always has exactly three positive eigenvalues which depend on (vq, vq, vs, v4, v5) contin-
uously. Since S is a bounded closed set in R, the smallest nonzero eigenvalue of Dy is bounded
away from zero by a positive number independent of h. Due to the same reason, the largest eigen-
value of Cy; is bounded above by a constant independent of h. Therefore, there exists a constant
(5 independent of h such that

lg — Ingli,o < Calgh,u, (7.6.8)

for any U € Ey(U).
Combining (7.6.7) and (7.6.8), we obtain (7.6.5) and (7.6.6). Therefore, we have proved
(7.6.2).

Using similar arguments, we can show that ¥, > Cv,. O

Theorem 7.6.2. Let Qp, be a quadrilateral partition of a polygonal domain Q and Ty, be the corre-
sponding irregular crisscross mesh for Qy. If Vi X Py is stable, then Vi, x My, is stable. Moreover,
if (wp,pr) € Vi X My, and (up, pr) € Vi, X Py solve (2.4.2), then

lu — upll1,0 < Chi|lullz.q,

_ 7.6.9
Ip— pillose < Chillwllzo + ol ) (709
Here the constant C' is independent of h, pr, = pn/N}, and we assume that (u,p) € H2(Q) x HY(Q)
solves (2.1.1).

Proof. Stability of V}, x My, is a direct consequence of Theorem 7.6.1. It is known that M%,(Q},) C
My, this implies that the approximation properties of My are as good as those of Pj,. Therefore,
(7.6.9) follows. O
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