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Introduction

Biological and biomedical materials, such as muscles, soft tissue, blood vessels
and artificial devices replacing the above, deform under changes in environment
and applied traction. The stresses induced by such deformations may be of crucial
importance as fractures or device failure can result from high stress concentra-
tions. Given appropriate constitutive models, such scenarios lead themselves to
mathematical study. As the resulting systems of equations can be highly complex,
numerical approximations must typically be invoked. However, with efficient and
accurate numerical methods available, simulations could, for instance, aid biomed-
ical device design.

Most biological materials respond in a manner that is not purely elastic, in the
sense that the stresses are not linearly related to the deformation only. Within some
regimes, the viscoelastic response; that is, the gradual deformation and relaxation
of stresses may be important. Moreover, when implanting artificial or synthetic
devices in the human body, the moisture of the environment can affect the properties
of the device. In both cases, the effect can be interpreted as a combination of solid-
like and fluid-like behavior.

Methods for the approximation of deformations in elastic solids have been ex-
tensively studied for at least the last century. Accordingly and in pace with the
computational capacities, advanced numerical methods have been developed over
the last four decades. This thesis focuses on mixed finite element methods approx-
imating the stress to a higher accuracy than the deformation. This viewpoint is
motivated by the notion that the stress is the quantity of primary physical inter-
est. Although carefully studied for the linear elasticity equations, such methods
are not in widespread use for materials that display both solid and fluid features.
However, this perspective constitutes the foundation for this thesis. In particular,
extensions, of mixed finite element methods for elasticity, to viscoelasticity and gels
are investigated within the linear regime. Moreover, the relative scarcity of these
sophisticated numerical methods can also be attributed to their computational and
implementational complexity. As a part of this investigation, the development of
complexity-reducing computational tools has been an additional point of interest.

The purpose of this introduction is multifarious. First, it aims to motivate
the problems and strategies considered. Second, the papers constituting this thesis
involve a range of physical, numerical and computational notions and therefore,
some background material is included. Also, it intends to underline the shared
features of the papers and how these are connected. Thirdly, in order to indicate a
bound for the scope of the thesis, limitations and some possibilities for extensions
are discussed.
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The introduction, preceding the collection of papers, is organized in the follow-
ing manner. It consists of five sections. The first three sections provide background
material for the physical, numerical and computational methods, respectively. More
precisely, the continuum modeling of elasticity, viscoelasticity, and gels is reviewed
in Section 1. Next, Section 2 treats the general theory behind mixed finite element
methods, with particular emphasis on mixed finite element methods for linear elas-
ticity. Section 3 discusses criteria, set by the combination of the mathematical
models and numerical methods, on the computational framework, and focuses on
a framework fulfilling these criteria at least to some extent. The fourth section
provides a terse summary of the interpaper continuity and also a summary of each
paper. Finally, a set of limitations and possible extensions are pointed at in Sec-
tion 5.

Notation. Unless otherwise specified, the following notation is used.

V,M, S,K: The linear spaces of vectors, matrices, symmetric matrices and
skew-symmetric matrices, respectively.

Ω: An open, bounded domain in Rd, d = 1, 2, 3 with boundary ∂Ω.
Th: An admissible simplicial tessellation.
Pcr(Th), Pr(Th): Continuous piecewise polynomials and discontinuous piece-

wise polynomials of order r respectively defined relative to Th.
X(Ω;Y ): The space of fields Ω �→ Y with regularity properties specified by

X . Example: L2(Ω;K) is the space of square integrable skew-symmetric
matrix fields on Ω.

X0(Ω;Y ): The subspace of those x ∈ X(Ω;Y ) such that x|∂Ω0
= 0 for

∂Ω0 ⊆ ∂Ω.
|| · ||X : The norm defined on the normed space X .
〈·, ·〉X : The inner product defined on the inner product space X . Will also

be abused to denote duality pairing when appropriate.
∇, div, curl: . The gradient, the divergence, taken row-wise if applied to a

matrix field, and the curl operators in two or three dimensions. Interpreted
in the weak sense when appropriate.

tr, det: The trace of a matrix tr; i.e, the sum of the diagonal components,
and the determinant of a matrix det. AT is the transpose of a matrix A.
Finally, cof A = (detA)A−T .

In general, norms and inner products without subscripts default to those on L2(Ω).
(An exception is in Paper II, where || · || defaults to the Frobenius norm on Rn.)

1. When solids and fluids mix

Nature offers a wide spectrum of behavior originating from solid and fluid inter-
actions. Consequently, there also exists a multitude of theories and mathematical
models describing solid and fluid interplay within different regimes. For the class
of viscoelastic materials, the standard models rely on the display of both solid
and fluid characteristics on the macroscopic scale. For solid-fluid mixtures, such
as polymer-solvent mixtures constituting gels, the modeling can be based on the
interplay between the solid deformation and the microscopic effects of the mixing
between the solid and fluid. The partial differential equations describing the equi-
librium behavior of both classes are intrinsically framed by the general setting of
continuum mechanics.

Papers I and II of this thesis rely on partial differential equations for viscoelas-
ticity and gels respectively. The material of this section is aimed at providing a
mechanical foundation for these equations. The basic concepts and assumptions
involved in the modeling of solids are reviewed in Section 1.1. The constitutive
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relations for viscoelasticity and gels, and hence the specialization of the general
theory to those classes of materials, follow in Sections 1.2 and 1.3 respectively.

1.1. From continuum mechanics to linear elasticity. This section is in
essence a brief tour, departing from the general continuum mechanics setting and
arriving at the equations of linear elasticity. The selection of material is biased by
relevance with regard to Papers I and II, and also by a numerical viewpoint rather
than a mechanical one. An excellent introduction to classical continuum mechanics,
including proofs of the claims presented in this section, can be found in Gurtin [32].
Also, Ciarlet [19] is an authoritative reference for the more mathematical aspects
of elasticity.

Let Ω ⊂ Rd, d = 1, 2, 3 be an open and bounded domain occupied by some body
or medium with boundary ∂Ω. The issue of interest is the governing equations for
the deformation of this body: Φ : Ω → Φ(Ω), under applied boundary or body
forces. Denoting coordinates in Ω and Φ(Ω) by X and x respectively, Cauchy’s
theorem states that under the balance laws of linear and angular momentum, there
exists a symmetric tensor field over Φ(Ω), the Cauchy stress tensor T . In the static
equilibrium with a given body force g̃, T satisfies

(1.1) T (x) · nx = sn(x), − divx T (x) = g̃(x), x ∈ Φ(Ω),

where sn denotes the stress acting on the plane defined by the normals n and the
divergence is defined row-wise. Denote the gradient of deformation by F = ∇X Φ.
A transform of (1.1) onto the undeformed domain Ω, gives the existence of another
stress tensor, the first Piola-Kirchhoff stress tensor S over Ω such that

(1.2) S(X) · nX = sn(X), − divX S(X) = g(X), X ∈ Ω.

The Cauchy and first Piola-Kirchhoff stress tensors are related by the identity

(1.3) T (x) = (detF )−1S(X)FT , x = Φ(X).

From (1.3) and the symmetry of the Cauchy stress tensor, it is easy to see that S
will not be symmetric in general, but must satisfy the relation

(1.4) SFT = FST ,
for any admissible deformation gradient F . However, the stress tensor associated
with the identity deformation must be symmetric.

The existence and above properties of these stress tensors are independent of
the type of material occupying Ω. Hence, in order to characterize the material
response of the body, the governing equations (1.1) or (1.2) are complemented by
constitutive equations relating the stress tensor to the deformation. For ideally
elastic materials, the stress tensor is assumed to be directly related to the deforma-
tion gradient. In the viscous case, the stress tensor is typically linked to the rate of
deformation gradient. The remainder of this subsection focuses on elastic constitu-
tive relationships, and in particular on hyperelastic materials. All equations in the
following are with reference to the undeformed domain Ω, unless explicitly stated,
and so the reference to the coordinates is omitted.

By definition, a material is hyperelastic if the first Piola-Kirchhoff stress tensor
S is the Fréchet derivative with respect to the deformation gradient of a real-valued
function ω, labelled the strain-energy density:

(1.5) S = S(F ) =
∂ω

∂F
(F ).

The elastic energy E associated with a deformation, can then be expressed as

(1.6) E(F ) =

∫
Ω

ω(F ) dX.
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The standard assumption that the response of the material should be independent
of a change of observer or frame, implies that ω must depend on the gradient of
deformation through the right Cauchy-Green strain tensor CG = FTF (or the left
FFT ). Moreover, if the material is isotropic; that is, if the response of the material
is invariant under all rotations of the body, the energy density must be a function
of the invariants of CG:

ω(F ) = ω̃(CG) = ω̂(ι1(CG), ι2(CG), ι3(CG))

where ι1(C) = tr(C), ι2(C) = tr cof(C) and ι3(C) = detC. The additional as-
sumption, if invoked, that the material is incompressible; i.e. that the density of
the material must be constant under deformations, yields the local constraint:

(1.7) detF = 1.

A variety of strain energy densities proposed for compressible and incompressible
elastic materials can be sampled from [19, 36]. One example is the compressible
neo-Hookean model:

(1.8) ω(F ) = μ

(
1

2
tr(FFT − I) +

1

β
((detF )−β − 1)

)
,

where μ and β are material parameters and I denotes the identity matrix.
Formally, the equilibrium deformation, and hence the associated equilibrium

position of the body, corresponds to a minimizer of the elastic energy (1.6), aug-
mented by conservative body forces g and boundary forces s, in some space of
admissible vector fields. In the pioneering works of Ball [8], existence of minimiz-
ers was established under the assumption of polyconvexity of ω and under certain
growth conditions. A proper presentation is beyond the scope of this introduc-
tory chapter. However, in addition to the aforementioned [19], an introduction to
the topic is provided in [24, Section 8]. Assuming sufficient smoothness of ω and
the minimizing deformation Φ, the stationary points of the energy will satisfy the
Euler-Lagrange equations:

(1.9) S = S(∇Φ), − divS = g,

usually complemented by boundary conditions of the form Φ|∂Ω0
= Φ0, S·n|∂Ω1

= s
where ∂Ω0 ∪ ∂Ω1 = ∂Ω and ∂Ω0 ∩ ∂Ω1 = ∅.

In the case of small deformation gradients, the linearization of (1.9) is pertinent
and useful. The linearized equations can be obtained by letting F = F0 +∇u and
taking the affine terms of the Taylor expansion of S(F ) about F0:

(1.10) σ = S(F0) +DS(F0)∇u, − div σ = g.

Here, DS(F0) is the Gateaux derivative of S at F0. For hyperelastic materials,
the energy density is usually easily scaled to ensure that the reference state is
stress-free and linearizations about this state are therefore natural. The elasticity
operator C = DS(I) identifies a fourth order stiffness tensor. In general, if the
linearization state F0 is stress-free, it can be shown that the stiffness tensor is
completely determined by its restriction to symmetric tensors. Consequently, the
standard linear elasticity equations take the following form.

σ = Cε(u),(1.11a)

− divσ = g,(1.11b)

where ε is the linearized strain, or more precisely, the symmetrized gradient oper-
ator: 2ε(u) = ∇u + ∇uT . Observe that (1.11) can also be viewed as the Euler-
Lagrange equations of the following constrained minimization problem

(1.12) min
σ

1

2

∫
Ω

C−1σ · σ dX subject to div σ = g.
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For hyperelastic materials with sufficient smoothness of the energy density, the
tensor C will be symmetric. Hence, the assumption that the linearization state
is stress-free, gives that the linearized stress tensor σ is symmetric. For isotropic
materials, it can further be shown that the stiffness tensor C reduces to the form:

(1.13) Cε = 2με+ λ tr εI,

for scalar coefficients μ and λ, known as the Lamé parameters. In particular,
standard calculations give that the linearization of the compressible neo-Hookean
strain density (1.8) reduces to (1.13) with λ = βμ.

If the linearization state is not stress-free, then the linearized first Piola-Kirchhoff
stress tensor σ will not in general be symmetric. This aspect will be important in
Paper II. However, the linearization of the constraint (1.4) about the reference
state, gives a skew symmetry constraint:

(1.14) σ − σT = S(I)(∇ u−∇uT ).

In other words, the skew symmetric part of the stress tensor is proportional to the
skew symmetric part of the displacement gradient.

In the subsequent two subsections, the behavior characteristics of viscoelas-
tic materials and gels, respectively, are discussed and constitutive equations for
these materials presented. Both types of constitutive equations can be viewed as
extensions of the linear elasticity equations above.

1.2. Viscoelasticity. Viscoelastic materials are named by their ability to dis-
play both viscous and elastic behavior. Whenever a body is subjected to an external
force or deformation, the body responds by rearrangements of its microscopic con-
stituents. In idealized viscous fluids, the time required for the rearrangement is
assumed to be infinitely small. For ideally elastic solids, the time is assumed to be
infinitely long. However, in any physical material, these rearrangements must take
some finite time. Hence, most real-life materials demonstrate some viscoelastic
properties. These effects may be particularly important when considering syn-
thetic polymers or biological materials such as muscles or soft tissue. For a more
thorough introduction to viscoelastic behavior and modeling than the material pre-
sented here, the monographs [23, 25, 28, 60] provide ample material. The history
of viscoelastic modeling dates back to the last half of the nineteenth century and
the works of Boltzmann, Kelvin, Maxwell and Weichert [22].

The two main characteristics of viscoelastic behavior are the stress response
of the material under an induced strain: relaxation, and the strain response of the
material under an induced stress: creep or retardation. Different materials can thus
be identified by their relaxation and creep response. To make ideas more concrete,
consider a body of some material and the situation where a force is applied to a part
of the boundary, kept constant for some time, and then removed. Ideal, linear elastic
solids will react with an instantaneous deformation, and only that deformation as
long as the force is kept constant, since the strain is directly proportional to the
stress cf. (1.11a). On the other hand, the stress of viscous fluids is assumed to
be proportional to the rate of change of the strain. Such materials will thus not
deform instantaneously, but rather with a constant velocity. Furthermore, after the
force is removed, elastic solids will return to their initial state, while viscous fluids
tend to display no such behavior. Viscoelastic materials exhibit a combination of
both behavioral patterns. For instance, a viscoelastic material might react with a
certain instantaneous deformation, and then continue flowing up to a deformation
limit. After removal of the force, the material might again react with a certain
instantaneous deformation and after some, possibly infinite, time return to the
initial configuration. A material model describing this type of behavior is that
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(a) (b)

Figure 1. Simulation of creep and relaxation behavior for the
Standard linear solid. (a) Deformation versus time under a con-
stant boundary force from tmin to tmax. (b) Stress versus time
under a constant boundary velocity between tmin and tmax. For
more details, see Paper I.

(a) (b) (c) (d)

Figure 2. Schematic representation of viscoelastic models: (a)
Maxwell, (b) Kelvin-Voigt, (c) Standard linear solid, and (d) Gen-
eralized Maxwell.

of the Standard linear solid model and the creep and relaxation patterns of this
material are illustrated in Figure 1.

The viscoelastic response may be interpreted as a sum of elastic and viscous
factors. This interpretation motivates the viscoelastic modeling approach based on
combinations of elastic and viscous influences, schematically represented as springs
and dashpots in some special arrangement. The corresponding constitutive equa-
tions may be derived from the compatibility and equilibrium conditions of the
physical systems represented. Generalizations to two or three dimensions can be
performed by considering deviatoric and volumetric contributions separately. The
simplest manner in which to schematically construct a viscoelastic model is to
combine one elastic and one viscous component either in series or in parallel. The
resulting models are known as the Maxwell and the Kelvin-Voigt model or ele-
ment respectively. These models are simplicial, but can viewed as building-blocks
for more realistic models. The schematical representations of the Kelvin-Voigt,
Maxwell, Standard linear solid (or Zener), and generalized Maxwell models are
illustrated in Figure 2.

The generalized Maxwell models form an established class of viscoelasticity
models. These models, and variations in the form of the generalized Zener models,

6



introduction

have been a common starting-point for several discretization approaches [9, 39,
52]. Further, one could argue that any viscoelastic model derived from a linear
spring-dashpot combination, can be reduced to an equivalent series-parallel model.
Such reductions are discussed in detail by Tschoegl [60, p. 135 ff.]. In particular,
the standard series-parallel models can be transformed equivalently into this class.
Viscoelastic models of this form were therefore considered as an appropriate and
sufficiently general framework in Paper I.

Schematically speaking, the models considered are those that can be repre-
sented in terms of n parallel branches, each branch either consisting of a spring, a
dashpot or a simple Maxwell element. Accordingly, a separate stress component σj
may be associated with each branch j. The total stress follows as the sum of the
stress components. The constitutive equations of these models can be expressed by
the following system of differential equations in space and time for the total stress
σ = σ(X, t) and the displacement u = u(X, t), or the velocity v = u̇.

(1.15) AjE σ̇j +AjV σj = ε(u̇) j = 1, . . . , n, σ =
∑

σj ,

where n is given by the number of parallel branches and the superimposed dot
denotes the time derivative. These are evolution equations for the components of
the total stress. Either of the fourth order compliance tensors AjE and AjV may
vanish for some js. Typically, A = C−1, where C is a stiffness tensor such as
in (1.11a). The compliance tensors may be spatially dependent, but is in this
setting assumed to be independent of time. For instance, the constitutive equation
for the Maxwell model reads

AE σ̇ +AV σ = ε(u̇),

and the Standard linear solid model can take the form

(1.16) A1
E σ̇1 +A1

V σ1 = ε(u̇), A2
E σ̇2 = ε(u̇), σ = σ1 + σ2.

It is easy to see that (1.16) can be expressed in the equivalent, more traditional
form

AE σ̇ +AV σ = CV ε̇(u̇) + CEε(u)

cf. [20, p. 52].
In addition to being a unifying form for generalized viscoelasticity models, (1.15)

is particularly suitable for discretizations approximating the stress and the displace-
ment separately. For the linear elasticity equations, such discretizations typically
rely on an inversion of the stress-strain relationship (1.11a). The strain-stress struc-
ture of (1.15) gives the desired property. In fact, the specific formulation (1.15)
was designed for that purpose in Paper I. A more thorough discussion of these
constitutive equations is included in that work. The formulation can also be com-
pared to the popular elastic-viscous stress splitting formulations for discretizations
of viscoelastic flow [7].

Before continuing, note that there exists a plethora of different, but equiva-
lent, formulations of constitutive equations for linear viscoelasticity. More tradi-
tional discretization approaches often seek to eliminate the stress using (1.11b),
and approximate the displacement only. For such strategies, other forms of the
constitutive equations, such as stress-strain formulations involving multiple strain
components [39], may be more appropriate. Moreover, the classical, more general
interpretation and modeling of viscoelastic materials as materials with memory
should be mentioned. This approach gives rise to integro-differential constitutive
equations for the stress in terms of the displacements:

(1.17) σ(t) = C(t)ε(u(0)) +

∫ t

0

C(t− s) ε(u̇(s)) ds.
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Here, the time dependent tensor C is known as the relaxation tensor. An assump-
tion of fading memory mandates that C is monotonically decreasing in time. The
constitutive equation (1.17) can be derived starting from the linear elasticity equa-
tion (1.11a), allowing the stiffness tensor C to depend on time, and taking the limit
of an incremental strain history. A thorough derivation and discussion of these
models can be found in [25, 55]. Note that the integro-differential form also allows
for strain-stress formulations:

(1.18) ε(t) = A(t)σ(0) +

∫ t

0

A(t− s) σ̇(s) ds.

Both (1.17) and (1.18) take the form of Volterra equations and have been exten-
sively studied from that viewpoint, see for instance the aforementioned [25] for a
mathematical treatise. The equivalence between the differential models, and the in-
tegral models with exponentially decaying relaxation tensors, was carefully studied
in [33].

1.3. Gels. By definition, gels consist of a cross-linked polymer network, or a
polymer entanglement, immersed in some solvent. The two components of the gel
coexist by balancing each other. The polymer network confines the liquid solvent,
while the solvent ensures that the polymer does not collapse into a dry state. Thus,
gels typically have the appearance of solids, but may in fact possess radically dif-
ferent properties. A change of shape and volume by expansion or contraction is
referred to as a swelling of the gel and some gels can swell by several orders of
magnitude. Note that these volume changes are typically reversible.

The applications of gels are wide-ranging, and a diverse survey is presented
in [49, Vol. 3]. Human soft tissue is a prime example of a natural gel, while the
term synthetic gels usually refers to gels constructured from synthetic polymers. A
common example of the latter is the soft contact lens, which stays flexible while in a
moist environment, but becomes brittle upon drying. Other biomedical inventions
such as artificial bone replacements rely on synthetic polymer implants. Such may
swell upon insertion in the human body with unfavorable consequences. Further,
implantable drug-delivery devices take advantage of the stimulus-responsive mech-
anisms of gels. The latter usage has coined the label smart materials, often used
for polyelectrolyte gels because of their response to changes in pH, temperature,
applied voltage or solvent concentration.

Now, what are these stimulus-responsive mechanisms of gels? The term re-
lates to the effect of gel phase transitions. By phases of a gel, one refers to the
configuration of the polymer network. A gel phase transition is a finite change
in volume, a change from a swollen to a collapsed state or vice versa, in response
to an infinitesimal change in the environment. Note that the change of volume is
abrupt only in the sense that tiny environmental changes gives finite changes in
volume: the actual deformation is usually gradual. The first experimental evidence
of phase transitions in gels was reported in experiments on hydrolyzed, cross-linked
polyacrylamide by Tanaka [58] in the late 1970s.

Tanaka identified and labelled three forces acting within the gel: Rubber elas-
ticity, polymer-polymer affinity, and hydrogen ion pressure; and referred to the sum
of these as the osmotic pressure. The balance of these forces, of different directions,
ranges and magnitude, gives the possibility of phase transitions. The first force,
the rubber elasticity, represents the elasticity of the polymer strands in the coupled
network. The second, the polymer-polymer affinity, results from the interaction
of the polymer and the solvent. Depending on the specific material properties of
these, the polymer strands may or may not prefer interaction with the solvent.
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Thus, the energy of the network may be reduced by a realignment due to more fa-
vorable conditions in the polymer-solvent configuration. This force is a short-range
force and is therefore more prominent as the volume of the gel decreases. The third
relates to the ionization of the network. In the process of hydrolysis, the polymer
strands become negatively charged by expelling hydrogen ions into the solvent. On
the whole, the gel can be neutral, but the distribution of the charges yields an
additional pressure due to electric attraction or repulsion.

These behavior characteristics must be accounted for in the modeling of gels.
In particular, the elasticity of the polymer network, the mixing of the polymer
and solvent and the convection and diffusion of the solvent and ions within the
network are important features. In the previous subsection, we saw that although
there is a multitude of different formulations for linear viscoelasticity, all mentioned
can be viewed as more or less within the same equivalence class. Moreover, the
basic formulations have been agreed upon for at least the last five decades. In
the modeling of gels, this is not the case. In particular, the dynamical modeling
of gels is still an active topic [17, 21, 37]. However, for the static equilibrium
modeling of non-ionic gels, a common starting-point seem to be the works of Flory
and Rehner [29, 30], and Huggins [38] on polymer solution theory from the 1940s.
Such equilibrium equations are the focus of Paper II and some of the very basic
concepts are therefore introduced here. More details can be found in Paper II, and
the references therein.

The equilibrium modeling of gels as a mixture of polymer and solvent takes the
viewpoint of both constituents occupying the same domain in space and time. A
scalar field measuring the volume of component i per unit volume of the gel, denoted
the volume fraction φi, is associated with each component i. The volume fraction
φi can also be interpreted as the probability of finding constituent i at a given point
in space at a given time. The assumption that there will be no other constituents
than polymer and solvent and no voids in the domain, gives the constraint

(1.19) φ1(x) + φ2(x) = 1 x ∈ Φ(Ω).

Note that the modeling of biphasic soft tissue can also be based on these notions,
but the Flory-Huggins theory is usually not invoked for such materials.

The previous discussion on the forces acting on a non-ionic gel motivates the
modeling of its free energy (cf. (1.6)) as the sum of two contributions: an elastic
energy associated with the polymer network and a mixing energy accounting for
the interaction of polymer and solvent. Assuming that the polymer is hyperelastic
and that its energy density depends on the volume fraction of the polymer and the
gradient of deformation F , one obtains an elastic energy density of the form:

(1.20) ωE = ωE(φ1 ◦ Φ(X), F (X)).

The theory of Flory and Huggins gives the following form of the mixing energy den-
sity due to interaction between polymer and solvent in the deformed configuration
Φ(Ω):

(1.21) ωFH(φ1, φ2) = aφ1 lnφ1 + bφ2 lnφ2 + cφ1φ2

where a, b and c are material parameters accounting for the relative difference in
size of polymer and solvent molecules, the cross-linking of the polymer, temperature
and the propensity of the polymer and solvent to mix. In particular, c regulates
the mixing affinity of polymer and solvent. The parameter values also control the
convexity of ωFH . If c is sufficient large in comparison with a and b, ωFH is non-
convex. In total, the combined gel energy E reads

(1.22) E(F, φ1, φ2) =
∫
Ω

ωE dX +

∫
Φ(Ω)

ωFH dx
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Paper II is mainly targeted at the case in which (1.22) is polyconvex. However,
note that if the Flory-Huggins energy density (1.21) is non-convex, depending on
the relative magnitude of the elastic and mixing parameters, the total energy den-
sity (1.22) may fail to be polyconvex. In this case, there may be multiple minimizers
of the total energy, corresponding to different phases of the gel. This mathematical
phenomenon can be interpreted in relation with the physical phase transitions of
gels.

The assumption that the polymer is incompressible and that the reference do-
main Ω is occupied by a volume fraction φI of polymer, offers a closure of the
system of equations. In particular, the balance of mass of polymer yields the local
constraint

(1.23) φ1(x) detF (X) = φI(X) X ∈ Ω, x = Φ(X).

Note that the polymer incompressibility assumption for the mixture does not pre-
clude deformations with change of volume, in contrast to the purely elastic case
cf. (1.7). This observation enforces the notion that the gel mixture must be viewed
as fundamentally distinct from a mere juxtapositioning of the constituents. The
problem of minimizing (1.22) subject to (1.19) and (1.23) provides the governing
and constitutive equations of Paper II.

2. When finite elements mix

As noted in connection with (1.12), the linear elasticity equations (1.11) can
also be viewed as the Euler-Lagrange equations for the minimization of an energy
subject to a constraint. The equations define a saddle point problem, where the
displacement u can be interpreted as a Lagrange multiplier associated with the di-
vergence constraint (1.11b). Other, physically fundamental, saddle point problems
include the equations of Darcy or Stokes flow and Maxwell’s equations of electro-
magnetism. Such saddle point problems provide the motivation for and foundations
of mixed finite element methods and their analysis.

The quest for stable, mixed discretizations of saddle point problems, has been
a main underlying current for the research on mixed finite element methods over
the last three decades. Alternative discretization methods include stabilization
techniques or variational crimes in the form of non-conforming methods. However,
conforming mixed finite element methods can be viewed as especially attractive,
in the sense that properties of the continuous equations are often respected and
mimicked in the discretization.

Just as the previous section was a partial introduction to the physics and mod-
eling of elasticity, viscoelasticity and gels, this section surveys the theory of mixed
finite element methods with special attention to discretizations of the linear elastic-
ity equations. The material is classical and mainly based on [11, 16, 26]. However,
special emphasis is placed on aspects of the theory being particularly relevant for
Papers I, II and IV: the extended saddle point problem, the idea of reduced stabil-
ity, weak formulations for linear elasticity, and finally, an overview of stable finite
element spaces for the weakly symmetric formulation of linear elasticity.

2.1. Abstract saddle point problems and their discretization. Let Σ
and V be Hilbert spaces with dual spaces Σ∗ and V ∗, and let a and b be continuous
bilinear forms on Σ×Σ and Σ×V , respectively. The extended abstract saddle point
problem takes the form: Given (f, g) ∈ Σ∗ × V ∗, find (σ, u) ∈ Σ× V satisfying

a(σ, τ) + b(τ, u) = 〈f, τ〉 ∀ τ ∈ Σ,

b(σ, v) = 〈g, v〉 ∀ v ∈ V.
(2.1)
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For simplicity, assume that a is symmetric. The term saddle-point refers to the
fact that, if a is positive definite, (σ, u) is indeed a saddle point of the Lagrangian
defined by a and b. Anticipating events, define the kernel Z by:

(2.2) Z = {τ ∈ Σ | b(τ, v) = 0 ∀ v ∈ V }.
The now classical mixed finite element theory, based on the works of Brezzi

in the early 1970s [13], relates the existence and stability of solutions to (2.1) to
the Brezzi conditions. The two Brezzi conditions prescribe the existence of positive
constants α, β satisfying:

0 < α ≤ inf
0�=σ∈Z

sup
0�=τ∈Z

a(σ, τ)

||σ||Σ||τ ||Σ
,(2.3a)

0 < β ≤ inf
0�=v∈V

sup
0�=τ∈Σ

b(τ, v)

||τ ||Σ||v||V
.(2.3b)

(These conditions are also known in the literature as the Babuska-Brezzi condi-
tions, Ladyshenskaya-Babuska-Brezzi conditions or simply the inf-sup conditions.)
If (2.3) is satisfied, Brezzi’s splitting theorem states that there exist σ ∈ Σ and
u ∈ V satisfying (2.1) and a positive constant c, depending on α, β and the conti-
nuity of a, b, such that

(2.4) ||σ||Σ + ||u||V ≤ c (||f ||+ ||g||) .
The constants α and β will here be referred to as the continuous Brezzi coercivity
and Brezzi inf-sup constant, respectively. Informally speaking, condition (2.3a)
ensures that the minimization problem minσ

1
2a(σ, σ)− 〈f, σ〉 has a stable solution

when viewed over the constrained subspace Z. The second condition (2.3b) gives
the existence of the Lagrange multiplier u associated with the constraint defining Z.

Next, we consider a conforming discretization of the equations defined by (2.1)
over Ω. To this end, let Σh ⊂ Σ and Vh ⊂ V be finite dimensional spaces defined
relative to a tessellation Th of Ω. The discretization of (2.1) by Σh×Vh reads: Find
(σh, vh) ∈ Σh × Vh satisfying

a(σh, τ) + b(τ, uh) = 〈f, τ〉 ∀ τ ∈ Σh,

b(σh, v) = 〈g, v〉 ∀ v ∈ Vh.
(2.5)

The discrete analogies of (2.3) reads

0 ≤ αh = inf
0�=σ∈Zh

sup
0�=τ∈Zh

a(σ, τ)

||σ||Σ||τ ||Σ
,(2.6a)

0 ≤ βh = inf
0�=v∈Vh

sup
0�=τ∈Σh

b(τ, v)

||τ ||Σ||v||V
,(2.6b)

where the discrete kernel is defined as

Zh = {τ ∈ Σh | b(τ, v) = 0 ∀ v ∈ Vh}.
We shall refer to the values αh and βh as the Brezzi coercivity and Brezzi inf-sup
value respectively.

The existence and uniqueness of the discrete solutions (σh, uh) to (2.5) follow
from the existence of lower bounds for αh and βh [13]. This result motivates the
notion of stability for a mixed discretization. A family of discretizations {Σh×Vh}h,
parameterized by h, is labelled stable in the Σ×V norm if αh and βh defined by (2.6)
are bounded from below by positive constants uniformly in h. Furthermore, if
{Σh×Vh}h is stable, the quasi-optimal approximation properties of (σh, uh) follow.
Namely, there exists a positive constant c such that

(2.7) ||σ − σh||Σ + ||u− uh||V ≤ c

(
inf
τ∈Σh

||σ − τ ||Σ + inf
v∈Vh

||u− v||V
)
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The error estimate (2.7) can be extensively refined under additional assumptions,
but for any details on this matter, the reader is referred to for instance [16].

Before proceeding, recall the two canonical examples of partial differential equa-
tions for flow problems. First, the mixed formulation of the Laplace equation, also
known as the Darcy flow equations, with pure Dirichlet boundary conditions for
the scalar variable, reads

〈σ, τ〉 + 〈div τ, u〉 = 0 ∀ τ ∈ H(div,Ω;V),

〈div σ, v〉 = 〈g, v〉 ∀ v ∈ L2(Ω).
(2.8)

Here, H(div,Ω;V) is the space of square integrable vector fields on Ω with square
integrable divergence. In order to satisfy the conditions (2.6), finite element dis-
cretizations {Σh×Vh}h of these equations usually rely on the use of element spaces
Σh that are H(div) conforming, but not H1 conforming. In particular, the classical
spaces consist of piecewise polynomial vector fields with continuous normal compo-
nents [14, 47, 48, 51]. The use of piecewise polynomials of one order lower with no
continuity restrictions for Vh ensures that div Σh ⊆ Vh, and (2.6a) follows naturally.
The use of H1-conforming elements for the space Σh, that is, continuous piecewise
vector polynomials: Σh = Pck(Th), is explored experimentally in Paper IV.

Second, the Stokes equations, with pure Dirichlet boundary conditions for the
vector variable, can be phrased as

〈ε(σ), ε(τ)〉 + 〈div τ, u〉 = 〈f, τ〉 ∀ τ ∈ H1
0 (Ω;V),

〈div σ, v〉 = 0 ∀ v ∈ L2(Ω), 〈v, 1〉 = 0.
(2.9)

Recall that ε denotes the symmetrized gradient. For discretizations {Σh × Vh}h
of (2.9), condition (2.6a) will always be fulfilled by Korn’s inequality. The con-
dition (2.6b) is however non-trivial. Standard stable discretizations include the
(generalized) Taylor-Hood elements Pcr × Pcr−1 or the Pcr × Pr−2 elements for
r = 2, 3, . . . [15, 59]. A natural question becomes whether there are any con-
forming discretizations {Σh×Vh}h, where Σh and Vh are associated with the same
simplicial tessellation, that are stable for both (2.8) and (2.9). A partial answer is
that none is known to exist for polynomial degrees lower than 3. For more details
on this matter, see for instance Paper IV and references therein.

The abstract saddle point setting defined by (2.1) can be extended to the
perturbed form:

a(σ, τ) + b(τ, u) = 〈f, τ〉 ∀ τ ∈ Σ,

b(σ, v)− δ〈u, v〉V = 〈g, v〉 ∀ v ∈ V,
(2.10)

where δ is some real parameter. As we shall see in the following, this case arises
in connection with nearly incompressible elasticity and nearly symmetric elasticity.
For a careful analysis of this and the more general case where the term with coeffi-
cient δ is replaced by some general continuous bilinear form on V × V , confer [16].
In short, one can show that if δ is positive, or non-positive, but appropriately small;
or sufficiently negative, well-posedness of (2.1) ensures well-posedness of (2.10) and
hence an estimate of the form (2.4).

Further, assuming that δ is such that the continuous problem is well-posed,
the question of stability, and hence approximation properties, of a discretization
of (2.10) reduces to that of (2.1).

2.2. Reduced stability and Brezzi eigenvalue problems. There are fam-
ilies of discretizations {Σh × Vh}h that are not stable in the sense defined above,
but have a reduced stability property. In particular, for the Stokes equations (2.9),
such elements have been studied exhaustively [10, 50]. Paper IV is devoted to such
considerations for the mixed Laplacian (2.8).
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In order to motivate such a notion consider a saddle point of the form (2.1) as
before, and given discrete spaces Σh and Vh. The space of spurious modes Nh ⊂ Vh
is defined as follows:

Nh = {v ∈ Vh | b(τ, v) = 0 ∀ τ ∈ Σh}.
It is easy to see that if Nh contains non-zero elements, any solution (σh, uh) to (2.5)
could not be unique and βh = 0. However, one might hope that the discretization
could be stabilized by removal of these spurious modes. Such a filtering could be
performed by considering the reduced space formed by the orthogonal complement
of Nh in Vh: N

⊥
h . By construction, the operator induced by b, mapping Σh �→ N⊥

h ,
is an isomorphism. Note that the discrete kernel Zh remains the same even if Vh is
replaced by N⊥

h . These considerations lead to the definition of the reduced Brezzi

inf-sup value β̃h:

(2.11) β̃h = inf
0�=v∈N⊥

h

sup
0�=τ∈Σh

b(τ, v)

||τ ||Σ||v||V
.

and the definition of reduced stable: A family of discretizations {Σh × Vh}h is

labelled reduced stable if αh and β̃h defined by (2.6a) and (2.11) respectively are
bounded from below, uniformly in h, by a positive constant.

The Brezzi coercivity and inf-sup constants, and the reduced Brezzi inf-sup
constant can be related to a series of eigenvalue problems. First, it can be shown
that the Brezzi coercivity constant αh = |λmin|, where λmin is the smallest, in mod-
ulus, eigenvalue associated with a eigenfunction component σ �= 0 of the following
generalized eigenvalue problem:

(2.12) a(σ, τ) + b(σ, v) + b(τ, u) = λ〈σ, τ〉Σ ∀ (τ, v) ∈ Σh × Vh.

Second, similar derivations show that the Brezzi inf-sup constant βh =
√
λmin,

where λmin is the smallest eigenvalue of the eigenvalue problem below:

(2.13) 〈σ, τ〉Σ + b(σ, v) + b(τ, u) = −λ〈u, v〉V ∀ (τ, v) ∈ Σh × Vh.

Finally, it can also be seen that the reduced Brezzi inf-sup constant β̃h will be the
square-root of the smallest non-zero eigenvalue of (2.13). The details behind these
derivations can be found in [50] or Paper IV and Malkus presented a thorough
study of the eigenspectrum associated with the Stokes equations [46].

The eigenvalue problems (2.12) and (2.13) can be used to numerically test the
stability of a given set of element spaces on a given family of mesh partitions for
a given saddle point problem. This idea is explored for a class of finite element
spaces on some regular triangulations for the mixed Laplacian in Paper IV. Such
a study is greatly enhanced by a flexible and efficient computational finite element
framework. One such will be described in connection with Paper III in Section 3.

2.3. Weak formulations for linear elasticity. It is now time to turn from
the general saddle point framework to the equations of linear elasticity (1.11). The
mixed stress-displacement-rotation formulation of linear elasticity, also known as
the weak symmetry approach, is a foundation for Papers I and II and provides
some underlying motivation for Papers III and IV. In this section, a brief survey
of different (mixed) weak formulations and associated stable mixed finite element
discretizations are presented. The material considered here can also be compiled
from the references [11, 16, 26], with the exception of the last nearly symmetric
extension. The reader is referred to those for more details and proofs of the claims
made in the subsequent paragraphs.

Let Ω be an open, bounded domain in Rd, d = 1, 2, 3 with Lipschitz boundary
∂Ω. Further, assume that the boundary splits into two disjoint domains ∂Ω0 and
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∂Ω1. Recall the equations of linear elasticity given in (1.11), repeated here for easy
reference

(2.14) σ = Cε(u), − div σ = g.

The equations above are considered over the domain Ω, g is a body force acting
on the domain and C is a symmetric fourth-order material tensor. The system of
equations is completed by the boundary conditions

u|∂Ω0
= u0, σ · n|∂Ω1

= s0

where n denotes a unit normal. The conditions correspond to a confinement of the
body and an applied stress respectively at the indicated parts of the boundary. For
notational simplicity, assume that both boundary conditions are homogenous, that
is u0 = 0 and s0 = 0. The quantities of physical interest are the displacement u,
and, often more importantly, the stress σ · n, or equivalently the stress tensor σ.

Denote by H1
0 (Ω;V) those H1 vector fields on Ω that are zero on ∂Ω0 in the

trace sense. Eliminating σ and taking variations over H1
0 (Ω;V), integrating by

parts, and using the symmetry of C, gives a weak pure displacement formulation:
Find u ∈ H1

0 (Ω;V) satisfying

〈Cε(u), ε(v)〉 = 〈g, v〉 ∀ v ∈ H1
0 (Ω;V).

There exists a unique solution u under the assumption that g ∈ H1
0 (Ω;V)∗, that

C is sufficiently smooth and non-degenerate, and Ω is sufficiently regular [24].
Moreover, these equations can easily be solved by a standard finite element method
utilizing H1conforming finite element spaces. However, for instance when C is
isotropic; i.e. as defined by (1.13) with Lamé parameters μ and λ, the bilinear
form defining this equation will not be uniformly bounded in λ. In addition, if
∂Ω0 is very small, Korn’s inequality can only provide an unsatisfactory estimate.
The consequence of either of these situations is that the resulting discrete linear
systems are ill-conditioned and loss of convergence may be encountered. As the case
λ → ∞ corresponds to the very relevant case of nearly incompressible materials,
this is indeed a relevant concern.

A common remedy for the isotropic, nearly incompressible case can be found
by seeking inspiration from the equations of incompressible flow, and in particular
the Stokes equations. By introducing the auxiliary variable p = λdiv u, one obtains
a displacement-pressure formulation: Find u ∈ H1

0 (Ω;V) and p ∈ L2(Ω) satisfying

〈2με(u), ε(v)〉+ 〈div v, p〉 = 〈g, v〉 ∀ v ∈ H1
0 (Ω;V),

〈div u, q〉 − 〈 1
λ
p, q〉 = 0 ∀ q ∈ L2(Ω).

(2.15)

The limiting case λ = ∞ is well-defined and well-posed as the resulting system of
equations are indeed the Stokes equations (2.9), with an additional inconsequential
factor 2μ. For finite λ, (2.15) take the form of an extended saddle point problem as
discussed in the previous section. A stability estimate of the form (2.4) is ensured
if 2μ+ dλ > 0. In correspondence with the previous remarks on the discretizations
of extended saddle point problems, stable mixed finite element discretizations of
the Stokes equations are appropriate also for (2.15).

However, neither the pure displacement nor the displacement-pressure formu-
lation are entirely satisfactory in the sense that no direct stress approximation is
offered. Furthermore, (2.15) is restricted to isotropic materials. The interest in di-
rect stress approximations motives the alternative stress-displacement formulation:
Find σ ∈ H0(div,Ω; S) and u ∈ L2(Ω;V) satisfying

〈Aσ, τ〉 + 〈div τ, u〉 = 0 ∀ τ ∈ H0(div,Ω; S),

〈div σ, v〉 = −〈g, v〉 ∀ v ∈ L2(Ω;V),
(2.16)
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where A = C−1 and H0(div,Ω; S) denotes the space of symmetric tensor fields with
square integrable row-wise divergence that have zero normal component on ∂Ω1.
Recall from Section 1.1 that the linearized stress tensor must be symmetric if the
residual stress vanishes. The derivation of this formulation relies on the invertibility
of the elastic stress-strain relationship and the symmetry of the stress tensor. In
the isotropic case, the action of A reduces to

(2.17) Aσ =
1

2μ

(
σ − λ

2μ+ dλ
(tr σ)I

)
.

It can be shown that the Brezzi inf-sup condition (2.3b) applied to (2.16) is satisfied.
Further, the homogenous, isotropic A of (2.17) is positive-definite if μ > 0 and
2μ+dλ > 0. Since divH(div,Ω; S) ⊂ L2(Ω), the Brezzi coercivity condition (2.3a),
holds wheneverA is positive definite on L2(Ω; S). Although the positive-definiteness
of A fails on L2(Ω; S) as λ→∞, a uniform coercivity estimate can be provided by
an additional assumption. Letting τ = I in (2.16), we see that for homogenous,
finite λ and μ,

∫
Ω
σ must vanish. Under the additional requirement

∫
Ω
σ = 0, a

uniform coercivity estimate for A can be established. Since A is also uniformly
continuous in λ, this gives the desired robustness in the limit λ→∞.

Alas, in the course of four decades of research, the construction of stable pairs
of finite element spaces for the discretization of (2.16) has proven to be nontrivial.
In the last decade, stable finite element spaces, associated with a single tessellation
family, have been constructed in both two and three dimensions [1, 3, 6]. However,
the number of degrees of freedom is daunting, especially in three dimensions. The
lowest order stress tensor element of Arnold et al. has 156 degrees of freedom on
a single tetrahedron [3]. In addition, these families are not affine interpolation
equivalent, making efficient assembly algorithms more challenging.

These considerations motivate yet another strategy, the weakly symmetric or
stress-displacement-rotation approach, originating from Fraijs de Veubeke [31]. In-
stead of requiring that the stress tensor is an element of a space of symmetric-valued
tensor fields, the symmetry can be enforced through a weak symmetry constraint,
admitting an additional Lagrange multiplier. More precisely, this formulation reads:
Find σ ∈ H0(div,Ω;M), u ∈ L2(Ω;V) and γ ∈ L2(Ω;K) satisfying

〈Aσ, τ〉 + 〈div τ, u〉+ 〈τ, γ〉 = 0 ∀ τ ∈ H0(div,Ω;M),

〈div σ, v〉 + 〈σ, η〉 = −〈g, v〉 ∀ v ∈ L2(Ω;V), η ∈ L2(Ω;K).
(2.18)

Formally, the Lagrange multiplier γ corresponds to the skew component of the
gradient of u:

(2.19) γ =
1

2

(
∇u−∇uT

)
.

On the continuous level, (2.16) and (2.18) are equivalent. Furthermore, the Brezzi
conditions hold with the same considerations on A for the two formulations. How-
ever, on the discrete level, (2.18) offers a relaxation of the symmetry constraint.
Consequently, lower order element spaces may be considered for the stress tensor.

Finally, recall (1.14). The constraint 〈σ, η〉 = 0 for all η ∈ L2(Ω;K) in (2.18)
corresponds to the case where S(I) = 0. If the residual stress does not vanish; that
is, if S(I) �= 0, the linearized stress tensor is not symmetric. This case is relevant
in Paper II. However, the symmetry constraint can be replaced by (1.14) and thus
the weakly symmetric formulation can be generalized to the nearly symmetric case.
Denoting r = S(I), this observation yields the following formulation: Find σ ∈
H0(div,Ω;M), u ∈ L2(Ω;V) and γ ∈ L2(Ω;K) satisfying

〈Arσ, τ〉 + 〈div τ, u〉+ 〈krτ, γ〉 = 〈Arr, τ〉 ∀ τ ∈ H0(div,Ω;M),

〈div σ, v〉 + 〈σ, η〉 − 〈rγ, η〉 = −〈g, v〉 ∀ v ∈ L2(Ω;V), η ∈ L2(Ω;K),
(2.20)
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where Ar and kr are now functions of r such that kr = 1 and Ar = A for r = 0.
Thus, if r = 0, (2.20) reduces to (2.18). We see that if r �= 0, (2.20) corresponds to
an extended saddle point problem of the form (2.10). Thus, under certain assump-
tions on the parameter r, the stability of a discretization of (2.20) can be deduced
from its properties for (2.18). Sufficient assumptions on r in the isotropic case are
carefully studied in Paper II.

2.4. Weakly symmetric finite element discretizations. The construction
of stable, conforming mixed finite element spaces for the strongly symmetric stress-
displacement formulation (2.16) was by no means trivial [6]. For the weakly sym-
metric formulation (2.18), matters have been more pleasing. There exists many
families of stable triples of element spaces Σh ⊂ H(div,Ω;M), Vh ⊂ L2(Ω;V) and
Qh ⊂ L2(Ω;K) including, in chronological order, those of Amara and Thomas [2],
Arnold, Brezzi and Douglas [4], Stenberg [57], Farhloul and Fortin [27] and exten-
sions of the latter by Arnold, Falk and Winther [5].

Stable triples of element spaces Σh × Vh × Qh for (2.18) have a close relation
to stable pairs of element spaces for the mixed Laplacian and the Stokes equations.
The following theorem is due to Farhloul and Fortin [27], and the recent survey
of Falk [26] elaborates upon the connection in the finite element exterior calculus
setting.

Theorem 2.1 (Farhloul and Fortin, 1997). A triple of conforming element
spaces Σh × Vh ×Qh satisfies the Brezzi conditions (2.6) for the weakly symmetric
linear elasticity equations (2.18) if both

(1) Σh × Vh satisfy the Brezzi conditions for the mixed Laplacian (2.8).
(2) There exists a space Wh such that curlWh = Σh and Wh ×Qh satisfy the

Brezzi conditions for the Stokes equations (2.9).

Recall that discretizations Σh × Vh of the mixed Laplacian (2.8) usually rely
on the H(div)-conforming spaces of Raviart-Thomas (Σh,k = RTk) [51] or Brezzi,
Douglas and Marini (Σh,k = BDMk) [14], or their extensions to three dimensions by
Nédélec [47, 48]. Either of these elements have the convenient property that there
exists integers k0, k1, such that for any admissible triangulation Th of a contractible
domain Ω

(2.21) curlPck1(Th) = Σh,k div Σh,k = Pk0(Th).
Further, since stable conforming element pairs for the Stokes equations typically rely
on the use of the continuous piecewise polynomials Pck, it follows from Theorem 2.1
and (2.21) that triples of element spaces for the weakly symmetric formulation
can be easily be constructed. The families of element spaces BDMk × Pk−1 × Pk,
described in Arnold et al. [5], can be viewed as the combination of the BDMk×Pk−1
elements for the mixed Laplacian and the Pck+1 × Pk−1 elements for the Stokes
equations. Furthermore, Farhloul and Fortin [27], and later Falk [26], suggested
the use of the BDMk × Pk−1 × Pck elements. The latter triple correspond to the
former elements for the mixed Laplacian, but the generalized Taylor-Hood elements
for Stokes. With this connection in mind, the numerical investigations of Paper IV
relating to the mixed Laplacian can also be related to a gentle probing of the
possible use of continuous stress approximations for the elasticity equations. Both
of the families of elements described above are employed in Papers I and II.

3. When compiling mixed forms

This section aims at giving motivation and a framework for the compilation of
mixed variational forms in general, and for Paper III in particular. The terminol-
ogy of this section should be standard according to the computational aspects of
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finite element methods, and is based on the monograph [44] and the recent survey
paper [45].

The discretizations of the weakly symmetric stress-displacement-rotation for-
mulation for linear elasticity, described in the previous section, constitute the com-
putational basis for Papers I and II. Specifically, for Ω ⊂ Rd, the stress tensor is
approximated by d rows of BDMk elements. Moreover, in Paper I, the proposed
strategy for dealing with generalized viscoelasticity models (1.15), involves the in-
troduction of multiple stress tensors. It is evident that the proposed equations
potentially generate large element matrices. Consequently, efficient assembly of
such element matrices is required. On the other hand, the wide range of possible
weak formulations corresponding to different models, and different temporal dis-
cretizations, calls for a flexible problem specification framework. Additionally, ease
with regard to arbitrary mixed finite element combinations is desirable in order to
compare different, possibly nontrivial spatial discretizations, such as for a compari-
son of different families of elasticity elements, and for the experiments of Paper IV.
The combination of the desired flexibility and efficiency is attainable by a compiled
approach to multilinear form representation and element tensor code generation.

Roughly speaking, the currently available finite element software can be clas-
sified as belonging to one of two categories: Those aimed at (only) solving a given
physical boundary value problem, and those aimed at providing a framework for
new weak formulations and discretizations. For the first category, the underlying
discretization is usually not readily available to the user. However, for the sec-
ond category, the transparency of the discretization is indeed essential. Clearly,
the latter category is the more relevant for the development and investigation of
new discretizations. However, even for such software projects, implementations
of H(div) conforming finite element spaces of arbitrary degree are not entirely
common. Moreover, the above criteria with regard to flexibility, generality and
efficiency are rarely satisfied. In order to give some credibility to this claim, con-
sider the following examples. FreeFEM [34] provides form flexibility through a
high-level language interface, but only the lowest-order Raviart-Thomas elements.
FEMSTER [18] does provide arbitrary degree Nédélec elements, but does not pro-
vide automated form evaluation or element tensor assembly. NGSolve [53] provides
arbitrary order H(div) elements along with automated assembly, but only for a pre-
defined set of bilinear forms by default.

The software project FEniCS, and in particular its components FIAT (FI-
nite element Automated Tabulator), FFC (FEniCS Form Compiler) and DOLFIN
(Dynamic Object-oriented Library for FINite element computation), is explicitly
aimed at the automation of computational mathematical modeling, emphasizing
generality, efficiency and simplicity [35]. Both FIAT and FFC are Python mod-
ules. DOLFIN is a c++ library with a python interface PyDOLFIN. Currently,
the following functionality is provided by the components listed above. FIAT con-
structs and tabulates finite element bases of arbitrary order on a reference simplex
T , including basis functions for the spaces Pck,Pk, RTk, BDMk for k = 1, 2, . . .
in (one,) two and three dimensions [40, 41]. FFC provides a high-level interface
language for the specification of (mixed) finite element spaces and multilinear forms
[42, 43]. This form compiler makes extensive use of operator overloading, in order
to enable language constructions close to the mathematical notation. Arbitrary
mixed finite element spaces can be represented as combinations of the base spaces
listed above. The multilinear forms are restricted to those that can be represented
as integrals over the algebra of basis functions and their derivatives. After an initial
analysis stage, FFC generates low-level c++ code for the evaluation of the element
basis functions, the degrees of freedom and the element tensor(s). The generated
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k = 2

S = FiniteElement("BDM", "triangle", k)

V = VectorElement("DG", "triangle", k-1)

Q = FiniteElement("DG", "triangle", k-1)

AFW = MixedElement([S, S, V, Q])

k = 2

S = FiniteElement("BDM", "triangle", k)

V = VectorElement("DG", "triangle", k-1)

Q = FiniteElement("CG", "triangle", k)

FFF = MixedElement([S, S, V, Q])

Table 1. FFC code for the definition of stress-displacement-
rotation finite element spaces on triangular meshes. Right: The
BDM2

k × P2
k−1 × Pk−1 elements. Left: The BDM2

k × P2
k−1 × Pck

elements. Note that the only difference is in the definition of the
space for the rotation Q both in the code and in the element defi-
nitions.

code can be used directly, or for instance through the problem-solving environment
DOLFIN, which provides automated element tensor assembly on simplicial meshes.
Also, in combination with PyDOLFIN, FFC provides just-in-time compilation. A
more detailed review of the FEniCS project and a comparison with some other
finite element frameworks is presented in [45].

The discretization language provided by FFC indeed enables simple and flexible
implementations of the discretizations for linear elasticity considered in the previous
section, in part due to the considerations of Paper III. In particular, note that
the class of multilinear forms covered is quite extensive, and that any of the weak
formulations considered in Section 2.3 are easily represented. Further, the generated
code is based on the following observation: Under certain assumptions on the finite
element spaces and the weak formulations, the element tensor may be represented
as a tensor contraction of a reference tensor A and a geometry tensor GT . The
reference tensor A only relies on the differential formulation, and the reference finite
element space, and may thus be precomputed. This observation was formalized by
Logg and Kirby forH1 conforming finite element spaces in connection with the afore
class of multilinear forms [43]. It was also demonstrated in that work that such
as tensor representation could provide a substantial speed-up when compared to
standard quadrature-based strategies, thus offering the desired efficiency. Paper III
can be viewed as a direct extension of the afore H1 conforming case to the H(div)
and H(curl)-conforming cases. The implementation of the ideas of that paper can
thus be viewed as greatly enhancing the computations performed in Papers I and
II.

For illustration purposes, Table 1 presents FFC code defining the weakly sym-
metric element spaces of Arnold, Falk and Winter (AFW) and Farhloul and Fortin
(and Falk) (FFF). One can observe that the same number (three) of key-strokes
are required to switch between the two mathematical element definitions, and to
switch between the associated element implementations, thus providing some justi-
fication of the claimed flexibility and simplicity of implementation. More examples
are presented in Paper III.

4. Overview of papers

The previous three sections aimed at providing motivation and background
material for the four papers constituting the bulk of this thesis. Along the way,
some natural relations between the papers have been deliberately pointed out. In
this section, some interpaper continuity notions are more concisely summarized
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and a brief overview of each paper is presented. The first three papers have been
submitted for publication in international journals.

Both Papers I and II investigate extensions, originating from more involved
physical phenomena, of weak formulations for the linear elasticity equations. Al-
though the physical settings of the two papers are separate, each of the two sce-
narios take both solid and fluid aspects into account within the linear regime. As
has been indicated, both extensions apply to simulation of deformation and stress
in biological tissue and biomedical devices. In Paper I, dealing with viscoelasticity
in the quasi-static equilibrium, the extension involves temporal effects. The static
equilibrium of gel mixtures is considered in Paper II. Here, the natural extension
involves the nearly symmetric case as a result of residual mixing stress.

The first two papers also rely on the same mixed finite element method; namely,
the discrete stress-displacement-rotation formulation. Paper III presents an efficient
and user-friendly framework for, in particular, the implementation of such mixed
finite element discretizations. The strategy presented in the third paper can thus
be viewed as an underlying base for the experiments performed in the first two
papers.

The fourth paper, investigating the reduced stability of H1 conforming mixed
finite element discretizations of the Laplacian, can be viewed separately from the
first three. However, taking the close connection demonstrated by Theorem 2.1
into account, this study can also be considered as a gentle probing into the re-
duced stability of H1-conforming mixed finite element discretization of the weakly
symmetric formulation.

Paper I: Mixed finite element methods for linear viscoelasticity using
weak symmetry. This paper aims at providing a unified discretization framework,
approximating the stress directly, for generalized viscoelastic models in two and
three dimensions. To the author’s knowledge, this is the first work seeking higher
order stress approximations on simplicial meshes for the generalized models. The
work of Bécache et al. is based on a similar notion, but only stress discretizations
on regular grids consisting of squares or cubes, of the generalized Zener model is
considered in [9].

The starting-point for the study is the strain-stress formulation of generalized
viscoelasticity models in differential form (1.15). We derive a weak formulation of
these equations, approximating the separate stress contributions, the displacement
and the rotation. However, in the analysis, main emphasis is placed on the two
fundamental models: the Maxwell and the Kelvin-Voigt model. The purpose of
this is two-fold. First, we are able to present the strategy with greater clarity.
Second, the two fundamental models can be perceived as two limiting cases, and
an analysis of these gives the key features also for the generalized models.

In the Maxwell case, it can easily be seen that the formulation for linear elastic-
ity extends trivially. For the Kelvin-Voigt equations, the introduction of separate
elastic and viscous stresses enables the stress-displacement-rotation formulation.
In order to demonstrate that the continuous solutions are stable with respect to
initial data and body forces, we present stability estimates in the style of (2.4).
We continue by considering a spatial mixed finite element discretization of the two
models. In particular, for the Kelvin-Voigt equations, both the elastic and the
viscous stress tensor are approximated. The analysis mimics the continuous case,
and a priori error estimates for the spatial discretization are established. In other
words, the approximation errors of the discretization are bounded by the interpo-
lation errors in a suitable temporal sense. The resulting semi-discrete systems of
equations are differential-algebraic equations, and can thus be discretized by stan-
dard methods for such equations. Finally, due to the relative scarcity of numerical
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experiments for stress-displacement-rotation elements in the literature, we report
on the convergence rates for both elastic and viscoelastic models and higher order
elements.

The analysis and experiments indeed show that the stress approximation meth-
ods developed for linear elasticity are also suitable and natural for linear viscoelas-
ticity. No instabilities with regard to material parameters are observed, even in the
nearly incompressible or the stiff cases, in accordance with the theoretical predic-
tions.

Paper II: Mixed finite element methods for gels with biomedical
applications. In the medical procedure of high tibial osteotomy, a piece is removed
from the human shinbone and replaced by a polymer wedge in order to realign the
knee. The polymer may absorb moisture from of the human body and swell, in
accordance with the discussion of gels in Section 1.3. The stress induced by the
swelling of the device is of critical interest. A simulation of such stresses can be
viewed as a partial aim of this paper. This view-point also strongly motivates
numerical approaches providing higher order stress approximation. Although the
gel equilibrium problem can be seen as closely related to an elasticity problem,
the use of mixed finite element methods approximating the stress directly have not
been previously observed in the literature.

In this paper, a set of equilibrium constitutive equations of a gel are derived,
accounting for both swelling and phase transitions. The modeling and derivation
is based on the theory of mixtures in combination with nonlinear elasticity. This
approach gives the equilibrium equations as the critical equations of an energy min-
imization problem. Under the polyconvexity assumption, existence of minimizers
are established.

The second half of the paper is concerned with small strain, and small environ-
mental perturbation, linearizations of these constitutive equations. The linearized
equations take the form of isotropic linear elasticity equations, where the Lamé
parameters additionally depend on the polymer volume fraction of the reference
domain and polymer-solvent mixing parameters. We consider two standard dis-
cretization strategies for these equations, namely the displacement-pressure and
the stress-displacement-rotation formulations. Recall that under the assumption of
sufficient smoothness of the data and the domain, both discretizations, using the
Taylor-Hood elements and the FFF elements, respectively, give second order stress
tensor approximations for the lowest order case.

A key point in this study is the observation that the reference polymer fraction
may induce a residual stress due to polymer-solvent mixing, and hence a non-
symmetric linearized stress tensor, cf. (1.14). In order to apply direct stress ap-
proximations in this case, the weakly symmetric stress-displacement-rotation for-
mulation is extended to the nearly symmetric case. The stability of this formulation
as a function of the residual stress is studied analytically and numerically. Finally,
numerical experiments relating to the above bone implant produce are presented.

In conclusion, the extension of the weakly symmetric formulation to the nearly
symmetric case provides a successful method for studying residual stresses induced
by polymer-solvent mixing. Although one might argue that direct stress approx-
imations is unnecessary, since the displacement-pressure approach gives the same
stress accuracy, we claim otherwise. For applications with internal boundaries, only
H(div) stress tensor approximations enable direct measurements of the stresses at
these boundaries, since the stresses; that is, the normal components of the stress
tensor, are only well-defined over edges/faces in this case.
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Paper III: Efficient assembly of H(div) and H(curl) conforming finite
elements. As has been emphasized in the previous sections, the space H(div)
plays an important role for mixed formulations of elliptic equations in general, and
the linear elasticity equations in particular. In order to lower the threshold for
the use of such sophistical numerical methods, user-friendly, flexible and efficient
implementations of H(div) conforming finite element spaces are required. However,
such implementations are relatively scarce. For those projects actually providing
H(div) conforming elements in some sense, the implementation often does not
provide the desired ease of use. The implementation of the ideas in this paper,
in connection with the FEniCS project, claim to satisfy the previous criteria well.

In this paper, we consider some of the aspects required for automated form com-
pilation of H(div) and H(curl) variational formulations and finite element spaces.
In particular, the role of the contravariant and covariant Piola mappings is em-
phasized. A representation theorem for variational forms with Piola mapped basis
functions ensures that the class of multilinear forms over H1 conforming finite ele-
ment spaces can be extended to H(div) and H(curl) discretizations. We also take
advantage of a common numbering scheme for mesh entities, in order to avoid
sign issues with regard to the orientation of edges or faces. A set of numerical
experiments dealing with standard H(div) and H(curl) convergence and eigenvalue
problems in two and three dimensions are presented in order to verify and demon-
strate the implementation.

The resulting FFC implementation renders use of H(div) and H(curl) vari-
ational formulations no more complicated than standard H1 formulations. Also
note that, the element spaces provided can also easily be used in combination
with discontinuous Galerkin methods. The implementation is designed to lower the
threshold for the use of, and experiments with, this type of variational formulations,
and has been thoroughly used in connection with Papers I and II.

Paper IV: Stability of Lagrange finite elements for the mixed Lapla-
cian.

One cannot survive without the Laplacian. In mathematics, that
is. In life, that depends on your definition of the Laplacian.

J. L. Vazquez, 2007

The reduced stability of mixed finite element discretizations for the Stokes
equations have been extensively studied [10, 50]. However, the corresponding
notion for the mixed Laplacian has been less so. This note aims at investigating
the reduced stability of H1-conforming finite element spaces for the latter equations
in two dimensions.

The first half of this note summarizes eigenvalue problems associated with the
Brezzi (and Babuska) constants for abstract saddle point problems in general. In
the case of the mixed Laplacian, a connection between the Brezzi infsup constant
and the smallest eigenvalue of the Laplacian is pointed out on the continuous and
discrete level.

The second part is concerned with the stability or reduced stability of a class
of mixed finite element pairs for the mixed Laplacian. For pairs where weakly
divergence free vector fields are indeed divergence free, and thus where the Brezzi
coercivity condition holds automatically, the reduced stability of discretizations for
the Stokes equations imply reduced stability for the mixed Laplacian. However, the
converse is not true. Hence, there may be a wider class of tessellations for which
the discretization is reduced stable for the mixed Laplacian. We present numerical
evidence of this for the Pck(V) × Pk−1 family in two dimensions. For k ≥ 4, this
family is known to be stable for both Stokes and the mixed Laplacian on a fairly

21



generic class of triangulations [54]. The cases k = 1, 2, 3 are considered in this note.
For all triangulation families tested, the family was observed to be at least reduced
stable for k = 2, 3. For k = 1, the situation is more diverse. Stability appears to
hold for some meshes, but not for others.

In its current form, this note presents mainly numerical evidence for the above
claims. However, the observed reduced stability of Pck(V) × Pk−1(V) for k = 2, 3
indicates that a theoretical study may be interesting. This work is therefore planned
to be supplemented by theoretical investigations.

5. Concluding remarks

In conclusion, mixed finite element methods offering direct stress approxima-
tions at a reasonable cost have been investigated for and applied to physical phe-
nomena such as viscoelasticity and gels within the linear regime. The implemen-
tation of such methods has been greatly enhanced by an efficient framework for
operating with variational forms over H(div). The previous sections aimed at pro-
viding background material and a greater perspective at the research constituting
this thesis. This section concludes by some remarks on limitations and possible
extensions of the work presented.

First, it should be remarked that the analysis of Paper I is carried out for the
two basic models and not the generalized model. However, we have seen that the
generalized viscoelastic equations in the strain-stress form afford the same weak
formulations. Moreover, numerical experiments for the standard linear solid model
have been performed. Accordingly, it is the author’s belief that the analysis can be
extended to the generalized case, using the same techniques and thus not offering
extensive new insight. More interestingly perhaps is the temporal discretization of
differential-algebraic equations resulting from time-dependent saddle point prob-
lems. In Paper I, we rely on the stability of implicit time-stepping schemes for
differential-algebraic equations. However, the effect of the spatial discretization, in
particular the mesh size, on the stability of these temporal schemes is not entirely
clear. Note that no instabilities or loss of convergence is observed in the numerical
experiments. Furthermore, it can be shown that for instance a backward Euler
scheme in combination with the afore described spatial discretization is stable and
convergent for both the Maxwell and Kelvin-Voigt equations. However, this matter
may be worth investigating for more general schemes.

Next, with reference to the discussion on the modeling of gels and for instance
the dynamical models of gels presented in [17], it must be noted that the equilibrium
equations of gels only consider a small piece of the dynamical behavior. We have
seen that the stress approximation methods are highly germane for the biomedical
equilibrium problems aimed at in Paper II. However, for the dynamical systems
involving solvent flow and swelling interfaces, displacement or rather velocity-based
methods may be more appropriate.

The numerical strategy and simulations in Paper II consider the linear regime.
For phase transition of gels, where the volume change can be 10–100 times, the
linearity assumption is hopeful at best. Therefore, numerical methods for the non-
linear gel boundary value problem should also be investigated. However, even by
close scrutiny of the general form of the linearized equations in Paper II, it is not
evident how to formulate either a deformation-pressure or a stress-displacement
formulation. The linear stress-displacement formulation rely on the invertibility
of the stress-strain relationship, but this inversion is less feasible for the general
form. The linearized equations may not be a good starting-point though. Braess
and Ming presented a displacement-pressure formulation for a neo-Hookean model
by starting at a discretization of the elastic energy [12]. Moreover, Steinmann et
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al. successfully derived a stress-displacement-rotation method for large deformation
under the assumption of an energy principle for the stress [56]. This seems to be a
more fruitful approach, but has not been within the scope of this thesis.

Finite deformation within viscoelastic behavior is also an interesting topic.
Viscoelastic flow problems constitute an active research field, but is focused at
other aspects than purely the finite deformation regime. On the other hand, large
deformations in viscoelastic solids have been less studied numerically. Note that
for nonlinear viscoelastic materials, the established models typically take integral
form for which the integral kernel is not separable in space and time. This makes
matters much more complicated.

Some more readily feasible and planned extensions are sketched in Paper III.
At the time of writing, FFC handles finite element spaces that can be generated
by either the affine or the Piola mappings of basis functions on a reference ele-
ment. More fun element spaces, such as the H2 conforming Argyris element, the
Arnold-Winther strongly symmetric elasticity element and the Mardal-Tai-Winther
Darcy-Stokes elements, are not available. However, one may possibly consider map-
pings that depend more extensively on the geometry. The challenge becomes the
automated generation of efficient code for such.

Lastly, Paper IV is presently at large a set of numerical observations with
interesting implications. If the numerical observations hold true in a more general
sense, they could indeed be of practical importance. A theoretical investigation
may therefore also be in order.
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Paper I

MIXED FINITE ELEMENT METHODS FOR LINEAR
VISCOELASTICITY USING WEAK SYMMETRY

marie e. rognes and ragnar winther

Abstract. Small deformations of a viscoelastic body are considered through
the linear Maxwell and Kelvin-Voigt models in the quasi-static equilibrium.
A robust mixed finite element method, enforcing the symmetry of the stress
tensor weakly, is proposed for these equations on simplicial tessellations in
two and three dimensions. A priori error estimates are derived and numerical
experiments presented. The approach can be applied to general models for
linear viscoelasticity and thus offers a unified framework.

1. Introduction

Viscoelastic materials are characterized by their ability to display both viscous
and elastic behaviour. Most real-life solids demonstrate some viscoelastic proper-
ties, and these effects may be particularly important when considering synthetic
polymers or biological materials such as muscles or soft tissue. In this paper, we
revisit the fundamental models for small deformation viscoelasticity in the quasi-
static equilibrium, with the purpose of deriving a robust and flexible mixed finite
element method. In particular, we consider the analysis of, and numerics for, two
basic models and provide arguments for how the setup extends to generalized vis-
coelastic models.

The established theory for linear elasticity provides a sound starting point for
the study of linear viscoelasticity. In this work, we shall rely on known results on the
stability and robustness of mixed finite element methods for linear elasticity. The
classical approach to linear isotropic elasticity consists of solving Navier’s equations
for the displacement u over a domain Ω:

(1.1) div (2με(u) + λdiv uI) = g in Ω,

where g is some prescribed body force. The Lamé coefficients μ and λ relate to the
stiffness and compressibility of the material respectively. These equations can be
solved numerically by for instance a standard finite element method giving optimal
order error estimates for u using continuous piecewise vector polynomials.
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However, the quantity of primary physical interest is often the stress and pure
displacement methods will yield stress approximations of lower order accuracy. Fur-
thermore, it is well-known that standard discretizations based on the formulation
of (1.1) is not robust with regard to the material parameters. The effect is that
the method performs poorly in the incompressible and nearly incompressible case,
i.e. as λ→∞. Alternative approaches are therefore eligible. A mixed formulation
involving the stress tensor in addition to the displacement address the afore issues.
For this approach, the main obstacle has been the construction of stable pairs of fi-
nite element spaces. Non-composite families of such elements have been established
only in the recent years, cf. [1, 4, 8] for simplicial tesselations in two and three
dimensions. However, the complexity of these may seem prohibitive: The lowest
order element space on a simplex has 21 degrees of freedom in two dimensions and
156 in three dimensions.

Partially as a remedy when suitable finite element spaces were not known, and
partially in order to avoid the cost of such elements, a further extension has been
considered. Instead of enforcing the symmetry of the stress through the element
space directly, it can be enforced weakly by an additional equation and an associated
Lagrange multiplier. This idea dates back to the 1970’s, originally suggested by
Fraijs de Veubeke [24], and various stable element spaces have been presented in
later works, including [3, 5, 6, 20, 21, 39]. This approach enables the use of
simpler finite element spaces for the stresses. Hence, since the multiplier associated
with the symmetry constraint can be approximated in a relatively small element
space, the total complexity can be reduced. We shall pursue this approach in this
exposition.

For linear viscoelasticity, where the stress-strain relationship may be non-local,
stress-displacement methods are especially advantageous. For instance, for the
linear viscoelastic Maxwell model, the quasi-static equations can take the form:

A1σ̇(t) +A0σ(t) = ε(u̇(t))

div σ(t) = g(t),

where the superimposed dot gives the time-derivative and A0, A1 are fourth-order
material tensors. These equations are suited for a mixed stress-displacement method.
In contrast, an elimination of the stress relies on an inversion of the stress-strain
relation. The resulting formulation would involve an integro-differential equation
for the displacements. The equivalence of the differential and the integral models
was discussed by Gurtin and Sternberg in [25].

Most of the numerical work on linear viscoelasticity in the late 1980’s and 1990’s
focused on such hereditary integral formulations, reflecting the inherent interpreta-
tion of viscoelastic materials as materials with memory. These terms refer to the
property that the stress does not depend on the strain, or its rate of change, point-
wise in time, but rather on the history of the strain evolution. For the linear theory,
this idea, along with a Boltzmann superposition principle, gives integro-differential
models in the form of Volterra integrals. The stress can then be expressed as an
integral operator of the strain, typically of the form

σ(t) = C(t) ε(u(0)) +

∫ t

0

C(t− s) ε(u̇(s)) ds

where C is a time-dependent fourth order material tensor. For the afore Maxwell
model in one dimension, C takes the form C(t) = A−11 e−A1t/A0 . The stress can then
again be eliminated to yield a pure displacement integral formulation. Numerical
methods for such problems thus involve approximations in time and space of u.

We shall not pursue these formulations further in this paper, and therefore
simply remark that it has been extensively studied, including from a numerical
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point of view. A detailed mathematical review for the integral formulations can
be found in the monograph [19]. Shaw et al. presented a series of papers, [35,
36, 37, 38], including a priori and a posteriori error estimates, using continuous
and discontinuous Galerkin finite elements for the spatial and time discretization
respectively. Discontinuous Galerkin methods for the spatial discretization have
been studied by Rivière et al. [33]. The integral kernel can be extended to fractional
order time derivatives and treated by similar techniques [2].

The differential form of the constitutive equations has regained some of its pop-
ularity over the last decade. These formulations typically require the introduction
of internal variables corresponding to internal state variables, such as elastic or
viscous contributions to the stress or strain. The generalized Maxwell models have
been a common starting point for most of the studies. In [34], Rivière et al. follow
Johnson and Tessler [29] with regard to introducing internal stresses in L2(Ω;Rd×d)
while seeking the displacement in H1(Ω;Rd), d = 2, 3. Idesman et al. [28] consider
a converse approach introducing internal variables for the strains, in contrast to
the stresses.

To our knowledge, there is only a handful of papers concerned with the anal-
ysis of mixed finite element methods for this type of formulations. Le Tallec and
Ravachol considered a mixed finite element method inspired by the Stokes equa-
tions for the Maxwell model and its non-linear extensions including extensions for
viscoelastic flow [30]. The more recent paper [10], thoroughly treats the dynamic
(generalized) Zener model by approximating the symmetric internal stresses in ad-
dition to the displacements. However, the element spaces of the latter require
regular cubical partitions and thus lay restrictions on the computational domain.
No study for general simplicial partitions in two and three dimensions, flexibly
treating both basic and generalized models in their differential form, seems to have
been undertaken.

1.1. Main results. The main aim of this paper is to propose a robust and
accurate mixed finite element method for generalized linear viscoelasticity models
on general domains in two and three dimensions.

To this end, we revisit the basic Kelvin-Voigt and Maxwell models in their
differential form. We consider a mixed finite element method for the spatial dis-
cretization inspired by the family of elements introduced by Arnold et al. [6]. For
each polynomial degree k, these consist of piecewise discontinuous polynomials of
order k − 1 for the displacements and the auxiliary Lagrange multiplier, and the
BDMk [14, 31] elements, that is, polynomials of order k with inter-element nor-
mal continuity, for the stresses. We prove stability of the continuous solutions and
their spatially discrete counterparts with regard to data along with deriving error
estimates of the order O(hk) for sufficiently smooth solutions. Furthermore, we
indicate how the discretization and analysis can be extended to generalized linear
viscoelasticity models of the form:

AjV σj +AjE σ̇j = ε(u̇) j = 0, . . . , n− 1,

div

n−1∑
j=0

σj = g.

In all, this intends to show how mixed finite elements for linear elasticity are avail-
able and suitable also for linear viscoelasticity.

1.2. Outline. The organization of this paper is as follows: We provide a brief
derivation of, along with equations for, the viscoelastic models of interest in Section
2. In Section 3, we carefully derive weak formulations of the models, explain the
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relation to the linear elasticity equations and provide energy estimates demonstrat-
ing stability in time. Section 4 deals with the spatial discretization and a priori
error estimates for this discretization, while the fully discrete system is consid-
ered in Section 5. For the time-discretization, we mainly refer to previous results
on implicit differentiation schemes for differential-algebraic equations. Finally, we
provide numerical examples in Section 6 before we conclude in Section 7.

2. Viscoelastic models

In this section, we shall describe a class of models representing viscoelastic
behaviour. The material presented here is classical in many senses. However, this
review is targeted at providing motivation for the choice of viewpoint in Section 3.
In particular, we shall focus on the derivation of stress-strain relations and point
out less classical, alternative formulations. The reader can find a more thorough
discussion of viscoelastic behaviour and modelling among the references [17, 19,
23, 32, 40].

The classical continuummodelling of solids is based on balance of linear momen-
tum in combination with an appropriate constitutive equation. For the quasi-static
state, the former equation takes the form

(2.1) div σ = g,

where σ is the stress tensor and g a body force. The material characteristics of
the solid must be reflected in a constitutive model relating the stress tensor to
the strain (and possibly rates of strain) of the body. In the small-deformation
framework, the linearized strain tensor ε is defined in terms of the displacement u
by the relation: 2ε(u) = ∇u +∇uT . We shall focus on constitutive equations for
viscoelastic materials in the subsequent paragraphs.

Various viscoelastic behaviour patterns may be illustrated in one dimension
by combinations of springs and dashpots, representing elastic and viscous factors
respectively. The corresponding constitutive laws may be derived from the com-
patibility and equilibrium conditions of the physical systems represented. Gener-
alizations to two or three dimensions can be performed by considering deviatoric
and volumetric contributions separately.

The simplest manner in which to schematically construct a viscoelastic model is
to combine one elastic and one viscous component either in series or in parallel. The
resulting models are known as the Maxwell and the Kelvin-Voigt model or element
respectively. Note that these are clearly simplicial and only capable of describing
viscoelastic behaviour partially. However, these basic models provide building-
blocks for the construction of more realistic models. For instance, an arbitrary
number of Maxwell elements in parallel, or analogously, a serial combination of
Kelvin-Voigt elements could model the complex behaviour displayed by viscoelastic
materials within the linear regime. With this in mind, we turn to the precise
differential formulations of the two basic models.

Let σ denote the total stress, u the total displacement and ε(u) the linearized
strain as before. The subscripts E and V will denote elastic and viscous compo-
nents respectively in this section. We begin by considering the Maxwell model. In
this case, the following equations relate the elastic and viscous components of the
displacement to the stress:

(2.2) σ = CEε(uE), σ = CV ε(u̇V ), u = uE + uV ,

where CE and CV are fourth-order material tensors. Assuming isotropy, these take
the reduced form:

Cτ = 2μτ + λ tr τI
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where μ and λ are the scalar, possibly spatially varying, Lamé coefficients. We will
not restrict our attention to the isotropic case in the following, though we shall
assume that the tensors C are invertible and independent of time. The notation
A = C−1 is used throughout.

The classical formulation of the Maxwell model, given in (2.3) below, may be
obtained by inverting the stress-strain relations, differentiating the equation for the
elastic contributions with respect to time and adding the resulting two constitutive
equations to replace u̇E + u̇V by u̇.

(2.3) AE σ̇ +AV σ = ε(u̇).

The equation (2.3) should be equipped with the initial condition

(2.4) σ(0) = ζ where div ζ = g(0)

and g is as in (2.1). Note that the purely elastic case can be viewed as a special
case of the Maxwell model, with AV = 0.

For the Kelvin-Voigt model, the starting point is similar, but the compatibility
conditions take a different form. We consider the same constitutive equations for
the separate elastic and viscous contributions, but now the combined system reads:

(2.5) σE = CEε(u), σV = CV ε(u̇), σ = σE + σV .

The classical formulation for the Kelvin-Voigt model can be formed by summing
the contributions to give the equation

σ = CEε(u) + CV ε(u̇).

Eliminating the stress, using (2.1), results in a pure displacement formulation:

(2.6) div (CEε(u) + CV ε(u̇)) = g.

An alternative would be to imitate to procedure used for Maxwell: Keep the
separate stress components, invert the stress-strain relations and differentiate the
equation for the elastic components with respect to time. This strategy yields the
equations:

(2.7) AE σ̇E = ε(u̇), AV σV = ε(u̇), σ = σE + σV .

The natural initial condition is now

(2.8) σE(0) = ζE ,

where ζE could be calculated from an initial displacement u(0) using (2.5).
The latter approach has the immediate disadvantage that additional tensor-

valued variables are introduced to the system of equations. However, there are
also several advantages. First, we would expect discretizations of the displacement
formulation (2.6) to be wrought with the same, or more severe, problems in the
nearly incompressible case as discretizations of (1.1). In contrast, the strain-stress
form of the Kelvin-Voigt equations (2.7) will enable the use of robust mixed finite
element methods for the stress and the displacement. Second, the mixed approach
enables a unified formulation of the two models, and thus lays the foundation for
flexibly treating a wide range of viscoelastic models. For these reasons, we shall
pursue the formulation in (2.7). We shall conclude this section by some comments
on the treatment of the generalized models.

Equations for generalized viscoelastic models may be formulated in a variety
of ways; One classical formulation [16, p. 52] is the constitutive relationship

k∑
l=0

Al
dlσ

dtl
=

k∑
l=0

Bl
dlε

dtl
,
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where Al and Bl are again fourth-order material tensors. However, any viscoelastic
model derived from a linear spring-dashpot combination, can be reduced to an
equivalent series-parallel model [40, p. 135]. Further, the standard series-parallel
models, can be reduced to a number of Maxwell elements, springs and dashpots in
parallel. Such combinations, with n elements in parallel, can be expressed in the
form:

AjE σ̇j +AjV σj = ε(u̇) j = 0, . . . , n− 1,

σ =

n−1∑
j=0

σj ,
(2.9)

where AjE , A
j
V may be zero for some j, along with the initial conditions σk(0) = ζk

for k such thatAkE �= 0. IfAjE �= 0 for all j = 0, . . . , n−1, the compatibility condition
div

∑
j ζj = g(0) applies. Note that these initial conditions are consistent with the

initial conditions introduced above for the Maxwell and Kelvin-Voigt models. For
instance, the standard linear solid model1 takes the form:

A0
E σ̇0 +A0

V σ0 = ε(u̇), A1
E σ̇1 = ε(u̇),

σ = σ0 + σ1.
(2.10)

The discretization approach studied in this paper can, in principle, be applied for
any model in the class defined by (2.9). However, the analysis will be focused on the
basic models (2.3) and (2.7). Furthermore, in Section 6, we present some numerical
experiments relating to the model (2.10).

3. Weak formulations and stability estimates

The main focus of this section is to derive weak formulations for the Maxwell
and the Kelvin-Voigt models. We preface this derivation by introducing appropriate
notation and provide an analogy to the Hellinger-Reissner formulation for linear
elasticity. We conclude the section by giving stability estimates, thus demonstrating
that the weak solutions are stable with regard to the initial conditions and data.

We start by introducing some notation. Let Ω be an open, bounded domain
in Rd, d = 2, 3, with Lipschitz boundary ∂Ω. We denote the space of square
integrable functions on Ω by L2(Ω) with inner product 〈·, ·〉 and norm || · ||0,Ω.
The standard Sobolev spaces Hm(Ω) have norm || · ||Hm and semi-norm | · |Hm for
m = 1, 2, . . . . The reference to the domain Ω will be omitted when context makes
it superfluous. Further, a norm without subscripts will default to the L2 norm.
If 〈A·, ·〉 is a coercive bilinear form on L2(Ω), we shall denote the induced norm
by || · ||A. The linear spaces of vectors, matrices, symmetric matrices and skew-
symmetric matrices are denoted by V, M, S and K respectively. The space of fields
on Ω with square integrable components and values in X , is denoted L2(Ω;X).
Moreover, the subspace of L2(Ω;V) of vector fields with square integrable divergence
is denoted by H(div,Ω;V) with the associated norm || · ||div. Accordingly, the space
of matrix fields with rows inH(div,Ω;V) is denotedH(div,Ω;M) and the analogous
subspace of symmetric matrix fields is denoted H(div,Ω; S).

For the formulation of the Kelvin-Voigt model and the generalized models, we
will require a product space of matrix fields, denoted by H+, having the property
that the sum is in H(div,Ω;M). More precisely,

(3.1) H+ = {(τ0, τ1) ∈ L2(Ω;M)2 | τ0 + τ1 ∈ H(div,Ω;M)}.

1The standard linear solid model is equivalent to the Zener model, and was studied, along
with its generalized version, in [10].
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We shall also require spaces involving time [18, p.285 ff.]. Let X be a Hilbert
space with norm || · ||X . L2(0, T ;X) will denote the space of strongly measurable
functions u : [0, T ]→ X with norm

||u||L2(0,T ;X) =

(∫ T

0

||u(t)||2X

)1/2

<∞.

Differentiation with respect to time is denoted by a superposed dot. Finally,
H1(0, T ;X) denotes the space of fields u ∈ L2(0, T ;X) such that u̇ ∈ L2(0, T ;X)
exists in the weak sense.

3.1. Weak formulations for linear elasticity. The Hellinger-Reissner for-
mulation of linear elasticity, with pure Dirichlet boundary conditions for the dis-
placement, takes the form of finding σ ∈ H(div,Ω; S) and u ∈ L2(Ω) satisfying

〈Aσ, τ〉 + 〈div τ, u〉 = 0 ∀ τ ∈ H(div,Ω; S),

〈div σ,w〉 = 〈g, w〉 ∀w ∈ L2(Ω),
(3.2)

where g ∈ L2(Ω) is a given body force and A = A(x) : S → S is a uniformly positive
definite operator. For isotropic, homogenous elastic materials with shear modulus
μ and stiffness λ, the action of A reduces to

(3.3) Aσ =
1

2μ

(
σ − λ

2μ+ dλ
(tr σ)I

)
.

The derivation of this formulation relies on the invertibility of the elastic stress-
strain relationship and the symmetry of the stress tensor.

Following [13], the existence and uniqueness of solutions to these equations
depend on the existence of a positive constant α such that

(3.4) 〈Aτ, τ〉 ≥ α||τ ||div for all τ ∈ Z,

where

Z = {τ ∈ H(div,Ω; S) | 〈div τ, w〉 = 0 for all w ∈ L2(Ω)}.
Since divH(div,Ω; S) ⊂ L2(Ω), the uniform positive definiteness of the operator A
on L2(Ω; S) guarantees condition (3.4). In addition, there must, and does, exist a
positive constant β such that

(3.5) ||v||0 ≤ β sup
τ∈H(div,Ω;S)

|〈div τ, v〉|
||τ ||div

.

The latter condition is usually referred to as the inf-sup condition.
The positive definiteness of the isotropic A, defined by (3.3), fails as λ → ∞.

However, a uniform coercivity estimate can be established under the additional
requirement that

∫
trσ = 0. Since A is also uniformly continuous in λ, this formu-

lation makes the desired robustness in the case λ→∞ attainable.
Unfortunately, the construction of stable pairs of finite element spaces for the

discretization of these equations has proven, in the course of four decades of re-
search, to be nontrivial. In the last decade, stable finite element spaces, associated
with a single triangulation family, have been constructed in both two and three
dimensions [1, 4, 8]. These families of element spaces are advantageous in the
sense that the approximation error of the stress can be separated from that of
the displacement. On the other hand, their complexity, including complexity of
implementation, makes other approaches eligible.

In this work, we shall pursue the alternative weak symmetry approach [24].
Instead of restricting the stress tensor space to tensor fields with symmetric values,
the symmetry can be enforced by the introduction of a constraint and a Lagrange
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multiplier ρ. More precisely, the weak symmetry formulation of (3.2) reads: Find
σ ∈ H(div,Ω;M), u ∈ L2(Ω) and ρ ∈ L2(Ω;K) satisfying

〈Aσ, τ〉 + 〈div τ, u〉+ 〈τ, ρ〉 = 0 ∀ τ ∈ H(div,Ω;M),(3.6a)

〈div σ,w〉 + 〈σ, η〉 = 〈g, w〉 ∀w ∈ L2(Ω), η ∈ L2(Ω;K).(3.6b)

Formally, the variable ρ corresponds to the skew component of the gradient of
u: 2ρ = ∇u − ∇uT . On the continuous level, the formulations (3.2) and (3.6)
are equivalent. However, the weakening of the symmetry constraint opens up the
possibility for simpler element spaces for the stress. In the following, we shall
frequently require the trilinear form of (3.6b) and therefore label it here for later
reference:

b(τ, w, η) = 〈div τ, w〉 + 〈τ, η〉(3.7)

The inf-sup condition for this formulation, corresponding to (3.5) for the strong
symmetry formulation, guarantees the existence of a β > 0 such that for any
v ∈ L2(Ω) and η ∈ L2(Ω;K),

(3.8) ||v||0 + ||η||0 ≤ β sup
τ∈H(div,Ω;M)

|b(τ, v, η)|
||τ ||div

.

The reader is referred to for example [11] for details and proofs of the afore stability
assertions relating to (3.2) and (3.6).

3.2. Weak formulations for linear viscoelasticity. We now find ourselves
in the position to derive weak formulations with weak symmetry for the Maxwell
and Kelvin-Voigt models. The constitutive relationships are defined by (2.3) and
(2.7) respectively and the system is closed by the balance of linear momentum (2.1),
the initial conditions of (2.4) and (2.8) and boundary conditions. In the subsequent
analysis, we shall assume natural homogenous boundary conditions, i.e. u(t) = 0 on
∂Ω for simplicity. We introduce the velocity v = u̇ and the rotation of the velocity
γ = ρ̇ as these are the more natural variables for the formulations. Both u(t) and
ρ(t) can clearly be post-calculated given an additional initial condition for u.

The strain-stress form of the Maxwell constitutive equation (2.3), in combina-
tion with (2.1), yields the following weak equations after an integration by parts of
the strain term.

〈A0σ, τ〉 + 〈A1σ̇, τ〉 + b(τ, v, γ) = 0 ∀ τ ∈ H(div,Ω;M),(3.9a)

b(σ,w, η) = 〈g, w〉 ∀w ∈ L2(Ω), η ∈ L2(Ω;K),(3.9b)

where g is given and b is defined in (3.7). We have suppressed the dependency on
time in the notation of (3.9).

We proceed to consider the Kelvin-Voigt model. Multiplying (2.7) and (2.1) by
test functions, integrating by parts and enforcing the symmetry of the full stress
tensor weakly, give the weak formulation of the Kelvin-Voigt model in (3.10) below.
The original subscripts V and E have been replaced by 0 and 1 respectively.

〈A1σ̇1, τ1〉+ 〈A0σ0, τ0〉+ b(τ0 + τ1, v, γ) = 0 (τ0, τ1) ∈ H+,(3.10a)

b(σ0 + σ1, w, η) = 〈g, w〉 w ∈ L2(Ω), η ∈ L2(Ω;K),(3.10b)

where H+ is as defined by (3.1).
We further observe that a weak formulation for the generalized models defined

by (2.9) can be derived in the entirely analogous manner. We enforce the symmetry
of the total stress tensor σ =

∑
j σj weakly, i.e. 〈σ, η〉 = 0 for all η ∈ L2(Ω;K), as
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for the Kelvin-Voigt model. The weak equations then take the form:

〈AjE σ̇j , τj〉+ 〈AjV σj , τj〉+ b(τj , v, γ) = 0 ∀ τj , j = 0, . . . , n− 1,

b(
∑
j

σj , w, η) = 〈g, w〉 ∀w, η.

These derivations demonstrate that this type of formulation is well-suited for
both the basic and the generalized models. We therefore have a unified framework
in place. At this point however, we let the generalized models rest in order to avoid
notational overflow.

3.3. Existence and regularity of solutions. We shall give arguments for
the existence of solutions to the systems of equations (3.9) and (3.10) in order to
motivate the assumptions to follow.

First, consider the Maxwell model of (3.9) with the initial condition σ(0) =
ζ ∈ H(div,Ω;M). Assume that g ∈ H1(0, T ;L2(Ω)) and that div ζ = g(0).
Then, there exist σe ∈ H1(0, T ;H(div,Ω;M)), ue ∈ H1(0, T ;L2(Ω)) and
ρe ∈ H1(0, T ;L2(Ω;K)) solving the elasticity equations (3.6) with A = A0 for
each t ∈ [0, T ]. Next, let H0 = {τ ∈ H(div,Ω;M) | div τ = 0}. Since A0, A1 are
bounded on H0, there exists a σ0 ∈ H1(0, T ;H0) satisfying the ordinary differential
equation:

〈A1σ̇0, τ〉+ 〈A0σ0, τ〉 = −〈A1σ̇e, τ〉 τ ∈ H0

with the initial condition σ0(0) = ζ − σe(0) ∈ H0. Further, the inf-sup condition
(3.8), gives the existence of v0(t) ∈ L2(Ω), γ0(t) ∈ L2(Ω;K) for a.e t such that

〈A1σ̇0, τ〉+ 〈A0σ0, τ〉+ b(τ, v0, γ0) = −〈A1σ̇e, τ〉 τ ∈ H(div,Ω;M),

b(σ0, w, η) = 0 w ∈ L2(Ω), η ∈ L2(Ω;K).

It follows that σ = σe+σ0, v = ue+v0 and γ = ρe+γ0 solve the Maxwell equations
(3.9) for a.e t and the initial condition σ(0) = ζ with div σ(0) = g. Further,
σ ∈ H1(0, T ;H(div,Ω;M)), v ∈ L2(0, T ;L2(Ω)) andγ ∈ L2(0, T ;L2(Ω;K)). This
existence argument motivates Definition 3.1.

Definition 3.1 (Weak solutions of the Maxwell equations). Assume that

g ∈ H1(0, T ;L2(Ω)), ζ ∈ H(div,Ω;M), div ζ = g(0).

The fields σ ∈ H1(0, T ;H(div,Ω;M)), v ∈ L2(0, T ;L2(Ω)), γ ∈ L2(0, T ;L2(Ω;K))
constitute a weak solution of the Maxwell equations provided (3.9) is satisfied for
a.e. t ∈ (0, T ] and the initial condition σ(0) = ζ holds.

Uniqueness of these solutions is a consequence of Theorem 3.3 below.
We proceed to consider the Kelvin-Voigt model with the initial condition σ1(0) =

ζ1 ∈ L2(Ω;M) and assume that g ∈ L2(0, T ;L2(Ω)). Solving the stationary elastic-
ity equation

〈C1ε(ν), ε(v)〉 = 〈ζ1,∇ v〉 ∀v ∈ H1
0 (Ω;V),

yields ν ∈ H1
0 (Ω;V). Next, from a weak formulation of (2.6):

〈C1ε(u(t)) + C0ε(u̇(t)), ε(v)〉 = 〈g(t), v〉, ∀ v ∈ H1
0 (Ω;V),

equipped with the initial condition u(0) = ν, we can deduce the existence of a
solution u ∈ H1(0, T ;H1(Ω;V)). In accordance with (2.5), we define

σ0(t) = C0ε(u̇(t)) ∈ L2(0, T ;L2(Ω;M)),

σ1(t) = C1ε(u(t)) + ζ1 − C1ε(ν) ∈ H1(0, T ;L2(Ω;M)),

γ(t) =
1

2

(
∇ u̇−∇ u̇T

)
∈ L2(0, T ;L2(Ω;K)).

It follows that div(σ0 + σ1) = g and σ1(0) = ζ1.
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Definition 3.2 (Weak solutions of the Kelvin-Voigt equations). Assume that

g ∈ L2(0, T ;L2(Ω)), ζ1 ∈ L2(Ω;M).

The fields σ0 ∈ L2(0, T ;L2(Ω;M)), σ1 ∈ H1(0, T ;L2(Ω;M)) satisfying (σ0(t), σ1(t)) ∈
H+ for a.e. t, v ∈ L2(0, T ;L2(Ω)) and γ ∈ L2(0, T ;L2(Ω;K)) constitute a weak
solution of the Kelvin-Voigt equations provided (3.10) is satisfied for a.e t ∈ (0, T ],
and the initial condition σ1(0) = ζ1 holds.

These solutions are indeed unique cf. Theorem 3.4 below.

3.4. Stability estimates. The two formulations (3.9), (3.10) can be viewed
as evolutionary problems subject to a constraint. The two theorems closing this
section provide stability estimates for the Maxwell and the Kelvin-Voigt equations
respectively, thus demonstrating stability in time. The estimates rely on two main
factors. First, the inf-sup condition (3.8) holds for the spaces H(div,Ω;M) and
L2(Ω) × L2(Ω;K). Second, the assumption that the operators Aj : L2(Ω;M) →
L2(Ω;M) are uniformly positive definite and continuous, i.e. there exist positive
constants αj and cj such that

〈Ajσ, σ〉 ≥ αj ||σ||20, 〈Ajσ, τ〉 ≤ cj ||σ||0||τ ||0.
We shall make this assumption here and throughout. As a consequence, each Aj
induces a norm equivalent to the L2 norm: 〈Ajτ, τ〉 = ||τ ||2Aj

.

For the Maxwell equations (3.9), we start by observing that if there is no applied
body force, i.e. g = 0, then

1

2

d

dt
||σ||2A1

+ ||σ||2A0
= 0.

Using the equivalence of the norms induced by A0 and A1 and Grönwall’s inequality,
we obtain the estimate:

||σ(t)||2A1
≤ e−

2α0
c1
t||σ(0)||2A1

In other words, the energy, measured in the A1-norm of the stress, decays expo-
nentially from its initial state. The situation with a constant body force, ġ = 0,
can also be reduced to a system with g = 0, and we can therefore derive a similar
estimate in that case. The case g �= 0 is covered in the following theorem.

Theorem 3.3 (Stability estimates for Maxwell). Let (σ, v, γ) be a weak solution
of the Maxwell equations. There exists a positive constant c such that

(3.11) ||σ(t)||2A1
≤ e

−α0
c1
t||ζ||2A1

+ c

∫ t

0

e
−α0

c1
(t−s) (||g(s)||2 + ||ġ(s)||2) ds

and

(3.12) ||v(t)||2 + ||γ(t)||2 + ||σ̇(t)||2 ≤ c
(
||ġ(t)||2 + ||σ(t)||2

)
for a.e. t ∈ [0, T ].

Proof. Let (σ(t), v(t), γ(t)) satisfy (3.9) for a.e. t. In order to obtain estimates
for the stress, we use τ = σ(t) in (3.9a) and apply (3.9b) to find that

(3.13) ||σ(t)||2A0
+

1

2

d

dt
||σ(t)||2A1

= −〈g, v〉.

Clearly, in order to bound the stress, we need a bound for the velocity v. Using
Cauchy-Schwartz for the norms induced by A0 and A1 and the inf-sup condition of
(3.8) with constant β, it follows that

(3.14) ||v(t)||0 + ||γ(t)||0 ≤ β
(
c
1/2
0 ||σ||A0

+ c
1/2
1 ||σ̇||A1

)
.
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Next, using τ = σ̇(t) in (3.9a), and (3.9b) differentiated with respect to time,
give an analogy to (3.13) for σ̇:

〈A0σ, σ̇〉+ ||σ̇(t)||2A1
= −〈ġ, v〉.

Together with (3.14), this gives the desired estimate for σ̇ in terms of σ.

||σ̇(t)||2A1
≤ c

(
||σ(t)||2A0

+ ||ġ(t)||2
)
.

This estimate and (3.14) give (3.12). Furthermore, combining this estimate with
(3.13) and (3.14), we obtain

α0

2c1
||σ(t)||2A1

+
1

2

d

dt
||σ(t)||2A1

≤ c
(
||g(t)||2 + ||ġ||2

)
.

Hence, (3.11) follows by Grönwall’s inequality. �

Corresponding estimates can be derived for the Kelvin-Voigt equations and are
summarized in the following theorem.

Theorem 3.4 (Stability estimates for Kelvin-Voigt). Let (σ0, σ1, v, γ) be a weak
solution of the Kelvin-Voigt equations. There exists a positive constant c such that

||σ1(t)||2A1
+

∫ t

0

||σ0(s)||2A0
+ ||v(s)||2 + ||γ(s)||2 ds ≤ ||ζ1||2A1

+ c

∫ t

0

||g(s)||2 ds.

for t ∈ [0, T ].

Proof. The proof is straightforward: Letting τ0 = σ0 and τ1 = σ1 in (3.10a)
and using (3.10b), we obtain the relation

(3.15)
1

2

d

dt
||σ1||2A1

+ ||σ0||2A0
= −〈g, v〉.

An estimate for the velocity and the rotation follows from (3.8):

||v||0 + ||γ||0 ≤ β sup
τ
||τ ||−1div|b(τ, v, γ)| = β sup

τ
||τ ||−1div|〈A0σ0, τ〉| ≤ c||σ0||A0

.

Combining this with (3.15) gives the final result. �

We pause to remark that although we focus on the weak symmetry formulation
in this paper, the strong symmetry approach also yields a meaningful base for dis-
cretization. The previous energy estimates clearly also hold for the latter approach
with γ ignored, due to the equivalence between the formulations at the continuous
level. For the discrete stability and error estimates in the subsequent sections, the
path of the proofs would be the same, and would to some extent be simplified with
a strong, rather than the weak, symmetry constraint.

Now, having established the desired stability properties of the formulations, we
move on to consider discretization strategies in space and time. We shall focus on
the semi-discrete problem and conforming finite element discretizations in space in
Section 4. The full discretizations in time and space will be considered in Section
5.

4. The semi-discrete problem and stability

The scope of this section is to consider conforming finite element spatial dis-
cretizations of the two systems of equations (3.9) and (3.10). In particular, we
demonstrate that the same discretization will be appropriate for both models. We
shall again start by drawing inspiration from suitable finite element discretizations
of the linear elasticity equations and comment on the properties of such, before
embarking on the discretization of the viscoelasticity models.

Assume that {Th}h is a shape-regular family of admissible, simplicial tessella-
tions of Ω, where h measures the mesh size. We are interested in finite element
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spaces Σh ⊂ H(div,Ω;M), Vh ⊂ L2(Ω) and Qh ⊂ L2(Ω;K) subordinate to this
tessellation. From the stationary theory of mixed finite element methods [13], we
know that the discrete spaces yield a stable discretization of a given weak formula-
tion if the Brezzi conditions hold. For the weak symmetry formulation of the linear
elasticity equations (3.6), these conditions are the discrete equivalents of (3.4) and
(3.8), and take the following form: For the spaces Σh, Vh and Qh, there must exist
positive constants α and β, independent of h, such that

〈Aτ, τ〉 ≥ α||τ ||2div ∀ τ ∈ Zh,(4.1)

||w||+ ||η|| ≤ β sup
τ∈Σh

|b(τ, w, η)|
||τ ||div

∀w ∈ Vh, η ∈ Qh,(4.2)

where b(τ, w, η) = 〈div τ, w〉+ 〈τ, η〉 as before and the kernel Zh is defined as

Zh = {τ ∈ Σh | b(τ, w, η) = 0 ∀w ∈ Vh, η ∈ Qh}.

There exists a multitude of finite element spaces satisfying these conditions. A
selection of such can be sampled from the references [3, 5, 6, 24, 21, 39] and the
survey [20]. In the following analysis, we shall assume that the spaces Σh, Vh and
Qh satisfy conditions (4.1) and (4.2) and additionally are such that

(4.3) div Σh ⊂ Vh.

Let Ph denote the L2 projection from L2(Ω;K) onto Qh and, with a minor abuse
of notation, from L2(Ω) onto Vh. We let Πh be a projection onto Σh such that

(4.4) 〈div(τ −Πhτ), w〉 = 0 for all w ∈ Vh.

We shall assume that the projection Πh is bounded, i.e. that there exists a constant
c such that

(4.5) ||Πhτ ||div ≤ c||τ ||div for all τ ∈ H(div,Ω;M).

Note that the canonical projection onto Σh, defined by the degrees of freedom, is
typically not bounded on H(div,Ω;M) and thus does not satisfy (4.5). However,
bounded projections, satisfying (4.5), can be constructed through smoothing, cf. [7,
15].

4.1. Two stable sets of element spaces. We shall describe two families of
element spaces, namely those introduced by Arnold et al. [6] and Falk [20], both
satisfying the conditions (4.1), (4.2) and (4.3) above. The lowest order element
spaces of these families were also suggested by Farhloul and Fortin [21]. The former
family of spaces will mainly be used for the numerical experiments in Section 6.

The particular finite element spaces Σh, Vh and Qh introduced by Arnold et
al. are as follows: The lowest order elements are the combination of linear vector
polynomials with continuity of normal components over inter-element facets for the
stress, and piecewise constants for the velocity and the rotation approximations.
The element spaces generalize to arbitrary polynomial degree; Let Pk(Th) denote
the space of discontinuous k’th order polynomials defined on the tessellation Th
of Ω ⊂ Rd, d = 2, 3, and BDMk denote the k’th order vector polynomials with
continuous normal components over inter-element facets as introduced by Brezzi et
al. [14] and extended by Nedelec [31] to three dimensions. With this notation, the
k’th order elasticity elements, for k ≥ 1, are:

Σh,k = BDMk(Th;V), Vh,k = Pk−1(Th;V), Qh,k = Pk−1(Th;K)(4.6)
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For these element spaces, we have the following interpolation estimates for the
projections P kh and Πkh:

||τ −Πkhτ ||0 ≤ chm+1 |τ |Hm+1 ,

||div(τ −Πkhτ)||0 ≤ chm | div τ |Hm ,

||p− P kh p||0 ≤ chm |p|Hm ,

for 1 ≤ m ≤ k.
For the weak symmetry formulation of the elasticity equations, these interpo-

lation properties carry over to the approximation properties of the finite element
discretization, with the exception that the error of the stress approximation cannot
be split from that of the rotation, since skwΣh �⊂ Qh. Hence, the higher-order L2

interpolation error of the stress is not expected to be conserved.
Another stable family of element spaces, introduced by Falk [20] for the lowest

order case, uses the same spaces Σh and Vh as of (4.6), but the space of piecewise

constants for the rotation Qh is replaced by continuous piecewise linears Q̃h. In
general, we let

Q̃h,k = Pk(Th;K) ∩C0(Th;K)(4.7)

In this case, the interpolation error of the rotation is of the same order as the L2

error of the stress interpolation. We can thus expect to retain the higher order L2

estimates for the stress approximation.
Having discussed stable and accurate finite element spaces for discretizations of

the elasticity equations, we now turn to the questions of stability and spatial a priori
error estimates for the Maxwell and the Kelvin-Voigt models. Attention is paid to
the Maxwell model in Section 4.2 and to the Kelvin-Voigt model in Section 4.3.
The techniques involved in the following are fairly standard and we rely on the
results for the stationary elasticity equations.

For ease of reading, we give the results applied to the element spaces (4.6) here.
Let the subscript h indicate discrete solutions and assume sufficient smoothness of
the domain and the data, all which will be made precise in the subsequent sections.
Then, for the Maxwell model, we will show that

||σh(t)−Πkhσ(t)||0 + ||vh(t)− P kh v(t)||0 + ||γh(t)− P kh γ(t)||0 ≤ cTh
k,

for a.e. t ∈ [0, T ]. For the Kelvin-Voigt model,

||σ1,h(t)−Πkhσ1(t)||0 +
∫ t

0

||σ0,h(s)−Πkhσ0(s)||0 ds

+

∫ t

0

||vh(s)− P kh v(s)||0 + ||γh(s)− P kh γ(s)||0 ds ≤ cTh
k.

4.2. Semi-discretization of the Maxwell model. For the Maxwell equa-
tions, the natural finite element spaces correspond directly to those of the elasticity
equations: Σh ⊂ H(div,Ω;M), Vh ⊂ L2(Ω) and Qh ⊂ L2(Ω;K). The spatially
discretized equations follow immediately:

〈A0σh(t), τ〉 + 〈A1σ̇h(t), τ〉 + b(τ, vh(t), γh(t)) = 0,(4.8a)

b(σh(t), w, η) = 〈g(t), w〉,(4.8b)

for all τ ∈ Σh, w ∈ Vh and η ∈ Qh and for a.e t ∈ (0, T ]. We also enforce the
discrete initial condition σh(0) = ζh ∈ Σh Assuming that 〈div ζh − g(0), w〉 = 0 for
all w ∈ Vh, we have semi-discrete solutions σh ∈ H1(0, T ; Σh), vh ∈ L2(0, T ;Vh)
and γh ∈ L2(0, T ;Qh). We observe that, if the spaces Σh, Vh and Qh are such that
the discrete Brezzi conditions (4.1) and (4.2) hold, the energy estimates for the
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continuous formulation carry over to the semi-discrete formulation. Thus, Theorem
3.3 also holds, with the obvious modifications, for the semi-discrete solutions.

In the subsequent error analysis however, stability estimates for the discrete
equations with additional source terms will be required:

〈A0σh(t), τ〉 + 〈A1σ̇h(t), τ〉 + b(τ, vh(t), γh(t)) = 〈F (t), τ〉(4.9a)

b(σh(t), w, η) = 〈G(t), η〉(4.9b)

For clarity of presentation, such estimates are presented in the following lemma.
Clearly, the lemma also holds for the continuous solutions with additional source
terms.

Lemma 4.1 (Discrete stability with source terms for Maxwell). Assume that
G ∈ H1(0, T ;L2(Ω;M)), F ∈ L2(0, T ;L2(Ω;M)) and that (σh, vh, γh) solve (4.9)
for a.e. t ∈ (0, T ]. Then there exists a constant c > 0 such that

||σh(t)||2A1
≤ e−ct||σh(0)||2A1

+ c

∫ t

0

e−c(t−s)K(s) ds,

||vh(t)||2 + ||γh(t)||2 + ||σ̇h(t)||2 ≤ c
(
||F (t)||2 + ||Ġ(t)||2 + ||σh(t)||2

)
,

where K(s) = ||F (s)||2 + ||G(s)||2 + ||Ġ(s)||2.
Proof. Let τ = σh(t), w = vh(t), η = γh(t) in (4.9). We obtain the equation

||σh(t)||2A0
+

d

dt

1

2
||σh(t)||2A1

= 〈F (t), σh(t)〉 − 〈G(t), γh(t)〉

The discrete inf-sup condition (4.2) gives a bound for the velocity and rotation:

||vh||+ ||γh|| ≤ c (||σh||+ ||σ̇h||+ ||F ||) .
Further, let τ = σ̇h(t), w = vh(t), η = γh(t) in (4.9) after differentiating the second
equation in time. We obtain the equation

〈A0σh(t), σ̇h(t)〉+ ||σ̇h(t)||2A1
= 〈F (t), σ̇h(t)〉 − 〈Ġ(t), γh(t)〉.

The same techniques as employed in the proof of Theorem 3.3 give the final esti-
mates. �

We are now in the position to easily derive error estimates for the semi-discrete
equations. To this aim, we introduce the following standard notation: The dis-
cretization error is split into a projection error E and an approximation error E.
For the stress this takes the form

(4.10) σ − σh = Eσ − Eσ = (σ −Πhσ)− (σh −Πhσ).

and we have the analogies for the velocity and the rotation, in terms of the projec-
tion Ph, with superscripts v and γ respectively. Observe that

(4.11) b(Eσ, w, η) = 〈Eσ, η〉,
for all w ∈ Vh, η ∈ Qh by the definition of the projection Πh onto Σh (4.4).
Moreover, due to (4.3), we have that

(4.12) b(τ, Ev, Eγ) = 〈τ, Eγ〉
for all τ ∈ Σh.

Let K(t) = ||Eσ(t)||2 + ||E σ̇(t)||2 + ||Eγ(t)||2. By definition, the function K is
bounded by the approximation properties of the projections Πh and Ph and of the
smoothness of the exact solution (σ, v, γ). As a result of the theorem below, we
obtain that the full error, which is bounded by ||E||+ ||E||, is of the same order as
long as the initial approximation is sufficiently accurate.
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Theorem 4.2 (A priori error estimates for Maxwell). The approximation errors
for the stress, velocity and rotation satisfy the following bounds for a.e t ∈ [0, T ] in
terms of the projection errors

||Eσ(t)||2 ≤ e−ct||σh(0)−Πhσ(0)||2A1
+ c

∫ t

0

e−c(t−s)K(s) ds

||Eσ̇(t)||2 + ||Ev(t)||2 + ||Eγ(t)||2 ≤ c
(
||Eσ(t)||2 +K(t)

)
Proof. We omit the reference to the time t for brevity in the following. We

begin by subtracting the discrete Maxwell equations from the continuous ones to
obtain the error equations:

〈A0(σ − σh), τ〉+ 〈A1(σ̇ − σ̇h), τ〉 + b(τ, v − vh, γ − γh) = 0 ∀ τ ∈ Σh,

b(σ − σh, w, η) = 0 ∀ w ∈ Vh, η ∈ Qh.

Inserting the error decompositions (4.10), we have:

〈A0E
σ, τ〉+ 〈A1E

σ̇, τ〉+ b(τ, Ev, Eγ) = 〈A0Eσ, τ〉+ 〈A1E σ̇, τ〉+ 〈τ, Eγ〉
b(Eσ, w, η) = b(Eσ, w, η) = 〈Eσ, η〉.

where the last equality follows from the definition of the projection onto Σh (4.11).
The term 〈τ, Eγ〉 is a result of (4.12). It is now easy to observe that Eσ, Ev and
Eγ solve the semi-discrete equations (4.9) with the right-hand side(s):

F = A0Eσ +A1E σ̇ + Eγ , G = Eσ,
and the initial condition Eσ(0) = σh(0) − Πhσ(0). The stability estimate with
additional source terms, Lemma 4.1, thus gives the error estimates. �

4.3. Semi-discretization of the Kelvin-Voigt model. This subsection
aims at introducing a spatial discretization of the Kelvin-Voigt model corresponding
to the one introduced for the Maxwell model in the previous. Moreover, error esti-
mates for the semi-discrete solutions are established through an analogous extended
energy estimate.

Recall that for the Kelvin-Voigt equations, we seek two components of the
stress: σ0 and σ1 such that σ0 + σ1 = σ ∈ H(div,Ω;M), or with the notation
introduced in (3.1), (σ0, σ1) ∈ H+. For discretization purposes, we are therefore
interested in a finite dimensional product space Σ2

h approximating H+. A natural
choice would be to let

(4.13) Σ2
h = Σh × Σh.

The resulting spatially discretized equations are presented below in (4.14).

〈A1σ̇1,h(t), τ1〉+ 〈A0σ0,h(t), τ0〉+ b(τ0 + τ1, vh(t), γh(t)) = 0,(4.14a)

b(σ0,h(t) + σ1,h(t), w, η) = 〈g(t), w〉,(4.14b)

for all (τ0, τ1) ∈ Σ2
h, w ∈ Vh and η ∈ Qh and for a.e t ∈ (0, T ]. As usual, we

enforce the discretized initial condition: σ1,h(0) = ζ1,h ∈ Σh. Again, we comment
that, provided that the spaces Σh, Vh and Qh are such that (4.1) and (4.2) hold,
the energy estimates for the continuous formulations carry over to the semi-discrete
formulations. Thus, Theorem 3.4 also holds, with the obvious modifications, for
the semi-discrete solutions. We also note that the projections constructed in [15]
are bounded in L2(Ω;M) �→ L2(Ω;M) and hence the projections of the separate
stress components can be defined even if each component is not in H(div,Ω;M).

As in the case of the Maxwell model, a stability estimate for the equations
with additional source terms is a key step in deriving error estimates. Such a result
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is considered separately in the following lemma. We shall however, restrict our
attention to source terms F0, F1 yielding the following alternative to (4.14a):

〈A1σ̇1,h, τ1〉+ 〈A0σ0,h, τ0〉+ b(τ0 + τ1, vh, γh) = 〈Ḟ1, τ1〉+ 〈F0, τ0〉,(4.15a)

b(σ0,h + σ1,h, w, η) = 〈G, η〉.(4.15b)

Recall that in the derivation of the Kelvin-Voigt model, the elastic stress-strain
relation corresponding to σ1 was differentiated in time. The Ḟ1 term of (4.15a)
takes this aspect into account.

Lemma 4.3 (Stability with source terms for Kelvin-Voigt). Let

F0 ∈ L2(0, T ;L2(Ω;M)), F1 ∈ H1(0, T ;L2(Ω;M)), G ∈ L2(0, T ;L2(Ω;M)),

and assume that (σ0,h, σ1,h, vh, γh) solve (4.15) for a.e. t ∈ (0, T ]. Then there exists
a positive constant c such that

||σ1,h(t)||2 +
∫ t

0

||σ0,h(s)||2 + ||vh(s)||2 + ||γh(s)||2 ds

≤ c

(
I + ||F1(t)||2 +

∫ t

0

K(s) ds

)
,

for t ∈ [0, T ], where I = ||σ1,h(0)||2 + ||F1(0)||2 and K(s) = ||G(s)||2 + ||F0(s)||2 +
||F1(s)||2 + ||Ḟ1(s)||2.

Proof. We omit the subscripts h for notational brevity in the following. First,
observe that letting τ1 = −τ0 = τ in (4.15a) gives the identity

〈A1σ̇1, τ〉 − 〈A0σ0, τ〉 = 〈Ḟ1 − F0, τ〉

for any τ ∈ Σh. In particular, letting τ = σ̇1, we find that

(4.16) ||σ̇1||2A1
≤ c

(
||σ0||2A0

+ ||Ḟ1||2 + ||F0||2
)
.

Second, let τ0 = σ0, τ1 = σ1, w = v and η = γ in (4.15). We are left with:

1

2

d

dt
||σ1||A1

+ ||σ0||A0
= −〈G, γ〉+ 〈Ḟ1, σ1〉+ 〈F0, σ0〉.

Since, ||v||+ ||γ|| ≤ c (||σ0||A0
+ ||F0||) by (4.2), it follows that

(4.17) ||σ1(t)||2A1
+

∫ t

0

||σ0(s)||2A0
ds ≤ ||σ1(0)||2A1

+ c

∫ t

0

||G(s)||2 + ||F0(s)||2 ds+
∫ t

0

〈Ḟ1(s), σ1(s)〉ds

We integrate the last term by parts to see that∫ t

0

〈Ḟ1(s), σ1(s)〉ds ≤ 〈F1(s), σ1(s)〉|ts=0 +
1

4ε

∫ t

0

||F1(s)||2 ds+ ε

∫ t

0

||σ̇1(s)||2 ds

for any ε > 0. Thus, combining (4.17) with (4.16), gives the stated result. �

As before, cf. (4.10), we introduce the approximation errors: Eτh = ||Πhτ − τh||
and the projection errors: Eτ = ||τ − Πhτ || for τ ∈ {σ0, σ1} and analogously for
τ ∈ {v, γ} with Πh replaced by Ph. As a consequence of Lemma 4.3, we obtain the
following error estimates.

44



mixed finite elements for linear viscoelasticity

Theorem 4.4 (A priori error estimates for Kelvin-Voigt). Let (σ0, σ1, v, γ)
solve the continuous Kelvin-Voigt equations (3.10) and (σ0,h, σ1,h, vh, γh) be ap-
proximations satisfying the discrete equations (4.14). Then there exists c > 0 such
that

||Eσ1(t)||2 +
∫ t

0

||Eσ0(s)||2 + ||Ev(s)||2 + ||Eγ(s)||2 ds

≤ c||σ1,h(0)−Πhσ1(0)||2 + c

(
I(0) + I(t) +

∫ t

0

L(s) ds

)

where I(t) = ||Eσ1(t)||2 + ||Eρ(t)||2, and

L = ||Eσ0 ||2 + ||Eσ1 ||2 + ||E σ̇1 ||2 + ||Eρ||2 + ||Eγ ||2.
Again we observe that this result allows us to bound the full error in terms of the
projections Πh and Ph and the properties of the exact solution.

In conclusion, this section has treated a unified mixed finite element method
for the spatial discretization of the Maxwell and the Kelvin-Voigt models. We have
given a priori error estimates for the spatial discretization under the assumptions
of saddle point stability and (4.3). We have focused on these spatial error estimates
in order to present the techniques and results involved with greater clarity.

5. Full-discretization

The aim of this section is to consider full-discretizations of the Maxwell and
Kelvin-Voigt equations. The starting points are the semi-discrete formulations (4.8)
and (4.14). After spatial discretization, the systems can be viewed as linear constant
coefficient differential-algebraic equations (DAEs) in time. The theory of linear
constant coefficient DAEs is well-developed and the monographs [12, 26] give a
thorough summary. As this is the case, we shall not carry out an explicit analysis for
different temporal discretization schemes, but rather rely on the known results for
DAEs. However, we point out that it is not obvious that these time discretizations
will be uniformly stable with respect to the spatial discretizations.

With regard to choice of time-discretization, there are some factors that deserve
special attention. First, since the material parameters for the viscous and the elastic
contributions may vary greatly, we face possibly stiff systems. Second, in thread
with the previous emphasis on robustness, we aim to avoid stability conditions for
the discretization parameters. These aspects make implicit time-stepping schemes
attractive. Also note that since we can use an arbitrary, up to computation time,
high order scheme in space, higher order schemes in time are relevant.

We shall briefly summarize the relevant concepts of and results for linear con-
stant coefficient DAEs needed in the following, but refer to [12] for details. Linear
constant coefficient DAEs take the form

(5.1) D1ẏ +D0y = f

where Di ∈ Mn×n for i = 0, 1. Such systems are solvable if and only if λD1 +D0

is a regular pencil, i.e. if det(λD1 +D0) is not identically zero as a function of λ.
Further, assume that the system in (5.1) is of index ν [12, p. 17]. A k-step implicit
backward difference scheme of local order k applied to (5.1) gives convergence of
order k after a possible initial boundary layer of thickness (ν − 1)k + 1 time steps
[12, Theorem 3.1.1]. For implicit one-step Runge-Kutta methods, matters are a
bit more elaborate, and we shall again refer the reader to [12, Section 4]. In the
following, we shall see how the stability conditions for the spatial discretization of
the Maxwell and Kelvin-Voigt systems yields regularity and thus solvability in the
DAE sense.
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Consider the spatial discretizations (4.8) and (4.14) of the Maxwell and the
Kelvin-Voigt equations respectively. Inserting bases for the element spaces Σh, Vh
and Qh, letting yh = (σj,h, vh, γh) and denoting the corresponding vector of finite
element expansion coefficients by y, yield following form of the equations:

D1ẏ +D0y = f .

In particular, let {ψi}i, {φk}k and {pm}m be bases for Σh, Vh and Qh respectively
and define the element matrices

Aιij = 〈Aιψj , ψi〉, Bkj = 〈divψj , φk〉, Cmj = 〈ψj , pm〉.
The spatial discretization of the Maxwell model takes the form

(5.2) D1 =

⎛
⎝A1 0 0
0 0 0
0 0 0

⎞
⎠ D0 =

⎛
⎝A0 BT CT

B 0 0
C 0 0

⎞
⎠ ,

while for the Kelvin-Voigt model, we have:

(5.3) D1 =

⎛
⎜⎜⎝
A1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ D0 =

⎛
⎜⎜⎝
0 0 BT CT

0 A0 BT CT

B B 0 0
C C 0 0

⎞
⎟⎟⎠ .

The Maxwell system is a differential algebraic equation of index two, while the
Kelvin-Voigt system in its current form is of index one.

The discrete inf-sup conditions (4.1), (4.2) guarantee that the matricesA0, A1

and B,C are such that det(λD1 +D0) �≡ 0 as a function of λ for either system.
Hence, with the spatial discretizations of Section 4, the systems will be regular, and
therefore solvable. The already well-developed theory of discretizations of DAEs
therefore carries over to these systems.

6. Numerical experiments

We now turn to consider a series of numerical experiments for both models in
two dimensions. We shall focus on two aspects. First, we demonstrate convergence
rates for different material parameter values on the unit square with constructed
exact solutions. Second, we give examples of viscoelastic behaviour through looking
at simple creep and relaxation scenarios. All simulations have been run using the
DOLFIN library [27] from the FEniCS project [22].

The spatial discretization is based on the family of elasticity elements defined
by (4.6), and its variant (4.7). The temporal discretization is carried out using
the L-stable, second-order accurate, TR-BDF2 scheme, that is, a trapezoidal rule
followed by a 2-step backward difference scheme at each time step [9]. For the
general DAE (5.1), this scheme takes the following form for n = 0, 1, . . . :

D1

(
yn+

1
2 − yn

)
=

1

2

Δt

2

(
fn+

1
2 + fn −D0

(
yn+

1
2 + yn

))
(6.1a) (

Δt

2

)−1
D1

(
3

2
yn+1 − 2yn+

1
2 +

1

2
yn

)
+D0y

n+1 = fn+1(6.1b)

The linear systems of equations that result from the application of this scheme
to D0,D1 defined by (5.2) and (5.3), share a common matrix structure and again
the discrete inf-sup conditions guarantee the solvability at each time step for any
fixed Δt > 0. On the other hand, it is not immediately evident that the time
discretizations are stable uniformly in h. However, there are no indications in the
following convergence experiments of that stability not holding uniformly.
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6.1. Convergence. The families of finite element spaces defined by (4.6) and
(4.7) were suggested and analyzed for the elasticity equations by Arnold et al [6] and
Falk [20] respectively. As these have not been widely used for numerical simulations,
we commence by examining their convergence properties for the elasticity equations
separately. We continue by considering the finite element spaces (4.6) with k = 2
in space and the scheme (6.1) in time for the Maxwell and Kelvin-Voigt models.

6.1.1. Elasticity. Consider a discretization of the isotropic elasticity equations
(3.6) using the element spaces Σh,k, Vh,k and Qh,k as defined by (4.6). We let
Ω = [0, 1]2 and consider a uniform, regular triangulation of Ω. We solve for the
following displacement field over Ω:

(6.2) u(x0, x1) =

(
−x1 sin(πx0)
1
2πx

2
1 cos(πx0)

)
with corresponding elastic stress σ = 2με(u)+λdiv uI and force g = div σ. Observe
that u, as defined by (6.2), is divergence-free and hence that the stress σ and force
g are independent of λ. The convergence rates for the displacement and stress
approximations using μ = 1, λ = 100, k = 1, 2, 3 are given in Table 1 and are in
agreement with the predicted rates.

k log2
||u−uh||0
||u−uh/2||0 log2

||σ−σh||0
||σ−σh/2||0 log2

||σ−σh||div

||σ−σh/2||div
log2

||γ−γh||0
||γ−γh/2||0

1 1 0.997 1 1.01
2 2 1.99 2 2
3 3 3 3 3

Table 1. Convergence rates for elasticity using Σh,k×Vh,k×Qh,k,
h = (16)−1, k = 1, 2, 3, for λ = 100, μ = 1. The exact displacement
u is defined by (6.2).

Furthermore, if the displacement is small in comparison to the stress, improved
convergence in the L2-norm of stress has been observed. With the exact solution,

(6.3) u(x0, x1) =

(
sin(πx0) sin(πx1)
sin(πx0) sin(πx1)

)
and μ = 1, λ = 1000, the convergence rates for k = 1 are given in Table 2. Observe
that the L2 error rate of the stress is consistently close to 2, that is, of one order
higher than predicted by the analysis. This might be attributed to the inconsistently
high convergence rates for the rotation and also to the large difference in magnitude
of the stress and the rotation; The stress is many orders larger than the rotation in
this test case and so the error contribution from the rotation will be less significant.

h−1 log2
||u−uh||0
||u−uh/2||0 log2

||σ−σh||0
||σ−σh/2||0 log2

||σ−σh||div

||σ−σh/2||div
log2

||γ−γh||0
||γ−γh/2||0

4 2.82 1.91 0.98 2.80
8 2.45 1.97 0.995 2.88
16 1.42 1.99 0.999 2.68
32 1.04 2.00 1.00 1.74

Table 2. Convergence rates for elasticity using Σh,1×Vh,1×Qh,1,
for λ = 1000, μ = 1. The exact displacement u is defined by (6.3).

In order to demonstrate the convergence properties of the element spaces of
Falk (4.7), we replace Qh,k by Q̃h,k. Solving for the divergence free displacement of
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(6.2) with μ = 1, λ = 100, gives the convergence rates in Table 3. The anticipated
improvement of the L2 convergence for the stress and rotation is observed.

k log2
||u−uh||0
||u−uh/2||0 log2

||σ−σh||0
||σ−σh/2||0 log2

||σ−σh||div

||σ−σh/2||div
log2

||γ−γh||0
||γ−γh/2||0

1 1 2 1 2
2 2 3 2 3.17
3 3 4.03 3.04 4.05

Table 3. Convergence rates for elasticity using Σh,k×Vh,k×Q̃h,k,
h = (16)−1, k = 1, 2, 3, for λ = 100, μ = 1. The exact displacement
u is defined by (6.2).

6.1.2. Maxwell. We continue letting Ω = [0, 1]2, consider a regular triangula-
tion Th of Ω and the associated second order finite element spaces of the family
(4.6): Σh,2, Vh,2 and Qh,2. Moreover, we let T = 1 and consider a uniform partition
of the time domain [0, T ] and the TR-BDF2 difference scheme defined by (6.1).
We shall let μ0 dominates μ1 and solve for a known smooth velocity in order to
demonstrate robustness with regard to these parameters.

Define

(6.4) v(x, t) = et−1((2μ1)
−12t+ (2μ0)

−1t2)

(
−x1 sin(πx0)
1
2πx

2
1 cos(πx0)

)
and let λ0 = λ1 = 100, μ0 = 100 and μ1 = 1. Observe that the consistency
condition at the initial time is satisfied, in particular that σ(x, t) = 0 at t = 0. The
convergence rates at T = 1.0 are given in Table 4. We conclude that there is no
loss of convergence even though μ0 >> μ1.

h−1 log2
||v−vh||0
||v−vh/2||0 log2

||σ−σh||0
||σ−σh/2||0 log2

||σ−σh||div

||σ−σh/2||div
log2

||γ−γh||0
||γ−γh/2||0

4 1.96 2.03 1.99 1.98
8 1.98 2 2 1.99
16 1.99 1.99 2 1.99

Table 4. Maxwell convergence rates for λ0 = λ1 = 100, μ0 = 100,
μ1 = 1 at T = 1. Δt = h. Exact velocity v as defined by (6.4)

.

6.1.3. Kelvin-Voigt. For the Kelvin-Voigt model, we consider the previous do-
main in time and space, but solve for v given by (6.5).

(6.5) v(x, t) = (2t+ t2)et−1
(
sin(πx0) sin(πx1)
sin(πx0) sin(πx1)

)
and enforce the initial condition σ1(x, 0) = 0. The L2 error of the velocity and
rotation and H(div) error of the stresses, are measured at each time step and
included in Table 5. We observe that the convergence rates point-wise in time is of
the order O(h2).

6.2. Relaxation and creep. We now turn to illustrate the two main vis-
coelastic behaviour characteristics, creep and relaxation. The Maxwell model ex-
hibits stress relaxation as response to non-zero displacement and the Kelvin-Voigt
model exhibits creep as response to applied traction. Thus, we shall qualitatively
demonstrate a relaxation pattern using the Maxwell model and a creep pattern with
the Kelvin-Voigt model. However, the simplest model that predicts both adequate
stress relaxation and creep, is the standard linear solid (2.10). For this reason, and
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h−1 log2
||v−vh||0
||v−vh/2||0 log2

||σ0−σ0,h||div

||σ0−σ0,h/2||div
log2

||σ1−σ1,h||div

||σ1−σ1,h/2||div
log2

||γ−γh||0
||γ−γh/2||0

4 1.98 1.98 1.93 2.14
8 1.99 1.99 1.97 2.06
16 2 2 1.98 2.02

Table 5. Kelvin-Voigt convergence rates for λ0 = λ1 = 100, μ0 =
100, μ1 = 1 at T = 1.0. Δt = h. Exact solutions corresponding to
exact velocity defined by (6.5).

Maxwell Kelvin-Voigt Standard linear solid

μ0 = 20.0, λ0 = 100.0 μ0 = 20.0, λ0 = 100.0 μ0

0 = 5.0, λ0

0 = 100.0

μ1 = 80.0, λ1 = 100.0 μ1 = 80.0, λ1 = 100.0 μ0

1 = 30.0, λ0

1 = 100.0

μ1

1 = 20.0, λ1

1 = 100.0

Table 6. Parameters values used in the creep and relaxation simu-

lations. The parameters μ
(j)
i and λ

(j)
i correspond to the compliance

tensors A
(j)
i of the separate models.

in order to show the numerical method applied to a more general model, we also
include experiments for these equations.

For the experiments, we consider the usual domain in space: (x0, x1) ∈ Ω =
[0, 1]2 and t ∈ [0, T ]. We let the body be clamped at the left boundary x0 = 0 and
stress-free at the top and bottom x1 = 0, 1. On the right boundary, a velocity is
prescribed for the relaxation experiments and a prescribed traction is used for the
creep experiments. The material parameters used are listed in Table 6.

6.2.1. Relaxation. The Maxwell and standard linear solid models exhibit stress
relaxation as response to non-zero displacement. To illustrate this behaviour, we
apply a unit boundary velocity in the x0 direction, on the right boundary x0 = 1 at
a given time tmin and remove the velocity at tmax. This produces a displacement, in
particular a constant displacement for t > tmax. The Maxwell model predicts that
the stresses increase from tmin to tmax and after that decrease to the zero limit. For
the standard linear solid model, the stresses will decrease toward an elastic limit
for t > tmax.

The displacement and stress approximations for the Maxwell model are plotted
in Figure 1. Observe in particular the exponential relaxation of the stress for
t > tmax. The same experiment for the standard linear solid is plotted in Figure 2.

6.2.2. Creep. The Kelvin-Voigt and standard linear solid models predict creep
as response to applied traction. To demonstrate this, we apply a unit boundary
traction in the x0 direction at the right boundary x0 = 1 at a given time tmin

and remove at tmax. The L2(Ω) norms of the approximated displacements and
stresses are displayed in Figure 3 for the Kelvin-Voigt model and Figure 4 for the
standard linear solid. Observe the initial increase towards the elastic limit and
subsequent decrease for the displacement for the Kelvin-Voigt model. Also note
the instantaneous displacements for the standard linear solid.

7. Conclusion

We have presented a unified mixed finite element framework for linear vis-
coelasticity. The framework relies on mixed finite element discretizations originat-
ing from linear elasticity. These discretizations have been evaluated by numerical
experiments both for linear elasticity and viscoelasticity. The analytical predictions
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Figure 1. Maxwell response to applied velocity. Left: Displace-
ment u versus time t. Right: Stress ||σ(t)||A1

versus time t. Dis-
cretization parameters: Δt = 1.0/30, h = 1.0/32, tmin = 0.3,
tmax = 1.0, T = 2.0.
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Figure 2. Standard linear solid response to applied velocity.
Left: Displacement u versus time t. Right: Stresses ||σ0(t)||,
||σ1(t)||, and ||σ(t)||0 versus time t. Discretization parameters:
Δt = 1.0/30, h = 1.0/32, tmin = 0.3, tmax = 1.0, T = 2.0. (The
applied velocity is one tenth of the one applied for the Maxwell
model.) The standard linear model can, in term of springs and
dashpots, be viewed as a Maxwell element in parallel with an elas-
tic spring. The corresponding components of the stress are there-
fore labelled Maxwell and Elastic according to this interpretation.
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Figure 3. Kelvin-Voigt response to applied traction. Left: Dis-
placement u versus time t. Right: Viscous and elastic stress,
||σ0(t)||0 and ||σ1(t)||0 versus time t. Parameters: Δt = 1.0/30,
h = 1.0/32, tmin = 0.3, tmax = 3.0, T = 5.0.
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Figure 4. Standard linear solid response to applied traction. Left:
Displacement u versus time t. Right: Maxwell, elastic and total
stress, ||σ0(t)||0, ||σ1(t)||0 and ||σ(t)||0 versus time t. Parameters:
Δt = 1.0/30, h = 1.0/32, tmin = 0.3, tmax = 3.0, T = 5.0. (The
applied traction is ten times the one applied for the Kelvin-Voigt
model.)

are confirmed and the anticipated robustness with regard to material parameters
demonstrated.
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Paper II

MIXED FINITE ELEMENT METHODS FOR GELS WITH
BIOMEDICAL APPLICATIONS

marie e. rognes, m. carme calderer and catherine a. micek

Abstract. A set of equilibrium equations for a biphasic polymer gel are con-
sidered with the end purpose of studying stress and deformation in confinement
problems encountered in connection with biomedical implants. The existence
of minimizers for the gel energy is established first. Further, the small-strain
equations are derived and related to the linear elasticity equations with pa-
rameters dependent on the elasticity of the polymer and the mixing of the
polymer and solvent. Two numerical methods are considered, namely a two-
field displacement-pressure formulation and a three-field stress-displacement
formulation with weak symmetry. The symmetry of the stress tensor is af-
fected by the residual stress induced by the polymer-solvent mixing. A novel
variation of the stress-displacement formulation of linear elasticity with weak
symmetry is therefore proposed and analyzed. Finally, the numerical methods
are used to simulate the stresses arising in a confined gel implant.

1. Introduction

Since the development and commercialization of the pacemaker in 1957, a wide
variety of biomedical devices have been designed to address chronic health condi-
tions. In addition to the pacemaker, other examples of body implantable devices
include artificial bone tissue and cardiovascular stents. When designing such de-
vices, their long-term use must be taken into account. Many of these devices are
made of synthetic polymers, and, upon insertion in the human body, the absorption
of moisture can cause the polymer to swell. The combination of swelling and con-
finement causes stresses that may compromise the intended life-time of the device.
For example, in devices such as artificial bones that are attached with a chemical
glue, the stress buildup along the attachment can loosen the glue and destroy de-
vice performance. Hence, the impact of the body environment on a device is an
important aspect of body implantable devices. In particular, the ability to predict
the resulting stresses may be crucial to effective design.

Polymers that have absorbed moisture classify as gels, and many of the biomed-
ical devices use polymers in a gel form. The term gel refers to cross-linked polymer
networks or entanglements enclosing a solvent such as water. The two compo-
nents of the gel coexist by balancing each other. The polymer network confines
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the liquid solvent, and the solvent ensures that the polymer does not collapse into
a dry state. Thus, gels typically have the appearance of solids and may in many
situations behave as such. However, the pioneering work of Tanaka in the 1970s
revealed some surprising physical properties [24]. One such is the ability of the gel
to display phase transitions. A gel phase transition is a finite change in volume of
the polymer network – either a large expansion or contraction – that is induced by
an infinitesimal change in the external environment. This and other properties of
gels give an immensely rich array of applications [21, Vol 3].

Due to their complex physical properties, the mathematical modelling of gels
is a non-trivial task. Tanaka identified the following three forces acting on the
polymer network and labelled their sum the osmotic pressure: the elasticity of
the polymer network, the interaction of the polymer and solvent (also called the
polymer-polymer affinity), and the ionization of the polymer network [24]. For
the dynamics of gels, additional mechanisms, such as the diffusion of solvent and
ions, the dynamics of the polymer network, and the dissipation of energy must be
accounted for. The modelling of gel dynamics has been an active field since the
1970s. Recent approaches in gel modelling include [8, 11, 19]. Also, the mechanics
and modelling of biphasic soft tissue share common features with that of polymer
gels. Mathematical models for gels may comprise fields such as deformation of
the polymer network, velocities of polymer and solvent, pressures, stresses, and
electrical and chemical concentrations. Clearly, the dynamical equations become
a complicated system. Numerical methods are therefore essential for the solution
and simulation of these equations.

The wide range of different modelling approaches makes direct comparison of
simulation approaches challenging, but it is possible to identify some general trends.
The flexibility of finite element methods with regard to complicated domain geome-
tries has made it a natural choice for numerical simulations. In particular, mixed
finite element methods approximating the velocities and pressure, possibly in com-
bination with other variables, such as in [22], have been widespread. However,
numerical stability considerations with respect to the material parameters and the
mixed finite element spaces are rare in the literature. Some exceptions include the
comparison of stabilized and stable velocity-pressure formulations for the deforma-
tion of biphasic soft tissue by Almeida and Spilker [1] and the study of an extended
finite element method for the transitional interface dynamics of hydrogels by Dol-
bow et al. [12]. In this paper, the stability of the numerical methods with reference
to the material parameters is carefully considered.

For biomedical devices such as artificial bone implants, the main question is the
equilibrium state of the gel and the stress distribution in the gel and at interfaces.
Accordingly, in this paper, we focus on the static equilibrium problem of non-ionic
gels. The starting-point is taken from the equilibrium equations of [8], based on
balance laws and the theory of mixtures, which again can be related to the series
of papers of Doi et al. [26, 27, 28] and the classical work of Flory [16]. The poly-
mer network and polymer-solvent interaction contributions to the osmotic pressure
are accounted for by the combination of an elastic and a mixing energy. Similar
equations were treated by a deformation-based finite element method by Hong et
al. [18]. Further, for this type of applications, the deformations are typically small
and thus the linearized regime may be relevant. Consequently, we shall derive the
small strain gel equilibrium equations. These reduce to the equations of linear
elasticity, with Lamé coefficients additionally depending on the volume fraction of
the polymer and the mixing energy. As the theory of finite element and mixed
finite element methods for linear elasticity is very well-studied, we refer to [13]
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for a recent survey. Since the stress is of the main interest, we consider two nu-
merical approaches, offering higher order stress approximations, though in different
ways. Both a two-field displacement-pressure and a three-field stress-displacement-
rotation mixed finite element method are presented and subsequently invoked.

To our knowledge, there are very few, if any, other works having studied mixed
finite element methods of the stress-displacement-rotation type in the biphasic gel
setting. The presence of the additional mixing energy gives additional features when
compared to the purely elastic case. In particular, the state in which the residual
stress vanishes is less intrinsic. The effect of non-vanishing residual stress due to
non-equilibrium fractions of polymer is of direct physical interest, and a key as-
pect of this work. Both the displacement-pressure and stress-displacement-rotation
methods we present allow for the possibility of non-vanishing residual stress. How-
ever, if the residual stress does not vanish, the linearized first Piola-Kirchhoff stress
tensor is not symmetric, and thus the standard symmetry constraint of the stress
tensor does not apply. Therefore, we propose a strategy for extending the weak sym-
metry stress-displacement-rotation formulation to the case where the stress tensor
is not symmetric. The new weak formulation can be viewed as a perturbation of
the stress-displacement-rotation formulation, and we characterize the stability of
this formulation with respect to the elastic and mixing parameters.

The organization of this paper is as follows. The governing equations of a gel
are reviewed and the free energy assumptions are discussed in Section 2. The min-
imization of the energy problem and the existence of minimizers are considered in
Section 3. In Section 4, the Euler-Lagrange equations are derived and linearizations
of these stated for further study in Section 5. There, we first discuss the stability of
the resulting displacement-pressure and the stress-displacement-rotation formula-
tions with regard to the gel material parameters. The main component of Section 5
though is the derivation and analysis of a novel variation of the stress-displacement-
rotation formulation. In Section 6, we investigate the new formulation numerically,
and then provide simulations of a confined polymer gel representing an artificial
bone implant.

2. Governing equations of a gel

This paper focuses on the static equilibrium equations of a biphasic gel. In
order to frame these equations and to introduce notation, we begin by presenting a
brief survey of the governing equations of a gel and their derivation. This material is
mostly classical, and we refer to [21, 25] and [8, 9] for a more thorough exposition.
Under certain additional assumptions, the model reduces to the stress-diffusion
coupling model proposed by Yamaue and Doi [27]. Next, assumptions regarding
the free energy of the gel, and hence the constitutive equations, are discussed.
Adopting the viewpoint of Flory [16] and subsequent modelling approaches [8],
we consider the sum of an elastic and a Flory-Huggins energy. These two terms
account for the elasticity of the gel and the mixing of the polymer and solvent,
respectively.

2.1. Governing equations of a biphasic gel. Following the approach in [8],
we consider the gel to be an immiscible, incompressible mixture of polymer and
solvent. In an immiscible polymer-solvent mixture, the constitutive equations ex-
plicitly depend on the volume fractions φ1 and φ2 of the polymer and solvent,
respectively. The volume fraction φi of each component is canonically defined as
the volume of the component per unit volume of the gel. We denote by ρi the mass
density of component i per unit volume in space for i = 1, 2. These are related to
the intrinsic densities γi, by ρi = γiφi. A mixture is incompressible if the intrinsic
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density of each component is constant. Without loss of generality, we take the in-
trinsic densities of polymer and solvent to be equal to 1, and thus the mass density
and volume fraction of each component coincide. We remark that the incompress-
ibility of the mixture does not preclude deformations with change of volume. This
point will be discussed further. Finally, we assume that there are neither voids nor
additional material components in the system.

Let Ω ⊂ Rn (n = 1, 2, 3) describe a reference domain, with coordinates X , and
assume that Ω is open and bounded with boundary ∂Ω. Let

x : Ω→ Ωx,

denote a smooth deformation map satisfying det∇x > 0. Throughout this work,
F = ∇x denotes the gradient of deformation. The divergence operator, taken row-
wise when applied to matrices, is labelled div, ∂∂t denotes the time derivative. These
assumptions, together with the laws of balance of mass and linear momentum, and
the second law of thermodynamics, yield the following set of governing equations
over the Eulerian frame, that is, over the domain Ωx.

φ1 + φ2 = 1,(2.1a)

∂φi
∂t

+ (vi · ∇)φi + φi div vi = 0 i = 1, 2,(2.1b)

φi
∂vi
∂t

+ φi(vi · ∇)vi = div Ti + fi i = 1, 2,(2.1c)

f1 = π∇φ1 − β(v1 − v2) = −f2.(2.1d)

Here, for each component i, vi is the velocity, Ti is the Cauchy stress tensor, and
fi is a force due to friction. Moreover, β is the polymer drag coefficient, and π is
a Lagrange multiplier associated with the constraint (2.1a). In addition to (2.1), a
kinematic compatibility condition between the time derivative of the deformation
gradient and the velocity gradient results from the chain rule:

(2.2) Ft + (v1 · ∇)F = (∇ v1)F.

The governing system of equations becomes (2.1) combined with (2.2) and consti-
tutive equations for the stress tensors, Ti.

The boundary conditions for the system are formulated as mixed displacement-
traction conditions for the gel and permeability conditions at the interface between
the gel and a fluid environment. These can be represented as boundary conditions
for the balance of linear momentum of the polymer and solvent, that is, (2.1c) for
i = 1, 2, respectively. The derivation of these equations and more details can be
found in [8].

The static equilibrium equations are obtained by setting v1 = v2 = 0. The
total stress T is the sum of the component stresses Ti. Furthermore, we assume
that the polymer is elastic and the solvent is Newtonian. Hence, the polymer
and solvent stresses only depend on the deformation and the rate of deformation,
respectively. As a result, the equilibrium stress reduces to that of the polymer only,
so T = T1. The additional assumption that the polymer stress depends on the
volume fraction of the polymer gives the relation T1 = T1(F, φ1). The resulting
problem is an elastic equilibrium problem, which may be more naturally handled
in the reference configuration.

Introducing the first Piola-Kirchoff stress tensor S = det(F )F−1T , the equi-
librium reference equation becomes:

(2.3) divS(F, φ1) = 0 in Ω.

We have here, and will throughout, made a standard abuse of notation by labeling
φ1(X) := φ1 ◦ x(X) for X ∈ Ω. Next, assume that the body in the reference
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configuration has a reference polymer volume fraction, φI : Ω → (0, 1). Using the
incompressibility assumption of the mixture and the resulting identification of the
mass density and volume fraction, the balance of mass constraint of the polymer
component reads ∫

Ω

φI dX =

∫
Ωx

φ1 dx =

∫
Ω

φ1 detF dX.

With the assumption that the above constraint is satisfied for all parts of the body
Ω, we obtain the following local constraint:

(2.4) φ1 detF = φI in Ω.

Remark 2.1. We emphasize that the balance of mass constraint (2.4) allows
deformations with change in volume. In this regard, the mixture incompressibility
assumption differs from classical incompressibility assumptions. Further, by defi-
nition, φ1 must take values in [0, 1]. This observation, in combination with (2.4),
yields the constraint detF ≥ φ1.

2.2. Elastic and mixing energies. To provide a complete physical descrip-
tion of the gel, the governing equations in equilibrium, (2.3) and (2.4), must be aug-
mented with appropriate constitutive equations for the polymer-solvent mixture.
In this exposition, keeping with [9], we shall assume that the gel is hyperelastic and
model the free energy for the gel as a sum of an elastic and a Flory-Huggins mixing
energy [16]. This approach aims to account for the osmotic pressure contributions
from the elasticity of the polymer network and the mixing of polymer and solvent.
Furthermore, recall that the physical manifestation of gel phase transitions implies
that there exists a critical set of physical parameters, corresponding to the onset of
phase separation. Mathematically, this can be represented by a convexity transi-
tion of the free energy. The Flory-Huggins energy offers such a transition for given
critical parameter values.

Due to (2.1a), the volume fraction of the solvent can be trivially eliminated
in terms of the volume fraction of the polymer: φ2 = 1 − φ1. Hereafter, we omit
the subscript and let φ = φ1. The elastic energy per unit undeformed volume,
denoted WE , is naturally formulated over the reference domain Ω. However, the
Flory-Huggins energy, denotedWFH , is traditionally formulated per unit deformed
volume [16]. This necessitates a change of variables on the Flory-Huggins energy.
The resulting total energy E now follows:

(2.5) E(x, φ) =
∫
Ω

WE(F, φ) + detF (WFH(φ) + cFH) dX,

where cFH is a nonnegative scalar field on Ω. The term with coefficient cFH penal-
izes growth of (detF ), and thus growth of the physical gel volume. We postpone
further discussion of this term momentarily, and instead provide some discussion
of assumptions on the energy potentials WE and WFH .

For elastic energy potentials, we restrict our attention to potentials of the form:

(2.6) WE(F, φ) = φIWP (F ),

where the potential is separable in its arguments and depends linearly on the ref-
erence volume fraction. We observe that, as a consequence of the local balance
of mass (2.4), the dependency on the reference volume fraction in the energy per
undeformed volume naturally translates to a dependency on the volume fraction in
the energy per deformed volume. This restriction is thus in accordance with that
of [9]. In Section 4 and onwards, we consider WP taking the following, isotropic
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form:

(2.7) WP (F ) = μE

(
1

2p

(
||F ||2p − ||I||2p

)
+
||I||2(p−1)

β
((detF )−β − 1)

)
,

for p ≥ 1, where ||F ||2 = tr(FFT ) = F : F , I is the identity matrix in Rn×n, μE is
an elastic stiffness modulus, and β a parameter related to polymer compressibility.
The constants are such that the identity state has zero energy and is also stress-free.
This elastic energy density (2.7) has been proposed and studied in the context of
compressible elasticity (see [23], and the discussion in [10, Section 4.10]). Note
that the energy potential reduces to a compressible neo-Hookean potential when
p = 1.

Remark 2.2. In view of Remark 2.1, the traditional interpretation of the term
(detF )−β does not apply within the mixture framework. In particular, the interpre-
tation of the limiting case β →∞ is less clear. In the following, we shall view this
term as a contraction penalty, ensuring that the domain does not degenerate under
deformation.

The Flory-Huggins mixing energy quantifies the energy available in the gel for
polymer-solvent mixing and the energy per deformed volume reads:

(2.8) WFH(φ) = aφ lnφ+ b(1− φ) ln (1− φ) + cφ(1− φ),

for positive parameters a, b, c. The parameters a, b, and c can be related to the
specific polymer, solvent, and gel environment as follows [8, 16]:

(2.9) a =
KBT

VmN1
, b =

KBT

VmN2
, c =

KBTχ

2Vm
, χ =

Δw

KBT

where T is the absolute temperature, KB is the Boltzmann constant, χ is the Flory
interaction parameter, Δw is the change in energy per monomer-solvent interaction,
Vm is the volume occupied by one monomer, and N1 and N2 are the number of
lattice sites occupied by the polymer and solvent, respectively. The energy potential
given by (2.8) is well-defined for φ ∈ [0, 1]. In particular, WFH(0) =WFH(1) = 0,
andWFH is smooth for φ ∈ (0, 1). We note, however, that the energy given by (2.8)
can take both positive and negative values. In order to ensure a lower bound
of the total energy (2.5), we shall here introduce a lifting of the Flory-Huggins
energy potential by letting cFH = cFH(a, b, c) = − inf0<φ<1WFH(φ). The lifting
parameter cFH is clearly bounded in terms of the other Flory-Huggins parameters:
0 ≤ cFH ≤ (a+b). The change of variables from deformed to reference configuration
accounts for the (detF ) factor in (2.5).

The convexity ofWFH , or the lack of such, plays a central role in the following
analysis. Changes in the convexity of WFH may impact the polyconvexity of the
total energy potential. Furthermore, changes in the polyconvexity of the total
energy potential impact the existence of energy minimizers. The convexity ofWFH

depends on the values of the coefficients a, b and c, and, in particular, on the
interaction parameter χ. It can easily be seen that WFH will be convex at φ if a, b
and c are such that

a

φ
+

b

1− φ
≥ 2c.

Our final observation is that the constraint (2.4) allows for the elimination of
φ in terms of detF . This substitution reduces the total free energy to an entirely
mechanical energy with the following potential:

(2.10) E(x) =
∫
Ω

WE(F, φI (detF )−1) + (detF ) (WFH(φI(detF )−1) + cFH) dX.

60



mixed finite elements for gels

The problem of minimizing (2.10) can be viewed as a non-linear, compressible
elasticity problem. One advantage of this formulation is that known techniques
provide a framework for its mathematical and numerical analysis.

3. Existence of minimizing deformations

The physical deformation x of a gel defined over the domain Ω will be a min-
imizer in some admissible function space of the energy (2.10) augmented by body
and boundary forces, if such a minimizer exists. This section, in particular the main
theorem, Theorem 3.2, treats the existence of energy minimizers in the polyconvex
case. A remark on a strategy for the non-convex case closes the section.

We begin by introducing some notation in order to define the space of admissible
functions and for later use.

• Let Ω be an open, bounded subset of Rn, with Lipschitz boundary ∂Ω,
and let ∂Ω = ∂Ω0 ∪ ∂Ω1 with ∂Ω0 ∩ ∂Ω1 = ∅. Assume that ∂Ω0 has
positive measure. The unit outward normal on ∂Ω is denoted n.

• We use the linear spaces of n vectors V, n × n matrices M, symmetric
matrices S and skew-symmetric matrices K. The inner product on M is
denoted : and || · || is the Frobenius norm. The adjugate of an invertible
matrix F is denoted adjF , that is, adjF = (detF )F−1.

• Let {ι1, ι2, ι3} denote the invariants of the left Cauchy-Green strain ten-
sor FFT . Recall that ι1 = tr(FFT ), ι2 = tr adj(FFT ) and ι3 = det(FFT ).

• The space of p-integrable fields on Ω with values in X is denoted Lp(Ω;X)
with inner product 〈·, ·〉 and norm || · ||0. For notational ease, we will
frequently omit the domain and range.

• W k,p(Ω;V) denotes the Sobolev space of vector fields in Lp(Ω;V) such
that the k’th derivatives exist in the distributional sense and belong to
Lp. The associated norm is denoted by || · ||k,p. For p = 2, we use the
standard abbreviation Hk = W k,2 with norm || · ||k. Further, we let

W 1,p
0 (Ω;V) = {x ∈W 1,p(Ω;V), x = 0 on ∂Ω0}.

Also, H1
0 = W 1,2

0 .
• The space of square integrable matrix fields with square integrable di-
vergence (taken row-wise) is denoted H(div,Ω;M). We also have the
constrained space:

H0(div,Ω;M) = {σ ∈ H(div,Ω;M), σ · n|∂Ω1
= 0}.

Assume that φI ∈ L∞(Ω; (0, 1)). For 2p > n and a prescribed boundary condi-
tion x0 ∈ W 1,2p(Ω), we define the space of admissible vector fields A as follows:

A = {x : Ω→ R
n, x ∈ x0 +W 1,2p

0 , adj∇x ∈ L2q(Ω), det∇x ≥ φI a.e. in Ω}.
We shall assume that the space A is non-empty; more specifically, that the con-
straint on the deformation gradient determinant can be fulfilled under the given
boundary condition x0. Now consider the following isotropic energy density:

(3.1) E(x) =
∫
Ω

W(F ) dX =

∫
Ω

G(ι1, ι2) +H(ι3) dX.

Clearly, the gel energy defined by (2.10) can be expressed as a special case of (3.1),
using the following identifications:

G(ι1, ι2) =
μE
2p

(
ιp1 − ||I||2p

)
,(3.2)

H(ι3) =

{
ι3

(
WFH(φIι

−1
3 ) + cFH

)
+ C(ι−β3 − 1), φI < ι3

+∞, otherwise
,(3.3)
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where C = C(β, μE , φI , p) is (implicitly) defined by (2.7) and the Flory-Huggins
energy has been extended to the real line.

Remark 3.1. If WFH is convex, H′′(ι3) > 0 for all ι3 ≥ φI . However,
H′′(ι3) < 0 for some ι3 ≥ φI , if the interaction parameter χ, defined in (2.9),
is sufficiently large.

Moreover, we assume that there exist constants A1, A2 > 0, B ≥ 0 (or, if G(ι1, ι2) =
G(ι1), A2 ≥ 0) and p > n

2 , q ≥
p

2p−1 such that G(ι1, ι2) satisfies the growth condition

(3.4) G(ι1, ι2) ≥ A1ι
p
1 +A2ι2

q −B.

Clearly, (3.2) satisfies (3.4) with A2 = 0, if 2p > n and μE > 0. Note that the neo-
Hookean potential, corresponding to p = 1, does not satisfy the growth condition
for n ≥ 2.

The existence of minimizers of the energy (3.1), with H convex, over the space
of admissible vector fields A is established in Theorem (3.2) below. We note that
the assumption that G and H are convex give the polyconvexity of W .

Theorem 3.2. Assume that G(·, ·) is convex, satisfies the growth inequality (3.4),
and that H(·) is convex. Suppose that x0 ∈ W 1,2p and that det∇x0 > φI . Then,
there exists x ∈ A that minimizes the energy (3.1).

Proof. We first observe that, by the construction of cFH , there exists an
m > −∞ such that m ≡ infA E(x). Let {xk}k≥1 ∈ A denote a minimizing sequence
of E , that is, {xk} has the property limk→∞ E(xk) = m. To show that the problem
of minimizing E in the set A has a solution, we proceed along the following steps.
Step 1. Prove that there exists a subsequence of {xk} (still denoted by xk) such
that

lim
k→∞

xk = x̄, weakly in W 1,2p.

Step 2. Show that E is weakly lower semicontinuous in W 1,2p, that is, for any
minimizing sequence {xk} ∈ A,
(3.5) lim

k→∞
inf E(xk) ≥ m.

Step 3. Show that x̄ ∈ A. This combined with the weak lower semicontinuity
property (3.5) allows us to conclude that

min
y∈A

E(y) = E(x̄).

We outline steps 1 and 2 following [10, Theorem 7.7.1] and [4]. First, we find
a lower bound of the energy. It follows from (3.4) and the form of H, that there
exists a constant γ such that

E(x) ≥
∫
Ω

A1‖∇x‖2p +A2‖ adj∇x‖2q +A3(det∇x) dX + γ|Ω|,

for all x ∈ A. An application of the generalized Poincaré inequality [10, Theorem
6.1-8(b)] allows us to conclude that there exist constants a1 > 0 and a2 such that

(3.6) E(x) ≥ a1

(
‖x‖2p1,2p + ‖ adj∇x‖2q0,2q

)
+ a2,

for all x ∈ A. In particular, it follows from (3.6) that the the sequence {xk, adj∇xk}
is bounded in W 1,2p × L2q. By the assumptions on p and q, this space is reflexive.
Therefore, there exists a subsequence {xk, adj∇xk} that converges weakly to an
element (x̄, adj∇ x̄) in the space W 1,2p × L2q.

Second, by the weak lower semicontinuity of the determinant function, we have
that

(3.7) det∇xk ⇀ det∇ x̄ in L
2p
n .
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The weak lower semicontinuity of E is then a consequence of the convexity of G
together with the convexity of H.

Third, the property det∇ x̄ ≥ φI , a.e. in Ω, follows from Mazur’s Lemma
together with (3.7). Indeed, by Mazur’s lemma, for a given ε > 0, there exists

N = N(ε), and {λi(ε)} with
∑N

1 λi = 1, such that

‖
N∑
1

λi det∇xi − det∇ x̄‖0, 2p
n

< ε.

Since det∇xk ≥ φI , we conclude that det∇ x̄ ≥ φI almost everywhere and hence,
x̄ ∈ A. �

The relation φ = φI(det∇ x̄)−1 allows us to recover the volume fraction variable
φ ∈ L∞(Ω), which corresponds to the energy minimizer x̄.

Remark 3.3. In the case that H is non-convex, the previous theorem does
not apply. In such a case, the total energy can be modified by the addition of a
regularization term. The new gel energy becomes

(3.8) Er(x, φ) =
∫
Ω

WE(F ) dX +

∫
Ωx

WFH(φ) + cFH + ε || ∇x φ||2 dx,

with ε > 0 small. Although we do not consider this extension in the remainder of
this work, we point out that existence of minimizer for a regularized energy of the
form (3.8), although with a modified WE and WFH , was studied in [29].

4. Linearizations of the Euler-Lagrange equations

With the existence of minimizers proven for the convex case, we turn our atten-
tion to the Euler-Lagrange equations. The equations are nonlinear, but we provide
a linearization of the equations in this section. This is motivated by the fact that,
for the biomedical applications we aim to consider in this exposition, the linear
regime may be meaningful and applicable. Moreover, qualitative effects of changes
in the environment can be studied through linearized perturbations. The resulting
linear boundary value problem will be further studied in Sections 5 and 6.

We consider the energy defined by (2.10), complemented by the energy poten-
tials specified by (2.6), (2.7) and (2.8), and augmented by a body force g and a
boundary stress s0 on ∂Ω1. Upon taking variations, we obtain the Euler-Lagrange
equilibrium equations over the reference domain Ω for the first Piola-Kirchhoff stress
tensor S, cf. (2.3). The strong form of the problem formally reads as follows. Find
a deformation x : Ω→ Ωx and the associated stress tensor S such that

S = ν(∇ x)∇ x− κ(∇ x)∇x−T in Ω,(4.1a)

divS = g, in Ω,(4.1b)

x = x0 on ∂Ω0, S · n = s0 on ∂Ω1,(4.1c)

where n denotes the outward oriented normal of the boundary. The coefficients ν
and κ are functions of a matrix variable and take the form

ν(F ) = μEφI ||F ||2(p−1)

κ(F ) = μEφI ||I||2(p−1)(detF )−β − (detF ) (WFH(φ) + cFH − φW ′
FH(φ)) .

(4.2)

Here, we have reintroduced φ = φI(detF )−1 for the sake of notational brevity.
Recall that μE > 0, β, and p ≥ 1 are elastic parameters, the former being the elastic
shear modulus. As before, φI is the volume fraction in the reference configuration.
The derivative of the Flory-Huggins potential W ′

FH is the derivative with regard
to the variable φ, cf. (2.8).
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For frequent later reference, we label the residual stress (at F = I):

(4.3) r(φ) =WFH(φ) + cFH − φW ′
FH(φ).

This quantity plays a key role in the numerical methods to follow. The residual
stress is the stress in the reference state defined by the reference domain. For purely
elastic materials, the residual stress is often assumed to vanish. In our model, the
notion of vanishing residual stress becomes a restriction on the reference volume
fraction φI , since the residual stress will vanish if and only if φI satisfies r(φI) = 0.
The existence of such φI is guaranteed by the lifting of the Flory-Huggins potential
by cFH . If φI is a global minimizer of the Flory-Huggins potential, WFH(φI) =
−cFH and W ′

FH(φI) = 0, which thereby results in r(φI) = 0. However, this
constraint is too limiting for our purposes, as the volume fraction in the reference
configuration may be arbitrary. We therefore also aim to consider φI such that
r(φI ) �= 0. In fact, this is a key point for the following.

4.1. The linearized boundary value problem. The Flory-Huggins energy
potentialWFH , and hence the constitutive equations of (4.1), depends on the phys-
ical parameters {a, b, c}. In the form given by (2.9), these parameters are explicitly
dependent on the temperature, but may also be sensitive to other environmental
parameters. In order to obtain a qualitative understanding of the effect of changes
in the environment, perturbations of a generic environment parameter T may be
considered.

Let the Piola-Kirchhoff stress tensor S = S(F, T ) be as defined by (4.1a).
Assuming that F = ∇(x0+u) and T = T0+ΔT , give the first order approximation:

(4.4) S(F, T ) ≈ S(F0, T0) +
∂S
∂F

(F0, T0)[∇ u] +
∂S
∂T

(F0, T0)[ΔT ],

where F0 = ∇x0. The approximation is valid under the assumption of small
perturbations in the deformation gradient and the environment parameter. On the
right hand side, the first term corresponds to the force induced by the residual
stress at (F0, T0), the second term is the elasticity tensor linearized about the
deformation gradient F0, and the third term corresponds to the force induced by
the change of environment. If ΔT = 0 and F0 = I, (4.4) reduces to the linear
elasticity approximation. A set of elementary, but somewhat lengthy calculations
give the following expression of the Gateaux derivative of S:

(4.5)
∂S
∂F

(F0)[G] = ν(F0)G+ κ(F0)F
−T
0 GTF−T0

+ λ0(F0)(F0 : G)F0 + λ1(F0)(F
−T
0 : G)F−T0 ,

where ν and κ are defined by (4.2). The constants λ0 and λ1 are defined by

λ0(F ) = 2(p− 1)μEφI ||F ||2(p−2),
λ1(F ) = μEφIβ||I||2(p−1)(detF )−β + (detF )(r(φ) + φ2W ′′

FH(φ)),
(4.6)

where, once again, we write φ = φI(detF )−1 and r is defined by (4.3).
We take a closer look at the residual stress at a given deformation gradient

F0. Since the constitutive relation is isotropic, S(F0·) = 0 implies that F0 = f0I
for some scalar f0. In other words, for the residual stress at F0 to vanish, F0

must be a certain pure expansion or contraction. Furthermore, we note that for
any such f0I, the forcing terms of (4.4) correspond to pure pressures. In the case
f0 = 1, S(I, ·) = r(φI )I, where r(φI ) is defined by (4.3). The linear boundary value
problem resulting from taking f0 = 1 is summarized below in Problem 1.

Problem 1. Let Ω be an open and bounded domain in Rn with Lipschitz bound-
ary ∂Ω = ∂Ω0∪∂Ω1, ∂Ω0∩∂Ω1 = ∅. For a given φI : Ω→ (0, 1) and given forces f
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and g, find the displacement u : Ω→ V and the stress tensor σ : Ω→ M satisfying
the boundary conditions u|∂Ω0

= u0 and σ · n|∂Ω1
= s0 and such that

σ − Cr[∇ u] = r(φI)I + f,(4.7a)

div σ = g.(4.7b)

Here, r is defined by (4.3) and Cr is the residual-dependent stiffness tensor:

(4.8) Cr[∇u] =
∂S
∂F

(I)[∇ u] = μ(φI)∇u+ (μ(φI)− r(φI ))∇uT + λ(φI)(div u) I,

and the generalized Lamé coefficients μ and λ are given by

μ(φ) = μEφ||I||2(p−1)

λ(φ) = 2(p− 1)μEφ||I||2(p−2) + βμEφ||I||2(p−1) + r(φ) + φ2W ′′
FH(φ).

(4.9)

If φI is such that r = r(φI ) = 0, the stiffness operator Cr reduces to the stan-
dard linear elasticity tensor. Although the Lamé coefficients μ and λ additionally
depend on the reference volume fraction φI and the Flory-Huggins potentialWFH .
In this case, the stress tensor is symmetric; that is, σ : Ω→ S. On the other hand,
if φI is such that r(φI ) �= 0, then the reference volume fraction is not an equilibrium
volume fraction, and the gel is inclined to deform by either swelling or collapsing.
We consider two possible approaches to this case and preface their description by
noting that both approaches allow us to arbitrarily prescribe a reference volume
fraction φI .

The first approach is simply to consider the system of equations (4.7) directly.
However, the additional source introduced by the residual stress and, more im-
portantly, the skew-symmetry part of the displacement gradient must be resolved.
This approach is studied carefully in the main part of Section 5.

The second approach is restricted to the case where the material parameters
are assumed to be homogenous. In this approach, we can consider linearizations
about homogenous, non-identity deformations F0 = f0I, where f0 �= 1. These
deformations are pure expansions or contractions with f0 chosen such that (4.1a)
vanishes; that is, S(f0I, ·) = 0. The stipulation is that f0 is such that

(4.10) ν(f0I)f0 − κ(f0I)f
−1
0 = 0.

The linearized equations, resulting from considering (4.4) and (4.5) with F0 = f0I,
become (4.7) and (4.8) with r = 0 and the Lame coefficients

(4.11) μ(φ, f0) = ν(f0I), λ(φ, f0) = f20λ0(f0I) + f−20 λ1(f0I),

where λ0, λ1 are given by (4.6). In addition, we observe that the linearization about
a non-identity state may require some additional care when applying boundary
conditions, but postpone further discussion of this until Section 6.

Having set up the equations to study, we continue by discussing weak formu-
lations and discretizations of Problem 1 and the linear stability of such in terms
of the gel parameters, paying special attention to the role of residual stress r. We
shall demonstrate the use of both the approaches described above in the subsequent
sections, but will explicitly state when we consider (4.11) in place of (4.9).

5. Weak formulations and linear stability

The boundary value problem defined by Problem 1 with r = 0 is, in effect, the
standard linear elasticity problem. Finite element and mixed finite element methods
for the approximation of these equations are very well-understood and a multitude
of approaches are available. In this work, we consider mixed finite elements, a
choice which is motivated by two primary considerations. First, it is well-known
that the pure displacement formulation, which results from eliminating the stress
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tensor σ and looking for a displacement u ∈ H1(Ω;V), is unreliable if λ→∞ or if
the clamped boundary ∂Ω0 constitute only a small part of the total boundary [5].
In our problem, since λ(φI) → ∞ as φI → 1 for λ defined by (4.9), we seek weak
formulations that are robust in the sense that they afford uniform convergence in
the coefficient λ. Mixed finite element methods to offer such a feature. Second, in
the biomedical confinement problems we address in this paper, the quantity of main
interest is the stress σ ·n. Therefore, it may be natural to approximate this variable
directly. A recent survey of mixed finite element methods for linear elasticity was
presented by Falk [13].

In this section, we shall examine two types of mixed finite element methods for
the gel equations as defined by Problem 1: the displacement-pressure and stress-
displacement-rotation formulations. Both are robust with respect to the coefficient
λ and typically give second (or higher) order stress approximations for smooth solu-
tions. Both will be used for simulations in Section 6. In the displacement-pressure
method, the displacement u and a pressure p are approximated directly. This for-
mulation gives a version of the Stokes equations with an additional stabilization
term. The discrete stability requirements on the associated pair of finite element
spaces typically mandate higher order approximation spaces for the displacement.
This, in turn, induces higher order approximations for the stresses. The second
method, the stress-displacement-rotation formulation, approximates the stress, the
displacement, and the rotation (the skew-symmetric part of the displacement gradi-
ent). Here the stress is approximated as the primal variable and therefore typically
has a higher order accuracy than the displacement.

Both types of mixed finite element methods have been thoroughly studied from
the linear elasticity view-point, and we refer to [5, 13] for a thorough treatment.
We emphasize, however, that the case where r �= 0 requires additional care. The
main results in this section address the stress-displacement-rotation formulation in
that setting.

5.1. Weak formulations for vanishing residual stress. We now state
the two mixed formulations applied to the boundary value problem defined by
Problem 1 with r = 0 and discuss the linear stability requirements placed on the
gel parameters. The case r �= 0 will be considered in the subsequent sections.
For the sake of clarity, we assume that the boundary conditions are homogenous:
u0 = 0 on ∂Ω0, s0 = 0 on ∂Ω1. The notation is as introduced in Section 3.

We begin with a discussion of the displacement-pressure formulation. Intro-
ducing a pressure p = λdiv u, one easily obtains the following weak displacement-
pressure formulation of (4.7). Given f ∈ L2(Ω; S) and g ∈ L2(Ω;V), find u ∈
H1

0 (Ω;V) and p ∈ L2(Ω) such that

〈2με(u), ε(v)〉+ 〈p, div v〉 = −〈f,∇ v〉 − 〈g, v〉 ∀ v ∈ H1
0 (Ω;V),

〈div u, q〉 − 〈λ−1p, q〉 = 0 ∀ q ∈ L2(Ω),
(5.1)

where ε is the symmetrized gradient and μ = μ(φI) and λ = λ(φI) are as defined
in (4.9). The robustness in the limit λ→∞ is due to the fact that (5.1) in the are
the Stokes equations in the limit λ = ∞. Furthermore, if μ > 0 and 2μ+ nλ > 0,
there exist stable solutions u and p to (5.1).

The dependencies in the Lamé coefficients on the parameters of the problem
have implications for the stability of the method. Notice that φ2IW ′′

FH(φI) → ∞
corresponds to λ → ∞. The robustness in λ may therefore be important if φI is
close to 1 (or 0); that is, if the gel is almost dry (or almost fluid) in the reference
configuration. It is clear that μ(φI) > 0 when defined by (4.9). In addition, λ > 0
if the Flory-Huggins energy potential WFH is convex. If WFH is sufficiently non-
convex, λ may take negative values, and consequently the gel may display auxetic
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behavior. It also follows that the condition 2μ+ nλ > 0 can only break if WFH is
sufficiently non-convex. If one instead considers the Lamé parameters obtained by
a linearization about a non-identity state (cf. (4.11), similar considerations apply.
However, we see from (4.11) and (4.6), that λ might take negative values, even if
WFH is convex.

The alternative approach, the stress-displacement-rotation formulation, ap-
proximates the stress tensor σ and the displacement u separately while weakly
enforcing the symmetry of the stress tensor. The rotation γ enters as a Lagrange
multiplier corresponding to the latter symmetry constraint, and it is easily seen
that γ = skw∇u, where

2 skw τ = τ − τT .

The corresponding weak formulation of (4.7) with r = 0 reads as follows. Given
f ∈ L2(Ω; S) and g ∈ L2(Ω;V), find σ ∈ H0(div,Ω;M), u ∈ L2(Ω;V) and γ ∈
L2(Ω;K) satisfying

〈A0σ, τ〉 + 〈div τ, u〉+ 〈τ, γ〉 = 〈A0f, τ〉 ∀ τ ∈ H0(div,Ω;M),

〈div σ, v〉 + 〈σ, η〉 = 〈g, v〉 ∀ v ∈ L2(Ω;V), η ∈ L2(Ω;K).
(5.2)

Here A0 is the compliance tensor, given as the inverse of the stiffness tensor C0:

(5.3) A0τ =
1

2μ

(
τ − λ

2μ+ nλ
tr τ

)
.

with μ = μ(φI) and λ = λ(φI) as before. Similar considerations for the existence
of stability of solutions with regard to the gel material parameters apply, as for the
displacement-pressure formulation. In particular, A will not be uniformly bounded
as 2μ + nλ → 0. We remark that the symmetry of the stress tensor could also
be enforced strongly, in the sense that the stress tensor function space could be
restricted to the symmetric matrix fields [3]. However, as we shall see in the follow-
ing, the weak symmetry approach leads itself more easily to the nearly symmetric
case.

5.2. Weak formulations incorporating residual stress. The above sys-
tems of equations (5.1) and (5.2) illustrate that the weak formulations for the
small-strain gel equations are entirely analogous to the weak formulations for the
standard linear elasticity equations in the case where the residual stress vanishes.
However, if the residual stress does not vanish, the skew-symmetric part of the
displacement gradient and an additional source will enter the equations cf. (4.8).
In particular, the stress tensor will not be symmetric. The displacement-pressure
formulation (5.1) can easily be extended to this case. One may introduce a pressure
p = λdiv u as before and, instead of the symmetrized gradient, consider the dis-
placement gradient and its transpose separately. However, the stress-displacement-
rotation formulation requires more attention. In this section, we shall demonstrate
how the stress-displacement-rotation formulation (5.2) can be extended to deal with
a nearly symmetric stress tensor. To the authors’ knowledge, this is an original ap-
proach. Accordingly, the derivation is presented in some detail.

The derivation of the stress-displacement-rotation formulation of (5.2) relies
on both the symmetry of the stress tensor and the inversion of the stress-strain
relation. Thus, traditionally, the symmetry of the stress tensor is a key factor.
In the case r �= 0, the stress tensor is not symmetric. However, the form of the
stiffness tensor C and the premise that f takes symmetric values give a restriction
on the skew component of the stress tensor. More specifically, the skew component
of the stress tensor is proportional to the skew symmetric part of the displacement
gradient:

(5.4) skw(σ) = r skw(∇u) = rγ.
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We note that if r = 0, this reduces to the classical symmetry constraint for the
stress tensor.

The inversion of the stress-strain relation follows the standard procedure. From (4.8),
we find that

(5.5) tr ε(u) =
1

ζr
(trσ − nr − tr f) , ζr = 2μ+ nλ− r.

This relation allows us to eliminate of tr ε in terms of tr σ. Assuming that 2μ−r �= 0,
we introduce the residual-dependent compliance tensor Ar:

Arσ =
1

2μ− r

(
σ − λ

ζr
trσI

)
.

Further, let γ = skw(∇u) and recall that ε(u) = ∇u−γ. The stress-strain relation
follows

(5.6) Arσ = ∇u− krγ +Ar (rI + f) , kr = 1− r

2μ− r
.

Multiplying (5.6), (4.7b), and (5.4) by fields τ, v and η respectively, and inte-
grating the ∇u term by parts, give the following nearly symmetric weak formula-
tion:

〈Arσ, τ〉 + 〈div τ, u〉+ 〈krτ, γ〉 = 〈Ar(rI + f), τ〉 ∀ τ ∈ H0(div,Ω;M),

〈div σ, v〉 + 〈krσ, η〉 − 〈rkrγ, η〉 = 〈g, v〉 ∀ v ∈ L2(Ω;V), η ∈ L2(Ω;K).
(5.7)

The relation (5.4) has been multiplied by the factor kr for sake of the symmetry of
the system of equations. Observe that Ar(rI) = rζ−1r I, where ζr is given by (5.5).
The system of equations (5.7) can be written in the following, strong form:

(5.8)

⎛
⎝ Ar −∇ krI

div 0 0
kr skw 0 −rkr

⎞
⎠

⎛
⎝σ
u
γ

⎞
⎠ =

⎛
⎝Ar(rI + f)

g
0

⎞
⎠ .

Finally, we remark that if r = 0, then kr = 1 and rkr = 0. Thus, comparing (5.7)
to (5.2), we see that the nearly symmetric formulation reduces to the weakly sym-
metric formulation in that case. We also note that kr ∈ (0, 2) when r ∈ (−∞, μ).

5.3. Stability of nearly symmetric stress-displacement formulation.
We now inspect the linear stability of the nearly symmetric formulation (5.7), pay-
ing special attention to r. The case r = 0 was discussed in the previous. For r �= 0,
it is easy to see from (5.8) that the system of equations take the form of a saddle
point problem with an additional perturbation term. Therefore, this formulation
also naturally lends itself to analysis using the Brezzi theory of saddle point prob-
lems and its extensions to perturbed saddle point problems [7]. However, we note
that, in contrast to the standard perturbed case, the parameter r affects virtually
all terms of (5.8).

The range of values for r for which the system of equations (5.7) has a stable
solution is discussed in Lemma 5.1 and subsequent Theorem 5.2. The lemma gives
an upper bound on the residual r in terms of the parameters μ and λ, such that
the saddle-point part of (5.7) satisfy the classical Brezzi conditions. However, the
〈rkrγ, η〉 term of (5.7) will act as a de-stabilization for r < 0. As this case simply
corresponds to a negative residual stress, it is indeed relevant for the current expo-
sition. Thus, we are also interested in a negative, lower bound. Theorem 5.2 makes
these notions more precise. The case f, g = 0, and the assumption of homogenous
elastic and mixing parameters, are considered for the sake of simplicity.

Lemma 5.1. For μ > 0 and λ ∈ R, assume that r < min(μ, 2μ+ nλ). Define

Zr = {τ ∈ H(div,Ω;M), 〈div τ, v〉+ 〈κrτ, η〉 = 0 ∀ v ∈ L2(Ω;V), η ∈ L2(Ω;K)}.
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Then, Ar is continuous and coercive on Zr. In particular, there exist positive
constants αr, ar such that

|〈Arσ, τ〉| ≤ ar||σ||0||τ ||0 ∀σ, τ ∈ H(div,Ω;M),(5.9)

〈Arτ, τ〉 ≥ αr||τ ||20 = αr||τ ||2div ∀ τ ∈ Zr.(5.10)

Further, for any v ∈ L2(Ω;V), η ∈ L2(Ω;K), there exist a τ ∈ H0(div,Ω;M) and a
β > 0, independent of r, such that

(5.11) ||τ ||div (||v||0 + ||krη||0) ≤ β (〈div τ, v〉+ 〈krτ, η〉) .

Proof. The proof of this lemma is just a minor modification of the proof for
the case with r = 0, for instance the one given in [5, p.308 ff]. We simply remark
that it is evident that for τ ∈ Zr, div τ = 0. The bounds follow as usual, as the
assumption r < μ in particular implies that 2μ− r > 0 and kr > 0. �

Theorem 5.2. Let σ ∈ H(div,Ω;M), u ∈ L2(Ω;V) and γ in L2(Ω;K) solve (5.7)
with f, g = 0. Assume that μ, λ and r are such that Lemma 5.1 holds. Additionally,
if r < 0, assume that

(5.12) αr −
|r|
kr

2β2a2r > 0.

Then, there exists a constant c > 0 such that

||σ||2div ≤ c||rI||20, ||u||0 + kr||γ||0 ≤ c(||σ||0 + ||rI||0).(5.13)

Proof. For σ, u, γ solving (5.7),

(5.14) 〈Arσ, σ〉 + 〈rkrγ, γ〉 = 〈Ar(rI), σ〉
Under the assumption that r is such that Lemma 5.1 holds, (5.11) in combination
with (5.9) give:

(5.15) ||u||0 + |κr|||γ||0 ≤ βar (||σ||0 + ||rI||0) .
Hence, if r ≥ 0, (5.14) immediately gives the stability bound (5.13). So, consider
the case r < 0. Using (5.14), (5.15) and (5.10), we obtain(

αr −
|r|
kr

2β2a2r

)
||σ||20 ≤ 〈Ar(rI), σ〉 +

|r|
kr

2β2a2r ||rI||20,

giving rise to the condition (5.12). �

In essence, the inequality of (5.12) quantifies a value r0 < 0, such that (5.13)
holds for r ∈ (r0, μ). With reference to (4.3), recall that r = r(φI ) is induced by a
given reference volume fraction φI and that μ and λ are given by (4.9). We note that
the estimates of Lemma 5.1 and Theorem 5.2 degenerate as r → μ, 2μ−r+nλ→ 0
or in the limiting case of (5.12). Hence, the behaviour in, and beyond, these limiting
cases is not clear. This aspect will be investigated numerically in the next section.
In particular, loss of stability is indeed detected for r sufficiently negative.

The approximation properties of a discretization of (5.7) now follows from the
standard theory [7]. Let Σh ⊂ H0(div,Ω;M), Vh ⊂ L2(Ω;V) and Qh ⊂ L2(Ω;K)
be finite dimensional spaces associated with a simplicial tessellation Th of Ω, h
denoting the meshsize. Assume that Σh × Vh × Qh defines a stable discretization
of (5.2), that is, assume that (5.10) and (5.11), viewed over the discrete spaces,
are satisfied with positive constants independent of h. Further, assume that the
material parameters are such that Theorem 5.2 holds. Then, if σh ∈ Σh, uh ∈ Vh
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and γh ∈ Qh solve (5.7) for all τ ∈ Σh, v ∈ Vh and η ∈ Qh, there exists C > 0,
independent of h such that

||σ − σh||div + ||u− uh||0 + ||γ − γh||0

≤ C

(
inf
τ∈Σh

||σ − τ ||div + inf
v∈Vh

||u− v||0 + inf
η∈Qh

||γ − η||0
)
.

5.4. Choice of discretization spaces. We conclude this section by some
considerations regarding specific discretizations of (5.1) and (5.7). As our main em-
phasis is robust and accurate stress approximation, we briefly discuss some choices
towards the achievement of this aim. We denote the space of continuous piece-
wise polynomials of degree (less than or equal to) k defined relative to a simplicial
tessellation Th by Pck(Th) and the space of discontinuous piecewise polynomials by
Pk(Th). The space of piecewise polynomial vector fields of degree k with continuous
normal components over edges (or faces) is labelled BDMk(Th), (cf. [6, 20]), with
BDMk(Th;V) = BDMk(Th)n.

First, for discretizations Uh × Ph ⊂ H1(Ω;V) × L2(Ω) of the displacement-
pressure formulation (5.1), we use the generalized Taylor-Hood elements: for k =
1, 2, . . . continuous, piecewise (k + 1)’th degree polynomial fields for the displace-
ment and continuous, piecewise k’th degree fields for the pressure. The lowest order
elements are thus

(5.16) Uh × Ph = Pc2(Th;V)× P1(Th).
For smooth solutions, (k + 1)’th order convergence is expected in the H1-norm of
the displacement and hence for a post-calculated stress tensor, as well.

Second, for the nearly symmetric stress-displacement-rotation formulation (5.7),
we utilize the lowest order element spaces of the family suggested by Farhloul and
Fortin [14] and Falk [13]; specifically, for k = 1, 2, . . . , piecewise k’th degree poly-
nomial tensor fields with row-wise normal component continuity for the stresses,
discontinuous (k − 1)’th degree for the displacements and continuous k’th degree
for the rotations. The lowest order is

Σh × Vh ×Qh = BDM1(Th;V)× P0(Th;V)× Pc1(Th;K).(5.17)

These elements are preferred to the similar spaces considered by Arnold et al. [2]
because the higher order stress interpolation error is conserved at little additional
cost. As for the displacement-pressure discretization, the discretization defined
by (5.17) gives (k+1)’th order convergence for the stress tensor for smooth solutions.

Thus, in theory, both formulations with the previously described discretiza-
tions give the same order of convergence for the stresses. One advantage of the
displacement-pressure approach is that it is typically less expensive than the stress-
displacement-rotation approach. This aspect may be particularly relevant in three
dimensions. However, the disadvantage to using this method is that the stress tensor
must be post-calculated. This is evidently not an issue with the stress-displacement-
rotation approach. An additional advantage of the stress-displacement-rotation ap-
proach is that it gives stress tensors with normal component continuity and hence
continuous stresses over inter-element boundaries. The latter consequence is par-
ticularly relevant if there are internal interfaces in the domain where the interfacial
stress is a quantity of interest.

6. Simulations

In this section, we present some numerical simulations. First, we examine the
stability range of the nearly symmetric stress-displacement-rotation formulation
numerically in order to compare the observations with the analytical estimates.
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Figure 1. Approximation properties of the nearly-symmetric for-
mulation in terms of the residual stress for λ = 1, 10, 100. Left:
Stress approximation errors. Relative error Er of the stress ap-
proximation versus residual stress r. Er = ||σr − σrh||0/||σr||0.
h = 1.0/40. Right: Convergence rates. Convergence rate cr of the
stress approximations versus residual stress r. cr = ||σrh/2||0/||σrh||.
h = 1.0/20

Next, we turn to a more physically realistic application. The gel model and nu-
merical methods presented are applied to study the shear stresses arising from the
confinement and environmental effects experienced by an artificial bone implant.
All simulations have been performed using the DOLFIN library of the FEniCS
project [15, 17].

6.1. Numerical stability of nearly symmetric stress formulation. The
residual stress r clearly has an impact on the approximation properties of discretiza-
tions of the nearly symmetric stress formulation. In order to numerically investigate
this effect, we consider a range of values for r and compare the error of approxi-
mation and the rate of convergence for a given discretization of (5.7). We remark
that such a study can be performed independently of the specific expressions for
the Lamé parameters given by (4.9). However, using a range of values for μ and
λ relevant for the gel model seems appropriate. In lieu of (4.9) and (5.12), we let
μ = 1.0, consider a set of positive λ, and r ∈ (−1.5μ, 2μ).

The following domain and exact smooth solutions are considered in order to
examine the error and the convergence rate of the approximations. We let Ω =
(0, 1)2 ⊂ R2 and consider the boundary ∂Ω = ∂Ω0 ∪ ∂Ω1, where

∂Ω0 = {X ∈ ∂Ω, X0 ∈ {0, 1}}, ∂Ω1 = ∂Ω\∂Ω0

Define the following smooth displacement:

(6.1) u = u(x0, x1) = (sin(πx0), sin(πx0)).

For a given r, we define the associated stress tensor σr and rotation γr in accordance
with (4.8) and (5.4), respectively. We also let gr = div σr , sr0 = σr · n on ∂Ω1.
By construction, σr, u, γ solve (5.7) with the boundary conditions u|∂Ω0

= 0 and
σr ·n|∂Ω1

= sr0. Furthermore, we let Th be a uniform, regular triangulation of Ω, and
we consider the discretization defined by (5.17). Recall that if the residual stress r,
viewed in connection with the Lamé coefficients μ and λ, is such that (5.12) holds,
we expect second order convergence for the stress approximations in the L2 norm.

The relative error of the stress approximation for a given mesh size h = 1.0/40
and the rate of convergence for the stress in the L2-norm between h = 1.0/20 and
h/2 = 1.0/40 are plotted in Figure 1 for λ ∈ {1.0, 10.0, 100.0}. We observe that for
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λ = 1.0, the relative error of the approximation seems uniform for −0.5 < r < 1.0,
and the convergence rate is of second order. For r < − 0.5, the relative error grows
in a non-regular fashion, and the convergence rates vary dramatically. Further
investigations show that the convergence rates are also highly dependent on the
mesh size. The observed behaviour agrees with the theoretical results. The method
is not guaranteed stable for r sufficiently negative. Indeed, the above observations
give evidence of instabilities for r < − 0.5. We note that no instability is observed
for r close to 1.0, indicating that the requirement r > μ, motivated by kr > 0,
could be relaxed. For r → 2.0, we note only a slight increase in the relative error
and no observed variation in the convergence rate. This indicates that the stress
approximation is only slightly affected by the small coercivity constant. The cases
λ = 10.0 and λ = 100.0 are entirely analogous to the case λ = 1.0. This indicates
that increasing λ does not have a deleterious impact on the performance of the
method.

6.2. Swelling-induced stress in artificial bone implants. We now turn
to consider a specific biomedical application: an artificial bone implant used for
high tibial osteotomy. In this procedure, the knee is re-aligned to shift the body
weight from a damaged area of the knee to the side with healthy cartilage. This
is performed by removing a wedge from the shinbone and then chemically gluing
the bone implant into the open space in order to realign the knee. One natural
question becomes whether and how the additional moisture of the body affects the
implant. Another relevant question is how the confinement of the gel affects the
stresses. In particular, both the implant itself and the glue attaching the implant
to the bone may fail when exposed to high shear forces.

In the following, we aim to apply the appropriately linearized gel equations
and the numerical methods of the previous sections to examine the shear stresses
acting on the implant. First, we study the stresses arising from the confinement
of an implanted polymer gel. Second, using the approximation given in (4.4), we
investigate how temperature changes in the body may affect the implant. Finally,
an interface problem between the bone and the implant is considered. Although
we consider a specific device, the simulations illustrate the more general situation
of swelling in a confined area under environmental and mechanical forces.

Polymers used in biomedical devices which provide mechanical reinforcement
must have low interaction with water and be rigid so as to prohibit large swelling.
The following homogenous parameter values are representative of polymers used
in artificial bone implants [9, 21]. In (2.9) and (2.7), we let Vm = 0.1nm3, N1 =
1000, N2 = 1, μE = 1.0 GPa, β = 2, Δw = (150K)KB, and consider an initial
temperature T = 310 K. The choice of Δw is such that χ(T ) = 0.5 at T = 300 K,
in agreement with [9]. The associated Flory-Huggins energy density has a single
minima at φNI ≈ 0.66 and hence r(φNI ) = 0. A physically realistic value for the
volume fraction of the polymer, however, is typically close to 1. With this in mind,
we consider a set of reference volume fraction values φI in the range [0.6, 1.0).

Confinement. If the reference volume fraction is higher than the volume frac-
tion corresponding to a stress-free reference state, the gel will respond with an
initial swelling. In order to isolate this effect, we consider the linearized equations
about a non-identity state F0 = f0I such that S(F0) = 0 cf. (4.10). For φI = 0.995,
f0 ≈ 1.0038. The equations to be considered are thus those of Problem 1 with
f, g = 0, but with μ and λ given by (4.11). The non-identity linearization has ram-
ifications for the boundary conditions. Since the total deformation can be given as
x(X) = u(X)+f0X , in order to represent a bone implant entirely confined at some

72



mixed finite elements for gels

(a) (b)

Figure 2. The simulation domains. (a): A coarse tessellation of
the domain occupied by the gel. (b): A coarse triangulation of the
cross-sectional domain occupied by the gel and the bone.

∂Ω0, we let

(6.2) u(X) = u0(X) = (1− f0)X, X ∈ ∂Ω0,

thus ensuring no deformation of the reference body at the given boundary. However,
for f0 �= 1, the inclination to swell versus the confinement of the implant yields
a non-zero u0. In particular, shear stress forces are induced. At ∂Ω1, we let
σ · n = s0 = 0.

Motivated by typical implant shapes, we consider a hexahedral reference do-
main for the bone implant defined by an isosceles trapezoidal base. More precisely,
let Ω0 = (0, 20)× (0, 10)× (0, 20) (mm3) and in general, Ωθ = {(X0, X1, X2)} ⊆ Ω0

such that

X1 ∈ ((2 −X0) tan(θ), 1 − (2−X0) tan(θ)) .

for 0 ≤ θ ≤ θmax = arctan(1/4). Thus, Ωθmax is defined by a isosceles triangular
base. In the following, we consider θ = arctan(1/16). This domain is illustrated in
Figure 2(a). Further, the implant is assumed to be confined at the top and bottom
boundaries, where it adjoins the bone and stress-free at the remaining boundary:

(6.3) ∂Ω0 = {X ∈ ∂Ω, X2 ∈ {0, 2}} , ∂Ω1 = ∂Ω\∂Ω0.

The resulting boundary value problem was simulated using the displacement-
pressure formulation (5.1) with the Taylor–Hood elements (5.16) on a regular tessel-
lation of Ω consisting of approximately 80 000 tetrahedral cells. The stress tensor
was post-calculated from the displacement and the pressure approximations us-
ing (4.7a). The quantity of interest is the shear stresses at the top and bottom
boundaries of the implant. Due to symmetry, we only consider the top boundary
Γ. The magnitude of the tangential component of the stress at the barycenter of
each facet at the top boundary is shown in Figure 3(a) for φI = 0.995. The reported
values are in the range (0, 125) MPa, but should be interpreted qualitatively. We
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(a) (b)

Figure 3. Shear stresses, in MPa, resulting from the confinement
of a gel in a non-equilibrium state. (a): The magnitude of the
shear stress vector measured at the barycenters of each facet of
the top boundary Γ for φI = 0.995. (b): The average shear stress
over the top boundary SΓ versus initial volume fraction φI .

see that the stresses are, relatively speaking, low in the interior of the top facet,
but that a boundary layer forms, which gives very high stress values at the corners.
In fact, these pointwise stress values does not seem to be bounded in the sense that
the maximal value depends on the mesh size. Considering the unreliability of this
pointwise stress magnitude, we instead measure the average shear stresses over the
top boundary:

(6.4) S2
Γ =

1∫
Γ
1 ds

(∫
Γ

σ220 + σ221 ds

)
.

The shear stresses SΓ corresponding to φI in the range (0.60, 1.0) is plotted in
Figure 3(b). We see that the stresses are very close to zero for φI = 0.65, as this is
close to the natural volume fraction of the energy. The average shear stresses grow
as φI approaches 1.0: At φI = 0.995, the average shear stress is approximately 42.1
MPa. We conclude that the confinement versus the swelling gives significant shear
stress values for the implant.

Temperature. We now turn to inspect how an increase in temperature affects
the implant. In order to obtain a qualitative understanding of the effects of changes
in temperature, we consider a perturbation about the initial temperature, as dis-
cussed in connection with (4.4). The temperature dependence of the given model oc-
curs only through the coefficients of the Flory-Huggins potential, and thus, cf. (4.2),
the resulting force f reads:

f = f(ΔT ) =
∂

∂T
(WFH(φ, T ) + cFH(T )− φW ′

FH(φ, T )) (ΔT ) (detF )F−T .

We let T = 310 K as before and consider ΔT = 1.0. The parameter values, do-
main, and discretization is as for the previous experiment. The resulting pressure
force is of the order 10−1 MPa for φI = 0.995 and thus several orders of magni-
tude smaller than the shear stresses resulting from the confinement. In order to
isolate the effects of the change in temperature, we modify the boundary conditions
of (6.2), and let u0 = 0 on ∂Ω0. This corresponds to letting the implant swell to
the equilibrium position and penalizing the additional swelling resulting from the
changes in temperature only.

The resulting average shear stresses at the top boundary of the implant, follow-
ing the same procedure as in the previous, are illustrated in Figure 4. We point at
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Figure 4. Shear stresses, in KPa, resulting from temperature
changes. Average shear stress over the top boundary SΓ versus
initial volume fraction φI .

the difference in units between Figures 3(b) and 4. The average shear stress values
are in the range (1.61, 117) KPa and thus significantly lower than those associated
with the full confinement.

Gel–bone interaction. Finally, we aim to consider the interface problem be-
tween the gel implant and the bone to which it is attached. In the first experiment
of this section, the implant was assumed to be entirely confined at the top and
bottom boundary. This assumption does not take the elastic properties and be-
haviour of the bone into account. In particular, in reality, it seems meaningful to
assume that the bone will absorb some of the swelling of the gel. Here, we aim to
examine the shear stresses of the gel–bone interface when the bone is assumed to
be linearly elastic. In particular, we consider a two-dimensional cross-section, in
the longitudinal direction, of the gel implant and the bone.

Let Ω = (0, 20) × (0, 60)mm2. This reference domain is illustrated in Fig-
ure 2(b). The lower and upper interfaces between the gel and the bone are placed
at the line segments defined by X1 = 20.0 and X1 = 40.0, respectively. Thus, the
middle third of the domain is occupied by the gel, while the upper and lower thirds
are occupied by the bone. We assume that the bone is confined at the top and bot-
tom boundaries; that is, at the line segments defined by X1 = 0 and X1 = 60. Both
the bone and the gel are assumed to be stress-free at the left and right boundaries.

The gel parameter values and the range of reference volume fractions to be
considered are as before. However, instead of linearizing about a non-identity,
but stress-free state, we now consider the small-strain equations resulting from the
linearization about the identity deformation. Thus, the Lamé parameters of the
gel, μ(φI) and λ(φI), are as defined by (4.9). The residual stress r(φI ) will act
as a forcing term, cf. (4.7a). We remark that for above parameter values and the
given range of reference volume fractions, r(φI ) ∈ (−0.17, 0.0036). Furthermore,
we give the bone the Lamé parameters μb = 4.0 GPa and λb = 20.0 GPa. Under
these assumptions, both the bone and the gel are governed by (4.7). The Lamé
parameters μ and λ, however, are now heterogenous.

As in the previous, any non-equilibrium gel reference volume fraction φI will
produce a swelling or collapse of the domain. Our main interest lies with the shear
stresses at the upper and lower material interfaces. As these are interfaces in the
interior of the domain, the stress-displacement-rotation formulation (5.7) and the
discretization defined by (5.17) are used for this simulation. We denote the upper
gel-bone interface by Γgb. Keeping with the previous, we consider the average shear
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Figure 5. Average shear stress, in MPa, over the upper gel–bone
boundary SΓgb

versus initial volume fraction φI .

stress over this interface:

S2
Γgb

=
1∫

Γgb
1 ds

(∫
Γgb

σ201 ds

)
.

The triangulation used for the simulation contains approximately 25 000 triangles.
The simulated average shear stress values are plotted versus the reference volume
fraction in Figure 5. For φI = 0.65, SΓgb

= 8.79 × 10−2 MPa. This relatively
small value is expected as this volume fraction is close to the reference volume
fraction with zero residual stress. The shear stresses increase as the volume fraction
increases: at φI = 0.995, SΓgb

= 9.26 MPa. We note that the shear stresses are
smaller than the ones resulting from the total confinement, but still significant.
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Paper III

EFFICIENT ASSEMBLY OF H(DIV) AND H(CURL)
CONFORMING FINITE ELEMENTS

marie e. rognes, robert c. kirby and anders logg

Abstract. In this note, we discuss how to efficiently evaluate and assemble

general finite element variational forms on H(div) and H(curl). In particular,
we extend a previously presented representation theorem for affinely mapped
elements to Piola-mapped elements, discuss a simple numbering strategy that
removes the need to contend with directions of facet normals and tangents,
and present an automated and easy-to-use implementation that allows a user
to specify finite element variational forms on H(div) and H(curl) in close to
mathematical notation.

1. Introduction

The Sobolev spaces H(div) and H(curl) play an important role in many appli-
cations of mixed finite element methods to partial differential equations. Examples
include second order elliptic partial differential equations, Maxwell’s equations for
electromagnetism and the linear elasticity equations. Mixed finite element methods
may provide advantages over standard H1 finite element discretizations in terms
of added robustness, stability, and flexibility. However, implementing H(div) and
H(curl) methods requires additional code complexity for constructing basis func-
tions and evaluating variational forms, which helps to explain their relative scarcity
in practice.

The FEniCS project [13, 24] comprises a collection of free software components
for the automated solution of differential equations. One of these components is the
FEniCS form compiler (FFC) [18, 19, 23]. FFC allows finite element spaces and
multilinear forms over simplicial meshes to be specified in a form language close
to the mathematical abstraction and notation. The form compiler generates low-
level (C++) code for efficient form evaluation and assembly based on an efficient
tensor contraction. Moreover, the FErari project [17, 20, 21, 22] has developed
specialized techniques for further optimizing this code based on underlying discrete
structure.

FFC relies on the FInite element Automatic Tabulator (FIAT) [14, 15, 16]
for the tabulation of finite element basis functions. FIAT provides methods for
efficient tabulation of finite element basis functions and their derivatives at any
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particular point. In particular, FIAT provides H(div) elements such as the families
of Raviart–Thomas [31], Brezzi–Douglas–Marini [7], and Brezzi–Douglas–Fortin–
Marini [6], as well as H(curl) elements of the Nedelec types [27, 28].

Previous iterations of FFC have enabled easy use of H1 and L2 conforming
finite element spaces, including discontinuous Galerkin formulations, but support
for H(div) and H(curl) spaces has been absent. In this paper, we extend the
previous work [18, 19, 29] to allow simple and efficient compilation of variational
forms on H(div) and H(curl), including mixed formulations on combinations ofH1,
H(div), H(curl), and L2.

Implementations of H(div) and H(curl) finite element spaces, in particular of
arbitrary degree, are not prevalent. There is, to our knowledge, no implementations
that utilize the compiled approach to combine the efficiency of low-level optimized
code with a fully automated high-level interface. Some finite element packages,
such as FEAP [12], do not provide H(div) or H(curl) type elements at all. Others,
such as FreeFEM [30], typically only provide low-order elements such as the lowest-
order Raviart–Thomas elements. Some libraries like deal.II2 [5] or FEMSTER [9]
do provide arbitrary degree elements of Raviart–Thomas and Nedelec type, but do
not automate the evaluation of variational forms. NGSolve [33] provides arbitrary
order H(div) and H(curl) elements along with automated assembly, but only for a
predefined set of bilinear forms.

The outline of this paper is as follows. We begin by reviewing basic aspects
of the function spaces H(div) and H(curl) in Section 2, and provide examples of
variational forms defined on these spaces. We continue, in Section 3, by summa-
rizing the H(div) and H(curl) conforming finite elements implemented by FIAT.
In Section 4, we recap the multilinear form framework of FFC and present an ex-
tension of the representation theorem from [19]. Subsequently, in Section 5, we
provide some notes on the assembly of H(div) and H(curl) elements. Particular
emphasis is placed on aspects not easily found in the standard literature, such as
choice of orientation of geometric entities. In Section 6, we return to the exam-
ples introduced in Section 2 and illustrate the ease and terseness with which even
complicated mixed finite element formulations may be expressed in the FFC form
language. Convergence rates in agreement with theoretically predicted results are
presented to substantiate the veracity of the implementation. Finally, we make
some concluding remarks and indicate directions for further work in Section 7.

2. H(div) and H(curl)

In this section, we summarize some basic facts about the Sobolev spaces H(div)
and H(curl) and discuss conforming finite element spaces associated with these.
Our primary focus is on properties relating to inter-element continuity and change
of variables. The reader is referred to the monographs [8] and [26] for a more
thorough analysis of H(div) and H(curl) respectively.

2.1. Definitions. For an open domain Ω ⊂ R
n, we let L2(Ω;Rn) denote the

space of square-integrable vector fields on Ω with associated norm || · ||0 and inner-
product 〈·, ·〉, and abbreviate L2(Ω) = L2(Ω;R1). We define the following standard
differential operators on smooth fields v: Dαv = ∂α1

x1
· · ·∂αm

xm
v for a multiindex α of

length m, div v =
∑n
i=1 ∂xivi, curl v = (∂x2

v3− ∂x3
v2, ∂x3

v1− ∂x1
v3, ∂x1

v2− ∂x2
v1)

and rot v = ∂x1
v2 − ∂x2

v1. We may then define the spaces Hm(Ω), H(div,Ω), and

2deal.II considers quadrilateral meshes only, where the bases may be constructed from tensor
products.
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H(curl,Ω) by

Hm(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω), |α| ≤ m}, m = 1, 2, . . . ,

H(div,Ω) = {v ∈ L2(Ω;Rn) : div v ∈ L2(Ω)},

H(curl,Ω) =

{
{v ∈ L2(Ω;R2) : rot v ∈ L2(Ω)}, Ω ⊂ R

2,
{v ∈ L2(Ω;R3) : curl v ∈ L2(Ω;R3)}, Ω ⊂ R3,

with derivatives taken in the distributional sense. The reference to the domain
Ω will be omitted when appropriate and the associated norms will be denoted
|| · ||m, || · ||div, and || · ||curl. Furthermore, we let M denote the space of matrices
and H(div,Ω;M) denote the space of square-integrable matrix fields with square-
integrable row-wise divergence.

For the sake of compact notation, we shall also adopt the exterior calculus
notation of [2] and let Λk(Ω) denote the space of smooth differential k-forms on Ω,
and let L2Λk(Ω) denote the space of square integrable differential k-forms on Ω.
We further let d denote the exterior derivative with adjoint δ, and define HΛk(Ω) =
{v ∈ L2Λk(Ω), d v ∈ L2Λk(Ω)}. Further, PrΛk is the space of polynomial k-forms
of up to and including degree r, and P−r Λk denotes the reduced space as defined in
[2, Section 3.3].

2.2. Examples. The function spacesH(div) andH(curl) are the natural func-
tion spaces for an extensive range of partial differential equations, in particular in
mixed formulations. We sketch some examples in the following, both for motiva-
tional purposes and for later reference. The examples considered here are mixed
formulations of the Hodge Laplace equations, the standard eigenvalue problem for
Maxwell’s equations and a mixed formulation for linear elasticity with weakly im-
posed symmetry. We return to these examples in Section 6.

Example 2.1 (Mixed formulation of Poisson’s equation). The most immediate
example involving the space H(div) is a mixed formulation of Poisson’s equation:
−Δu = f in Ω ⊂ Rn. By introducing the flux σ = −∇u and assuming Dirichlet
boundary conditions for u, we obtain the following mixed variational problem: Find
σ ∈ H(div,Ω) and u ∈ L2(Ω) satisfying

(2.1) 〈τ, σ〉 − 〈div τ, u〉+ 〈v,div σ〉 = 〈v, f〉,
for all τ ∈ H(div,Ω) and v ∈ L2(Ω).

Example 2.2 (The Hodge Laplacian). In more generality, we may consider
weak formulations of the Hodge Laplacian equation (d δ+ δ d)u = f on a domain
Ω ⊂ Rn, see [2, Section 7]. For simplicity of presentation, we assume that Ω is
contractible such that the space of harmonic forms on Ω vanishes. The formulation
in Example 2.1 is the equivalent of seeking u ∈ HΛn and σ = δ u ∈ HΛn−1 for
n = 2, 3 with natural boundary conditions (the appropriate trace being zero). To see
this, we test σ = δ u against τ ∈ HΛn−1 and test (d δ+ δ d)u = f against v ∈ HΛn

to obtain

〈τ, σ〉 − 〈τ, δ u〉+ 〈v,dσ〉 = 〈v, f〉,
noting that du = 0 for u ∈ HΛn. Integrating by parts, we obtain

(2.2) 〈τ, σ〉 − 〈d τ, u〉+ 〈v,dσ〉 = 〈v, f〉.
We may restate (2.2) in the form (2.1) by making the identifications δ u = −∇u,
d τ = div τ , and dσ = div σ. If Ω ⊂ R3, we may also consider the following mixed
formulations of the Hodge Laplace equation:

(i) Find σ ∈ HΛ1 = H(curl) and u ∈ HΛ2 = H(div) such that

(2.3) 〈τ, σ〉 − 〈curl τ, u〉+ 〈v, curlσ〉+ 〈div v,div u〉 = 〈v, f〉
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for all τ ∈ HΛ1, v ∈ HΛ2.
(ii) Find σ ∈ HΛ0 = H1 and u ∈ HΛ1 = H(curl) such that

(2.4) 〈τ, σ〉 − 〈∇ τ, u〉+ 〈v,∇σ〉 + 〈curl v, curlu〉 = 〈v, f〉
for all τ ∈ HΛ0, v ∈ HΛ1.

Example 2.3 (Cavity resonator). The time-harmonic Maxwell equations in a
cavity with perfectly conducting boundary induces the following eigenvalue problem:
Find resonances ω ∈ R and eigenfunctions E ∈ H0(curl,Ω), satisfying

(2.5) 〈curlF, curlE〉 = ω2〈F,E〉 for all F ∈ H0(curl,Ω),

where H0(curl,Ω) = {v ∈ H(curl,Ω)| v×n|∂Ω = 0}. Note that the formulation (2.5)
disregards the original divergence-free constraint for the electric field E and thus
includes the entire kernel of the curl operator, corresponding to ω = 0 and electric
fields of the form E = ∇ψ.

Example 2.4 (Elasticity with weakly imposed symmetry). Navier’s equations
for linear elasticity can be reformulated using the stress tensor σ, the displacement u
and an additional Lagrange multiplier γ corresponding to the symmetry of the stress
constraint. The weak equations for Ω ⊂ R2, with the natural3 boundary condition
u|∂Ω = 0, take the following form: Given f ∈ L2(Ω;Rn), find σ ∈ H(div,Ω;M),
u ∈ L2(Ω;Rn), and γ ∈ L2(Ω) such that

(2.6) 〈τ, Aσ〉 + 〈div τ, u〉+ 〈v,div σ〉+ 〈skw τ, γ〉+ 〈η, skw σ〉 = 〈v, f〉
for all τ ∈ H(div,Ω;M), v ∈ L2(Ω;Rn), and η ∈ L2(Ω). Here, A is the compliance
tensor, and skw τ is the scalar representation of the skew-symmetric component of
τ , more precisely, 2 skw τ = τ21 − τ12. This formulation has the advantage of being
robust with regard to nearly incompressible materials and provides an alternative
foundation for complex materials with non-local stress-strain relations. For more
details, we refer the reader to [3].

2.3. Continuity-preserving mappings for H(div) and H(curl). At this
point, we turn our attention to a few results on continuity-preserving mappings for
H(div) and H(curl). The results are classical and we refer to [8, 26] for a more
thorough treatment.

First, it follows from Stokes’ theorem that in order for piecewise H(div) vector
fields to be in H(div) globally, the traces of the normal components over patch
interfaces must be continuous and analogously tangential continuity is required for
piecewise H(curl) fields. More precisely, we have the following. Let Th = {K} be a
partition of Ω into subdomains. Define the space Σh of piecewise H(div) functions
relative to this partition Th:
(2.7) Σh = {φ ∈ L2(Ω;Rn) : φ|K ∈ H(div,K) for all K ∈ Th}.
Then φ ∈ Σh is in H(div,Ω) if and only if the normal traces of φ are continuous
across all element interfaces. Analogously, if φ|K ∈ H(curl,K) for all K ∈ Th, then
φ ∈ H(curl,Ω) if and only if the tangential traces are continuous across all element
interfaces.

Second, we turn to consider a non-degenerate mapping F : Ω0 → F (Ω0) = Ω
with Jacobian DF (X), X ∈ Ω0 ⊂ Rn. For Φ ∈ Hm(Ω0), the mapping F defined
by

(2.8) F(Φ) = Φ ◦ F−1,

3Note that the natural boundary condition in this mixed formulation is a Dirichlet condition,
whereas for standard H1 formulations the natural boundary condition would be a Neumann
condition.
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is an isomorphism from Hm(Ω0) to Hm(Ω). This, however, is not the case for
H(div) or H(curl), since F does not in general preserve continuity of normal nor
tangential traces. Instead, one must consider the contravariant and covariant Piola
mappings which preserve normal and tangential continuity respectively.

Definition 2.5 (The contravariant and covariant Piola mappings). Let Ω0 ⊂
R
n, let F be a non-degenerate mapping from Ω0 onto F (Ω0) = Ω with J = DF (X),

and let Φ ∈ L2(Ω0;R
n).

The contravariant Piola mapping Fdiv is defined by

(2.9) Fdiv(Φ) =
1

detJ
JΦ ◦ F−1.

The covariant Piola mapping Fcurl is defined by

(2.10) Fcurl(Φ) = J−TΦ ◦ F−1.
Remark 2.6. We remark that the contravariant Piola mapping is usually de-

fined with an absolute value, Fdiv(Φ) = 1
| det J|JΦ ◦ F−1. However, omitting the

absolute value, as in (2.9), can simplify the assembly of H(div) elements, as will
be expounded in Section 5.

The contravariant Piola mapping is an isomorphism ofH(div,Ω0) ontoH(div,Ω)
and the covariant Piola mapping is an isomorphism of H(curl,Ω0) onto H(curl,Ω).
In particular, the contravariant Piola mapping preserves normal traces and the co-
variant Piola mapping preserves tangential traces. We illustrate this below in the
case of simplicial meshes in two and three space dimensions (triangles and tetrahe-
dra).

Example 2.7 (Piola mapping on triangles in R2). Let K0 be a triangle with
vertices X i and edges Ei for i = 1, 2, 3. We define the unit tangents by T i =
Ei/||Ei||. We further define the unit normals by N i = RT i where

(2.11) R =

(
0 1
−1 0

)
is the clockwise rotation matrix.

Now, assume that K0 is affinely mapped to a (non-degenerate) simplex K with
vertices xi. The affine mapping FK : K0 → K takes the form x = FK(X) = JX+b
and satisfies xi = FK(X

i) for i = 1, 2, 3. It follows that edges are mapped by

e = xi − xj = J(X i −Xj) = JE.

Similarly, normals are mapped by

||e||n = Re = RJE = (det J)J−TRE = (detJ)J−T ||E||N,

where we have used that 1
det JRJRT = J−T and thus RJ = (det J)J−TR for J ∈

R2×2.
The relation between the mappings of tangents and normals (or edges and ro-

tated edges) may be summarized in the following commuting diagrams.

T
J||E||/||e||−−−−−−−→ t

R

⏐⏐� ⏐⏐�R
N

(detJ)J−T ||E||/||e||−−−−−−−−−−−−−→ n

E
J−−−−→ e

R

⏐⏐� ⏐⏐�R
||E||N (det J)J−T

−−−−−−−→ ||e||n

(2.12)

With this in mind, we may study the effect of the Piola transforms on normal
and tangential traces. Let Φ ∈ C∞(K0;R

n) and let φ = Fdiv(Φ). Then

||e||φ(x) · n = ||e||
(
(detJ)−1JΦ(X)

)T (
(detJ)J−T ||E||/||e||N

)
= ||E||Φ(X) ·N.
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Figure 1. Mapping two vector fields Φn and Φt between two tri-
angles using the contravariant and covariant Piola mappings. The
contravariant Piola mapping (above) preserves normal traces of
vector fields, and the covariant Piola mapping (below) preserves
tangential traces of vector fields. This means in particular that
the contravariant Piola mapping maps tangents to tangents (which
have a zero normal component), and that the covariant Piola map-
ping maps normals to normals (which have a zero tangential com-
ponent). Note that this is somewhat counter-intuitive; the con-
travariant H(div) Piola mapping always maps tangential fields to
tangential fields but does not in general map normal fields to nor-
mal fields. However, in both cases the normal component (being
zero and one respectively) is preserved.

Thus, the contravariant Piola mapping preserves normal traces for vector fields
under affine mappings, up to edge lengths. In general, the same result holds for
smooth, non-degenerate mappings FK if the Jacobian DFK(X) is invertible for all
X ∈ K0.

Similarly, let φ = Fcurl(Φ). Then

(2.13) ||e||φ(x) · t = ||e||
(
J−TΦ(X)

)T
(J ||E||/||e||) = ||E||Φ(X) · T.
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Thus, the covariant Piola preserves tangential traces for vector fields, again up to
edge lengths. Observe that the same result holds for tetrahedra without any modi-
fications The effect of the contravariant and covariant Piola mappings on normal
and tangential traces is illustrated in Figure 1, where ||E|| = ||e|| for simplicity.

Example 2.8 (Contravariant Piola mapping on tetrahedra in R3). Now, let
K0 be a tetrahedron. As explained above, the covariant Piola mapping preserves
tangential traces. To study the effect of the contravariant Piola mapping on normal

traces, we define the face normals of K by N = Ei×Ej

||Ei×Ej || . Then

||ei × ej ||n = JEi × JEj = det JJ−T (Ei × Ej) = ||Ei × Ej ||detJJ−TN,

since (Ju) × (Jv) = detJJ−T (u × v). Let Φ ∈ C∞(K0;R
n) and let φ = Fdiv(Φ).

Then, it follows that

||ei × ej ||φ(x) · n = ||Ei × Ej ||Φ(X) ·N.

Thus, the contravariant Piola mapping preserves normal traces, up to the area of
faces.

We finally remark that if J ∈ R
2×2 defines a conformal, orientation-preserving

map, the contravariant and covariant Piola mappings coincide. In R3, J must also
be orthogonal for this to occur.

3. H(div) and H(curl) conforming finite elements

To construct H(div) and H(curl) conforming finite element spaces, that is,
discrete spaces Vh satisfying Vh ⊂ H(div) or Vh ⊂ H(curl), one may patch to-
gether local function spaces (finite elements) and make an appropriate matching
of degrees of freedom over shared element facets4. In particular, one requires that
degrees of freedom corresponding to normal traces match for H(div) conforming
discretizations and that tangential traces match for H(curl) conforming discretiza-
tions. Several finite element spaces with degrees of freedom chosen to facilitate
this exist, such as those in [6, 7, 27, 28, 31]. We summarize in Table 1 those
H(div) and H(curl) conforming finite elements that are supported by FIAT and
hence by FFC. In general, FFC can wield any finite element space that may be
generated from a local basis through either of the afore described mappings. In
Table 2, we also summarize the basic approximation properties of these elements
for later comparison with numerical results in Section 6.

For the reasons above, it is common to define the degrees of freedom for each
of the elements in Table 1 as moments of either normal or tangential traces over
element facets. However, one may alternatively consider point values of traces at
suitable points on element facets (in addition to any internal degrees of freedom).
Thus, the degrees of freedom for the lowest order Raviart–Thomas space on a
triangle may be chosen as the normal components at the edge midpoints, and
for the lowest order Brezzi–Douglas–Marini space, we may consider the normal
components at two points on each edge (positioned symmetrically on each edge
and not touching the vertices). This, along with the appropriate scaling by edge
length, is how the degrees of freedom are implemented in FIAT.

4. Representation of H(div) and H(curl) variational forms

In this section, we discuss how multilinear forms on H(div) or H(curl) may
be represented as a particular tensor contraction, allowing for pre-computation of
integrals on a reference element and thus efficient assembly of linear systems. We

4We refer to any geometric entity of positive codimension in the mesh (such as an edge of a
triangle or an edge or face of a tetrahedron) as a facet.
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Simplex H(div) H(curl)

K ⊂ R2
BDMr PrΛ1(K) [7]
RTr−1 P−r Λ1(K) [31]
BDFMr — [6]

NEDr−1 —

K ⊂ R3
BDMr/NED

2
r PrΛ2(K) [28]

RTr−1/NED
1
r−1 P−r Λ2(K) [27]

BDFMr —
NED1

r−1 P−r Λ1(K) [27]

Table 1. H(div) and H(curl) conforming finite elements on trian-
gles and tetrahedra supported by FIAT and FFC for r ≥ 1. When
applicable, the elements are listed with their exterior calculus no-
tation, along with their original references. Note that for K ⊂ R3,
the Raviart–Thomas and Brezzi–Douglas–Marini elements are also
known as the first and second kind H(div) Nedelec (face) elements
respectively.

Finite element Interpolation estimates

PrΛk(Ω) ||v −Πhv||0 ≤ Chm+1||v||m, ||v −Πhv||div,curl ≤ Chm||v||m
P−r Λk(Ω) ||v −Πhv||0 ≤ Chm||v||m, ||v −Πhv||div,curl ≤ Chm||v||m
BDFMr ||v −Πhv||0 ≤ Chm||v||m, ||v −Πhv||div ≤ Chm||v||m

Table 2. Approximation properties of the spaces from Table 1.
C > 0, r ≥ 1, 1 ≤ m ≤ r. It is assumed that v ∈ Hm(Ω;Rn) and
Πh denotes the canonical interpolation operator onto the element
space in question.

follow the notation from [18, 24] and extend the representation theorem from [19]
for multilinear forms on H1 and L2 to H(div) and H(curl). The main new com-
ponent is that we must use the appropriate Piola mapping to map basis functions
from the reference element.

4.1. Multilinear forms and their representation. Let Ω ⊂ Rn and let
{V jh }

ρ
j=1 be a set of finite dimensional spaces associated with a tessellation T = {K}

of Ω. We consider the following canonical linear variational problem: Find uh ∈ V 2
h

such that

(4.1) a(v, uh) = L(v) ∀v ∈ V 1
h ,

where a and L are bilinear and linear forms on V 1
h × V 2

h and V 1
h respectively.

Discretizing (4.1), one obtains a linear system AU = b for the degrees of freedom U
of the discrete solution uh.

In general, we shall be concerned with the discretization of a general multilinear
form of arity ρ,

(4.2) a : V 1
h × V 2

h × · · · × V ρh → R.

Typically, the arity is ρ = 1 (linear forms) or ρ = 2 (bilinear forms) but forms
of higher arity also appear (see [19]). For illustration purposes, we consider the
discretization of the mixed Poisson problem (2.1) in the following example.

Example 4.1 (Discrete mixed Poisson). Let Σh and Wh be discrete spaces
approximating H(div,Ω) and L2(Ω) respectively. We may then write (2.1) in the
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canonical form (4.1) by defining

a((τh, vh), (σh, uh)) = 〈τh, σh〉 − 〈div τh, uh〉+ 〈vh, div σh〉,(4.3a)

L((τh, vh)) = 〈vh, f〉,(4.3b)

for (τh, vh) ∈ V 1
h = Σh ×Wh and (σh, uh) ∈ V 2

h = V 1
h .

To discretize the multilinear form (4.2), we let {φjk}
Nj

k=1 denote a basis for V jh
for j = 1, 2, . . . , ρ and define the global tensor

(4.4) Ai = a(φ1i1 , φ
2
i2 , . . . , φ

ρ
iρ
),

where i = (i1, i2, . . . , iρ) is a multiindex. If the multilinear form is defined as an
integral over Ω = ∪K∈Th

K, the tensor A may be computed by assembling the
contributions from all elements,

Ai = a(φ1i1 , φ
2
i2 , . . . , φ

ρ
iρ
) =

∑
K∈Th

aK(φ1i1 , φ
2
i2 , . . . , φ

ρ
iρ
).(4.5)

where aK denotes the contribution from element K. We further let {φK,jk }nj

k=1

denote the local finite element basis for V jh on K and define the element tensor AK

by

(4.6) AKi = aK(φK,1i1
, φK,2i2

, . . . , φK,ρiρ
).

The assembly of the global tensor A thus reduces to the computation of the element
tensor AK on each element K and the insertion of the entries of AK into the global
tensor A.

In [18], it was shown that if the local basis on each element K may be obtained
as the image of a basis on a reference element K0 by the standard (affine) isomor-
phism FK : H1(K0)→ H1(K), then the element tensor AK may be represented as
a tensor contraction of a reference tensor A0, only depending on the form a and
the reference basis, and a geometry tensor GK , depending on the geometry of the
particular element K,

(4.7) AKi = A0
i,αG

α
K ,

with summation over the multiindex α. It was further demonstrated in [21], that
this representation may significantly reduce the operation count for computing the
element tensor compared to standard evaluation schemes based on quadrature.
Below, we extend the representation (4.7) to hold not only for bases that may be
affinely mapped from a reference element, but also for finite element spaces that
must be transformed by a Piola mapping.

4.2. A representation theorem. We now state the general representation
theorem for multilinear forms on H1, H(curl), H(div) (and L2). Instead of working
out the details of the proof here, we refer the reader to the proof presented in [19] for
H1, and illustrate the main points for H(div) and H(curl) by a series of examples.

Theorem 4.2. Let K0 ⊂ Rn be a reference element and let FK : K0 → K =
FK(K0) be a non-degenerate, affine mapping with Jacobian JK . For j = 1, 2, . . . , ρ,

let {φK,jk }k denote a basis on K generated from a reference basis {Φjk}k on K0, that

is, φK,jk = F jK(Φjk) where F jK is either of the mappings defined by (2.8), (2.9) or
(2.10).

Then there exists a reference tensor A0
i , independent of K, and a geometry

tensor GK such that AK = A0 : GK , that is,

(4.8) AKi =
∑
α∈A

A0
iαG

α
K ∀i ∈ I,
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for a set of primary indices I and secondary indices A. In fact, the reference
tensor A0 takes the following canonical form,

(4.9) A0
iα =

∑∫
K0

∏
j

D
(·)
X Φj(·)[(·)] dX,

that is, it is the sum of integrals of products of basis function components and their
derivatives on the reference element K0, and the geometry tensor GK is the outer
product of the coefficients c(·) of any weight functions with a tensor that depends
only on the Jacobian JK ,

(4.10) GαK =
∏

c(·)
| detJK |
(detJK)γ

∑∏ ∂X(·)
∂x(·)

∏ ∂x(·)
∂X(·)

.

4.3. Examples. To this end, we start by considering the vector-valued L2(Ω)
inner product, defining a bilinear form:

(4.11) a(v, u) =

∫
Ω

v · u dx.

In the following, we let x denote coordinates on K and let X denote coordinates
on the reference element K0. FK is an affine mapping from K0 to K, that is,
x = FK(X) = JKX + xK . We further let φK denote a field on K obtained as

the image of a field Φ on the reference element K0, φK = F (·)
K (Φ). We aim to

illustrate the differences and similarities of the representations of the mass matrix
for different choices of mappings FK , in particular affine, contravariant Piola, and
covariant Piola.

Example 4.3 (The mass matrix with affinely mapped basis). Let FK be the
affine mapping, FK(Φ) = Φ ◦ F−1K . Then, the element matrix AK for (4.11) is
given by

(4.12) AKi =

∫
K

φK,1i1
(x) · φK,2i2

(x) dx = | detJK |
∫
K0

Φ1
i1 [β](X)Φ2

i2 [β](X) dX,

where we use Φ[β] to denote component β of the vector-valued function Φ and
implicit summation over the index β. We may thus represent the element matrix
as the tensor contraction (4.7) with reference and geometry tensors given by

A0
i =

∫
K0

Φ1
i1 [β](X)Φ2

i2 [β](X) dX,

GK = | detJK |.
We proceed to examine the representation of the mass matrix when the basis

functions are transformed with the contravariant and the covariant Piola trans-
forms.

Example 4.4 (The mass matrix with contravariantly mapped basis). Let Fdiv
K

be the contravariant Piola mapping,

Fdiv
K (Φ) =

1

detJK
JKΦ ◦ F−1K .

Then, the element matrix AK for (4.11) is given by

AKi =

∫
K

φK,1i1
(x) · φK,2i2

(x) dx

=
| detJK |
(detJK)2

∂xβ
∂Xα1

∂xβ
∂Xα2

∫
K0

Φ1
i1 [α1](X)Φ2

i2 [α2](X) dX.
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We may thus represent the element matrix as the tensor contraction (4.7) with
reference and geometry tensors given by

A0
α,i =

∫
K0

Φ1
i1 [α1](X)Φ2

i2 [α2](X) dX,

GKα =
| detJK |
(detJK)2

∂xβ
∂Xα1

∂xβ
∂Xα2

.

Example 4.5 (The mass matrix with covariantly mapped basis). Let Fcurl
K be

the covariant Piola mapping,

Fcurl
K (Φ) = J−TK Φ ◦ F−1K .

Then, the element tensor (matrix) AK for (4.11) is given by

AKi =

∫
K

φK,1i1
(x) · φK,2i2

(x) dx

= | detJK |
∂Xα1

∂xβ

∂Xα2

dxβ

∫
K0

Φ1
i1 [α1](X)Φ2

i2 [α2](X) dX.

We may thus represent the element matrix as the tensor contraction (4.7) with
reference and geometry tensors given by

A0
α,i =

∫
K0

Φ1
i1 [α1](X)Φ2

i2 [α2](X) dX,

GKα = | detJK |
∂Xα1

∂xβ

∂Xα2

∂xβ
.

We observe that the representation of the mass matrix differs for affine, con-
travariant Piola and covariant Piola. In particular, the geometry tensor is different
for each mapping, and the reference tensor has rank two for the affine mapping,
but rank four for the Piola mappings. We also note that the reference tensor for
the mass matrix in the case of the covariant Piola mapping transforms in the same
way as the reference tensor for the stiffness matrix in the case of an affine mapping
(see [18]).

We conclude by demonstrating how the divergence term from (4.3) is trans-
formed with the contravariant Piola (being the relevant mapping for H(div)).

Example 4.6 (Divergence term). Let FK be the affine mapping, let Fdiv
K be

the contravariant Piola mapping, and consider the bilinear form

(4.13) a(v, σ) =

∫
K

v div σ dx.

for (v, σ) ∈ V 1 × V 2. Then, if φK,1 = FK(Φ1) and φK,2 = Fdiv
K (Φ2), the element

matrix AK for (4.13) is given by

AKi =

∫
K

φK,1i1
div φK,2i2

dx =
| detJK |
detJK

∂xβ
∂Xα1

∂Xα2

∂xβ

∫
K0

Φ1
i1

∂Φ2
i2
[α1]

∂Xα2

dX.

Noting that
∂xβ

∂Xα1

∂Xα2

∂xβ
= δα1α2

, we may simplify to obtain

AKi =
| detJK |
detJK

∫
K0

Φ1
i1

∂Φ2
i2
[α1]

∂Xα1

dX = ±
∫
K0

Φ1
i1 div Φ2

i2 dX.

We may thus represent the element matrix as the tensor contraction (4.7) with
reference and geometry tensors given by

A0
i =

∫
K0

Φ1
i1 div Φ2

i2 dX,

GKα = ±1.
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The simplification in the final example is a result of the isomorphism, induced
by the contravariant Piola transform, between H(div,K0) and H(div,K). The
form compiler FFC takes special care of such and similar simplifications.

5. Assembling H(div) and H(curl) elements

To guarantee global continuity with Piola-mapped elements, special care has
to be taken with regard to the numbering and orientation of geometric entities, in
particular the interplay between local and global orientation. This is well-known,
but is rarely discussed in the standard references5. We here discuss some of these
issues and give a strategy for dealing with directions of normals and tangents that
simplifies assembly over H(div) and H(curl). In fact, we demonstrate that one may
completely remove the need for contending with directions by using an appropriate
numbering scheme for the simplicial mesh.

5.1. Numbering scheme. The numbering and orientation of geometric en-
tities in FFC follows the UFC specification [1]. In short, the numbering scheme
works as follows. A global index is assigned to each vertex of the tessellation Th
(consisting of triangles or tetrahedra). If an edge adjoins two vertices vi and vj ,
we define the direction of the edge as going from vertex vi to vertex vj if i < j.
This gives a unique orientation of each edge. The same convention is used locally
to define the directions of the local edges on each element. Thus, if an edge adjoins
the first and second vertices of a tetrahedron, then the direction is from the first
to the second vertex. A similar numbering strategy is employed for faces. The key
is now to require that the vertices of each element are always ordered based on the
their global indices.

For illustration, consider first the two-dimensional case. Let K0 be the UFC
reference triangle, that is, the triangle defined by the vertices {(0, 0), (1, 0), (0, 1)}.
Assume that K = FK(K0) and K ′ = FK′(K0) are two physical triangles sharing an
edge e with normal n. If e adjoins vertices vi and vj and is directed from vi to vj ,
it follows from the numbering scheme that i < j. Since the vertices of both K and
K ′ are ordered based on their global indices, and the local direction (as seen from
K or K ′) of an edge is based on the local indices of the vertices adjoining that edge,
this means that the local direction of the edge e will agree with the global direction,
both for K and K ′. Furthermore, if we define edge normals as clock-wise rotated
tangents, K and K ′ will agree on the direction of the normal of the common edge.
The reader is encouraged to consult Figure 2 for an illustration.

The same argument holds for the direction of edges in three dimensions. More-
over, if face normals are consistently defined in terms of the edges, it is straightfor-
ward to ensure a common direction. In particular, FIAT uses the two first edges of
each face to define the direction of the face normal. As a consequence, two adjacent
tetrahedra sharing a common face will always agree on the direction of the normal
of that face.

We emphasize that the numbering scheme above does not result in a consistent
orientation of the boundary of each element. It does however ensure that two adja-
cent elements sharing a common edge or face will always agree on the orientation of
that edge or face. In addition to facilitating the treatment of tangential and normal
traces, a unique orientation of edges and faces simplifies assembly of higher order
Lagrange elements. A similar numbering scheme is proposed in the monograph [26]
for tetrahedra in connection with H(curl) finite elements.

5Some details may be found in [26, 32],
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Figure 2. Two adjacent triangles will always agree on the direc-
tion of a common edge tangent or normal.

5.2. Mapping nodal basis functions. Next, we show how this numbering
scheme and the FIAT choice of degrees of freedom give the necessary H(div) or
H(curl) continuity. Assume that we have defined a set of nodal basis functions on
K0, that is, {Φi}ni=1 such that

�i(Φj) = δij , i, j = 1, 2, . . . , n,

for a set of degrees of freedom {�i}ni=1. These basis functions are mapped to two
physical elements K and K ′ by an appropriate transformation F (contravariant or
covariant Piola), giving a set of functions on K and K ′ respectively. We demon-
strate below that as a consequence of the above numbering scheme, these functions
will indeed be the restrictions to K and K ′ of an appropriate global nodal basis.

Consider H(curl) and a global degree of freedom � defined as the tangential
component at a point x on a global edge e with tangent t, weighted by the length
of the edge e,

�(v) = ‖e‖ v(x) · t = v(x) · e.
Let Fcurl be the covariant Piola mapping as before and let φK and φK

′

be two basis
functions on K and K ′ obtained as the mappings of two nodal basis functions say
Φ and Φ′, on K0,

φK = Fcurl
K (Φ) and φK

′

= Fcurl
K′ (Φ′).

Assume further that Φ is the nodal basis function corresponding to evaluation of
the tangential component at the point X ∈ K0 along the edge E, and that Φ′ is
the nodal basis function corresponding to evaluation of the tangential component
at the point X ′ ∈ K0 along the edge E′. Then, if x = FK(X) = FK′(X ′), the
covariant Piola mapping ensures that

φK(x) · e = Φ(X) ·E = 1 and φK
′

(x′) · e′ = Φ′(X ′) ·E′ = 1.

Thus, since e = e′, it follows that

�(φK) = �(φK
′

).
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Continuity for H(div) may be demonstrated similarly.
In general, FFC allows elements for which the nodal basis on the reference

element K0 is mapped exactly to the nodal basis for each element K under some
mapping F , whether this be affine change of coordinates or one of the Piola transfor-
mations. While this enables a considerable range of elements, as considered in this
paper, it leaves out many other elements of interest. As an example, the Hermite
triangle or tetrahedron [10], does not transform equivalently. The Hermite triangle
has degrees of freedom which are point values at the vertices and the barycenter,
and the partial derivatives at each vertex. Mapping the basis function associated
with a vertex point value affinely yields the correct basis function for K, but not
for the derivative basis functions. A simple calculation shows that a function with
unit x-derivative and vanishing y-derivative at a point generally maps to a function
for which this is not the case. In fact, the function value basis functions transform
affinely, but the pairs of derivative basis functions at each vertex must be trans-
formed together, that is, a linear combination of their image yields the correct basis
functions.

Examples of other elements requiring more general types of mappings include
the scalar-valued Argyris and Morley elements as well as the Arnold-Winther sym-
metric elasticity element [4] and the Mardal-Tai-Winther element for Darcy-Stokes
flow [25]. Recently, a special-purpose mapping for the Argyris element has been
developed by Dominguez and Sayas [11], and we are generalizing this work as an
extension of the FIAT project as outlined below.

If {Φi} is the reference finite element basis and {φKi }i is the physical finite
element basis, then equivalent elements satisfy φKi = FK(Φi) for each i. If the
elements are not equivalent under FK , then {φKi }i and {FK(Φi)}i form two differ-
ent bases for the polynomial space. Consequently, there exists a matrix MK such
that φKi =

∑
jM

K
ij FK(Φj). In the future, we hope to extend FIAT to construct

this matrix M and FFC to make use of it in constructing variational forms, further
extending the range of elements available to users.

5.3. A note about directions. An alternative orientation of shared facets
gives rise to a special case of such transformations. It is customary to direct edges
in a fashion that gives a consistent orientation of the boundary of each triangle.
However, this would necessarily mean that two adjacent triangles disagree on the
direction of their common edge. In this setting, normals would naturally be directed
outward from each triangle, which again would imply that two adjacent triangles
disagree on the direction of the normal on a common edge. It can be demonstrated
that it is then more appropriate to define the contravariant Piola mapping in the
following slightly modified form,

Fdiv(Φ) =
1

| detJK |
JKΦ ◦ F−1K ,

that is, the determinant of the Jacobian appears without a sign.
To ensure global continuity, one would then need to introduce appropriate sign

changes for the mapped basis functions. For two corresponding basis functions
φK and φK

′

as above, one would change the sign of φK
′

or φK such that both
basis functions correspond to the same global degree of freedom. Thus, one may
consider obtaining the basis functions on the physical element by first mapping the
nodal basis functions from the reference element, and then correcting those basis
functions with a change of sign,

φ̃K = F(Φ),
φK = ± φ̃K .
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Table 3. FFC code for the mixed Poisson equation.

r = 3

S = FiniteElement("BDM", "triangle", r)

V = FiniteElement("DG", "triangle", r - 1)

element = S + V

(tau, v) = TestFunctions(element)

(sigma, u) = TrialFunctions(element)

a = (dot(tau, sigma) - dot(div(tau), u) + dot(v, div(sigma))*dx

L = dot(v, f)*dx

This would correspond to a diagonal MK transformation where the entries are all
±1.

Since a multilinear form is linear in each of its arguments, this approach cor-
responds to first computing a tentative element tensor ÃK and then obtaining AK

from ÃK by a series of rank one transforms. However, this procedure is unnecessary
if the contravariant Piola mapping is defined as in (2.9) and the numbering scheme
described in Section 5.1 is employed.

6. Examples

In order to demonstrate the veracity of the implementation, and the ease with
which theH(div) andH(div) conforming elements can be employed, we now present
a set of numerical examples and include the FFC code used to define the variational
forms. In particular, we return to the examples introduced in Section 2 which in-
clude formulations of the Hodge Laplace equations, the cavity resonator eigenvalue
problem and the weak symmetry formulation for linear elasticity.

6.1. The Hodge Laplacian. Consider the weak formulations of the Hodge
Laplace equation introduced in Examples 2.1 and 2.2. For Ω ⊂ R2 and differential 1-
and 2-forms, we have the mixed Poisson equation (2.1). Stable choices of conforming
finite element spaces Σh × Vh ⊂ H(div)× L2 include Vh = DGr−1 in combination
with Σh ∈ {RTr−1,BDFMr,BDMr} for r = 1, 2, . . . . The FFC code corresponding
to the latter choice of elements is given in Table 3. Further, for Ω ⊂ R3, we give the
FFC code for the formulation of (2.3) with the element spaces NED1

r−1×RTr−1 ⊂
H(curl)×H(div) in Table 4.

For testing purposes, we consider a regular tessellation of the unit square/cube,
Ω = [0, 1]n, n = 2, 3, and a given smooth source for the two formulations. In
particular for (2.1), we solve for

(6.1) u(x1, x2) = C sin(πx1) sin(πx2),

with C a suitable scaling factor, and for (2.3), we let

(6.2) u(x1, x2, x3) =

⎛
⎝x21(x1 − 1)2 sin(πx2) sin(πx3)
x22(x2 − 1)2 sin(πx1) sin(πx3)
x23(x3 − 1)2 sin(πx1) sin(πx2)

⎞
⎠ .

Note that u given by (6.2) is divergence-free and such that u×n = 0 on the exterior
boundary, and thus satisfies the implicit natural boundary conditions of (2.3).

A comparison of the exact and the approximate solutions for a set of uniformly
refined meshes gives convergence rates in perfect agreement with the theoretical
values indicated by Table 2, up to a precision limit. Logarithmic plots of the L2
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Table 4. FFC code for the curl-div formulation of the Hodge
Laplace equation.

r = 2

CURL = FiniteElement("Nedelec", "tetrahedron", r - 1)

DIV = FiniteElement("RT", "tetrahedron", r - 1)

element = CURL + DIV

(tau, v) = TestFunctions(element)

(sigma, u) = TrialFunctions(element)

a = (dot(tau, sigma) - dot(curl(tau), u) + dot(v, curl(sigma)) \

+ dot(div(v), div(u)))*dx

L = dot(v, f)*dx
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Figure 3. Convergence rates for the discretized mixed Poisson
equation (2.1) using RTr−1 × DGr−1 (left) and BDMr × DGr−1
(right), r = 1, 2, . . . , 7. Logarithmic plots of the L2 error of the
flux approximation: ||σ− σh||0 versus mesh size. The convergence
rates in the left plot are O(hr) and the convergence rates in the
right plot are O(hr+1), cf. Table 2. The error does not converge
below ∼ 10−10 in our experiments as a result of limited precision in
the evaluation of integrals and/or linear solvers. The exact source
of the limited precision has not been investigated in detail.

error of the flux using Σh ∈ {RTr−1,BDMr} versus the mesh size for r = 1, 2, . . . , 7,
can be inspected in Figure 3 for the mixed Poisson problem (with C = 100).

For the curl-div formulation of the Hodge Laplace equation (2.3), we have
included convergence rates for u and σ in Table 5. Note that the convergence
rates for the combinations NEDr × RTr and NEDr × BDMr, r = 1, 2 are of the
same order, except for the || · ||div error of u, though the former combination is
computationally more expensive.

6.2. The cavity resonator. The analytical non-zero eigenvalues of the Maxwell
eigenvalue problem (2.5) with Ω = [0, π]n, n = 2, 3, are given by

(6.3) ω2 = m2
1 +m2

2 + . . .+m2
n, mi ∈ {0} ∪ N

where at least n − 1 of the terms mi must be nonzero. It is well-known [26]
that discretizations of this eigenvalue problem using H1 conforming finite elements
produce spurious and highly mesh-dependent eigenvalues ω2. The edge elements of
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Element ||σ − σh||0 ||σ − σh||curl ||u− uh||0 ||u− uh||div
NED0 × RT0 0.99 0.98 0.99 0.98
NED1 × BDM1 1.96 2.00 1.95 0.96
NED1 × RT1 1.97 1.97 1.98 1.98
NED2 × BDM2 3.00 2.99 2.97 1.97
NED2 × RT2 2.98 2.96 2.97 2.97
Table 5. Averaged convergence rates for the discretized curl-div
formulation of the Hodge Laplace equation (2.3) using NEDr−1 ×
RTr−1, r = 1, 2, 3 and NEDr×BDMr, r = 1, 2. Number of degrees
of freedom in the range 80 000− 300 000.

0 5 10 15 20

11

2

44

55

8

99

1010

1313

1616

1717

18

20

Nedelec
Lagrange

ω
2

Figure 4. The first 20 eigenvalues of the cavity resonator problem
computed using first order Nedelec elements (NED0) and Lagrange
elements (P1) on a coarse (16 × 16) criss-cross mesh. The exact
analytical values are indicated by the horizontal grid lines.

the Nedelec type however give convergent approximations of the eigenvalues. This
phenomenon is illustrated in Figure 4. There, the first 20 non-zero eigenvalues ω2

h,N

produced by the Nedelec edge elements on a regular criss-cross triangulation are
given in comparison with the corresponding Lagrange eigenvalue approximations
ω2
h,L. Note the treacherous spurious Lagrange approximations such as ω2

h,L ≈ 6, 15.

6.3. Elasticity with weakly imposed symmetry. As a final example, we
consider a mixed finite element formulation of the equations of linear elasticity with
the symmetry of the stress tensor imposed weakly as given in Example 2.4. In the
homogeneous, isotropic case, the inner product induced by the compliance tensor
A reduces to

〈τ, Aσ〉 = ν〈τ, σ〉 − ζ〈tr τ, trσ〉
for ν, ζ material parameters. A stable family of finite element spaces for the dis-
cretization of (2.6) is given by [3]: BDM2

r × DG2
r−1 × DGr−1 ⊂ H(div,Ω;M) ×
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Figure 5. Left: Convergence rates for elastic stress approxima-
tions of (2.6). Logarithmic plot of H(div) error of the approxi-
mated stress σ versus mesh size. The convergence rates are O(hr),
r = 1, 2, 3, 4. Right: Elastic dolphin hanging by the tail under a
gravitational force.

Table 6. FFC code for linear elasticity with weak symmetry.

def A(sigma, tau, nu, zeta):

return (nu*dot(sigma, tau) - zeta*trace(sigma)*trace(tau))*dx

def b(tau, w, eta):

return (div(tau[0])*w[0] + div(tau[1])*w[1] + skew(tau)*eta)*dx

nu = 0.5

zeta = 0.2475

r = 2

S = FiniteElement("BDM", "triangle", r)

V = VectorElement("Discontinuous Lagrange", "triangle", r-1)

Q = FiniteElement("Discontinuous Lagrange", "triangle", r-1)

MX = MixedElement([S, S, V, Q])

(tau0, tau1, v, eta) = TestFunctions(MX)

(sigma0, sigma1, u, gamma) = TrialFunctions(MX)

sigma = [sigma0, sigma1]

tau = [tau0, tau1]

a = A(sigma, tau, nu, zeta) + b(tau, u, gamma) + b(sigma, v, eta)

L = dot(v, f)*dx

L2(Ω;Rn)×L2(Ω), r = 1, 2, . . . . The 17 lines of FFC code sufficient to define this
discretization are included in Table 6.

Again to demonstrate convergence, we consider a regular triangulation of the
unit square and solve for the smooth solution

(6.4) u(x0, x1) =

(
−x1 sin(πx0)

0.5πx21 cos(πx0)

)
.

The theoretically predicted convergence rate of the discretization introduced above
is of the order O(hr) for all computed quantities. The numerical experiments cor-
roborate this prediction. In particular, the convergence of the stress approximation
in the H(div) norm can be examined in Fig. 5.
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7. Conclusions

The relative scarcity of H(div) and H(curl) mixed finite element formulations
in practical use, may be attributed to their higher theoretical and implementa-
tional threshold. Indeed, more care is required to implement their finite element
basis functions than the standard Lagrange bases, and assembly poses additional
difficulties.

However, as demonstrated in this work, the implementation of mixed finite el-
ement formulations over H(div) and H(curl) may be automated and thus be used
with the same ease as standard formulations over H1. In particular, the additional
challenges in the assembly can be viewed as not essentially different from those
encountered when assembling higher-order Lagrange elements. The tools (FFC,
FIAT, DOLFIN) used to compute the results presented here are freely available
as part of the FEniCS project [13] and it is our hope that this may contribute to
further the use of mixed formulations in applications.
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[27] J.-C. Nédélec. Mixed finite elements in R3. Numer. Math., 35(3):315–341, 1980.
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Paper IV

STABILITY OF LAGRANGE FINITE ELEMENTS FOR THE
MIXED LAPLACIAN

marie e. rognes and douglas n. arnold

Abstract. The stability properties of continuous piecewise polynomial ap-
proximations Pc

r
(Lagrange elements) for the vector variable, and discontin-

uous piecewise polynomial approximations of one order lower Pr−1 ⊇ divPc

r

for the scalar field, of the mixed Laplacian are investigated numerically for
r = 1, 2, 3. For r = 2, 3, the element pair Pc

r
× divPc

r
is stable for all mesh

families tested. In particular, it is stable on diagonal mesh families, in contrast
to its behaviour for the Stokes equations. For r = 1, stability holds for some
meshes, but not for others. Moreover, in H(div) × L2, the natural setting for
this problem, convergence was observed precisely for the methods that were
observed to be stable. However, it seems that optimal order L2 estimates for
the vector variable, known to hold for r ≥ 4, are not attainable for r < 4.

1. Introduction

In this note, we consider approximations of the mixed Laplace equations with
Dirichlet boundary conditions: Given a source g, find the velocity u and the pressure
p such that

u−∇ p = 0, div u = g in Ω, p = 0 on ∂Ω

for a domain Ω ⊂ R2 with boundary ∂Ω. The equations offer the classical weak
formulation: Find a square integrable vector field with square integrable divergence
u ∈ H(div,Ω) and a square integrable function p ∈ L2(Ω) such that

(1.1)

∫
Ω

u · v + q div u+ p div v =

∫
Ω

g q

for all v ∈ H(div,Ω) and q ∈ L2(Ω). The above formulation can be discretized
using a pair of finite dimensional spaces Vh ×Qh, yielding discrete approximations
uh ∈ Vh and ph ∈ Qh satisfying (1.1) for all v ∈ Vh and q ∈ Qh.

As is well-known, the spaces Vh and Qh must satisfy certain stability, or com-
patibility, conditions for the discretization to be well-behaved [7]. More precisely,
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there must exist positive constants α and β such that for any h,

0 < α ≤ αh = inf
u∈Zh

sup
v∈Zh

〈u, v〉
||u||div||v||div

,(1.2a)

0 < β < βdivh = inf
q∈Qh

sup
v∈Vh

〈div v, q〉
||v||div||q||0

.(1.2b)

Here, || · ||div and || · ||0 denote the norms on H(div,Ω) and L2(Ω) respectively,
〈 · , · 〉 is the L2(Ω) inner product and

(1.3) Zh = {v ∈ Vh | 〈div v, q〉 = 0 ∀ q ∈ Qh}.
The two conditions will be referred to as the Brezzi coercivity and the Brezzi
inf-sup condition for the mixed Laplacian respectively. The classical conforming
discretizations of (1.1) rely on the finite element families of Raviart and Thomas [18]
or Brezzi, Douglas and Marini [8] for the space Vh ⊂ H(div) in order to satisfy these
conditions.

In this note, we shall consider the Lagrange vector element spaces, that is,
continuous piecewise polynomial vector fields defined relative to a triangulation Th,
for the space Vh. This is motivated by the following reasons. First, these spaces
are fairly inexpensive, simple to implement and post-process, and in frequent use
for other purposes. Second, such pairs would allow continuous approximations of
the velocity variable, or when viewed in connection with linear elasticity, lay the
ground for continuous approximations of the stress tensor. Moreover, in the recent
years, there has been an interest in mixed finite element discretizations that are
both stable for (1.1) and for the Stokes equations:

(1.4)

∫
Ω

∇u : ∇ v + q div u+ p div v =

∫
Ω

f v,

for all v ∈ H1(Ω;V) such that
∫
Ω v = 0 and all q ∈ L2(Ω). The search for con-

forming such discretizations is complicated by the fact that the existing, stable
discretizations of (1.1) are such that Vh �⊂ H1(Ω;V). On the other hand, the exist-
ing stable discretizations of (1.4) are typically unstable for (1.1) [14]. The existence
of stable discretizations {Vh × Qh}h of (1.1) such that Vh ⊂ H1(Ω;V) becomes a
natural separate question. Unfortunately, there are no known such finite element
discretizations that are stable for any admissible triangulation family {Th}. In this
note, we aim to numerically examine cases where a reduced stability property may
be identified. In this sense, the investigations here are in the spirit of the work of
Chapelle and Bathe [10], and Qin [17].

For a family of conforming discretizations {Vh×Qh}h of (1.1) such that divVh ⊆
Qh for each h, the condition (1.2a) is trivial. The stability conditions thus reduce to
the condition (1.2b), namely the question of bounded Brezzi inf-sup constant βdiv

h .
On the other hand, recall that for the Stokes formulation (1.4), the corresponding
Brezzi coercivity condition is trivial by Korn’s inequality. Hence, for any family of
conforming discretizations, the stability conditions for Stokes reduce to that of a
uniform bound for the Brezzi inf-sup constant β1

h. Here,

(1.5) β1
h = inf

q∈Qh

sup
v∈Vh

〈div v, q〉
||v||1||q||0

,

when Vh ⊂ H1(Ω;V), Qh ⊂ L2(Ω), and || · ||1 denotes the norm on H1(Ω). Further,
such a bound immediately gives (1.2b) since β1

h ≤ βdiv
h by definition. Hence, if

div Vh ⊆ Qh, stability for Stokes gives stability for the mixed Laplacian.
The conditions div Vh ⊆ Qh and Vh ⊂ H1(Ω;V) are clearly satisfied by the

element pairs consisting of continuous piecewise polynomial vector fields of degree
less than or equal to r, and discontinuous piecewise polynomials of degree r − 1
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for r = 1, 2, . . . . This family could be viewed as an attractive family of elements
for both the Stokes equations and the mixed Laplacian. However, the Brezzi inf-
sup constant(s) will not be bounded for all r. For r ≥ 4, Scott and Vogelius
demonstrated that these finite element spaces will be stable for the Stokes equations
on triangulations that have no nearly singular vertices, that is, triangulations that
are not singular in the appropriate sense [19]. The lower order cases, 1 ≤ r ≤
3, were studied carefully by Qin, concluding that the elements are not stable in
general [17]. However, they are stable for some specific families of triangulations,
and can be stabilized by removal of spurious pressure modes on some other classes
of triangulations. (The space Nh of spurious pressure modes is defined in (2.8)
below.) In general, the stability of finite element spaces for the Stokes equations
has been exhaustively investigated. In addition to the previous references, surveys
are presented in [4, 9]. However, to our knowledge, a careful study of the lower
order cases has not been conducted for the mixed Laplacian.

As the stability for the mixed Laplacian is a weaker requirement when divVh ⊆
Qh, there may be a greater class of triangulations for which the elements form a
stable discretization. In fact, this is known to be true. One example is provided
by the pairing of continuous piecewise linear vector fields Vh and the subspace of
discontinuous piecewise constants Qh such that Qh = div Vh on crisscross triangu-
lations of the unit square. Qin proved that there does not exist a β > 0 such that
β1
h > β for any h [17, Lemma 7.3.1]. On the other hand, Boffi et al. proved that

such a bound exists for βdiv
h [3]. We shall present numerical evidence suggesting

that there is a range of triangulations for which the above holds. The main results
are summarized below.

Spurious modes: For r = 2, 3 and for all triangulations tested, the dimen-
sion of the space Nh of spurious modes is equal to the number of interior
singular vertices σ. However, for r = 1 and one of the triangulation fam-
ilies studied (“Flipped”, which is defined in Figure 1), dimNh is strictly
greater than σ.

Stability: For all triangulations we have tested, the method seems at least
reduced stable (i.e. stable after removal of spurious modes, if any), for
r = 2, 3. This is in contrast to the situation for the Stokes equations,
where for some triangulations, such as the diagonal triangulation, the
method is not stable for r = 2, 3, while for other triangulations, it is. For
r = 1, reduced stability holds for some triangulations, but fails for others,
including the diagonal triangulation.

Convergence: We also studied convergence of the method on diagonal tri-
angulations. For such meshes, the method was observed to be stable for
r > 1, but unstable for r = 1. Theory predicts optimal convergence of
p in L2(Ω) and u in H(div,Ω) for a stable method and this is in fact
what was observed. Such optimal convergence holds for r = 2, 3, 4, but
not in the apparently unstable case r = 1. In the case r ≥ 4, it is known
that u converges at one order higher in L2(Ω) than in H(div,Ω). No such
increase of order was observed for r < 4.

The note is organized as follows. We introduce further notation and summarize
some key points of the theory of mixed finite element methods in Section 2. Fur-
ther, we derive some eigenvalue problems associated with the stability conditions
and give a characterization of the Brezzi inf-sup constant for the mixed Laplacian
βdiv
h in Section 3. These eigenvalue problems applied to the Stokes equations were

also stated by Malkus [13], and (in part) by Qin [17], and provide a foundation for
numerical investigations of the Brezzi stability conditions. We rely on the eigen-
value problem associated with the Brezzi inf-sup constant in Section 4. The other
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eigenvalue problems are included for the sake of completeness, ease of comparison
and as starting-points for the study of other pairs of element spaces. Section 4 is
devoted to the study of continuous piecewise polynomials in two dimensions for the
velocity and discontinuous piecewise polynomials for the pressure.

2. Notation and preliminaries

The notion of reduced stability of families of mixed finite element spaces is a
key point in this note. In order to make this notion precise, this preliminary section
aims to introduce notation and summarize the stability notions for finite element
discretizations of abstract saddle point problems.

If V is an inner product space, we denote the dual space by V ∗, the inner
product on V by 〈 · , · 〉V and the induced norm by || · ||V . Let Ω be an open
and bounded domain in R

d with boundary ∂Ω. We let Hm(Ω), for m = 0, 1, . . . ,
denote the standard Sobolev spaces of square integrable functions with m weak
derivatives and denote their norm by || · ||m. Accordingly, H0(Ω) = L2(Ω). The
space of polynomials of degree r on Ω is denoted Pr(Ω). The space of vectors in Rd

is denoted V, and in general, X(Ω;V) denotes the space of vector fields on Ω for
which each component is in X(Ω). For brevity however, the space of vector fields in
L2(Ω;V) with square integrable divergence is written H(div,Ω) with norm || · ||div
and semi-norm | · |div = ||div · ||0. The subscripts and the reference to the domain
Ω will be omitted when considered superfluous.

Let Th denote an admissible simplicial tessellation of Ω, h measuring the mesh
size of the tessellation. We shall frequently refer to spaces of piecewise polynomials
defined relative to such, and label the spaces of continuous, and discontinuous,
piecewise polynomials of degree less than or equal to r as follows.

Pcr = Pcr(Th) = {p ∈ H1(Ω) | p|K ∈ Pr(K) ∀K ∈ Th} r = 1, 2, . . . ,

Pr = Pr(Th) = {p ∈ L2(Ω) | p|K ∈ Pr(K) ∀K ∈ Th} r = 0, 1, . . . .

The classical abstract saddle point problem reads as follows [7, 9]. For given
Hilbert spaces V and Q and data (f, g) ∈ V ∗ ×Q∗, find (u, p) ∈ V ×Q satisfying

(2.1) a(u, v) + b(v, p) + b(u, q) = 〈f, v〉+ 〈g, q〉 ∀ (v, q) ∈ V ×Q,

where a and b are assumed to be continuous, bilinear forms on V × V and V ×Q,
respectively. We shall assume here and throughout that a is symmetric. Follow-
ing [2], there exists a unique and stable solution (u, p) of (2.1), if there exists a
positive constant γ such that

(2.2) 0 < γ ≤ inf
0�=(u,p)

sup
0�=(v,q)

a(u, v) + b(v, p) + b(u, q)

||(u, p)||V×Q||(v, q)||V ×Q
.

Equivalently [7], existence, uniqueness and stability of the solution are guaranteed
by the existence of positive constants α, β such that

0 < α ≤ inf
0�=u∈Z

sup
0�=v∈Z

a(u, v)

||u||V ||v||V
,(2.3a)

0 < β ≤ inf
0�=q∈Q

sup
0�=v∈V

b(v, q)

||v||V ||q||Q
,(2.3b)

where Z = {v ∈ V | b(v, q) = 0 ∀ q ∈ Q}. We shall refer to γ as the continuous
Babuška inf-sup constant, and α and β as the continuous Brezzi coercivity and
Brezzi inf-sup constants, respectively.

Given finite dimensional spaces Vh ⊂ V and Qh ⊂ Q, defined relative to a
tessellation Th of Ω, the Galerkin discretization of (2.1) takes the following form.
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Find (uh, ph) ∈ Vh ×Qh satisfying

(2.4) a(uh, v) + b(v, ph) + b(uh, q) = 〈f, v〉+ 〈g, q〉 ∀ (v, q) ∈ Vh ×Qh.

The discrete analogy of (2.2) now reads:

0 ≤ γh = inf
0�=(u,p)∈Vh×Qh

sup
0�=(v,q)∈Vh×Qh

a(u, v) + b(v, p) + b(u, q)

||(u, p)||V×Q||(v, q)||V×Q
,(2.5)

and respectively for (2.3):

0 ≤ αh = inf
0�=u∈Zh

sup
0�=v∈Zh

a(u, v)

||u||V ||v||V
,(2.6a)

0 ≤ βh = inf
0�=q∈Qh

sup
0�=v∈Vh

b(v, q)

||v||V ||q||Q
,(2.6b)

where

(2.7) Zh = {v ∈ Vh | b(v, q) = 0 ∀ q ∈ Qh}.
The values γh, αh and βh will be referred to as the Babuška inf-sup, Brezzi coercivity
and Brezzi inf-sup constants, respectively. For given Vh×Qh, there exists a unique
solution of (2.4) if αh and βh (or equivalently γh) are positive. Further, if αh and βh
are uniformly bounded from below for a family of discretization spaces {Vh×Qh}h,
parameterized over h, one obtains the quasi-optimal approximation estimate [7]:

||u− uh||V + ||p− ph||Q ≤ C

(
inf
v∈V

||u − v||Vh
+ inf
q∈Q

||p− q||Qh

)
.

The uniform boundedness condition motivates the notion of stability for pairs of
finite element spaces.

Definition 2.1 (Stable discretization). A family of finite element discretiza-
tions {Vh×Qh}h is stable in V ×Q if the Brezzi coercivity and inf-sup constants αh
and βh (or equivalently the Babuška inf-sup constant γh) are bounded from below
by a positive constant independent of h.

We shall also, in agreement with the standard terminology, say that {Vh × Qh}h
satisfies the Brezzi coercivity, respectively inf-sup, condition if αh, respectively βh,
is uniformly bounded from below.

There are families of discretizations that are not stable in the sense defined
above, but have a reduced stability property. More precisely, for a pair Vh × Qh
consider the space of spurious modes Nh ⊆ Qh:

(2.8) Nh = {q ∈ Qh | b(v, q) = 0 ∀ v ∈ Vh}.
For a stable discretization, Nh contains only the zero element. Conversely, βh = 0
if and only if Nh contains non-zero elements. Then, if Nh is non-trivial, it may
be natural to consider the reduced space N⊥

h , the orthogonal complement of Nh
in Qh, in place of Qh. This motivates the definition of the reduced Brezzi inf-sup
constant, relating to the stability of Vh ×N⊥

h :

(2.9) β̃h = inf
0�=q∈N⊥

h

sup
0�=v∈Vh

b(v, q)

||v||V ||q||Q
,

and the following definition of reduced stable. By definition, β̃h �= 0.

Definition 2.2 (Reduced stable discretization). A family of discretizations
{Vh × Qh}h is reduced stable in V × Q if the Brezzi coercivity constant αh and

the reduced Brezzi inf-sup constant β̃h, defined by (2.6a) and (2.9) respectively, are
bounded from below by a positive constant independent of h.
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3. Eigenvalue problems related to the Babuška-Brezzi constants

For a given set of discrete spaces, the Babuška and Brezzi constants defined
by (2.5) and (2.6) can be computed by means of eigenvalue problems. The form and
properties of the eigenvalue problem associated with the Brezzi inf-sup constant for
the Stokes equations was discussed by Qin [17]. Since also the Brezzi coercivity
constant plays a role for the mixed Laplacian, we begin this section by deriving
how the Brezzi coercivity constant can be computed by similar eigenvalue prob-
lems. These eigenvalue problems were also stated, and carefully analysed from an
algebraic view-point, by Malkus [13] in connection with the displacement-pressure
formulation of the linear elasticity equations. We continue by observing that the
continuous Brezzi inf-sup constant can be naturally associated with the smallest
eigenvalue of the Laplacian itself.

3.1. Eigenvalue problems for the discrete Babuška-Brezzi constants.
Let Vh ⊂ V and Qh ⊂ Q be given finite dimensional spaces as before. By definition,
the Babuška inf-sup constant γh = |λmin| when λmin is the smallest (in modulus)
eigenvalue of the following generalized eigenvalue problem: Find λ ∈ R, 0 �= (u, p) ∈
Vh ×Qh satisfying

(3.1) a(u, v) + b(v, p) + b(u, q) = λ (〈u, v〉V + 〈p, q〉Q) ∀ (v, q) ∈ Vh ×Qh.

Further, the following lemma identifies an eigenvalue problem associated with the
Brezzi inf-sup constant.

Lemma 3.1 (Qin [17, Lemma 5.1.1 – 5.1.2]). Let λmin be the smallest eigenvalue
of the following generalized eigenvalue problem: Find λ ∈ R, 0 �= (u, p) ∈ Vh ×Qh
satisfying

(3.2) 〈u, v〉V + b(v, p) + b(u, q) = −λ〈p, q〉Q, ∀ (v, q) ∈ Vh ×Qh.

Then, λ ≥ 0 and for βh defined by (2.6b), βh =
√
λmin.

It can also be shown that the reduced Brezzi inf-sup constant β̃h equals the square-
root of the smallest non-zero eigenvalue of (3.2) [17, Theorem 5.1.1].

The Babuška and Brezzi inf-sup constants are thus easily computed, given bases
for the spaces Vh and Qh. As for (3.1), it is easily seen that the Brezzi coercivity
constant αh = |λmin| where λmin is the smallest (in modulus) eigenvalue of the
eigenvalue problem: Find λ ∈ R and 0 �= u ∈ Zh such that

(3.3) a(u, v) = λ〈u, v〉V ∀ v ∈ Zh.

However, a basis for Zh is usually not readily available, thus hindering the actual
computation of the eigenvalues of (3.3). Instead, the above eigenvalue problem over
Zh can be extended to a generalized eigenvalue problem over Vh ×Qh: Find λ ∈ R

and 0 �= (u, p) ∈ Vh ×Qh such that

(3.4) a(u, v) + b(v, p) + b(u, q) = λ〈u, v〉V ∀ (v, q) ∈ Vh ×Qh.

The following lemma establishes the equivalence between (3.3) and (3.4).

Lemma 3.2. If (λ, u) is an eigenpair of (3.3), there exists a p ∈ Qh such that
(λ, (u, p)) is an eigenpair of (3.4). Conversely, if (λ, (u, p)) is an eigenpair of (3.4)
and u �= 0, then u ∈ Zh and (λ, u) is an eigenpair of (3.3). For 0 �= p ∈ Nh and
any scalar λ, (λ, (0, p)) is an eigenpair of (3.4), and these are the only eigenpairs
of (3.4) with u = 0.

Proof. Let (λ, u) be an eigenpair of (3.3). Define Bh : Vh → Qh such that
〈Bhv, q〉Q = b(v, q) for all q ∈ Qh. Since Bh : Z⊥h → Bh(Vh) is an isomorphism,
p ∈ Bh(Vh) ⊂ Qh is well-defined by

〈p, q〉Q = λ〈u,B−1h q〉V − a(u,B−1h q) ∀ q ∈ Bh(Vh).
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Then, for any v ∈ Z⊥h , p satisfies

b(v, p) = 〈Bhv, p〉Q = λ〈u, v〉V − a(u, v).

Further, by definition b(v, p) = 0 for any v ∈ Zh. Hence, by the assumption that
(λ, u) is an eigenpair of (3.3), (λ, (u, p)) satisfies (3.4). The converse statement is
obvious. Finally, letting u = 0 in (3.4), we see that (λ, (0, p) satisfies (3.4) if and
only if p ∈ Nh, but for any λ ∈ R. �

In the subsequent section, we shall numerically investigate the stability of fami-
lies of finite element discretizations {Vh×Qh}h such that divVh ⊆ Qh for the mixed
Laplacian, using the eigenvalue problem (3.2) in terms of standard bases for the
spaces Vh and Qh. For such an investigation of discretizations where divVh �⊆ Qh,
for instance for equal order approximations, the eigenvalue problem (3.4) would
be equally important. Note that, as a consequence of the last observation in
Lemma 3.2, if Nh is non-trivial, the generalized eigenvalue problem (3.4) is compu-
tationally not well-posed since any scalar λ is an eigenvalue.

3.2. A characterization of the Brezzi inf-sup constant for the mixed
Laplacian. We now turn from the general setting to consider the H(div) × L2

formulation of the mixed Laplacian (1.1). In Lemma 3.3 below, we show that
the Brezzi inf-sup constant can be identified with the smallest eigenvalue of the
negative Laplacian. Consequently, if a discretization family {Vh×Qh}h guarantees
eigenvalue convergence for the mixed Laplace eigenvalue problem, and is such that
div Vh ⊆ Qh, the Brezzi inf-sup constant of the discretization will converge to the
continuous Brezzi inf-sup constant.

Lemma 3.3. Let V ⊆ H(div,Ω) and Q ⊆ L2(Ω) be such that that div V ⊆ Q.
Consider the Brezzi inf-sup eigenvalue problem (3.2) applied to (1.1):

(3.5) 〈u, v〉div + 〈div v, p〉+ 〈div u, q〉 = −λ〈p, q〉 ∀ (v, q) ∈ V ×Q.

Consider also the mixed Laplace eigenvalue problem:

(3.6) 〈û, v〉+ 〈div v, p̂〉+ 〈div û, q〉 = −λ̂〈p̂, q〉 ∀ (v, q) ∈ V ×Q.

Then, (λ, (u, p)) is an eigenpair of (3.5) if and only if (λ̂, (û, p̂)) is an eigenpair

of (3.6) where λ̂ = λ(1 − λ)−1, û = u and p̂ = (1− λ)p.

Proof. Assume that (λ, (u, p)) is an eigenpair of (3.5). First, note that λ �= 1.
Letting λ = 1, v = u and q = − divu in (3.5), implies that u = 0. Further, v = 0
and q = p gives that p = 0. Hence, λ = 1 is only associated with the zero solution,
which by definition, cannot form an eigenpair. Also, letting v = u, q = −p, gives
that λ ≥ 0. Next, by the assumption divV ⊆ Q,

〈div u, div v〉 = −λ〈p, div v〉 ∀ v ∈ V.

Hence,

〈u, v〉+ 〈div u, q〉+ (1− λ)〈div v, p〉 = −λ〈p, q〉.
Letting û = u, p̂ = (1 − λ)p and λ̂ = λ(1 − λ)−1, give that (λ̂, (û, p̂)) solves (3.6).
The converse holds by similar arguments. �

The equivalence demonstrated in the lemma above affords a simple charac-
terization of the Brezzi inf-sup constant for the mixed Laplacian. The eigenvalue
problem (3.5) with V = H(div,Ω) and Q = L2(Ω) is the eigenvalue problem as-
sociated with the continuous Brezzi inf-sup constant βdiv, cf. Lemma 3.1. Hence,
βdiv is the square-root of the smallest eigenvalue of (3.5). On the other hand, the
eigenvalue problem (3.6) is a mixed weak formulation of the standard eigenvalue
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problem for the negative Laplacian with Dirichlet boundary conditions, given in
strong form below:

(3.7) −Δp̂ = λ̂ p̂ in Ω, p̂ = 0 on ∂Ω.

Thus, if μ is the smallest eigenvalue of (3.7), βdiv =
√

μ(1 + μ)−1.

Remark 3.4. An alternative eigenvalue problem arises from noting that, under
the assumption div V ⊆ Q, (3.5) implies that λp = − divu. Hence if (λ, (u, p))

solves (3.5), then either λ = 0, u = 0 and p ⊥ div V , or λ �= 1 and for λ̂ =

λ(1 − λ)−1, (λ̂, u) will be an eigenpair of the problem:

〈div u, div v〉 = λ̂〈u, v〉 ∀ v ∈ V.

This eigenproblem was studied in [5].

Now, consider a stable discretization family {Vh × Qh}h→0 of (1.1) such that
div Vh ⊆ Qh, with Brezzi inf-sup constants {βdiv

h }h. Let μh denote the smallest
eigenvalue approximation of (3.6) by Vh × Qh. As a consequence of the previous,
if μh → μ, then βdiv

h → βdiv. In other words, if the discretization family is stable,
satisfies div Vh ⊆ Qh, and gives eigenvalue convergence, then the Brezzi inf-sup
constant will converge to the continuous Brezzi inf-sup constant. Note however,
that the discrete stability conditions are not sufficient for the convergence of ap-
proximations to the eigenvalue problem (3.6) [1, 3].

Mixed finite element discretizations of (1.1) based on the Raviart-Thomas [18]
and Brezzi-Douglas-Marini [8] families of H(div) conforming elements are such that

λ̂h → λ̂ and hence βdiv
h → βdiv. The case where βdiv

h seems to be uniformly bounded
in h, but βdiv

h �→ βdiv is exemplified in the subsequent section. Finally, note that if
Ω is the unit square: Ω = (0, 1)2, the smallest eigenvalue of (3.7) is 2π2 and so

(3.8) βdiv =

√
2π2

1 + 2π2
≈ 0.975593.

4. Lower order Lagrange elements for the mixed Laplacian

From here on, we restrict our attention to finite element discretizations of the
mixed Laplacian (1.1) on a polyhedral domain Ω ⊂ R2. The primary aim is to
examine the stability, or reduced stability, and convergence properties of such, uti-
lizing Lagrange elements, that is, continuous piecewise polynomials, for the vector
variable and discontinuous piecewise polynomials for the scalar variable:

(4.1) Vh ×Qh = Pcr(Th;V)× Pr−1(Th),
for r = 1, 2, . . . . Although the Brezzi conditions are in general not satisfied for
these discretizations, stability or reduced stability may be identified on families
of structured triangulations. The pair (4.1) is clearly such that divVh ⊆ Qh.
Therefore, the stability of the discretization relies on a uniform bound for the
Brezzi inf-sup constant only. Further, a uniform lower bound on the Brezzi inf-sup
constant for the Stokes equations induces the corresponding bound for the mixed
Laplacian. Hence, the results on the reduced stability of this element pair for the
Stokes equations can be directly applied to the mixed Laplacian. In the following,
new numerical evidence is presented and compared to the known results.

The stability of the Pcr (V) × Pr−1 family of elements, for both the Stokes
equations and the mixed Laplacian, depends on the polynomial degree r and the
structure of the triangulation family {Th}h. For triangulations that have interior
singular vertices, the space of spurious modes Nh, defined by (2.8) applied to (1.1),
will be non-trivial. Here, an interior vertex is labelled singular if the edges meeting
at that vertex fall on two straight lines. Let x denote an interior singular vertex
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Diagonal Flipped Zigzag Crisscross Union Jack

σ 0 0 0 n2 1
2n(n− 2)

dimNh 0

{
(12n− 1)2 r = 1

0 r = 2, 3
0 n2 1

2n(n− 2)

Table 1. The number of interior singular vertices σ and the di-
mension of the space of spurious modes, dimNh, for labelled fam-
ilies of n × n triangulations of the unit square, cf. Figure 1. For
the flipped, zigzag and Union Jack meshes, dimNh is conjectural.

and let ωx be the star of x. For any r ≥ 1, there exists a p ∈ Nh such that p is
supported in ωx [15, 16]. Consequently, letting σ denote the number of interior
singular vertices of a triangulation, dimNh ≥ σ. Scott and Vogelius showed that the
converse is true for r ≥ 4: If there are no interior singular vertices, then dimNh = 0
and so βdivh > β1h > 0. Moreover, they proved that for a family of meshes without
interior singular vertices, β1

h remains bounded above zero as long as the meshes
do not tend to singularity as h → 0. For the precise statement and more details,
see [19] or [6, Section 10.6].

As we shall see below, for r < 4, the space of spurious modes may be non-trivial
even when there are no singular vertices. Further, for the Stokes equations, more
restrictive conditions than the above must be placed on the triangulations in order
to obtain a uniform bound for the Stokes Brezzi inf-sup constant [17]. The stability
properties of these lower order discretizations for the mixed Laplacian is the main
question of interest in the following.

Remark 4.1. We shall not consider the pairing of continuous versus discon-
tinuous polynomials of other polynomial degrees than those of (4.1). This choice
is easily motivated. First, a dimension count shows that the pairing of continuous
piecewise polynomial vector fields with discontinuous piecewise polynomials of the
same or higher degree must have a non-trivial space of spurious modes. Second, al-
though the Brezzi inf-sup constant is uniformly bounded for the pairs Pcr(V)×Pr−2,
r = 2, 3, . . . , the Brezzi coercivity constant for the mixed Laplacian is not uniformly
bounded, and thus stability fails.

4.1. Stability. In the spirit of [17, Section 5], we aim to numerically investi-
gate the stability of Pcr (V) × Pr−1 for r = 1, 2, 3 on certain families of structured
triangulations of the unit square. The triangulation patterns considered are illus-
trated and labelled in Figure 1. For n even, an n×n triangulation of each family is
constructed by first partitioning the domain into n × n squares, and subsequently
dividing each block of 2× 2 squares into triangles by the respective patterns. For
instance, an n × n diagonal triangulation is formed by dividing the unit square
into n × n subsquares, and dividing each subsquare into triangles by the positive
diagonal. Throughout, we identify h = 1/n and assume that n > 2. Observe that
the diagonal, flipped, and zigzag triangulations contain no interior singular vertices,
while the crisscross and the Union Jack triangulation contain n2 and 1

2n(n− 2) in-
terior singular vertices respectively. This is summarized in the first row of Table 1.

Recall that dimNh ≥ σ for r ≥ 1 and equality holds for r ≥ 4. Qin proved
that equality holds for 1 ≤ r ≤ 3 in the case of the diagonal and the crisscross
meshes and numerically observed equality for the flipped mesh for r = 2 [17]. Our
own experiments show that equality holds for the zigzag and Union Jack meshes
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(a) Diagonal (b) Flipped (c) Zigzag

(d) Crisscross (e) Union Jack

Figure 1. Structured 2× 2 triangulations of the unit square.

for 1 ≤ r ≤ 3. Equality also holds for the flipped mesh when r = 2, 3, but not for
r = 1. These results are summarized in the second row of Table 1.

We continue by studying the behaviour of the Brezzi inf-sup constants on the
above triangulations. The cases r = 2, 3 are considered first, but we will return to
the case r = 1 below. For the Stokes equations, it is known that the diagonal and
the crisscross triangulation families exhibit very different behaviour for r = 2, 3 [17].
Namely, although there are non-trivial spurious modes on the crisscross triangula-
tion family, the reduced Brezzi inf-sup constant is uniformly bounded. In contrast,
for the diagonal family, the Brezzi inf-sup constant decays as approximately O(h).
As the discretization is reduced stable for the Stokes equations on crisscross tri-
angulations, it is also reduced stable for the mixed Laplacian. A natural question
becomes whether the lack of stability on diagonal triangulations for the Stokes
equations is also present for the mixed Laplacian.

In view of Lemma 3.1, we shall make an attempt at answering this question
through a set of numerical experiments. For a given r and a given Th, the small-
est, and smallest non-zero, eigenvalue of (3.5) for V = Pcr(Th,V), Q = Pr−1(Th)
give the Brezzi inf-sup and reduced Brezzi inf-sup constant. These eigenvalues for
the triangulation families considered, computed using LAPACK, SLEPc [11] and
DOLFIN [12], are given for r = 1, 2, 3 in Tables 2, 3 and 4 respectively. For the
purpose of identifying spurious modes, eigenvalues below a threshold of 10−4 have
been tabulated to zero6.

For the diagonal meshes, the numerical experiments indicate that in contrast
to Stokes, the mixed Laplacian Brezzi inf-sup constants are bounded from below
for both r = 2, 3. For the flipped and zigzag meshes, experiments give similar
results; Neither exhibits any spurious modes. Moreover, while the Brezzi inf-sup
constant decays approximately as O(h) for the Stokes equations [17], it appears to
be uniformly bounded for the mixed Laplacian. For the Union Jack family, the same
experiment gives 1

2n(n−2) spurious modes, but the reduced Brezzi inf-sup constant

6Had a smaller threshold been chosen, some of the zero eigenvalues associated to interior
singular vertices would have been missed for r = 2 on the Union Jack mesh of size n = 6.
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βdiv
h β̃div

h (dimNh)

n Diagonal Zigzag Flipped Union Jack

4 0.847171 0.791967 0.945496 (1) 0.976985 (4)
6 0.716677 0.626865 0.945619 (4) 0.976271 (12)
8 0.605576 0.505968 0.947850 (9) 0.975985 (24)
10 0.517707 0.420180 0.946138 (16) 0.975847 (40)
12 0.449060 0.357720 0.944833 (25) 0.975770 (60)
14 0.394963 0.310731 0.943880 (36) 0.975724 (84)
16 0.351684 0.274303 0.943142 (49) 0.975693 (112)

Table 2. The mixed Laplacian (reduced) Brezzi inf-sup constant
for Pc1(Th;V) × P0(Th) on labelled structured families of trian-
gulations Th. The dimension of the space of spurious modes in
parenthesis if non-trivial.

βdiv
h β̃div

h (dimNh)

n Diagonal Zigzag Flipped Union Jack

4 0.975627 0.955956 0.943790 0.975628 (4)
6 0.975600 0.952460 0.940480 0.975603 (12)
8 0.975595 0.951384 0.938717 0.975595 (24)
10 0.975594 0.950906 0.937684 0.975594 (40)
12 0.975594 0.950638 0.936992 0.975593 (60)
14 0.975593 0.950458

Table 3. The mixed Laplacian (reduced) Brezzi inf-sup constant
for Pc2(Th;V) × P1(Th) on labelled structured families of trian-
gulations Th. The dimension of the space of spurious modes in
parenthesis if non-trivial.

βdiv
h β̃div

h (dimNh)

n Diagonal Zigzag Flipped Union Jack

4 0.972244 0.975594 0.975594 0.975594 (4)
6 0.967304 0.975593 0.975593 0.975593 (12)
8 0.964845 0.975593 0.975593 0.975593 (24)
10 0.963412
12 0.962484

Table 4. The mixed Laplacian (reduced) Brezzi inf-sup constant
for Pc3(Th;V) × P2(Th) on labelled structured families of trian-
gulations Th. The dimension of the space of spurious modes in
parenthesis if non-trivial.
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again seems to be uniformly bounded. In summary for r = 2, 3, the Pcr (V)× Pr−1
elements appear to be at least reduced stable for all the families considered.

With the discussion in Section 3.2 in mind, we also note that the Brezzi inf-sup
constant converges to the exact value, given by (3.8), for some, but not all, of these
meshes. For r = 2, the Brezzi inf-sup constant seems to converge to the exact value
on the diagonal meshes, but not on the flipped or the zigzag meshes. The situation
is the opposite for r = 3. There, the Brezzi inf-sup constant seems to converge to
the exact value on the zigzag and flipped meshes, but not for the diagonal meshes.

The situation is different and more diverse in the lowest-order case: r = 1.
Boffi et al. proved that Pc1(V)×P0 is in fact reduced stable for the mixed Laplacian
on crisscross meshes [3]. It is not reduced stable for Stokes [17]. However, the
element pair does not seem to be stable on diagonal meshes. The values in the first
column of Table 2 indicate that the Brezzi inf-sup constant decays approximately
as O(h). The same is the case for the zigzag meshes. For the Union Jack meshes,
the situation is similar to the crisscross case. That is, the number of singular
modes match the number of interior singular vertices and the reduced Brezzi inf-sup
constant appears to be bounded from below. Finally, the flipped meshes display a
surprising behaviour. There seem to be (n2 −1)2 spurious modes, even though there
are no singular vertices. This is the only case where we have observed dimNh > σ.
However, the reduced Brezzi inf-sup constant appears to be uniformly bounded.

4.2. Convergence. In the previous, we have considered the stability of the
Pcr(V)×Pr−1 elements. Now, we proceed to examine the convergence properties of
these elements on the diagonal meshes. Conjecturing that Pcr(V) × Pr−1 is stable
on this mesh family for r ≥ 2, in accordance with the numerical evidence presented
above, the standard theory gives the error estimate

(4.2) ||u− uh||div + ||p− ph||0 ≤ Chr (||u||r+1 + ||p||r) .
For r ≥ 4, the L2 error estimate for the velocity can be improved [6, Theorem
10.4.9], thus yielding:

(4.3) ||u− uh||0 ≤ Chr+1||u||r+1.

In order to verify (4.2) and to inspect whether (4.3) could be attained for
r = 2, 3, we consider a standard smooth exact solution to the Laplacian with pure
Dirichlet boundary conditions:

(4.4) p(x, y) = sin(2πx) sin(2πy), u = ∇ p, g = div u.

The errors of the Pcr (V)× Pr−1 approximations for 1 ≤ r ≤ 4 on diagonal meshes
can be examined in Figure 2. To compute the errors, both the source function g and
the exact solutions u, p have been represented by sixth order piecewise polynomial
interpolants Πhg and Πhu,Πhp, whereupon the errors have been calculated exactly
(up to numerical precision).

For r = 1, we observed the discretization to be unstable on diagonal meshes.
As expected in this case, neither the pressure nor the velocity approximation seems
to converge in the L2 norm. This indicates that the estimates for the approximation
error, based on the standard estimates and the decaying Brezzi inf-sup constant,
cannot be improved. On the other hand, for r > 1, we observed the method to be
stable. For r = 2, 3, 4, the orders of convergence in the H(div) norm of the velocity
and the L2 norm of the pressure approximations are indeed optimal, as predicted
by (4.2).

The situation seems different for the convergence of the velocity approximation
in the L2 norm. For r ≥ 4, a convergence rate of order r + 1 is predicted by (4.3).
This is also observed for r = 4 in Figure 2(c). On the other hand, for r = 2, the
rate of convergence seems to be of order r, and thus one order suboptimal. The
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(a) Normalized pressure errors in || · ||0.

(b) Normalized velocity errors in | · |div

(c) Normalized velocity errors in || · ||0

Figure 2. The errors of Pcr (V) × Pr−1 approximations for r =
1, 2, 3, 4 on diagonal meshes versus mesh number n. The errors
have been normalized, that is, multiplied by the inverse of the
error at the smallest mesh n = 4.
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same is observed for r = 3. We therefore conjecture that the estimate (4.3) does
not hold for r = 2, 3.
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