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Abstract

Under the guidance of variational principles, we derive a two-dimensional shell
model, which is a close variant of the classical Naghdi model. From the model solution,
approximate stress and displacement fields can be explicitly reconstructed. Convergence
of the approximate fields toward the more accurate three-dimensional elasticity solutions
is proved. Convergence rates are established. Potential superiority of the Naghdi-type
model over the Koiter model is addressed. The condition under which the model might

fail is also discussed.
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Chapter 1

Introduction

1.1 Background and motivations

A shell is a three-dimensional elastic body occupying a thin neighborhood of a
two-dimensional manifold, which resists deformation owing to the material of which it
is made, its shape, and boundary conditions. It is extremely important in structural
mechanics and engineering because a well-designed shell can sustain large loads with
remarkably little material. For example, before collapsing, a totally clamped spherical
shell of thickness 2€ can hold a strain energy of O(e_l/ 3) times that which can be
tolerated by a flat plate of the same thickness (see page 202). For this reason, shells are
a favored structural element in both natural and man-made constructions. While elastic
shells can exhibit great strength, their behaviors can also be very difficult to predict,
and they can fail in a catastrophic fashion.

Although the deformation of a shell arising in response to given loads and bound-
ary conditions can be accurately captured by solving the three-dimensional elasticity
equations, shell theory attempts to provide a two-dimensional representation of the in-
trinsically three-dimensional phenomenon [34]. There are two reasons to derive a lower
dimensional model. One is its simpler mathematical structure. For example, the ex-

istence, regularity, bifurcation, and global analysis are by now on firm mathematical



grounds for non-linear elastic rods [18]. In contrast, the mathematical theory for non-
linear three-dimensional elasticity is much less developed. Another motivation is for
numerical simulation. An accurate, fully three-dimensional, simulation of a very thin
body is beyond the power of even the most powerful computers and computational
techniques. Furthermore, the standard methods of numerical approximation of three-
dimensional elastic bodies fail for bodies which are thin in some direction, unless the
behavior is resolved in that direction. Thus the need for two-dimensional shell models
[5].

Beginning in the late nineteenth century, and especially during the past few
decades, there have been intense efforts to derive an accurate dimensionally reduced
mathematical theory of shells. Despite much progress, the development of a satisfac-
tory mathematical theory of elastic shells is far from complete. The methodologies for
deriving shell models from three-dimensional continuum theories are still being devel-
oped, and the relation between different approaches, are not clear. Controversial issues
abound. The extremely important question of deriving rigorous mathematical theory
relating shell models to more exact three-dimensional models is wide open. A thorough
analysis of the mathematical models derived and a rigorous definition of their ranges of
applicability is mostly lacking.

There is a huge literature devoted to dimensional reduction in elasticity theory.
Several classical approaches are employed in investigations. One approach starts with a
priori assumptions on the displacement and stress fields based on mechanical consider-
ations, such as the Kirchhoff-Love assumption on the displacements and the kinetic as-

sumption on the stress fields that assumes both the transverse shear and normal stresses



3
are negligible. This approach leads to the biharmonic plate bending model, Koiter shell
model, flexural shell model, and many others. Models derived in this way have proved
successful in practice, but this approach does not seem to lend itself naturally to an error
analysis [2].

Another approach is through a formal asymptotic analysis in which the thickness
of the elastic body is viewed as a small parameter. By expanding the three-dimensional
elasticity equation with respect to the thickness, the leading terms in the expansion
are used to define lower dimensional models. This approach leads to limiting models
describing the zero thickness limit situation, among which are the limiting flexural and
membrane models, depending on ad hoc assumptions on the applied forces, the shell
geometry, and boundary conditions. These asymptotic methods only lead to the limiting
models. It does not seem to be possible to derive the better Koiter and Naghdi models
by this approach. (Taking more terms in the asymptotic expansion does not lead to a
dimensionally reduced model.) See [18] for a comprehensive treatment of this approach.

A third approach is by variational methods. Solution of the three-dimensional
equation can be characterized by variational principles or weak formulations. An ap-
proximation is determined by restricting to a trial space of functions that are finite
dimensional with respect to the transverse variable. By its very nature, this approach
leads to models that yield a displacement field or a stress field determined by finitely
many functions of two variables. Thus the dimension is reduced. In this approach, the
two energies principle, or the Prager—Synge theorem [54], plays a fundamental role in
the model validation. To apply the two energies principle, we must have a statically

admissible stress field and a kinematically admissible displacement field. The latter is
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usually easy to come by, but the former might be formidable to obtain. The two energies
principle is particularly suited to analyzing complementary energy variational models,
which automatically yield statically admissible stress fields.

The application of the two energies principle to justify plate theory was initiated
in the pioneering work of Morgenstern [47], where it was used to prove the convergence
of the biharmonic model of plate bending when the thickness tends to zero. The stat-
ically admissible stress field and the kinematically admissible displacement field were
constructed based on the biharmonic solution in an ad hoc fashion, as needed for the
convergence proof. Following this work, substantial efforts have been made to modify
the justification of the classical plate bending models, see [48], [51], and [57]. In the
same spirit, Gol'denveizer [29], Sensenig [56], Koiter [33], Mathtna [46], and many oth-
ers considered the error estimates for shell theories. In these latter works, the stress
fields constructed from the model solutions were only approximately admissible, and the
justifications obtained were largely formal.

Due to the formidable difficulty involved in the construction of an admissible stress
field based on the solution of a known model, it seems a better choice to reconsider the
derivation of the model while keeping in mind the construction of the statically admissible
stress field as a primary goal. Based on the Hellinger—Reissner variational formulations
of the three-dimensional elasticity, a systematic procedure of dimensional reduction for
plate problems was developed in [2]. In this approach both the stress and displacement
fields were restricted to subspaces in which functions depend on the transverse coordinate
polynomially. The derivation based on the second Hellinger—Reissner principle not only

led to the well known Reissner—-Mindlin plate model but also furnished an admissible



stress field and so naturally led to a rigorous justification of the model by the two
energies principle. This approach is not easily extensible to shell problems. Due to the
curved shape of a shell, if this approach were carried over and the subspaces were chosen
to be composed of functions depending on the transverse coordinate polynomially, the
polynomials would be of conspicuously higher order. The resulting model would contain
so many unknowns that it would be nearly as untractable as the three-dimensional model.

In this work we derive and rigorously justify a two-dimensional shell model guided

by the variational principles.

1.2 Organization of this thesis

We consider the modeling of the deformation arising in response to applied forces
and boundary conditions of an arbitrary thin curved shell, which is made of isotropic
and homogeneous elastic material whose Lamé coefficients are A and u. The shell is
clamped on a part of its lateral face and is loaded by a surface force on the remaining
part of the lateral face. The shell is subjected to surface tractions on the upper and
lower surfaces and loaded by a body force. We take the three-dimensional linearized
elasticity equation as the supermodel and approximate it by a two-dimensional model.
The lower dimensional model will be justified by proving convergence and establishing the
convergence rate of the model solution to the solution of the three-dimensional elasticity
equation in the relative energy norm under some assumptions on the applied forces.
Conditions under which the model might fail will be discussed. The two energies principle

supplies important guidance for the construction of the model.
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Throughout the thesis, Greek subscripts and superscripts, except €, which is re-
served for the half-thickness of the shell, always take their values in {1, 2}, while Latin
scripts always belong to the set {1,2,3}. Summation convention with respect to repeated
superscripts and subscripts will be used together with these rules. We usually use lower
case Latin letters with an undertilde, as v, to denote two-dimensional vectors. Lower case
Greek letters with double undertildes denote two-dimensional second order tensors, as
. However, the fundamental forms on the shell middle surface will be denoted by lower
case Latin letters. We use boldface Latin letters to denote three-dimensional vectors and
boldface Greek letters second order three-dimensional tensors. Vectors and tensors will
be given in terms of their covariant components, or contravariant components, or mixed
components.

The notation P ~ () means there exist constants C'; and C9 independent of €, P,
and @ such that C1P < @ < C9P. The notation P < () means there exists a constant
C independent of ¢, P, and ) such that P < CQ.

Chapters 2-6 form the main body of the thesis, with Chapters 2 and 5 treating
two special kinds of shells, namely, the plane strain cylindrical shells and spherical shells,
respectively; Chapter 6 treating general shells; and Chapters 3 and 4 containing results
needed for the analysis. The reason we treat cylindrical and spherical shells separately is
that for these special shell problems, we can construct statically admissible stress fields
and kinematically admissible displacement fields, so that we can use the two energies
principle to justify the models by bounding the constitutive residuals. As a consequence,
stronger convergence results can be obtained for these cases. These two special shells

provide examples for all kinds of shells as classified in Section 3.5. For the general
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shells treated in Chapter 6, precisely admissible stress fields are no longer possible to
construct. The derivation yields an almost admissible stress field with small residuals
in the equilibrium equation and lateral traction boundary condition. The two energies
principle can not be directly used to justify the model. As an alternative, we establish
an integration identity to incorporate all these residuals so that we can bound the model
error by estimating these residuals.

All the models we derive can be written in variational forms, in which the flexural
energy, membrane energy, and shear energy are combined together in the total strain
energy. Contributions of the component energies are weighted by factors that depend
on €. Chapter 3 is devoted to the mathematical analysis of such e-dependent problems
on an abstract level. In this chapter, we classify the model and analyze the asymptotic
behavior of the model solution when the shell thickness approaches zero. The range
of applicability of the derived model will also be discussed on the abstract level. The
rigorous validation of the shell model crucially hinges on these analyses.

In Chapter 4, we briefly summarize the three-dimensional linearized elasticity the-
ory expressed in the curvilinear coordinates on a thin shell. We also derive some formulas
that can substantially simplify calculations. Finally, in Chapter 7, we will discuss the
relations between our theory and other existing shell theories. In the remainder of this

introduction, we will describe the principal results of the following chapters.

1.3 Principal results

In this section we summerize the key results of Chapters 2, 5, and 6.



1.3.1 Plane strain cylindrical shells

In Chapter 2 we consider the simplest case of plane strain cylindrical shells. In
this case, the three-dimensional problem is essentially a two-dimensional problem defined
on a cross-section, so the dimensionally reduced model should be one-dimensional. We
assume that the cylindrical shell is clamped on the two lateral sides, subjected to surface
forces on the upper and lower surfaces, and loaded by a body force.

Let the middle curve of a cross-section of the cylindrical shell be parameterized
by its arc length variable € [0,L]. Our model can be written as a one-dimensional
variational problem defined on the space H = [H&(O, L)]3. The solution of the model is
composed of three single variable functions that approximately describe the shell defor-
mation arising in response to the applied forces and boundary conditions. We introduce

the following operators. For any (6,u,w) € H, we define
Y(u,w) = ou —bw, p(0,u,w) =00+ b(du — bw), 7(0,u,w) =0+ dw + bu,

which give the membrane strain, flexural strain, and transverse shear strain engendered
by the displacement functions (6,u,w). Here b is the curvature of the middle curve,
which is a function of the arc length parameter, and 0 = d/dz.

The model (cf., (2.3.2) below) reads: Find (6, u®,w®) € H, such that

1 L
52+ 3 [0, w09, 2)ds



L L

i) + G [0 ) (6.2

+ (2u+>\*)/

0

= (fo+ € f1,(6,9,2)), ¥($,y,2) € H,

in which

20\
2+ A

A =

and the loading functional f0+62 f1 is explicitly expressible in terms of the applied force
functions, cf., (2.3.3), (2.3.4). We show that the solution of this one-dimensional model

€, and w® that comprise the

uniquely exists. The three single variable functions 6¢, u
model solution describe the rotations of straight fibers normal to the middle curve, the
tangential displacements, and transverse displacements of points on the middle curve,
respectively.

In addition to the model, in Section 2.4 we give formulae to reconstruct a tensor
field g and a vector field v from the model solution on the shell cross-section, see
equations (2.4.1), (2.4.3), (2.4.7), and (2.4.8). The model and reconstruction formulae
are designed to have the following properties:

(1) o is a statically admissible stress field (see Section 2.4.1).

(2) v is a kinematically admissible displacement field (see Section 2.4.2).

(3) The terms of leading order in € in the constitutive residual 4,3 )\,),0)"7 —Xapg(2)

vanish, so the constitutive residual may be shown to be small as ¢ — 0 (see Section 2.4.3).
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This allows a bound on the errors of g and v by the two energies principle. Under

the loading assumptions (2.3.6) and (2.5.1), we prove the inequality

~

Ix ()l ge

lo* = allge + Ix(v*) — x(v)ll ge o 1)2

in which ¢ * is the stress field and v * the displacement field arising in the shell determined
from the two-dimensional elasticity equations. The norm || - || ge is the energy norm of

the strain or stress field.

1.3.2 Spherical shells

For spherical shells, we derive the model by a similar method. We assume the
middle surface of the shell is a portion of a sphere of radius R. The shell is clamped
on a part of its lateral face, and subjected to surface force on the remaining part of the
lateral face whose density is linearly dependent on the transverse variable. The shell
is subjected to surface forces on the upper and lower surfaces, and loaded by a body
force whose density is assumed to be constant in the transverse coordinate. The middle
surface is parameterized by a mapping from a domain w C R2 onto it. The boundary
Ow is divided as dw = Opw U Opw giving the clamping and traction parts of the the
lateral face of the shell. The model is a two-dimensional variational problem defined on
the space H = Ii})(w) X I;T}) (w) x HlD(w) The solution of the model is composed of five

two variable functions that can approximately describe the shell displacement arising in
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response to the applied loads and boundary conditions. For ( 0, u, w) € H, we define

1
7&6(%71”) = 5(“046 + uﬂ|a) - baaﬁwa

1

which give the membrane, flexural, and transverse shear strains engendered by the dis-
placement functions ( Q ;U w). Here, a,, 3 is the covariant metric tensor and b = —1/R is
the curvature of the middle surface. The model (cf., (5.3.2)) reads: Find (8¢, u® w®) €

H, such that

1
5 [ a0y (0)00(0)Viadz
w
+ / PNy (0, 0 ) 5(, 2)Vadz + gu / (0%, uS w)ralg, v, 2)Wadz
w w

2
=(fote flv(,@v,gaz)% v (Qv%az) €H
where ao‘ﬂ is the contravariant metric tensor of the middle surface and

a®PM = 2uaa)‘a*87 + XFa®P g (1.3.1)

is the two-dimensional elasticity tensor of the shell. The resultant loading functional
fo+ e f 1 can be explicitly expressed in terms of the applied force functions, cf., (5.3.3),
(5.3.4). This model has a unique solution if the resultant loading functional is in the dual
space of H. This condition is satisfied if the applied force functions satisfy the condition

(5.3.6). The unique solution (8¢, u®, w®) describes the normal straight fiber rotations,
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middle surface tangential displacement and transverse displacement, respectively. A
statically admissible stress field and a kinematically admissible displacement field can
be reconstructed from the model solution. We prove the convergence and establish the
convergence rate of the model solution to the three-dimensional solution by estimating

the constitutive residual.

1.3.3 General shells

For a general shell, except for some smoothness requirements, we do not impose
any restriction on the geometry of the shell middle surface or the shape of its lateral
boundary. The shell is assumed to be clamped on a part of its lateral surface and loaded
by a surface force on the remaining part. The shell is subjected to surface forces on the
upper and lower surfaces, and loaded by a body force.

The model is constructed in the vein of the model constructions for the special
shells in the Chapters 2 and 5. The main difficulty to overcome is that our model
derivation does not yield a statically admissible stress field. Therefore, the two energies
principle can not be directly used to justify the model. Even so, we can reconstruct a
stress field that is almost admissible with small residuals in the equilibrium equation
and lateral traction boundary condition. And we will establish an integration identity
(6.3.17) to incorporate the equilibrium residual and the lateral traction boundary con-
dition residual. This identity plays the role of the two energies principle in the general
shell theory.

Let the middle surface of the shell be parameterized by a mapping from the domain

w C R? onto it. Corresponding to the clamping and traction parts of the lateral face,
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the boundary of w is divided as 0w = dpw U Opw. In this curvilinear coordinates, the
fundamental forms on the shell middle surface are denoted by a,, 35 b, 35 and Caf- The
mixed curvature tensor is denoted by bg. The model is a two-dimensional variational
problem defined on the space H = Ii})(w) X Ii})(w) X Hllj(w) The solution of the
model is composed of five two variable functions that can approximately describe the

shell displacement arising in response to the applied loads and boundary conditions. For

(0, u,w) € H, we define the following two-dimensional tensors.

1
7&6(%71”) = §(ua|ﬂ + uﬂ|a) - baﬁwa
1 1,y A
Pap(d, u,w) = 5(9045 + 95|a) + §(b6ua|)\ + baum/\) — CapW,

~

Tﬂ(g,%,w) = béuA +95 +85w.

These two-dimensional tensor- and vector-valued functions give the membrane strain,
flexural strain, and transverse shear strain engendered by the displacement functions

(8, u,w), respectively. The model (cf., (6.2.4)) reads: Find (6¢, u®,w) € H, such that

éGQ/ aaﬁ)\vaV(gE7;L\I’JE’wE)paﬁ(Qv%’Z)\/adz

w

+/ ao‘ﬂmvm(giwe)mg(g,Z)\/Edg+gu/ aPr(0°, ut w)ra(, . 2)Vadz
w w

= <f0+€2f17(gv,g7z)>7 V(Qang) € H,

in which the fourth order two-dimensional contravariant tensor aO‘fB A7 is the elastic tensor

of the shell, defined by the formula (1.3.1). The resultant loading functional f + 2 f 1
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can be explicitly expressed in terms of the applied force functions, cf., (6.2.5), (6.2.6).
This model has a unique solution if the resultant loading functional is in the dual space of
H, a condition that can be easily satisfied. From the model solution, we can reconstruct
a stress field o by explicitly giving its contravariant components. By a correction to
the transverse deflection, we can define a displacement field v by giving its covariant
components. Under some conditions, we will prove the convergence of both o and v
to the stress and displacement fields determined from the three-dimensional elasticity
equation by using the aforementioned identity and bounding the constitutive residual,
equilibrium equation residual and lateral traction boundary condition residual.

The model is a close variant of the classical Naghdi shell model. This model differs
from the generally accepted Naghdi model in three ways. First, the resultant loading
functional has a somewhat more involved form. Second, the coefficient of the shear
term is 5/6 rather than the usual value 1. The “best” choice for this coefficient seems an
unresolved issue for shells. When the shell is flat, the model degenerates to the Reissner—
Mindlin plate bending and stretching models for which the corresponding value 5/6 is
often accepted as the best, see [55] and [2]. The third, and most significant, difference
is in the expression of the flexural strain p,, 3- The relation between our definition and

that of Naghdi’s (pé\fﬂ) is

Paf = Pé\fg + bémg + b}wa-

We will see that the change of the flexural strain expression appears to be necessary to

make the constitutive residual small in some cases (see Remark 6.3.2). In most cases, this
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difference does not affect the convergence of the model solution to the three-dimensional
solution.

When the general shell model is applied to spherical shells, we obtain a spherical
shell model slightly different from what we derived in Chapter 5 both in the form of the
flexural strain and in the resultant loading functional. The convergence properties of
these two spherical shell models are the same. What we can learn from this discrepancy
is that the model can be changed, but the resultant loading functional must be changed
accordingly, otherwise a variation in the form of a model might lead to divergence.

To prove convergence, we need to make an assumption on the dependence of the
applied force functions on the shell thickness. We will assume that all the applied force
functions that are explicitly involved in the resultant loading functional are independent
of e. Under this assumption, by properly defining function spaces and operators, the

shell models can be abstracted to the variational problem:

eQ(Au,Av)U + (Bu, Bv)y = (fo + ¢ J150) B el
(1.3.2)

ue H, VYwveH,

where H, U, and V' are Hilbert spaces. The functionals fj and f; are independent of e.
The linear bounded operators A and B are from H to U and V respectively, with the
property

2 2 2
|Aullf; + [|Bully, =~ [ully ¥V ue H.

We can assume that the range W of the operator B is dense in V', and equip W with

a norm to make it a Hilbert space. For the plane strain cylindrical shell model, we
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can prove that the operator B has closed range. This special property substantially
simplifies the analysis of behavior of the model solution and significantly strengthes the
convergence results.

The asymptotic behavior of the solution of this abstract problem is mostly deter-
mined by the leading term f(j in the loading functional. We classify the problem as a
flexural shell problem if fylye, g # 0. For flexural shells, after scaling the applied forces,
the model can be viewed as the penalization of the limiting flexural shell model, which is
constrained on ker B and independent of . The behavior of the model solution and its
convergence property to the three-dimensional solution crucially hinge on the regularity
of the Lagrange multiplier 50 of this constrained limiting problem. Without any extra

assumption, we have 50 € W* and the convergence

o o = e + (@) = x@) e _ 133
e Ix(®) e |

in which o™ is the stress field and v* is the displacement field determined from the three-
dimensional elasticity. The norm is the energy norm and x(v) is the three-dimensional
strain field engendered by the displacement v.

The convergence rate essentially depends on the position of 50 between V* and
W*. Under the assumption (6.5.14), we can prove the inequality

lo* = ollpe + [x(v*) = x(W)lge - 6 (1.3.4)
()] e ’

~
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in which 6 € [0,1]. Note that the case of # = 0 corresponds to the situation that ¢V is
only in W*. The previous convergence result can not be deduced from this result on the
convergence rate.

If folker B =0, by the closed range theorem in functional analysis, there exists a
unique CQ € W* such that the leading term of the resultant loading functional can be

reformulated as

(for ) re g1 = (¢, Bodyprs s V0 € H.

If we only have CQ € W*, we can not prove any convergence. Very likely, the model
diverges in the energy norm in this case. If CQ € V*, the abstract problem will be called
a membrane—shear problem. This condition is a necessary requirement for us to prove the
convergence of the model solution to the three-dimensional solution. Under this condition
and the assumption that the applied forces are admissible (the admissible assumption on
the applied forces is not needed for spherical shells), we can prove a convergence of the
form (1.3.3). The convergence rate is determined by where (0, the Riesz representation
of (9 in V, stands between W and V. For a totally clamped elliptic shell, which is a
special example of membrane-shear shells, under some smoothness assumption on the

shell data in the Sobolev sense, we prove the convergence rate

lo* = ollge + Ix(v*) = x®)lge o 176
Ix (V) e -

If the odd part of the tangential surface forces vanishes, the convergence rate O(el/ 5)

can be proved.
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The condition CQ € V™ is essentially equivalent to the existence condition for a
solution of the “generalized membrane” shell model defined in [18]. This condition is
trivially satisfied for shear dominated plane strain cylindrical shells. For shear dominated
plate bending, the condition is satisfied as long as the loading function belongs to Lgy.
The condition is acceptable for stiff parabolic shells and stiff hyperbolic shells. It can
be satisfied for a totally clamped elliptic shell if the shell data are fairly smooth in the
Sobolev sense. But it imposes a stringent restriction for a partially clamped elliptic shell,
in which case even if the shell data are infinitely smooth, the condition might not be
satisfied. If the condition is not satisfied, although the model solution always exists, a
rigorous relation to the three-dimensional solution is completely lacking.

To reveal the potential advantages of using the Naghdi-type model, we need a
different assumption on the applied force functions. Specifically, we assume that the odd
part of the applied surface forces has a bigger magnitude than what usually assumed.
Under this assumption and in the convergent case of membrane—shear shells, the model
solution violates the Kirchhoff-Love hypothesis on which the Koiter shell model were
based. Therefore it can not converge.

Finally, in the last chapter, we give justifications for other linear shell models
based on the convergence theorems proved for the general shell model, and we will show
that under the usual loading assumption, the differences between our model and other
models are not significant.

For lack of space, we excluded the model derivations. We will directly present the

models and address the more important issue of rigorous justifications.
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Chapter 2

Plane strain cylindrical shell model

2.1 Introduction

The shell problem of this chapter is a special example of general shells. The
mathematical structure of the derived model is much simpler and we can get much
stronger results on the model convergence. Although the problem is simple, it reveals
our basic strategy to tackle the general problem.

We consider a 3D elastic body that is an infinitely long cylinder whose cross
section is a curvilinear thin rectangle. The body is clamped on the two lateral sides and
subjected to surface traction forces on the upper and lower surfaces and loaded by a
body force. The applied forces are assumed to be in the sectional plane. Under these
assumptions, the elasticity problem is a plane strain problem and can be fully described
by a 2D problem defined on a cross section. We assume that the width 2 e of the sectional
curvilinear rectangle is much smaller than its length, so the cylinder is a thin shell.

When the shell is thin, it is reasonable to approximately reduce the 2D elasticity
problem to a 1D problem defined on the middle curve of a cross section. A system of
ordinary differential equations defined on the middle curve that can effectively capture
the displacement and stress of the shell arising in response to the applied forces and

boundary conditions will be the desired shell model.
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The model, which is a close variant of the Naghdi shell model, is constructed

under the guidance of the two energies principle. The plane strain elasticity problem

and the two energies principle will be briefly described in section 2.2. The model will be

presented and the existence and uniqueness of its solution will be proved in Section 2.3.

We reconstruct the admissible stress and displacement fields from the model solution

and compute the constitutive residual in Section 2.4. In Section 2.5, we analyze the
asymptotic behavior of the model solution and prove the convergence theorem.

Our conclusion is that when the limiting flexural model has a nonzero solution,

1/2 in the relative

our model solution converges to the exact solution at the rate of €
energy norm. In this case, the model is just as good as the limiting flexural model and
Koiter model. When the solution of the limiting flexural model is zero, our model gives
a solution that can capture the membrane and shear deformations, and the convergence
rate in the relative energy norm is still ¢l/2. The non-vanishing transverse shear defor-
mation violates the Kirchhoff-Love hypothesis in this case. Finally, to emphasize the
necessity of using the Naghdi-type model in some cases, we give two examples in which

the deformations are shear-dominated, which can be very well captured by our model,

but is totally missed by the limiting flexural model and the Koiter model.

2.2 Plane strain cylindrical shells

Since the cross section of the cylindrical shell is a curvilinear rectangle, it is
advantageous to work with curvilinear coordinates. In this section we briefly describe

the plane strain elasticity theory in curvilinear coordinates for a cylindrical shell.
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2.2.1 Curvilinear coordinates on a plane domain

Let w C R? be an open domain, and (1, 9) be the Cartesian coordinates of a
generic point in it. Let @ : @ — R2 be an injective mapping. We assume that Q = P(w)
is a connected open domain and 02 = ®(0w). The pair of numbers (z1,x9) then
furnish the curvilinear coordinates on 2. At any point along the coordinate lines, the
tangential vectors g, = 0®/0z form the covariant basis. The covariant components
9of of the metric tensor are given by g,, 3=9a 93 The contravariant basis vectors are
determined by the relation g% - g 3= 5%‘. The contravariant components of the metric
tensor are g®0 = g - g®. Note that go‘)‘g/\ 5= 5%‘. The Christoffel symbols are defined
by FZ% =g 989q-

Any vector field v defined on € can be expressed in terms of its covariant com-
ponents vg or contravariant components v by v = vag® = v*g,. Any second-order
tensor field g can be expressed in terms of its contravariant 0 or covariant components
gap by 0 = g, ® 93 = 0,39 ® g°.

The covariant derivative, a second order tensor field, of a vector field v is defined

in terms of covariant components by
_ kA
/UOé”ﬁ == aﬁ’l)a FO&B/U)\’ (221)

which is the gradient of the vector field.
The covariant derivative of a tensor field with contravariant components o0 is
defined by

By = 0y0 + 13207 + rjgam, (2.2.2)



22
which are mixed components of a third order tensor field. The row divergence of the

tensor field o7 is a vector field resulting from a contraction of this third order tensor,
. _af)  _ af xq [y *6 _ary
dive =0 g = 030" + Fﬁ,ya + Fﬁ,ya . (2.2.3)

The components of a vector or tensor field defined over 2 can be viewed as functions

defined on the coordinate domain w.

2.2.2 Plane strain elasticity

Let an infinitely long cylindrical elastic body occupying the 3D domain € X
(—00,00) C R3 be clamped on a part of its surface dpQ x (—00,00). On the remaining
part of the surface dpQ x (—o0, 00), the body is subjected to the surface traction force
whose density p is in the Q-plane and independent of the longitudinal direction. If the
applied body force q is also assumed to be in the Q-plane and independent of the longi-
tudinal direction, the displacement of the body arising in response to the applied forces
and clamping boundary condition will be in the plane of 2 and constant in the longitudi-
nal direction. The displacement can be represented by a 2D vector field v and the strain
by a 2D tensor field X defined on ). The stress field can also be treated as a 2D tensor
field g that is composed of the in-plane components. Although the stress component
in the direction normal to the 2-plane does not vanish, it is totally determined by the

in-plane stress components.
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The following five equations (2.2.4-2.2.8) constitute the theory of plane strain

elasticity. The theory includes the geometric equation
1
Xog(v) = Q(Uaug + UﬁHOé) (2.2.4)
and the constitutive equation

P = Caﬁ)"yx/w, or Xap = Aaﬁ)\,ya)"y (2.2.5)

where the fourth order tensors C%A7 and A, By are the plane strain elasticity tensor

and the compliance tensor respectively, given by

Caﬁ)\'y _ 2,uga)‘957 + )\gaﬂg)\'y

and

I A
afry = ﬂ[ga,\gm - mgaﬂgm],

in which A and p are the Lamé coefficients of the elastic material comprising the cylinder.
To describe the equilibrium equation and boundary conditions, we need more notations.
We denote the unit outward normal on the boundary 92 by n = nag®. Let the surface
force density be p= p“g., and body force density be q= 7“9, With these notations,

the equilibrium equation can be written as

oPl5+q% =0. (2.2.6)
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On the part of the domain boundary 972, the surface force condition can be expressed

as

Jaﬂnﬁ = p%. (2.2.7)

On 0pf?, the body is clamped, so the condition is
vo = 0. (2.2.8)

According to the linearized elasticity theory, the system of equations (2.2.4),
(2.2.5), (2.2.6) together with the boundary conditions (2.2.7) and (2.2.8) uniquely de-
termine the covariant components v}, of the displacement field of the elastic body
arising in response to the applied forces and the prescribed clamping boundary con-
dition. The stress distribution g* is determined by giving its contravariant components
orab Caﬁ)\'yx)\’y(g*).

The weak formulation of the plane strain elasticity equation is

ol v u:/ Y —l—/ YU,
e g @xastw) = [ duat [ pua

T (2.2.9)

in which H }) (w) is the space of vector-valued functions that are square integrable and
have square integrable first derivatives, and vanish on dpw. It is clear that if ¢ is in
the dual space of H }) (w), and p® is in the dual space of the trace space H (1)(/)2(8Tw), the

variational problem has a unique solution v *e H })(w)
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A symmetric tensor field g is called a statically admissible stress field if it satisfies
both the equilibrium equation (2.2.6) and the traction boundary condition (2.2.7). A
vector field v € H 1(w) is called a kinematically admissible displacement field, if it
satisfies the clamping boundary condition (2.2.8). For a statically admissible field g and

a kinematically admissible field v, the following integration identity holds:

/QAab’)ry(UAv _ J*A’y)(aozﬂ - U*aﬂ)
afBy - * B %
+/QC [XA’Y(R) X)ry(ﬂ )][Xaﬂ(}\{) Xaﬁ(}\{ )]

= [ = O (0 A = X)) (2210)

This is the two energies principle, from which the minimum complementary energy
principle and minimum potential energy principle easily follow. If we somehow obtain
an approximate admissible stress field g and an approximate admissible displacement
field v, then the two energies principle gives an a posteriori bound for the accuracies of
g and v in the energy norm by the norm of the residual of the constitutive equation.
For the plane strain cylindrical shell problem, this identity will direct us to a model, and

enable us to justify it.

2.2.3 Plane strain cylindrical shells

A plane strain cylindrical shell problem is a special plane strain elasticity problem,

in which the cross section of the cylinder is a thin curvilinear rectangle. For simplicity,
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we assume that it is clamped on the two lateral sides and subjected to surface forces on
its upper and lower surfaces, and loaded by a body force.
Let the middle curve S C RZ of the cross section be parameterized by its arc

length through the mapping ¢, i.e.,

S ={é(z)|x € [0, L]},

With this parameterization, the tangent vector a1 = d¢/0z is a unit vector at any
point on S. At each point on S, we define the unit vector a9 that is orthogonal to the
curve and lies on the same side of the curve for all points.

The cross section Q€ of the cylindrical shell, with middle curve S and thickness
2¢, occupies the region in R? that is the image of the thin rectangle w€ = [0, L] x [— €, €]

through the mapping

®(z,t) = () +tag, x€[0,L], t € [—¢ ¢

We assume that € is small enough so that ® is injective. The pair of numbers (z,t)
then furnishes curvilinear coordinates on the 2D domain Q€, on which the plane strain
shell problem is defined. We sometimes use the notation (x1,z9) to replace (z,t) for
convenience. For brevity, the derivative 9, will be denoted by 9. The boundary of Q€ is
composed of the upper and lower sides 't = ®((0, L) x{+£ €}) where the shell is subjected
to surface forces, and the lateral sides I'y = ®({0} x [—€,¢]) and I'; = ®({L} x [—¢€,¢€])

where the shell is clamped.
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The curvature of S at the point ¢(x) is defined by b(z) = a9 - da;. We denote
the maximum absolute value of the curvature by B = max (o 1 |b(x)].
With the curvilinear coordinates defined on €, the covariant basis vectors at
(z,t) in QF are g1 = (1 —bt)ay, go = ag. The covariant metric tensor g, g is given
by g11 = (1 — bt)2, 929 =1, g19 = g91 = 0, and the contravariant metric tensor go‘ﬁ is
given by ¢!l = 1/(1— n)?, 22 =1, ¢2=¢21 =0.
We denote the determinant of the covariant metric tensor by g = det(g,, ﬁ). Then

the Jacobian of the transformation ® is /g = 1 — bt. Therefore,
L re
fod 1= / fla,t)(1 — bt)dtd (2.2.11)
Qe 0 J—e

holds for all f:w® — R. Often, we will simply write / f instead of / fo oL
Qe Qe

Fig. 2.1. A cylindrical shell and its cross section
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The Christoffel symbols of this metric are

T =1 =1 I22=0
2 2 2
ri{=b1-0bt), Ti5=0, I35 =0.

The geometric equation becomes

x11(v) = vy + v1 = b(1 = bt)vy, x22(v) = Jyvo,

1—0bt
(2.2.12)
1
x12(8) = x21(3) = 5(Fpv1 + v2) + T—v1.
The row divergence of a tensor field o0 , by (2.2.3), has the expression
18 _ a.11 12 obt 11 b 19
o HB —80' +at0' _Q?bto- —3?17150' 5
(2.2.13)

obt 12 b 29
1—bt° 1-unt’

0% 5 = 00'% + 8,022 + b(1 - bt)o

Let the surface force densities on I'y be pt = P99, the body force density be

q =q%gq- The equilibrium equation is
o5 +q% =0. (2.2.14)

The traction boundary conditions on 't expressed in terms of the contravariant com-

ponents of a stress field g read

0-12('76) :p}k? 012(' ) _6) = _pl—a 022('76) :p3—7 0-22('7_6) = _p2— (2215)
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According to the definition, a stress field g is statically admissible if both the
equations (2.2.14) and (2.2.15) are satisfied by its contravariant components.
The clamping boundary condition imposed on an admissible displacement field
v (z,t) is simply

v1(0, -) =v1(L, -) =v9(0, - ) =wvo(L, -) =0. (2.2.16)

2.2.4 Rescaled stress and displacement components

To simplify the calculation, we introduce the rescaled components 5P for a stress

tensor o by

g =1 —wt)’ctt, 2 =(1-bt)o?, &2 =(1-bt)o?2 (2.2.17)
Then
o5 = m[@&” + (1= bt)ae12 — 26612,
(2.2.18)
1
g = =5;106"% + 5% + b5 1],

which is noticeably simpler than (2.2.13).
In these curvilinear coordinates, and in terms of the rescaled stress components,
the constitutive equation

A
Xaf = Aaﬁ)«ya 7
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takes the form

A

X11=-——-+01-0bt)¢" — ———=(1—0bt)5"",
0= g gt
1
X12 = x21 = = (1 — bt)512, (2.2.19)
2p
20+ A 1 _99 A 11
X22 = .

oo — o
dp(p+ ) 1 —bt Ap(p + )

For consistency with the rescaled stress components, we introduce the rescaled
components ¢% for the body force density and rescaled components p® for the surface
force density.

For the body force density, we define the rescaled components by

1
1—0bt

q= ‘g, = 3" agy. (2.2.20)
In components, we have Gl = (1— bt)zq1 and G2 = (1— bt)q2. The rescaled components
account the area change in the transverse direction of the cross section and more explicitly
reflect the variation of the body force density in that direction. We define the components

of the transverse average and moment of the body force density by

1 [€ 3 €
o _ L« o _ L
Ga =5, _€g adt, qy = 73 _etg a™dt. (2.2.21)

In the following, we assume the body force density changes linearly in ¢, or equivalently,

q = (& + tq5,)aq. Under this assumption, the rescaled components are quadratic



31
polynomials in ¢, and we have ¢* = ¢ +tqf' + tzqg‘, with ¢f = g, ¢1' = qm, — bag, and
95 = —bdp.

The ensuing calculations can be carried through if ¢% are arbitrary quadratic
polynomials in ¢t. Without this restriction, we cannot apply the two energies principle
directly. For a general body force density, the convergence of the model can be proved
under some restriction on the transverse variation of the body force density. This issue
will be addressed in the general shell theory.

For the surface force density p 4, we introduce the rescaled components P4 by

1 1

_Q _ 50 _ _ 50
Pt =Pi9a =Py 7y 9o B =P-9a = P70

9o (2.2.22)

The rescaled components account the length differences of the upper and lower curves
of the shell cross section from middle curve. In terms of the rescaled surface force
components, we define

A e I o 1 A P - A 12l

L . — L . — —_ 2.2.23
Po 5 » Do 5 y De P y  De P ) ( )

which are the odd and weighted even parts of the upper and lower surface forces.
In terms of the rescaled stress components 5% and the rescaled applied force
components, the equilibrium equation (2.2.14) and the surface force condition (2.2.15)

can be written as

95 + (1 - bt)9y512 — 20612 + G =0,
(2.2.24)

9512 + 9,62 + b + @ =0
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and

G2, te) =phteps, F22(-,+e)=pi+ep?. (2.2.25)

We introduce the rescaled displacement components 7, for the displacement vec-
tor v by expressing it as the combination of basis vectors on the middle curve, ie.,
«

U =vag" = vqa®, or equivalently, v = (1 — bt)dy, wv9 = U9. In terms of the rescaled

components Uq, by using (2.2.12), the geometric equation becomes

x11(v) = (1 = bt)(001 — big), x22(v) = 0o,

(2.2.26)
1. - -
x12(8) = x21(v) = 5[b0y + 00 + (1 = bt)dy 1 |-
And the clamping boundary condition is
5a(0, -) = da(L, -) = 0. (2.2.27)

In summary, in terms of the rescaled components, the elasticity problem seeks dis-
placement components ¥, and stress components 50 satisfying the constitutive equa-
tion (2.2.19), the equilibrium equation (2.2.24), the geometric equation (2.2.26) and the

boundary conditions (2.2.25) and (2.2.27).

2.3 The shell model

Our shell model is a 1D variational problem defined on the space H = [Hé (0,L)]3.
The solution of the model is composed of three single variable functions that approx-

imately describe the shell displacement arising in response to the applied forces and
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boundary conditions. For any (6,u,w) € H, we define
Y(u,w) = 0u — bw, p(0,u,w) =00+ b(0u —bw), 7(0,u,w) =0+ 0w+ bu, (2.3.1)

which give the membrane strain, flexural strain and shear strain engendered by the
displacement functions (6, u, w).

The model reads: Find (0¢, u¢, w®) € H, such that

1 L
3+ 3) [0 w0, 2)ds

L L
+ (2p + A*)/ y(u, w)y(y, z)dx + %u/ (0, uS, we)T(9, y, 2)dx
0 0

= (fo+ € f1,(0,9,2) Y(o,y,2) € H, (2.32)

in which
2u

A=
2+ N

and the resultant loading functionals are given by

L 2
/O oY (Y, 2)

L
+ /O (02 + gL — 2bpLyy + 02 + g2 + dpl)2lde  (2.3.3)

L
(For (6,9,2)) = /0 S

6 24+ A

and

1 (L
(F1,(0,y:2)) = =5 | [(bad + 3bpt — g,)¢ + bat,y + b, 2ldx
3 Jo
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A

L 1 L
2 2 1
_ m/o (pe + bpg)p(¢, y, z)dx — 6 /O bpeT(d,y, 2)dx. (2.3.4)

The bilinear form in the left hand side of the variational formulation of the model
(2.3.2) is uniformly elliptic in the space H = [Hé (0, L)]3. This conclusion follows from

the following theorem.

THEOREM 2.3.1. The equivalency

I9(6,1,0) 1, 0.0 + (0l 1 0.1y + 7O w) 0.0y = 16w )l (23.5)
holds for all (0,u,w) € H = [H&(O,L)]g‘. Here p, v and T are the strain operators defined
To prove this result, we need Peetre’s lemma.

LEMMA 2.3.2. Let X, Yy, Yo be Hilbert spaces, and let A1 : X — Y] and A9 : X — Yy
be bounded linear operators with Ay injective and Ao compact. If there exists a constant
¢ > 0 such that

[zl x < clllArzlly, + |A2zlly,) Vo e X,

then there exists a constant ¢ > 0 such that
/
lelx <lAsally, Yoex.

For a proof of this lemma, see [28]. We give the proof of the theorem.
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Proof of Theorem 2.3.1. The upper bound of the left hand side is obvious. For

the lower bound, we first see that

081,01y 0.1y + (1 + By, w)l 1y 0.1y + 700 0.1

> H89HL2(O,L) + || 0u — waLQ(O,L) + ||Ow + 0 + buHLQ(O,L)'

We consider the operators A; and As from H to [Ly(0, L)]3 defined by,

A1(0,u,w) = (06,0u—bw,0w+0+bu), A9(0,u,w)=(0,bw,0+bu), V (0,u,w) € H.

The operator A; is injective, since if (6,u,w) € ker Ay, then § = 0, du — bw = 0 and
Oow + bu = 0, so uOu+wow = 0, therefore, u? +w? = constant. Since u and w vanish on
the end points of the interval, we must have u = w = 0. The operator A9 is obviously
compact. The statement follows from Lemma 2.3.2. O
Theorem 2.3.1 shows that if the resultant loading functional fq + €2 f1 is in the dual

space of H, the model problem is uniquely solvable.

REMARK 2.3.1. The requirement fq + €2 f1 € H® can be met, if, say, the the applied
force functions are square integrable. To prove the convergence, we will need to assume
the tangential surface forces ﬁli € Hl(O,L). To prove the best possible convergence rate,
we will further need to assume the normal surface forces ﬁi €eH 1(0, L). Henceforth, we
will assume that

7% € HY(0,L), ¢2, ¢% € Lo(0,L). (2.3.6)



36

This model is slightly different from that of Naghdi’s in the following aspects:

1. There is a shear correction factor 5/6. The best value for this factor is an
unresolved issue in shell theories. For the special case of plate, the value 5/6 is usually
accepted as the best. We will see that in the flexural case, the problem is not sensitive
to this value. In the case of membrane—shear, if this factor is changed, there must be a
corresponding change in the resultant loading functional, otherwise a poor choice of the
factor may lead to divergence of the model.

2. The expression for flexural strain is 96 + b(0u — bw) while in the classical
Naghdi model it is 90 — b(Ou — bw). This change of the flexural strain operator rooted in
our derivation of the model, in which, the dimensionally reduced constitutive equation
was derived by roughly minimizing constitutive residual. Our choice leads to a smaller
constitutive residual. See Remark 2.4.1. Aother evidence favoring this change is provided
by modeling a semi-circular cylindrical shell, in which this change is simply a consequence
of more accurate integrations in the transverse direction in the process of classical Naghdi
model derivation.

3. The resultant loading functional contains more information than is normally
retained in the Naghdi model. The model convergence and convergence rate in the
relative energy norm can be proved if only fq is kept in the loading functional. See

Section 7.1.
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2.4 Reconstruction of the stress and displacement fields

From the model solution (0¢,u¢, w) € [H& (0,L)]3, we can rebuild a statically
admissible stress field by explicitly giving its contravariant components, and a kinemati-
cally admissible displacement field by giving its covariant components. We will prove the
convergence of both the reconstructed stress field and displacement field to the actual
fields determined from the 2D elasticity equations in the shell. The convergence will
be proved by using the two energies principle. To this end, we need to compute the
constitutive residual. We will see that the residual is formally small. Knowledge of the

behavior of the model solution will be necessary for a rigorous proof of the convergence.

2.4.1 Reconstruction of the statically admissible stress field

For brevity, we denote the flexural, membrane, and shear strains engendered by

the model solution by

We define three single variable functions 0%1, 0(1)1, and 0(1)2 by

ol = (2u+ N*)p + (p2 + bp),

204+ A

1 A
0(1)1 = §b€2 0%1 + (20 + )Y€ + o+ )\pg, (2.4.1)

12 9 51,199
90 :ZNTE_ZPO"FZI)E Pe,
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which furnish the principal part of the statically admissible stress field. It is straightfor-

ward to verify that these functions satisfy the following equations:

1 2 1
e 80%1 — —0(1)2 = ¢2 bp}3 + - ez(bqé — q}n),
3 3 3

11 _ 2, 12 1_1_ 1,121 (2.4.2)
80'0 —gbO'O :2bp0_pe_qa+§€ qu, o
poll L 29502 - 2 o1 2.1 2,0
90 +§ o) = —Pe— po_Qa+§€ A -

Actually, by substituting (2.4.1) into (2.4.2), we will get a system of three second order
ordinary differential equations, which is just the differential form of the variational model
equation (2.3.2). Obviously, the three principal stress functions are in L9 (0, L). Further-
more, the equations in (2.4.2) clearly show that these three functions are in H 1(0, L).
To complete the construction of a statically admissible stress field, we also need

three supplementary functions J%l, 082, and 0%2. They are defined by

dodl = —abo}? + € bg},

1
0(2)2 _ 562(1)0%1 n 8pé 4 q72n _ bqg)’ (2.4.3)
1 2
0%2 = §€(§b0%1 + ba(l)l —I—pg + 3p(1) + qg — bq?n).

1

Note that the first equation in (2.4.3) only gives 80%1, SO 021 is determined up to an

arbitrary additive constant. We fix a particular solution by requiring / 0%1 = 0. Then
0

11 12 2.1
108451101 S BUlog2lo + € lahllo). (2.4.4)
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With these six functions determined, the rescaled stress components 5 then

are explicitly defined by

= odl +tol! +r(t)odl,
72 =52 = p(l) + tp(l3 + q(t)atl)Q, (2.4.5)

522 = p2 + tp? + q(t)od2 + s(t)0 P,

where

qt) =1-=, s(t)=-(1-=). (2.4.6)

Note that r is an even function of ¢ and has zero integral over the interval [— e, €], and
qg(xe€) = s(£e) = 0. Following classical terminology, we will call 0(1)1 the resultant
membrane stress, 0%1 the first membrane stress moment, and a%l the second membrane
stress moment. The function 0(1)2 is responsible for the quadratic distribution of the
rescaled shear stress in the transverse direction and will be shown to be a higher order

(2)2 and 0%2 enrich the variation of the normal stress in the

term. The two functions o
transverse direction.

With this choice of the rescaled stress components, the surface traction condition
(2.2.25) is precisely satisfied. Combining the six equations in (2.4.2) and (2.4.3) and the
definition (2.4.5), we can verify that the equilibrium equation (2.2.24) is precisely satis-

fied. Therefore, by the relation between the rescaled components and the contravariant

components (2.2.17), we get the contravariant components B of a statically admissible
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stress field o.
I3

11 11 11 11
ottt = 7(1 — bt)Q[UO +toy +r(t)oyT],
1
S12 21 — L + tpl —l—q(t)a(l)Q], (2.4.7)
22 ) 2 22 9
1 [p5 + tre + a(t)op™ + s(t)o1”].

2.4.2 Reconstruction of the kinematically admissible displacement field

The rescaled components of the displacement field are defined by
01 = uf + ¢, 9 = w +twy + t2w2. (2.4.8)

Here, wy € H&(O, L) and wy € H& (0, L) are two correction functions defined as solutions

of the following equations.

9 L9 A1
€ (811)178@)1/2(07[/) + (wlvv)LQ(O,L) = (2u+)\* [pO - 2M+)\UO ]’U)LQ(OaL)

(2.4.9)

Vv e HL0,L)
and

) 1 2 A1
€ (Owg, )y (0,0) + (W2:0)150.0) = G am Pe ~ 205201 F ULy 0.)

Vv e H}(0,L).
(2.4.10)

The clamping boundary condition (2.2.27) is obviously satisfied. Note that this correc-

tion does not affect the middle curve displacement. So the basic pattern of the shell
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deformation is already well captured by the model solution. The covariant components

of the kinematically admissible displacement field v are
v = (1= bt)(u€ +t69), vy = w’ + twy + t>wy. (2.4.11)

These components are in H 1(u)e), and satisfy the requirement of the two energies prin-

ciple.

2.4.3 Constitutive residual

. o . _ Y
We denote the residual of the constitutive equation by Oaf = Aab’)«yg T —

Xag(2), in which o and v, are the components of the admissible stress and dis-

placement fields constructed from the model solution in the previous subsections.

By the formulae (2.2.26), we have

X11(v) = (1 — bt)(Qu’ + t90° — buw® — btwy — bt>wy)
= 7€+ tp€ — 2ty — b(1 — bt)(twy + t2wy) — bt206°,

x12(v) = x21(v) = %(96 + 0w + bu€ + tow] + t20wy) (2.4.12)
= %7’6 + %(t@wl + t28w2),

x22(v) = wq + 2two.
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By the formulae (2.2.19), the definitions (2.4.1) and (2.4.5), and the identity (2u +

N /[4p(p + X)) = 1/(2u + N*), we have

1411>\,y0'>\’y = ’)/E + t,oe - th’ye

1 2,2 1, 1 9 0 11
o [og" +to1" +r(t)og'] + [5be’ (1~ 20t) — 2bt%op )
- A (1 b)) + s(t)oF2] — bipR
Ap(p+A) ¢
1 11
oL hrtey (2.4.13)
Ajgpyo) = 2u(1 — bt)[pb + tht + a(t)op”),
A 1 2 A 11 1 2 A 11
A - _ B
20077 = gy o T gy 0) g e ve m g )

22 22 bt 22
2M+)\*{Q( oy + s(t)oq +1 bt[po +tp2 4+ q(t)od? + s(t)o3?]}

A 11
——7r(t)o .
Aplp + A) (t)o

Subtracting (2.4.12) from (2.4.13), we obtain the following expressions for the constitu-

tive residual:

1 2,27 11 117 , (1, 2 2 11
o011 = 2M+>\*{b log! +to1! +r(t)oy J+[3be(1 - 20t) — 2bt%]oq "}

A
~ g {0~ 0la®og” + s()or) - by

+ (1 — bt)(twy + t2ws) + b6

1 11
+ m(l - th)?”(t)O'Q 5 (2414)

1.5 1
012 = 5, [70(0) = 17 = po) = 510wy + *0wy)
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gl gat )b e’pe —bt[po +1pe + q(t)og?] (2.4.15)
e [2M+)\*(p0 g’ ) Tl il e e — g o) — 2wl
bt
o A*{q< tog? + s(t)ot” + —[po +tp2 + q()og? + s(t)o T2}
A
EITESY) r(toy’. (2.4.16)

REMARK 2.4.1. If we had not made the sign change in the flexural strain p(6,u,w)
discussed earlier, there would be an additional term 2bty(u€, w®) in the residual 017.

Our variant does make the residual smaller, at least formally.

Formally, most of the terms in the above residual expressions contain a factor
of the form €, t or smaller (recall that 00 and 0%2 have a small factor in their own
expressions (2.4.3)). In the expression of g1, the only term not formally small is the
last one, whose magnitude is determined by that of 0'%1. The big term in the expression

of 0192 is in the first one, which is determined by

ur€ — ph. (2.4.17)

This term is also the dominant part in the expression of 00 , see (2.4.1). We will prove
that ur¢ — p(l) is indeed small. Therefore, 0(1)2 is small, and by (2.4.4), so is a%l.
The definitions (2.4.9) and (2.4.10) of the correction functions wy and w9 were

made to minimize the first two terms in the expression of p99, at the same time, they
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minimize the two terms tdw; and t29wy in the expression of gj9. Therefore, we shall

be able to show that g99 is small as well.

2.5 Justification

The formal observations we made in the previous section do not furnish a rigorous
justification, since the applied forces and the model solution may depend on the the shell
thickness. To prove the convergence, we need to make some assumptions on the applied
loads, and get a good grasp of the behavior of the model solution when the shell thickness
tends to zero. Since we wish to bound the relative error, in addition to the upper bound
that can be determined from the constitutive residual, we need to have a lower bound

on the model solution.

2.5.1 Assumption on the applied forces

Henceforth, we assume that all the applied force functions explicitly involved in
the resultant loading functional of the model are independent of ¢, i.e., the single variable
functions

S, pS,qy, and gy, are independent of e. (2.5.1)

This assumption is different from the usual assumption adopted in asymptotic theories,
according to which, the functions ¢ 1 P, rather than p&' themselves, should have been
assumed to be independent of e. Our assumption on pg, ¢¢ and ¢f, is the same as the

usual one. This different assumption will reveal the potential advantages of the Naghdi-

type model over the Koiter-type model. The convergence theorem can also be proved
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under the usual assumption on the applied forces, but it can be proved that the difference

between the two types of models then is negligible.

2.5.2 An abstract theory

Under the assumption (2.5.1) on the applied forces, the model (2.3.2) is an e-
dependent variational problem fitting into the abstract problem that we shall discuss
in Chapter 3, cf., (3.2.2). The following convergence bounds (2.5.4) and (2.5.7) easily
follow from Theorem 3.3.1.

Let U,V, and H be Hilbert spaces, A : H — U a bounded linear operator, and

B : H — V a bounded linear continuous surjection. We assume that

lAullgr + |Bully = [lullr ¥ u e H. (25.2)

For any fq, f1 € H* and fj # 0, we consider the variational problem

€2(Au, Av)y + (Bu, Bo)y = (fg + €% f1,0),
(2.5.3)

u€e H, Yve H.

It is obvious that under the equivalency assumption (2.5.2), this variational problem has
a unique solution u¢ € H that is dependent on e. When ¢ — 0, the behavior of the
solution u€ is drastically different depending on whether fg|y., g is nonzero or not. As
we shall see, in the former case, the solution u¢ blows up at the rate of 0(6_2), while in

the latter case u€ tends to a finite limit.
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For the first case, to get more accurate description of the behavior of the solu-
tion, we rescale the problem by assuming fj = €2 Fy and f1 = €2 Fy with Fy, Fy € H

independent of €. Under this assumption, we have the convergence estimate

—1 2
JAu€ — 4 + M IBul Ny £ ellFoll g + 11 Fill e, (25.4)

in which u¥ € ker B is independent of € and is the solution of the limit problem

(AuY, Av)gr = (Fy,v) Vv € ker B. (2.5.5)

Since F{|er g # 0, we must have Aud £ 0.
For the second case, since fj € (ker B)® (the annihilator of ker B) and B is

surjective, there exists a unique ¢ 0¢ V', such that

(fo,v) = (¢°, Bv)y VweH. (2.5.6)

In this case, there exists a unique uw € H such that Bu = CO, and we have the

convergence estimate

1Au® — Au®||gy + eV Buf — Olly < ellfoll g + 1Al zs)- (2.5.7)

0 can be determined as u? = u8 + u(l) Here

It can be shown that the limit
(Au8,Av)U + (Bu87 Bv)yy =0 Vv € ker B, i.e., u8 is in the orthogonal complement of

ker B in H with respect to the inner product (A-,A- )y + (B, B- )y, that, due to the
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equivalency assumption (2.5.2), is equivalent to the original inner product of H. And

utl) € ker B is the solution of the limit problem corresponding to fi,
(Ad), Av)ir = (f1,v) ¥ v € ker B. (2.5.8)

Since fiy # 0, we have ¢V # 0.

2.5.3 Asymptotic behavior of the model solution

To fit the model problem (2.3.2) in the abstract framework (2.5.3), we introduce

the following Hilbert spaces,
H = [H§(0,L)]>, U=1Ly0,L), V =][Ly(0, L)

The inner product in H is the usual one. The inner products in U and V will be changed

slightly and equivalently. For p1,p9 € U, we define

(1, p2)U = %(QM +M)(P1.02) 1y(0,1)
and for [y1,71], [v2,™] € V, we define
(1) s 2Dy = @i+ X192 (0,0 + 201 10,1
We define the operators by

A0, u,w) = p(O,u,w) V (0,u,w) € H,
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which is just the flexural strain operator, and

B(8,u,w) = [y(u,w), 7(0,u,w)] V (0,u,w) € H,

which combines the membrane and shear strains engendered by the displacement func-

tions.

The equivalence (2.3.5) that was established in Theorem 2.3.1 guaranteed the
condition (2.5.2). To use the abstract results, we also need to show that the operator B
is surjective. To this end, it is convenient to consider the dual operator B* of B. It is

easy to see that

B*: [Ly(0, L) — [H~1(0,L)]?,

B*(¢,n) = (n,bn — 8¢, —dn — b¢) ¥ (C,n) € [La(0, L)

We have

LEMMA 2.5.1. If the curvature b of the middle curve S of the cross section of the cylin-
drical shell is not identically equal to zero, then the dual operator B* is injective and has

closed range.

Proof. If (¢,n) € ker B, then

Inll—1 =0, flbn = ¢ll—1 =0, and |8y +bC[|—1 =0,
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so we have

n=0, and [[oC[-1 =0, [[b¢ll—1 =0

Since the curvature b is not identically equal to zero, we must have { = 0.
By viewing B* as the operator Aj in Lemma 2.3.2, and considering the compact
operator

Ag  [Lo(0, L)) — [H~ (0, L))?

defined by As(n, ) = (0,bn,b(), the desired result will follow from lemma 2.3.2. O
The statement that the operator B is surjective then follows from the closed range

theorem.

REMARK 2.5.1. If the curvature b is identically equal to zero, the operator B is still
surjective, but the range will be [Lo(0,L)/R] x Lo(0,L). All the results of this section

still apply.

In accordance with the abstract theory, when the shell thickness tends to zero,

the behavior of the model solution (8¢, u€, w®) can be dramatically different for whether

fO‘kerB # 0 (2-5'9)

or

fO’kerB = 0. (2-5-10)
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We assume f() # 0, otherwise, the model is reduced down to a problem loaded by €2 fi1,
and all the analysis can be likewisely carried out and the convergence theorem in the

relative energy norm can also be proved.

a. Undeformed

b. Flexural deformation

c. Membrane deformation d. Shear deformation

Fig. 2.2. Deformations of a cylindrical shell

Since the geometry of the middle surface of a cylindrical shell and the two sides
clamping boundary condition together do not inhibit pure flexural deformation (ker B #
0), a plane strain cylindrical shell problem can be classified as a flexural shell. However
the behavior of the shell is very different depending on whether or not the applied forces
make the pure flexural deformation happen. Similar situations for the second case arise
in stretching a plate, or twisting a plate by tangential surface forces that are equal in
magnitude but opposite in direction on the upper and lower surfaces. If the applied
forces do bring about the non-inhibited asymptotically pure flexural deformation, see

Figure 2.2 (b), the flexural energy will dominate membrane and shear strain energies.
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If the applied force does not make the pure flexural deformation happen, as shown by
Figure 2.2 (c¢) (d), the membrane and shear strain energies together will dominate the
flexural energy. Since their magnitudes might be the same, there is no way for us to
distinguish the membrane and shear energies. For this reason, and for consistency with
terminologies in general shell theory, we call the first case the case of flexural shells, and
the second one the membrane—shear shells.

For a flexural shell, the solution blows up at the rate of 0(6_2). To get an
accurate grasp of the model solution behavior, we need to scale the loading functional
as we did for the abstract problem. This scaling is equivalently imposed on the applied

force functions by assuming
2 2 2 2
py =€ Py, pd=€ePd qf =€ QY. qm =€ Qm, (2.5.11)

with P&, P& QY, Q% single variable functions independent of e. The resultant loading
functionals are accordingly scaled as fg = €2 Fo, f1 = €2 Fq, with Fy and F

independent of €. The expressions for Fy and F'j are the same as (2.3.3) and (2.3.4),
had the lower case letters been replaced by capital letters. By the estimate (2.5.4) we

have

-1 -1
lp° = POHLQ(OL) +e I lzy0n) te 17N y0,0) S € (2.5.12)
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in which pO = p(@o7 ul, wo), and (90, uY, wo) € ker B is the solution of the limit problem

L
S+ ) /O o8040, 10)p(6,y, ) = (Fo, (6,9,2)) ¥ (6,1,2) € ker B,
(2.5.13)

(00, u?,w?) € ker B.

This limit problem is nothing else but the limit flexural shell model. Since F|yer g # 0,

we have pO # 0.
For a membrane—shear shell, when € — 0, the model solution (0¢, u€, w*) converges

to a finite limit. In this case, the resultant loading functional can be reformulated as

(Fo, (6,:2)) = (Y, B(¢,y,2))y ¥ (¢,,2) € H.

Note that if the curvature b is not identically equal to zero, the strain operator ~y(u, w) =

OJu — bw is surjective from [H&(O, L)]2 to Ly(0, L). Recalling the expression (2.3.3):

o =1 [ oot - 2 [
0P Y, 2 _6 0 boT\P, Y, z)ax 2H+)\ 0 bo\Y, =
L 1 1 1 2 2 1
+ /o [(pe + g0 — 2bpo)y + (Pe + qa + Opp)2ldx,
we see that the condition f|ier p = 0 is equivalent to that the bounded linear functional

defined by the second term in the right hand side of this equation vanishes on the kernel of

the strain operator . Therefore, by the closed range theorem, the condition fq|xer g =0
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is equivalent to the unique existence of Y9 € Lo (0, L), such that

L L
For(0.2)) = o+ 3 [ 500w 2)de + G [ k(G 2)ds ¥ (0p) € I

Recalling the definition of inner product in the space V, it is readily seen that the

element CO € V in the abstract theory takes the form

0 01l
C:(v,;po)-

By the estimate (2.5.7), we get

0 -1 0 -1 11
0" =P g0y T € IV = g0y +€ II7° = ;PoHLz(o’L) Se  (25.14)

in which p0 = p(Y, 49, 1Y) with (69, u?, w?) € H be the limit of the solution (8¢, uf, we).
1
Actually, we also have WO = y(ﬁo,uo,wo) and —pé = T(Ho,uo,wo).
1
By their definitions (2.4.9), (2.4.10), and Theorem 3.3.6 of Chapter 3, we have

the following estimates on the correction functions wq and wy.

1 2 A1

1/2p,.2 11
S P3N g1 gy + o g ) (2515)
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and

1 2 A1
ellowallz,(0,1) + H2M+)\*(pe T ) = 2wall 0,1

1/27,.2 11
S e/ PEl g o,y + o1 i, ) (2:5-16)

2.5.4 Convergence theorem

With all the above preparations, we are ready to prove the convergence theorem.
We denote the energy norm of a stress field g and a strain field X defined on the shell

cross section € by

lgllze = ( /Q Aapryo T2 and | xllge = ( /Q P00 xap)

respectively. Since the elasticity tensor C%M and the compliance tensor Aab’)«y are
uniformly positive definite and bounded, the energy norms are equivalent to the sums of

the Lo(w®) norms of the tensor components.

THEOREM 2.5.2. Assume that the surface force functions have the regularity p§ €
HY(0,L) and the body force functions ¢, ¢, € Lo(0,L). Let g* be the actual stress
distribution over the loaded shell, and g* the true displacement field arising in response
to the applied forces and boundary conditions. Based on the model solution (0¢,u€, w®),
we define the statically admissible stress field g by the formulae (2.4.7), and define the

kinematically admissible displacement field v by the formulae (2.4.11). We have the
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estimate
g’ — glee + g~ xWlee _
Tx(0)lge ~

(2.5.17)

Proof. The proof is based on the two energies principle, the formulae for the constitutive
residual (2.4.14) — (2.4.16), the asymptotic behaviors (2.5.12) and (2.5.14) of the model
solution, and the estimates (2.5.15) and (2.5.16) on the correction functions. Since the
behaviors of the model solution are very different for flexural shells and membrane—shear
shells, we prove the theorem for the two cases separately. In the following, we will simply

denote the norm || - HLQ(wE) by || - ||

Flexural shells

This is the case in which the solution blows up at the rate of O(e~2). To
ease the analysis, we scale the loading functions by assuming that (2.5.11) holds, with
P, P& QY, Q% single variable functions independent of €. Note that, since we are con-
sidering the relative error estimate, this scaling is not a real restriction on the applied

force functions. With this scaling, we have the estimate (2.5.12), from which, we get
o =l Se bl < I < (2.5.18)
Lo(0,L) ~ % Lo(0,L) ~© > Lo(0,L) ~ € - <
From the equivalence (2.3.5), we get

0



By the definition (2.4.1), we have

12_ 9 5251, 1,451
oy = Zu7'€— 1€ P, +Zb€ P,

from which, we have the estimates
) S

11
190" 50,

By the estimate (2.4.4), we have

11 2
oa HHI(OL)SJE .

From the first and last equations of (2.4.2), we see the estimates

11 2 11
HUO HHI(O,L) S €, ”01 ”HI(O,L) ~ 1.

From the last two equations in (2.4.3), we see the estimates

22 2 22 3
o ||L2(0,L) Sets ot HLQ(O,L) Se

2

11 12
v Mot g0,y =L 1967 y0,0) S €

o6

(2.5.20)

(2.5.21)

(2.5.22)

(2.5.23)

(2.5.24)
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By the estimates on the correction functions (2.5.15) and (2.5.16), we have

1 2 52 A1 9
cllowilyo,n) + Hm(e © " 25+ 20 AL AONARS 2,

(2.5.25)

L 252 A1 1/2
6\\3“12”L2(0,L) + Hm(€ Pe — 2M+>\01 )—QUJQHLQ(O,L) Se /2.

From the equation (2.4.12), we see that in the expression of x11(v), the term
tp(6€, u€, w) dominates in Lo(w®), and by (2.5.18), we get the lower bound ||X11(£)H2 2

63, and so

Ix ()1 Fe 2 € (2.5.26)

~

By the two energies principle, we have

* 12 N 2 _ af\y
o™ —allpe +1Ix(2") = x(v)llge = /QEC O\yQa3
(2.5.27)

2 2 2
S llertll® + ller2ll” + [lozl”-

In the expression (2.4.14) of p11, we can see that the square integrals over w® of all
the terms are bounded by O(e”), therefore, we have [o11]|2 < €. From the expression
(2.4.15) of p19, we see that the square integrals of all the terms are bounded by 0(64),
and so we have [012/|2 < €*. From the expression (2.4.16) of g99, we see the bounds are
O(e4), and so loga? S e4.

Therefore, by (2.5.27), we get the upper bound

2 2 4
le* = allge +1x(v") = x(v)llge S € (2.5.28)
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The conclusion of the theorem for the case of flexural shells then follows from the lower
bound (2.5.26) and this upper bound.
Membrane—shear shells

In this case, under the assumption that p5, p&, ¢¢, and ¢5, are independent of e,
the model solution (A€, u®, w®) converges to a finite limit in the space H when ¢ — 0, so

we have

HHGHHl(Q,L) + Hue”Hl(o,L) + Hw€HH1(07L) S L

From the estimate (2.5.14), we get

2

0 1 2
10Nnyt00) ST 10 =Pliyor) S I = pbllpyn) S (2529)

Since ¢0 0, we know that ’yO and pl can not be zero simultaneously. From the equation
o

(2.4.1) we see

11 11 12 2
lo5 I y00) ST oty S 1 10820000 < €. (2.5.30)

By the estimate (2.4.4), we have

11 2
llog HHl(O,L) Se”. (2.5.31)
From the first and last two equations of (2.4.2), we see the estimates

11 11
loo" g,y 1 ot gy ST (2.5.32)
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From the last two equations in (2.4.3), we see the estimates

22 2 22
106% N o0,) S €7 No1llLy(0,0) S €- (2.5.33)

By the estimates on the correction functions (2.5.15) and (2.5.16), we have

1 2 A1 1/2
)= willpy0.0) S €%

€ HawlnLQ(O,L) + ||2M + )\*(po - 24 _|_)\O-O

1L 2 A 1
€ [0wall Ly 0,0y + ||m(pe Tl ) = 2wall Ly (0,1)

(2.5.34)

§€1/2.

From the equation (2.4.12), we see that in the expression of x11(2v), the term ~(u¢, w®)

dominates, and in the expression of x12(v), the term 57’(«96, u, w®) dominates. Asymp-

totically, we have the equivalency
(2.5.35)

~ |40 L1 ~
17N zy0,0) + 1T N g0,0) = 1V Ly 0,2) + H;PoHLQ(O,L) ~ 1.

We get the lower bound HXll(l{)Hz + ||X12(g)||2 2 €, and so

2
Ix()lIge Z €. (2.5.36)
In the expression (2.4.14) of p11, we can see that the square integrals over w€ of all

the terms are bounded by O(e3), therefore, we have [o11]|2 < €3. From the expression
2 < e

(2.4.15) of p19, we see all the terms are bounded by O(€2), and so we have ||o12]
\2 <2,

From the expression (2.4.16) of 099, we see the bound is ||g99|
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By the two energies principle, we have

2 2 2 2 2 2
lo* — alle +Ix () = x(0)I%e S lenr|® + o2l + s> S 2. (25.37)

The conclusion of the theorem for the case of membrane—shear shells then follows from

the lower bound (2.5.36) and this upper bound. O

2.6 Shear dominated shell examples

To emphasize the necessity of using the Naghdi-type model in some cases, we give
two examples for which the model equations are explicitly solvable. For these problems,
the Koiter model and limiting flexural model only give solutions that are identically
equal to zero, while our Naghdi-type model can very well capture the shear dominated

deformations.

2.6.1 A beam problem

a. Undeformed b. Shear dominated deformation

Fig. 2.3. Shear dominated deformation of a beam
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We consider a special plane strain cylindrical shell whose cross section is a thin
rectangle with thickness 2 ¢ and length L = 1. The curvature of the middle curve then
is b = 0. The applied forces are: ¢ =0, p4+ = ®aj. The leading term of the resultant

loading functional (2.3.3) is given by

1
(Fo. (6,9, 2)) = g /O (629, 2)dz.

The condition fq|ier g = 0 is obviously satisfied. Therefore the limiting flexural shell
model only gives a zero solution. So does Koiter’s model.

The model (2.3.2), written in differential form, reduces to

1 5 5
—— (2p + N0 + Z (6 + ouws) = =,
3 6 6
*\n2, € 5 € € (2.6.1)
—(2u+ N)o“ut =0, —é,uﬁ(é? + o0w*) =0, 0.
€ € € 1 3
(0%, u",w®) € [Hy(0,1)]7,
which is just the Timoshenko beam bending and stretching model [3]. The solution is

given by

0 =cz(1—2), u =0 w=-—=c(2—2)z(l-2),

16 €2 A, -
where ¢© = [% + %] 1 We see the convergences:
,u

1 1 1 1
lim 6 = —62(1 —z), limw®=-2—(z— )zl —=z), lim(0°+ouw®) =—.
e—0 I e—0 I 2 e—0 I
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This is basically the asymptotic pattern of the exact deformation of the elastic body.
Note that the last convergence shows that the transverse shear strain tends to a finite

limit, a violation of the Kirchhoff-Love hypothesis.

2.6.2 A circular cylindrical shell problem

In this subsection, we consider a plane strain circular cylindrical shell problem.
The shell occupies an infinitely long circular cylinder whose thickness is 2 €. The middle
curve of the cross section € is the unit circle whose curvature is b = —1. The shell is

loaded by surface forces whose densities are p4 = +(1F e)2a1, and a body force whose

12 ¢2
2?”(15), q2 =0.

contravariant components are given by q1 = W

a. Undeformed b. Deformed

Fig. 2.4. Shear dominated deformation of a circular cylinder

It can be verified that both the net force and net torque resulting from the applied

forces are zero. Therefore the surface and body forces are compatible and the problem
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is well defined. By using the formulae (2.2.21) to compute ¢§ and ¢%,, the resultant

loading functional in the model can be computed. We have

27
ot 1wz =5 [ oo

21 2T 27 _ 2 4
g [T a2 [T ydo =2 [T odel 4 6,020

where r is a functional independent of €. The higher order term 0(64 r) is provably
negligible. With this higher order term cutoff, we will have fg|er B = 0. The model

solution then is

9
= &2
Opt

u*=0, w'=0, 6°= 1
7
which gives a displacement field that is purely rotational. The covariant components
of the displacement field provided by this model are v; = (1 4 ¢)t0¢, wv9 = 0. The
covariant components of the strain tensor engendered by this displacement field are, by
the formulae (2.2.26),

1. 1 9 9

X11 =0, x22=0, xj2= 59 = o 104 €. (2.6.2)

It can be easily checked that the stress field whose contravariant components are
given by

1
HW_p, ¢2=0, o2= T2+ 3t2 — 267 (2.6.3)
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is statically admissible. By using the formulae (2.2.19), we see that for the admissible
stress field defined by (2.6.3),

1

2 2
14+19)1 -2t 4 3t° —2¢€°).
5 (1 B — 204362 2

A A A
A pg o™ = Aggrg 0™ =0, Ajgy,07T =
Therefore, the the constitutive residual can be bounded by

011 =0, 022 =0, |o19] Se.

From the two energies principle, we know that the pure rotational displacement given
by the model is very close to the exact displacement of this circular cylinder arising in
response to the applied forces. The error in the relative energy norm is O(e). The shear
strain and stress absolutely dominate all the other strain and stress components. For
this problem, the Koiter model and the limiting flexural shell model only give a solution
that is identically equal to zero. This is a case for which the Naghdi-type model is

indispensable.
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Chapter 3

Analysis of the parameter dependent

variational problems

3.1 Introduction

The plane strain cylindrical shell model (2.3.2) that we justified in the last chapter
can be put in the form of the abstract e-dependent variational problem (3.2.2) below, and
Theorem 3.3.1 was essential to the justification. This abstract problem also applies to
the spherical shell model and general shell model that we are going to derive and justify.
It is the purpose of this chapter to establish all the a priori estimates that are necessary
for our analyses. The behavior of the solution of such e-dependent can be drastically
different in different circumstances. We will classify the problem on the abstract level at
the end of this chapter. Results that will be used to analyze the relations between our

model and other existing shell theories will also be given.

3.2 The parameter dependent problem and its mixed formulation

For a Hilbert space X, we denote its dual by X*, and for any f € X™, we use
ixf € X to denote its Riesz representation. The isomorphism 7wy : X — X* is defined

as the inverse of iy, and is equal to iy« under the usual identification of X and X**.
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Let H, U, and V be Hilbert spaces, A and B be linear continuous operators

from H to U and V, respectively. We assume

2 2 2
lAu? + | Bul} = Jull?; ¥ ue H. (3.2.1)

By properly defining spaces and operators, the shell models we derive can be

written in the form of the e-dependent variational problem:

62(Au,Av)U + (Bu, Bv)y = (fo + 2 f1,v),
(3.2.2)

ue H, VYwveH,

where fg, f1 € H* are two functionals independent of €, and fj # 0. It turns out that,
in all the cases we are going to analyze, when € — 0, the asymptotic behavior of solution
of this variational problem is mostly determined by the leading term f(). For this reason,

we first analyze the abstract problem

€*(Au, Av)y + (Bu, Bv)y = (f,v),
(3.2.3)

ueH, VYwveH,

with f € H* independent of e. The behavior of the solution of (3.2.2) will be obtained
by a simple argument once the simpler problem (3.2.3) is fully understood.

The variational problem (3.2.3) represents the Timoshenko beam bending model
and Reissner—-Mindlin plate bending model, with u standing for the transverse deflection

of the middle surface and rotation of normal fibers, and Au the bending strain and Bu
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the transverse shear strain engendered by u. The Koiter shell model, which adopts the
Kirchhoff-Love assumption and so ignores the transverse shear deformation, takes this
form, with the variable u representing the middle surface displacement, Au the flexural
strain, and Bu the membrane strain. The Naghdi shell model, and the variant we derive,
can be put in this form if we let u be the middle surface displacement and normal fiber
rotation. The operator A defines the flexural strain and B combines the transverse
shear and membrane strains engendered by u. The spaces H is a multiple Lo-based first
order Sobolev space, and U and V are equivalent to L9 or products of Lg. Referring to
the physical background of the abstract problem, we will call eQ(Au, Au)gr the flexural
energy, and (Bu,Bu)y, the membrane-shear energy engendered by the displacement
function w.

Under the assumption (3.2.1), for any f € H*, the variational problem (3.2.3) has
a unique solution depending on €. In what follows, whenever the ¢ dependence needs to
be emphasized, the solution will be denoted by u€. We are concerned with the behavior
of the solution of such problems, especially when € is small.

If we set F = ¢ 2 f, the following rough estimate is obvious

lu N < IE I e (3.2.4)

We will derive more accurate estimates on the solution of (3.2.3) by introducing

a mixed formulation. In what follows, we will need some basic results.
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First we recall that if X and Y are Hilbert spaces with X C Y, and if X is dense
in Y, then the restriction operator defines an injection of Y* onto a dense subspace of
X* (and we usually identify Y™ with that dense subspace).

We next recall the sum and intersection constructions for Hilbert spaces. If Hilbert
spaces X and Y are both continuously included in a larger Hilbert space, then the
intersection X N'Y and the sum X + Y are themselves Hilbert spaces with the norms

2 24\1/2 : 2 24\1/2
Iellxey = (el + 12132 and Jellxy = nt (el + i3/

and we have

LEMMA 3.2.1. If in addition, X NY is dense in both X and Y, then the dual spaces X™*

and Y* can be viewed as subspace of (X NY)* and we have
X 4+Y*=(XnY)"

The operator B : H — V may have closed range in some problems, as in the cases
of Timoshenko beam bending model, the plain strain cylindrical shell model of Chapter 2
and other 1D models. This operator may have a range that is not closed in V, as in the
Reissner-Mindlin plate, Koiter and Naghdi shell models, as well as numerous singular
perturbation problems.

Let W = B(H) C V be the range of B, whose norm is defined by, for any ¢ € W,

Il = CizﬂéuHuHH- (3.2.5)
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With this norm, W is a Hilbert space isomorphic to H/ker B. This space plays a crucial
role in the following analysis. For the Reissner-Mindlin bending model of a totally
clamped plate, this space is Ij: (rot). Without loss of generality we may assume that W
is dense in V, otherwise, we can just replace V by the closure of W in it.
Associated with a Hilbert space X and any positive number ¢, we define the
Hilbert spaces ¢X. As set, ¢X equals to X, but the norm is defined by ||z||.x = s|[z[ x-
Since W is dense in V, so V* and e V* are dense in W*. The dual space of
W*NeV*is, by Lemma 3.2.1, W + ¢ 1 V.
If u€ solves (3.2.3) and £ = 2 myBu® € V¥, then (u€, &%) solves the mixed

problem

(Au, Av)gr + (&, Bv) = (F,v) VveH,
(n, Bu) — 62(£,n)v* =0 VneV" (3.2.6)
uwue H, V™.
For this mixed problem, we have the following result

THEOREM 3.2.2. The mized problem (3.2.6) has a unique solution (u€,&€) € H x V¥,

and the equivalence

[l g + 1€ I sne v = I1F [l = (3.2.7)
holds.

Proof. The pair (u€, £€) solves (3.2.6) if and only if £€ = ¢2 my Buf and u€ solves (3.2.3),

so the existence and uniqueness are established. From (3.2.4) and the first equation, we
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get

lu Nl + 1€ T S Il e

Taking v = u€ in the first equation and n = £¢ in the second equation, we get the bound
on [|€€]|.y*. From the first equation, we easily get that ||F| g+ < [[u€l|g + |€¢]yy+. O
This theorem shows that the right space for the auxiliary variable £€is W*Ne V*.
To analyze the asymptotic behavior of the solution u¢, we also need to consider

the following general mixed problem.

(Au, Av)gr + (€, Bv) = (F,v) Yo e H,
(n, Bu) — (&, n)y= = (I,n) ¥neV (3.2.8)

we H, £cV*

here, I € V. For this general mixed problem we have

THEOREM 3.2.3. The mized problem (3.2.8) has a unique solution (u€,&€) € H x V¥,

and the equivalence

[l g+ 1€ I sme ve = IE N g + 1Ml -1 (3.2.9)
We= 1tV

holds.
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Proof. Let ¢ = my 1, then (I,n) = (Cg,n)v*. The problem (3.2.8) can be reformulated

as

(Au, Av)y + (€ + e 2 CQ7BU> = (F,v) + e_Q(CQ,Bw YoveH,
(n, Bu) — 2+ 20 )y =0 VeV, (3.2.10)
wueH, £€cV*.

This formulation is in the form of (3.2.6), therefore, we get the existence and uniqueness
of the solution from Theorem 3.2.2. In the following, C1—C}5 are constants independent
of e.

From the first equation of (3.2.8), we get
1€ I+ < CLUIF | g+ + [[Au 1) (3.2.11)

Taking v = u® and n = £€ in (3.2.8), and subtracting the second equation from the first
equation, we get

| Au€||Z; + €2 [|€°][3 4 = (F,u€) — (1,£5),

so we have
2 2 2
[AuClzr + e €N+ < ColllF g lullg + Il -1y 18 e ). (3:2.12)
From the second equation of (3.2.8) and the bound |||y, < HIHW_'_E,l > we get

1Bully < C3(e €Ny + I llyy 41 - (3.2.13)
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Combining (3.2.11), (3.2.12) and (3.2.13), we get

2 2 . 2c€2
[Au 77 + 1 Buflliy + € 165+ < CallFll g lull g + My -1y 1 Au o

(3.2.14)
2
Ty o1 15 e v + Iy =1y I + 10 -1 y)-
By using Cauchy’s inequality and (3.2.1), we get
2 2 2 2 2 2
[AuCigy + [ Bully + € 1€05+ < C5UIF g + Iy -1 1) (3.2.15)

The upper bound of the left hand side in (3.2.9) follows from (3.2.11) and (3.2.15).
The other direction follows from the formulation (3.2.8) directly. O
This result is an extension of an equivalence theorem established for the Reissner—

Mindlin plate bending model in [8].

3.3 Asymptotic behavior of the solution

When e — 0, the behavior of the solution u€ of (3.2.3) is dramatically different

depending on whether

flker B # 0, (3.3.1)

or

flker B =0. (3.3.2)

The asymptotic behavior needs to be discussed separately for these two cases. In the

first case, the solution blows up at the rate of 0(6_2). To fix the situation, we scale the
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problem by assuming that F' = e 2 f is independent of e. With this scaling, the problem
(3.2.3) or equivalently (3.2.6) can be viewed as a penalization of the constrained problem

1
min - (Au, Au)pr — (F,u). (3.3.3)
u€ker B

This constrained problem has a unique nonzero solution uY € ker B. This minimization

problem can also be written in mixed form as

(Au, Av)r + (&, Bv) = (F,v) YVveH,
(3.3.4)

(n,Bu) =0 VneW* uweH, £cW"

This mixed problem has a unique solution (uo, 50) with 10 € ker B and ¢0 € W*. And
we have the equivalence

14O 77 + 1€ s = |1 )| s (3.3.5)

In the second case, the problem is essentially a singular perturbation problem.
We do not need to scale the problem. From the definition of W, we know that B is
surjective from H to W. By the closed range theorem in functional analysis, there exists

a unique ¢V € W* such that

(f,v) = (¢, Bv) YveH. (3.3.6)
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3.3.1 The case of surjective membrane—shear operator

We first discuss the simpler case in which the operator B : H — V is surjective.
An example of this case is the plane strain cylindrical shell problems discussed in the

last chapter. In this case, we have W =V, W* = V* and

THEOREM 3.3.1. Let H, U and V be Hilbert spaces, the linear operators A : H — U
bounded, and B : H — V bounded and surjective. We assume the equivalence (3.2.1)
holds, so the variational problem (3.2.3) has a unique solution u® € H.

If flxer B # 0, we assume F = e 2 f s independent of €. Then

14u€ — Aul ||y + e[ Bullly S ell€ly+ S el Fllg= (3.3.7)

where (uo,é’o) is the solution of the e-independent problem (3.3.4), with u € ker B,
e v*, and u¥ #£ 0.

If flger B =0, there exists a nonzero element CQ € V*, such that

(f,0) = (9, Bv) = (¢°, Bo)y VweH.

Here CO € V is the Riesz representation of CQ. There exists a unique ud € H, satisfying

BuY = CO together with the estimate

lu€ — O 5 < 21Vl (3.3.8)
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Moreover

et Auf — A+ e Buf = Oly S ellClly = el fll g+ (3.3.9)

Proof. We prove (3.3.7) first. Under the assumption of W = V, the solutions of the

mixed problems (3.2.6) and (3.3.4) satisfy
(Auf, Av)yy + (€5, Bv) = (F,v) YveH,
(Bu,n) — (€ m)y= =0 VneV*

and

(Au, Av) + (€9, Bv) = (F,v) Vv € H,
<77,Bu0> =0 VneV"

respectively. Subtracting the second equation from the first one, and taking v = u€ — uo,

n=¢—¢&0, we get

(Auf — A, Au =AYy + (6= 0,65 = )y = = (0,6 = Oy

By using Cauchy’s inequality, we get

2 2 2 2 2
1Au€ — Au0|F + 2 1€ — 0120 < 2 103w

The estimate (3.3.7) then follows from the fact that £ = ¢ 2 my Buf.
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Now we assume f| o, g = 0. The variational problem (3.2.3) can be written as

[(Auf, Av)y + (BuS, Bv)y] + (1 — €)(Buf, Bv)y = (f,v) YveH.  (3.3.10)

By the equivalency assumption (3.2.1), the bilinear form

(u,v)y = (Au, Av)yy + (Bu, Bv)y

defines an inner product on H, which is equivalent to the original inner product. With
this new inner product, the space H will be denoted by H. The condition fli .. g =0
means that there exists a unique ud e (ker B)J-, the orthogonal complement of ker B in
‘H, such that

(f,v) = (Bu’, Bu)y VveHr, (3.3.11)

and the operator B defines an isomorphism between (ker B)J- and V.
From the equation (3.3.10), it is not hard to see that u¢ € (ker B)1. Substituting

(3.3.11) into (3.3.10), and taking v = u® — uY, with a little algebra, we get

62(u€ — 0 uf — uO)H +(1- 62)(Bu6 — B, Buf — Buo)v
(3.3.12)

= (B0, Buf — Bul)y, — (u0, uf — uO)H.
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Since u¢ and u” both belong to (ker B)1, we have [|[u"|y < [|BuV|ly and |ju€ —u0||y <

| Bu® — BuOHV. Therefore, by using Cauchy’s inequality, from (3.3.12), we get

(€ —u¥ u — )y + (1 — ) (Bu — BuY, Bu® — Bul)y, < et |BL|F. (3.3.13)

Therefore,

0 0 2 0 2,0
€ = wllpg = |1Bu = Bullly S 1By = |y

The estimate (3.3.9) is a consequence of the equivalence assumption (3.2.1). O

To get the estimate (3.3.8), the assumption that the operator B has closed range
is crucial. Without this assumption, we can not expect the convergence of the sequence
{uf} in the space H. This is a usual phenomena in singular perturbation problems and
a big trouble for numerical analysis of the general membrane—shear shells. This result is
the infinite dimensional version of the so-called Cheshire lemma.

The condition that the operator B is surjective is only satisfied by some special
problems. This condition is not met by the Reissner—-Mindlin plate bending model, nor
the Koiter or Naghdi shell models. It does not apply to the spherical shell model and
the general shell model we are going to derive and justify either.

If the range of B is not closed, the space W is a proper subspace of V, so is V*
of W*. If V* is identified with V' through the Riesz representation theorem, we have
the inclusions W C V ~ V* C W*. We will show that in the case of flio g # 0, the
asymptotic behavior of the solution u€ is largely determined by the position of 50, the
Lagrange multiplier defined in (3.3.4), between V* and W*. The closer ¢€0 to V*, the

stronger the convergence. In the best case of 50 € V*, a convergence rate of the form
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(3.3.7) can be obtained. In the worst case, i.e., we only have €0 e W*, we will prove a
convergence, but without convergence rate.

In the case of flio, p = 0, we must require (9 , the equivalent representation of f

in W* defined in (3.3.6), to be in the smaller space V*. Then, the asymptotic behavior

of u¢ is determined by the position of {0, the Riesz representation of CQ in the space V,

between W and V.

3.3.2 The case of flexural domination

In this subsection, we discuss the case of f|i.. g 7 0 without the assumption that
B is surjective. In this case we need to rescale the problem by assuming that F' = ¢ 2 f

is independent of e. We have

THEOREM 3.3.2. Let (uf,£€) be the solution of (3.2.6), and (u9,€Y) be the solution of

(3.3.4), then
1Au€ = Ay + e IBully S ell€]] — 1 yprepye (3.3.14)
Proof. Subtracting (3.3.4) from (3.2.6), we get
(A(u€ —u%), Av) + (€€ =€, Bv) =0 VveH,
(3.3.15)

(B(u€ —u%),n) — (e n)y« =0 VneV™

0

Taking v = u® — u” and n = £¢, and writing the second equation as

(B(u€ —uY),6¢ — €% + (B(u —u0), &%) — (e, %)y« = 0,
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together with the first equation
(A =), A —u)y + (€ = &, B =) =0,
we get
(A(u€ —u0), A(u€ — u0))r + (65,66 s = (B(uf —u?), €Y. (3.3.16)

By the definition (3.2.5) of the norm of W, and the equivalence assumption (3.2.1), we

have

I1B(uf —u9) |y < AW —uO) g + B —aO)|y,

and so

I1B(uf —u9) e < ellA@E — D)l + e[| Buf — uY)ly.

Therefore, we have the estimate

[(B(uf —u%), €% < [e| A —uO)|l7 + |B(u — uO)|ly/] (3.3.17)

0
1€ Hefl WHLy*:

Recalling that £¢ = 7y, ¢ 2 Buf and BuY = 0, combining (3.3.16) and (3.3.17)

and using Cauchy’s inequality, we obtain

0y2 ., —2 2~ 25002
1A =)l + €~ IBuclly, S € IE717-1 ppre o yee
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The desired result then follows. O

The K-functional on the Hilbert couple [W*, V*] is given by

K (e, &%, [*, V*) = €| -1y y s
see [9]. According to the definition of interpolation spaces based on the K-functional,

K (e, W VDI S Cog 10 e ey, ¢

If 50 is further assumed to belong to the interpolation space [V*, W*]l_qu, for some

0<f<land1<g<oo,or0<#<1andl<qg< oo, wehave

|Aue — Ay + e Bully < I ye g,y - (3.3.18)
In particular, if
ey, (3.3.19)
we can take # = 1 and obtain the stronger result
Auf — Al “HBu|y S el 3.3.20
[Au® — Au”llgr + €7 [[Butlly S €[&7 [ly+- (3.3.20)

The estimate (3.3.20) is an extension of a convergence theorem of solution of
the Reissner-Mindlin plate bending model to that of the Kirchhoff-Love plate bending

model in [4].
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We will prove that the convergence rate of our 2D shell model solution to the 3D
shell solution in the relative energy norm is crucially related to this “regularity index” 6
of the Lagrange multiplier 50.

The condition (3.3.19) can be verified for the Reissner-Mindlin plate bending
model, if the plate is totally clamped, and the plate boundary and loading function are
smooth enough so that the H 3 regularity of the Kirchhoff-Love model solution holds,
see [8]. For partially clamped plates and arbitrary shells, this index needs to be carefully
evaluated.

If we know nothing more than the minimum regularity of the Lagrange multiplier
€0 € W*, then we must choose # = 0. The estimate (3.3.18) does not provide any useful
information. The following theorem will be used to prove the convergence, but without

a convergence rate, of the flexural shell model.

THEOREM 3.3.3. Let uf be the solution of (3.2.6) and uY be the solution of (3.3.4). We

have the convergence result

JA(uE — Ol + e | Buflly] = 0. (3.3.21)

lim
e—0
Proof. Taking v = u® in the equation (3.2.3), we get

(Auf, Au®) 7 + e 2(Buf, Buf)y = (F,uf).
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From this equation we see that there exists a constant C' independent of ¢, such
that

[u€l g + 1l e L Buflly < C.

Since bounded sets in a Hilbert space are weakly compact, there exists a subsequence,

en, — 0, an element @ € H, and an element p € V, such that

um ~Gin H, e 'Bu —p in V.

Since Bu®" — Bu in V, and Bu®® — 0 in V, we have B = 0, so @ € ker B. Note that

we also have Aut"? — A4, so we have

(Au, Av)yr = (F,v) Vv € ker B,

so @ = uY, the solution of (3.3.3). Therefore the whole sequence {u¢} weakly converges
to ud in H.

Consider the identity

(Au — AdD, Auf — AuO)U + (6_1 Buf —p,e ' Buf — PV
= (Auf, Au)y + G_Z(Bu€, Buf)y + (AuO,Auo —2Au)y + (p,p — 2¢71 Bu®)y,

= (F,u€) + (Au®, Au® — 24u6) ;7 + (p.p — 2 L BuS)y,. (3.3.22)
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For the above subsequence, the right hand side, as a sequence of numbers, converges to

(F,u%) — (40, AdV) s — (0. )y = — (0. D)y,

while the left hand side of (3.3.22) is nonnegative, so we must have p = 0. Therefore
the whole sequence e Buf weakly converges to zero. The desired strong convergence
follows from the same identity. O
This theorem is an extension of, and its proof was adapted from [4] for Reissner-Mindlin
plate bending, [21] for flexural Naghdi shell, and [15] for flexural Koiter shell problems.

This theorem shows that if f|i.. g # 0, the problem is bending or flexural domi-

nated in the sense of

(Bu€, Bu®)y

-7 —0 0).
e2(Aut, Au) g =0 (=0

3.3.3 The case of membrane—shear domination

If flker g = O, the solution of the limiting problem (3.3.3) will be zero. If we
still assume F = ¢ 2 f is independent of ¢, the above estimate only gives the following
convergence.

|Au€||g7 4+ € 1| Buflly — 0 (e — 0). (3.3.23)

This convergence will be useful when we analyze the relationship between our theory
and other shell theories. It is also needed to resolve the effect of the higher order term
€2 f1 in the loading functional. Otherwise, it hardly tells us more than that the solution
u® converges to zero, and fails to fully capture the asymptotic behavior of the solution.

To get a good grasp of the asymptotic behavior of the solution, we will assume that f is
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independent of € in this case. In this case, there exists a unique (Q € W* such that
<f,U> = <<>97B'U> VoveH.
Equivalently,
(Fyv) = <€_2C>9,BU> VoveH.

Without further assumption on CQ, we can not get any useful results for our model

justification. We will derive an estimate under the assumption

Vev, (3.3.24)

SO CO = iVQQ is well-defined. This condition does exclude some physically meaningful
shell problems. However, if this condition is not satisfied, the 2D model solution, very
likely, does not approximate the 3D elasticity solution in the energy norm.

The mixed problem (3.2.6) may be written as

(Au, Av)r + (€, Bv) = (e 2¢Y, Bv) Ve H,
(n, Bu) — (€, n)yx =0 Ve V¥,

we H, ¢cV*
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Under the assumption (3.3.24), this problem can be rewritten as

(Au, Av) + (€ — e 2¢), Bvy =0 Ve H,

(n, Bu) = (€ — e >y = (myx = (¢Vm) (3.3.25)

VneV* ue H, V™

This formulation is in the form of our general mixed problem (3.2.8). Therefore, by

Theorem 3.2.3, we have the equivalence

-2
a1 gz + 1€ = €2 Qllwrenevs = 1Ny 41y (3.3.26)
Recalling that &€ = ¢ 2 my Bu®, we get the equivalence
2
|

[l + €2y Bu = Qllwnevs = 1Ny 41y (3.3.27)

Therefore,
-2 -1 0 0
[l gz + €2 Iy Bu = iy + ¢ Bu = Clly = 10y -1y

In particular, we have proved the following theorem.
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THEOREM 3.3.4. In the case of flyer g = 0, and under the assumption CQ e V*, we

have the following estimates:

0 0
ellAuly + 1 Bu = Clly S el -1y

(3.3.28)

Iy Bu€ = Pl S 1y ety
In terms of the K-functional, we have
ellcY) 1y = K(e, ¢V [V, w))
We v 5o LV L

If CO belongs to the interpolation space [W, V]l—H,q for some 0 < 8 <1 and 1 < ¢q < 0,

or0<f#<1and1l<qg< oo, we have

ellAuflly + 1Bu = Olly < 1wy, (3.3.29)

In particular, if (0 € W, we can take # = 1 and obtain

e[l Auf(|gr + |Bu — <Oy S eIy (3.3.30)

The “regularity index” 6 of ¢U, i.c., the largest 6 such that ¢V e [W, Vg4
which will determine the convergence rate of the shell model in the relative energy norm,
can be attributed to the regularity of the shell data, but generally it is hard to interpret
in terms of smoothness in the Sobolev sense. For a totally clamped elliptic shell, we can

show that § = 1/6 under smoothness assumptions on the shell boundary and loading
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functions in the usual sense. For the shear dominated Reissner—-Mindlin plate bending,
reasonable assumptions on the smoothness of the loading functions will lead to 6 = 1/2.
If we only have the minimum regularity assumption ¢ 0¢ V', we just have 6 = 0,

and the estimate (3.3.29) reduces to
ellduyr + B = Ol < 1<y (3.3.31)

which does not tell anything useful. We can construct example to show that this es-
timation is optimal. Due to the € independence of f, we have the strong convergence
stated in the next theorem. This convergence will be used to prove the convergence of

the model, although without a convergence rate.

THEOREM 3.3.5. If flyer B = 0, and its representative CQ € V*, we have the strong

convergence

lim e |l 4u |+ [ Bu = Olly] = 0.

Proof. From (3.3.31), we see that there exist a constant C' independent of €, such that
le Aully <€, [|Buflly < C.

Therefore, there exist a subsequence, €, — 0, an element p € U, and an element W0 € vV,

such that ey Au — p in U, and Bu® — oY in V. Since

e%(AuE”, Av)y + (Bu™, Bo)y = (CO, Bv)y Yv eV,
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we have Bufn — (0 in V, therefore v0 = ¢0.

The following identity can be verified:

(e Au® — p, e Auf — Py + (Bu® — CO,Bu'€ — CO)V
= Z(Auf, Au)y + (BuS, BuS)y + (p,p — 2e AuS)y + (¢V,¢° — 2Buc)y

= (¢ BuS)y + (p,p — 2€ Au)r + (¢V, ¢ — 2Buc)y,. (3.3.32)

When applied to the subsequence {u"}, the right hand side of this identity converges

to

%Oy = )y - 2 )y = -0

Since the left-hand side is nonnegative, we must have p = 0. Therefore, the whole
sequence € Au weakly converges to zero, and the whole sequence Bu® weakly converges
to ¢ 0. The strong convergence follows from the above identity. U
This proof was adapted from [36] for singular perturbation problems, [21] for
membrane Koiter shell, and [15] for membrane Naghdi shell.
Under the condition of this theorem, the problem is membrane—shear dominated

in the sense of

2(Auf, Au)yy

(B, Bty —0 (e—0).

The above analysis shows that if f|i.. p =0 and CQ € V*, or more informatively,
¢V ¢ [W, V], we have membrane-shear domination. If ¢? does not belong to V*, the

behavior of the solution can be very complicated. Usually, there is no membrane-shear
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domination, but rather, the flexural energy 2(Auf, Au€)rr might be comparable to the
membrane-shear energy (Bu®, Bu)y/, see [12] and [41], although the geometry of its
middle surface and the type of the boundary conditions may classify a shell as a mem-
brane shell. For example, a partially clamped elliptic shell may behave this way even
for infinitely differentiable loading functions. In this case, the limiting membrane shell
model has no solution. Although our model provides a solution, we are not able to justify
it.

The following corollary to Theorems 3.3.4 and 3.3.5 will be used when we construct
corrections for the transverse deflection, which are necessary for the convergence of the

shell model in the relative energy norm.

THEOREM 3.3.6. Let w C R? be a bounded, connected open domain whose boundary is
partitioned as Ow = Opw U Opw. The function space HlD is a subspace of HL whose

elements vanish on Opw. The variational problem
ez(Vu€,Vv)£2 + (ue,v)L2 = (f,v) Yve HlD, u € Hllj (3.3.33)
has a unique solution uf € HlD for any f € HlD>|< If f € Lo, we have the estimate
eValpy +1lu® = fllz, Se 11l et 1,y (3.3.34)
If f e Hl, the standard cut-off argument gives

e Vulpy + lue = flz, S /2 1fl - (3.3.35)
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If we assume that the interpolation norm HfH[ is finite for some 6 € (0,1)

H%aLQ]lfe,q

and q € [1,00], or 6 € [0,1] and q € (1,00), we have

el Vuly + u = fliz, S € a1 2oty (3.3.36)

In particular, if f € HY | we have

eIVullL, + Iu€ = FlL, S elfll . (3.3.37)
If we only know that f € Lo, the strong convergence

[eIVulipy + lu® = flip,] =0 (3.3.38)
Lo 2

lim
e—0
holds.

Proof. The conclusions follow from the above theorems by letting H = Hllj,
U= L9,V =1Ly, A=V, and B = identity. O

A direct proof of (3.3.35) can be found in [2].

3.4 Parameter-dependent loading functional

In this section, we discuss the behavior of the solution of the variational problem

62(Au,Av)U + (Bu, Bv)y = (fo + 2 f1,v),
(3.4.1)

ue H, VYwveH,
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in which both fy and f] are independent of €, and f # 0. This is a problem abstracted
from our shell models. This form of the resultant loading functional is a consequence
of our assumption on the loading functions. To grasp the behavior of solution of the
problem with such e-dependent loading functionals, we apply the above theory to the
problems whose right hand sides are f and €2 f1 respectively. The desired behavior will
be obtained by superposition.

Let f = fp in the equations and theorems in the previous two sections, and

consider the problem

2 (Auy, Av)y + (Buy, Bu)y = €2(f1,v),
(3.4.2)

up € H, YveH,

which is due to the higher order term in the loading functional. This problem has a

unique solution ui, and by Theorem 3.3.3, we have
. 0 -1
i [ A(u§ ~ ud)l + € | Bu ] = 0. (3.4.3)

where u? € H is defined as the solution of (3.3.3) or (3.3.4) with F replaced by f;. Note
that u(l) may be zero or nonzero depending on whether fi|x., g = 0 or not.

We will see that the problem should be classified by the leading term f(, and we
discuss the problem separately for whether or not fy|ier g # 0.

If folker B # 0, we need to scale the loading functionals fy and €2 f1 simulta-

neously. The solution of (3.2.2) will be given by @€ = uf + €2 uf with u® and uf the
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solutions of (3.2.6) and (3.4.2) respectively. Under the condition of Theorem 3.3.2, by

(3.3.18) together with (3.4.3) we get the estimate
|4 — Ay + e By

0 -1 2 -1
Sl Au® = Au”|ly + € [|Buflly + ([ Autlly + € | Builly)

2
S 0 ||§OH[V*7W*]1_9 . + O(e%). (3.4.4)
Under the condition of Theorem 3.3.3, we have
|AGE — Ay + 1| Bac|ly < o(1) + O(2). (3.4.5)

Therefore, in the case of flexural shells, adding the higher order term €2 f1 to the right
hand side does not disturb the asymptotic behavior of the solution of (3.2.2) determined
by the leading term.

If flker B = 0, there is no need to scale the loading functional and the solution of
(3.2.2) is given by @€ = u +uf with u® and u{ defined as solutions of (3.2.3) and (3.4.2)
respectively. Under the condition of Theorem 3.3.4, corresponding to the convergence

(3.3.29), by using (3.4.3), we have

e||Aa |y + | Ba€ — Oy
0 —1
S ellAuf|y + [|Bu® = ¢lly + e(|Auf iy + € | Buflly)

<INy, + 0@ (3.46)
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if u(l) # 0[= 0]. Under the condition of Theorem 3.3.5, we have

e[| 4@y + [ B = lly S o(1) + O(e)[o(e)], (3.4.7)

if u? # 0[= 0]. Therefore, the higher order term €2 f1 does not affect the asymptotic
behaviors of the solution of (3.2.2), as described by Theorems 3.3.4 and 3.3.5.

If the range of B is closed, or in the situation of Theorem 3.3.1, the additional
term €2 f; does not affect the asymptotic behaviors described by (3.3.7) and (3.3.9).
But the stronger convergence (3.3.8) will be affected, especially when f|.. g = 0 and
filker B # 0. In this case the contribution to the solution from €2 f1 will be finite, by
correcting the limit, we will get a convergence in the form of (3.3.8) while the convergence
rate needs to be reduced from €2 to €, see (2.5.4) and (2.5.7).

In Chapter 7, we will discuss the the model under the usual assumption on the

loading functions. For that purpose, we need to consider the problem

62(Au,Av)U + (Bu, Bv)y = (fo +€f1 + e2 fo+ 3 f3,v),
(3.4.8)

ue H, VYwveH,

with fo, f1, fo, and f3 independent of €, and fj # 0. The theory can be applied to
problems of the form (3.2.3), with right hand sides fy, € f1, €2 f2, and €3 f3, respectively.
The desired behavior will be obtained by superposition. Since we will not discuss the

convergence rate of other shell theories in details in this thesis, we will not list the results
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corresponding to (3.4.4) and (3.4.6). We still denote the solution of (3.4.8) by a€. The

following convergence results can be obtained.

If folker B # 0, we have

A€ — Al || + e L |Ba |y < o(1). (3.4.9)

If folker B =0, f1lker B = 0, under the condition of theorem 3.3.5 we have

el Ay + | Ba = Oy S o(1), (3.4.10)

The asymptotic behavior of solution of (3.4.1) was not harmed by adding € f] + e fo+

3 f3 to the loading functional.

If folker B = 0 but filker B # 0, we only have

el Ay + |Ba = Oy S 0(). (3.4.11)

In this case, the expected membrane-shear dominated asymptotic behavior described by
Theorem 3.3.5 was severely affected by adding the higher order term € f1 to the loading
functional. This is a rare situation in which the leading term fj puts the problem in the
category of membrane-shear shells, while the higher order term ¢ fi draws it into the

category of flexural shell. In the sum, neither of them can dominate.



95

3.5 Classification

For the abstract variational problem

(Auf, Av)y + (Bu, Bu)y = (fo + €2 f1,v),

u*ec H, YveH,

the two estimates (3.4.4) and (3.4.5) show that if fy|er B 7# 0, the flexural energy
2(Au, Auf) 7 dominates. In this case, the shell problem will be called a flexural shell.

The two estimates (3.4.6) and (3.4.7) show that when fy|ie, g = 0 and its rep-
resentation ¢! € V*, the membrane-shear energy (Buf, Buf)y, dominates. In this case,
the shell problem will be called a membrane—shear shell. A membrane—shear shell will
be called a first kind membrane—shear shell or stiff membrane—shear shell if ker B = 0. If
ker B # 0 but fo|ier B = 0, the shell will be called a second kind membrane-shear shell.

We will justify the shell model in both of the above cases. If fo|ier g =0, but CQ

does not belong to V*, the shell model can not be justified.
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Chapter 4

Three-dimensional shells

In this chapter, we briefly review the linearized 3D elasticity theory for a thin
elastic shell in the curvilinear coordinates and recall all the materials from the differen-
tial geometry of surfaces that will be necessary for the shell analyses. Special curvilinear
coordinates on 3D shells, which are attached to coordinates on the middle surfaces, will
be defined. Rescaled stress components, rescaled applied force components, and rescaled
displacement components will be introduced. In terms of the rescaled components, the
linearized elasticity equations have a noticeably simpler form, and calculations can be
substantially simplified. We also recall the two energies principle that will be the funda-

mental tool for our justification of the spherical shell model.

4.1 Curvilinear coordinates on a shell

Let w C R2 be a bounded connected open domain, whose boundary Ow is smooth.
We use r = (z1,29) to denote the Cartesian coordinates of a generic point in @. A
surface S C R3 is defined as the image of the set w through a mapping ¢ from @ to
R3. We assume that the mapping is injective and fairly smooth. The boundary of S is
v = ¢(dw). The pair of numbers z = (1, xg) then furnishes the curvilinear coordinates
on the surface S. We assume that at any point on the surface, along the coordinate lines,

the two tangential vectors an = 0¢/0z are linearly independent. The unit vector ag
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that is normal to the surface can be expressed as

a; xa
%~ Tar < ag]

At any point on the surface, the three vectors a; furnish the covariant basis. The
contravariant basis a’ is defined by the relations a® - ag = (5% and a3 = a3, in which
(5% is the Kronecker delta. It is obvious that a® are also tangent to the surface.

The first fundamental form on the surface, or the metric tensor, aaf is defined
by Ua3 = Ga - Qg, which is symmetric positive definite. The contravariant components
of the metric tensor are given by a®’ = a® - af.

The second fundamental form, or the curvature tensor, baﬁ is defined by b, 8=
a3 - dgaq, which is also symmetric. The mixed curvature tensor is b3 = a®7b, 3. The
tensor ¢, 3 = bz[b,y 3 1s called the third fundamental form, which is also symmetric.

The trace and determinant of the mixed curvature tensor b% (as a matrix) are

intrinsic quantities of the surface which are independent of the coordinates. They are

the mean curvature and Gauss curvature respectively, denoted by

1
H=Z(bf +b3) and K =bjb3 — bybi.

The three fundamental forms and the two curvatures are connected by the identity

Kaaﬁ — 2Hbozﬂ + caﬂ =0.
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Expressed in mixed components of the tensors, this identity easily follows from the
Hamilton—-Cayley theorem in matrix analysis.
The Christoffel symbols I' Zé jare defined by I‘Zé 3= a7-85aa, which are symmetric
with respect to the subscripts, i.e., I‘Zﬁ = F’ya.
The shell with middle surface S and thickness 2¢, is a 3D elastic body occupying
the domain Q€ C R3, which is the image of the plate w® = © x [— €, €] through the

mapping P:
‘I)($1,$2,t) :¢($1,$2)+ta3, (.21?1,21?2) cw, te [_676]'

We assume that € is small enough so that ® is injective. The triple of numbers (z1,z9,t)
furnishes the curvilinear coordinates on the shell Q¢. We may use t = x3 exchangeably
for convenience. Corresponding to these curvilinear coordinates, the covariant basis
vectors at any point in Q€ are defined by
0®(z1,79,73)
(r1,29,23) = —————==.
gz( 1,42, 3) c%cZ
The 3D second order tensor 9ij = 9i - 9; 1s called the covariant metric tensor, whose

determinant is denoted by g = det(gij). The contravariant metric tensor g%/ is defined

as the inverse of g;; as a matrix, so, gikgkj = 5; The triple of vectors gi = gij 9j
furnishes the contravariant basis. Note that gi ‘g = 5;
A vector field v can be given in terms of its covariant components v; or con-

travariant components v’ through the relation v = vigi = vigi. A tensor field o can be
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given in terms of its contravariant components %/, covariant components 0jjs OF mixed

components Jé through the relations
o=0'g;®g;=0;9'®0g =0j9;®9".

For brevity, we will use notations like v = v; = vt and o = o = 055 = aj-. The
covariant components of a tensor will be called a covariant tensor, etc.

The Christoffel symbols are defined by F;‘]k = gk-ﬁj g;. The superscript * is added
to indicate the difference from the Christoffel symbols on the middle surface. The indices
of all tensors and the Christoffel symbols can be raised or lowered by multiplication and
contraction with the contravariant or covariant metric tensors.

For any vector or tensor defined on the shell Q¢ we can define its covariant
and contravariant derivatives, which themselves are tensors of higher orders. We use
double vertical bar to denote the derivatives on the 3D shell. For example, the covariant
derivative of the stress tensor %/ is a third order 3D tensor, whose mixed components
are given by

||y, = o'l + T o™ 4 T o

The row divergence of the stress tensor %/ is a vector whose contravariant com-

ponents are obtained from a contraction of the above third order tensor.

dive =o' ; = 00" + T3 o™ + rjiai”. (4.1.1)
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The covariant derivative of a vector v = v; is a second order tensor with covariant
components

— 9.v; — XK
UZH] = aJUZ FZ] Uk.

In terms of the contravariant components vi, the mixed components of the covariant

derivative of v can be expressed as
ol = 00" + TP
J J I

Note that for any vector field or tensor field defined on the shell €, its components
can be viewed as functions defined on the coordinate domain w®. Sometimes, we may
slightly abuse notations by discarding the difference between functions defined on Q€
and w€. The distinction should be clear from the context.

On the middle surface .S, we can define the covariant and contravariant derivatives
of any 2D vectors or tensors. The derivative will be denoted by a single vertical bar. A
2D tensor can be viewed as the restriction on the middle surface of a 3D tensor with zero
non-tangential components. On the middle surface, the tangential part of the derivative
of this 3D tensor is defined as the derivative of the 2D tensor. For example, on the surface
S, the covariant derivative of the second order tensor g = o0 is defined in terms of its
mixed components by the first equation in (4.1.2) below. The covariant derivative of the
second order tensor = Tg‘ is given by the second equation. The covariant derivative

of the vector field u = u®aq = uﬁaﬁ is given in terms of its covariant components and
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mixed components by the last two equations respectively.

aaﬁh = 870'aﬁ + Ff;‘/\a)‘ﬁ + FgTUO‘T,
T ard T A 7.7 (412)
TO&W BTa + )\BTa afTT

Ug|g = Igua — Fgﬂuy, uo‘\ﬁ = 8ﬁuo‘ + F,‘;‘ﬁu'y.

The mixed components of the covariant derivative of the curvature tensor b'oy[| 3=
851734 + Fzﬁbé — Fgﬁbl is symmetric about the subscripts, i.e., bZW = bg’|0f This is the
Codazzi-Mainardi identity, which follows from the second equation in (4.1.6) below. It
actually is a consequence of the assumption that the surface S can be embedded in the
Fuclidean 3 space.

We formally define the surface covariant derivatives for the tangential parts of 3D
tensors defined on the shell Q€ by the same formulae (4.1.2), and denote them by the
same notations. For example, if 7 = 7 (z,t) is a tensor field defined on the shell Qe,
for any given ¢ € [— ¢, €], rof (z,tp) can be viewed as the contravariant components of
a 2D tensor defined on the middle surface. We will define 7% |y at any point (z,%() by

the formula

_ A B _a\
Taﬁ’ry —877'0‘6—1-Ff;‘/\7' ﬁ—l—F,y)\Ta .

It is important to note that the derivatives denoted by a single vertical bar are always
taken with respect to the metric on the middle surface. More specifically, the Christoffel
symbols in the right-hand side of the above equation are those defined on the middle

surface.
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Product rules for differentiations like

(@ Tui)llg = o lguj + 0wy,
(4.1.3)

A A A
(o uA)|ﬂ:0a |ﬂu>\—|—0a (O\E

are, of course, always valid.
The following Green’s theorem, or divergence theorem, on the surface S will be
frequently used. Let n = nga® be the unit outward normal in the surface S to its

boundary ~, then

/ua\adS—/uanad’y (4.1.4)
S Y

holds for any vector field u = u®aq defined on S. In the above equation, the left hand
side integral is taken with respect to the surface area element and the right hand side
integral is taken with respect to the arc length of the boundary curve .

Our ultimate goal is to approximate the 3D problem defined on the shell Q¢
by a 2D problem defined on the middle surface S, so it is indispensable to make the
dependence of various quantities on the transverse coordinate ¢ as explicit as possible.

We set ,u%(g 1) = 6% - tb%(£ ). The dependence of this tensor valued function,
and of all the functions that will be introduced later, on the coordinates (x,t) will not
be indicated explicitly in the following, but should be clear from the context. We denote
the determinant of ,ug by p = det(,ug) =1-2Ht+ Kt2.

Let a = det(a,g). Then the area element on S is \/adz. The volume element in

the shell Q€ is \/gdxdt. The relation \/g = py/a holds.
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The mixed tensor Cg‘ is defined as the inverse of ,u% (as a matrix), so ,‘;‘ug = 6%.

From Cramer’s rule, we have the expression

a _ 1 ay A
S5 = 08

Here 5%;\7 =cYe BA is the generalized Kronecker delta. The e-systems on the surface S
are defined by €] = €99 = 0, €19 = — €91 = a, and el 1 = 22 =0, 12 = — 21 = 1/,/a.
We define the mixed tensor d% = 5%}@, which is the cofactor of the mixed curvature
tensor. Then we have pcg‘ = (5% —tdg. Note that pcg‘ is a linear function in the transverse
coordinate ¢t. This simple observation will play an important role in our model derivation
for general shells.

Between the curvature tensor bg and the tensor d%, the following relations hold:

QA _ « v o _ «Q
d)\bﬁ = Kéﬁ, dﬁ —l—bﬁ = 2H55'

The basis vectors and metric tensor at any point in the 3D shell are related to
corresponding quantities at the projected point on the middle surface by the following
equations:

9o = pgay, g% =CYa’, g3=g°=a3=a’

(4.1.5)

A 2
9o = ,ug[uﬁa,y)\ =008 — 2tbap +t7cop, 903 =930 =0, 933 =1.



Some important relations for the Christoffel symbols are

N _ *3
Iy} =I5 =Ta =0,

Y
Lol =Thn =Thg — 00 a|ﬁ’
tC F*Oé — —Cab)\
ﬁ bag — tap; 38 A3
especially,

Ti%l—0 = bag:  T53li—0 = —b3.
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(4.1.6)

The proofs of these relations are direct applications of the definition of the Christoffel

symbols. We just prove the second equation which we have not found in the literature,

but is necessary for us. By the definitions of Christoffel symbols on both the middle

surface S and the 3D shell Q€, and the relations (4.1.5), we have

I =97 9590 = (a7 - 95(uaay) = Ja” - (Ignday + radzay)

= ¢ (Ogun + FAgua) C}(uﬁd 5+ T 500)

05+ Qhiags = Tag — 1305

O

Let the boundary of w be divided to distinct parts as dw = dpw U Opw, with

dpw N Opw = B, giving the clamping and traction parts of the shell lateral surface. The

boundary of the middle surface S will be correspondingly divided as v =y U~yp. The

boundary of the shell Q€ is composed of the upper and lower surfaces I' t = ®(w x {£¢€})
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where the shell is subjected to surface tractions, the clamping lateral surface I'p =
®(Opw X [— €, €]) where the shell is clamped (the cross hatched part of the lateral surface
in Figure 4.1), and the remaining part of the lateral surface I'p = ®(dpw x[— €, €]), where

the shell is under traction or free.

€2

x1 P

Fig. 4.1. A shell and its coordinate domain

The unit outer normal on I'y is given by ny = g3. The unit outer normal on
I_isn_ = —g3. On I'p, at the point ®(z,t) € I'r (z € Opw), we denote the unit

* which is obviously parallel to the middle surface, so it can be

outer normal by n
expressed as n* = n}g®. Here the superscript * was added to indicate the dependence

of the components on t. Let n = nqpa® be the unit outer normal in the surface S to

its boundary 7. And let z(s) be the arc length parameterization of dpw, and i (s) the
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unit tangent vector to the curve dyw at the point z(s), then it can be shown that

ng, = —% €0f jcﬁ(s).

As p measures the transverse volume variation of the shell body, the function

n(z,t) measures the transverse area variation of the shell lateral surface. It is given by

V9ap(2(s), 1) (5) (s)

n(z(s),t) =
Vs (5)i® ()i (s)

~

V z(s) € Opw,

so we have

ng = —Na- (4.1.7)

4.2 Linearized elasticity theory

In the context of the linearized elasticity, the deformation and stress distribution
in an elastic shell arising in response to the applied forces and boundary conditions are
determined by the geometric equation (4.2.1), the constitutive equation (4.2.2), the equi-
librium equation (4.2.3), and traction (4.2.4) and clamping (4.2.5) boundary conditions
on the shell surface.

Let the surface force densities on I't- be p4 = piigi, the surface force density
on 't be pp = pf;rgi, and the body force density be g = qigi. Note that g; are the

covariant basis vectors at the relevant point.
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Let v be the displacement vector field, Xij the strain tensor field, and ol the

stress tensor field. The displacement-strain relation, or geometric equation, is
1
The constitutive equation, which connects stress to strain, is
= CZ]lekl or Xjj = Aijklakl, (4.2.2)

where the 3D fourth order tensors C%/*! and Az‘jkl are the elasticity tensor and the

compliance tensor. They are given by

iRl _ g, ik il 4 i gkl R R S
CYU™ =2ug"g”" + Ag”/ g™ and 44wkl—-2uh%kgﬂ 2u-+3Ag”g“L

respectively. The equilibrium equation, expressed in terms of the tensor and vector

components, is

o)+ ¢ = 0. (4.2.3)

On I'+ and I'p, the surface force condition, expressed in terms of the contravariant stress

components, is

o3 = p‘i_ on I'y; o3 =—p) onT_; Jjanz = p‘% on I'p. (4.2.4)
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On I'p the shell is clamped, so the displacement vanishes, and the condition is
v; = 0 on FD' (4.2.5)

The theory of linearized 3D elasticity says that the system of equations (4.2.1),
(4.2.2), (4.2.3), together with the boundary conditions (4.2.4) and (4.2.5) uniquely de-
termine the displacement v* = v} and the stress o* = o*tJ distributions over the
loaded shell arising in response to the applied body force, surface force, and clamping
boundary condition. The displacement v™ can be determined as the unique solution of

the weak form of the 3D elasticity equations:

CHIRL () i (u —/ qu'—l—/ P’ u'—l—/ P,
0c kl)zy) Qe i Fj::I:z FTTZ

(4.2.6)

vE H})(uﬁ), Vu € Hb(we).

where H b(we) is the space of vector valued functions whose components and first deriva-
tives are square integrable on w€®, and whose value vanish on I'jy. For any given body
force density q = qigi with ¢% in the dual space of H })(we) and traction surface force
densities p4 and pp with contravariant components pét and piT together defining a
functional on H ééz(Fi UTI'p), this variational problem uniquely determine the displace-
ment vector field v* = v} € H 1D(w€). With the unique displacement solution v* of
the 3D elasticity equations determined, through the geometric equation (4.2.1) and the

constitutive equation (4.2.2), we can determine the stress tensor o* = o*i,
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A stress field o = 0%/ is said to be statically admissible, if it satisfies the equi-
librium equation (4.2.3) and the traction boundary condition (4.2.4). A displacement
field v =v; €¢ H 1(Q) is kinematically admissible, if it satisfies the clamping boundary

condition (4.2.5). If both o and v are admissible, the following identity holds:

| i = a0l = o) [ Mg 0) < a0l xig(0) = xig(0°)

— /Qe[o-ij _ Cijklxkl(v)][AijklUkl . ij(v)] (4.2.7)

This is the two energies principle. For spherical shells, our model derivation and justifi-

cation are based on this identity.

4.3 Rescaled components

Due to the complicated expression (4.1.1), it is quite difficult to compute the row
divergence of a stress tensor given by its contravariant components. We will need to
verify the admissibility of a stress field in the justification of the spherical shell model,
and need to compute the residual of the equilibrium equation of a stress field for the
justification of the general shell model. So the calculation of the row divergence of stress
field is absolutely necessary. To simplify the calculation, we introduce the rescaled stress

components 6%/ for a stress field %/ by defining

5_04[3 — pul(;éo_’yﬁ’ 5_304 — p0_3a’ 5_063 — po_a?)’ 5_33 — p0_33’ (431)
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or equivalently

1 1 1
oW = =¢a5P, B =Sgda 08 = 508 633 = 2533, (4.3.2)
p

1
P P P
The following lemma indicates that, in terms of the rescaled stress components, the

divergence of the stress tensor o'l has a simpler form.

LEMMA 4.3.1. In terms of the rescaled components 6”, the row divergence of the stress

tensor c'J has the expression

. 1 _ B ~
o%||; = ;c%[cﬂﬂ g+ 13053 — 27573),

(4.3.3)
L

37 ~3 ~33 ~YA
JjHj:pJﬂ‘ﬁ—i-atJ —i—b,y/\UPy ]

Note that, the derivatives in the right hand side are all taken with respect to the metric

of the middle surface of the shell.

Proof. For the first equation, on one hand, by the relations (4.1.6), we have
: . . : . . Y ah Y ol 5 5
oc||; = 0j0 + Fi,'yyom + F;}O‘JU = 0;0% + F)\:yyaa + ngaa + 5207 4 205807,

On the other hand, we have

QN

~(91 7 g+ 0™ = 2357
1
= oo™+ 130h(0r™) = 26 po )

1
= ;C? 001T0™ + o1 5075 + o130 | + 1 0ppo™3 + p9o™S — 2b] po ™)
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1 1
= ;8ﬁp0aﬁ + Cg‘ui‘waTﬁ + Jo‘ﬁm + ;thoag + 0o — 2(%()%063

) )0 4 (024 — T25)077 + 0307

_(vﬂ B

+ 101097 + T0™ + 12303 4 9093 4 2175 0%

= 8ﬁaaﬁ + 8t0a3 + F:réaaﬁ + F:%O"YB + F’ﬂ;’gaai’» + QF%%‘J&)’.

The first equation in (4.3.3) then follows. In the above calculation, the following iden-

tities were used [30].

pe_ VI 1 98v9 9pva 1 OV _
J -7 7 — _17*7
;FJZ- B 7’ _85,0 B V9 va B F'Vﬁ’ Op s

For the second equation, we have

37 39 3 A3
o j||j = 8j0 J —I—Fzﬁaaﬁ—kfina n
and

3815+ 8,533 + b\

D=
QN

1
= Sl0o*)lg + By(p0™) + byrpuig o™

o0
_ 3ﬂ,ﬁ+ 6 038 4 9,633 & 29033+b%u;yam

= 95030 + F*Bﬁ 37 4 (=100 30 1 9,053 + 230 + 133 0™

B

_a..37 x3 _« *A _3n
—8JJJ+Faﬁ0’ﬁ+F/\n0' .

The desired equation follows. ]
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Note that except for some special shells, for example, plates and spherical shells,

the rescaled stress components 5% is not symmetric, more specifically, 512 + 521,
For consistency with the rescaled stress components, we introduce rescaled com-
ponents for the applied forces. For the upper and lower surface force densities p, we

introduce the rescaled components ﬁﬁt by the relation

Pt =plig; = ﬁi%gi, (4.3.4)
where pét are the usual contravariant components of the surface forces. The rescaled
components ﬁil: take the diffences of the areas of the upper and lower surfaces from that
of the middle surface into account.

For the lateral surface force density pp, we introduce the rescaled components
ﬁgp by the relation

. » 1
pPT =DPrg; = p?pﬁaz'- (4.3.5)

The rescaled components account the transverse area variation of the lateral surface,
and more explicitly express the dependence of the lateral surface force density on t.

For the body force density g, we define the new components (ji by

. ¥ 1
q=4q'g; =q'~a;, (4.3.6)

p
where qi are the contravariant components of the body force density, while cji are the
components of the body force density weighted by the transverse volume change, and

expressed in terms of the covariant basis on the middle surface.
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In terms of the rescaled stress components and applied forces components, the

surface force condition (4.2.4) can be equivalently written as
5% =p, onTy; 6% =—p onT_; &g =@ on Ty (4.3.7)

The equilibrium residual o/ I it ' can be equally written as

i 1 .- - - ~
o |j + ¢ = ;csvwﬁ g+ ] 0™ — 267573 + ),
(4.3.8)
1
o[

o3|+ ¢ = ; 7305+ 0153 + b, 67 + 7).

For the displacement vector v = vigi, we introduce the rescaled components v; by
expressing the vector in terms of the basis vectors on the middle surface, i.e., v = f)iai.

In components, the relation is

va (21, 29,t) = i (21, 29,t), v3(r1,29,t) = U3(27, 20, 1).

LEMMA 4.3.2. In terms of the rescaled components v; of the displacement vector field v,

the strain tensor engendered by v can be expressed as

1, . - - 1 - - -
Xag(v) = 5(%4»3 + 08| — 2ba303) — §t(b'oy[v,y|5 + bgv'ﬂa — 2¢4,473);

1 - - - - -
Xa3(?) = X3a(v) = 5(3(1@3 + Opia + bty — thh0iy),  x33(v) = 9y b3.
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Proof. We need to compute the covariant derivatives v, = ij - g;. By direct

illg

computation, we see
85’0 = 851770,7 + 277850,7 + 851730,3 + 173850,3.

Using the definitions of the Christoffel symbols, curvature tensors, and covariant deriva-

tives on the middle surface to the right hand sides of this equation, we get
Dgv = (85 — bygi3)a” + (9503 + bgf)v)a?’.
Therefore,
Valg = v phay = Mg@w —brg3) = To|g — bagi3 — this g + teass,
V316 = dgv - g3 = dgv3 + bg,ﬁy.

It is easy to see that J3v = Opvya7 + 8t173a3, so, we have vg|3 = O3v - 95 = Hgatf)v =
=5 4pY
8tv6 tbﬁ

strain tensor (4.2.1). O

Oy and v3)|3 = 0;v3. The lemma then follows from the definition of the
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Chapter 5

Spherical shell model

5.1 Introduction

In this chapter, we discuss the 2D modeling of the deformation of a thin shell
whose middle surface is a portion of a sphere. The shell can be totally or partially
clamped. The model is constructed in the vein of the minimum complementary energy
principle, and will be justified by the two energies principle. The form of the model is
similar to that of the plane strain cylindrical shells justified in Chapter 2, and can be put
in the abstract framework of Chapter 3. Since the membrane-shear operator B does not
have closed range, the behavior of the model solution is more complicated, and the justi-
fication is more difficult. For totally clamped spherical shells, convergence in the relative
energy norm of the 2D model solution to the 3D elasticity solution is proved. A conver-
gence rate of O(el/ 6) in the relative energy norm is established under some smoothness
assumption on the shell data in the usual Sobolev sense. For partially clamped spherical
shells, convergence and convergence rate will be proved under a condition imposed on an
e-independent 2D problem. This condition is an indirect requirement on the regularity
of the shell data, whose interpretation in the usual Sobolev sense is not completely clear

yet. An example for which the shell model might not be applicable will be given.
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The spherical shell problem is another example that can be resolved by the two
energies principle. Together with the plane strain cylindrical shells, these special shell

problems provide examples for all kinds of shells as classified in the next chapter.

5.2 Three-dimensional spherical shells

A spherical shell is a special shell, to which all the definitions and equations of
Chapter 4 apply. Here, we summarize the things that are special to spherical shells.

The middle surface S of the spherical shell is a portion of a sphere of radius R. A
spherical shell, with middle surface S and thickness 2¢, is a 3D elastic body occupying
the domain Q€ C R?’, which is the image of a plate-like domain w® through the mapping
® defined in Chapter 4. We assume € < R so that the mapping ® is injective. Through
the mapping ®, the Cartesian coordinates on w® furnish the curvilinear coordinates on
the shell Q€. The peculiarity of the spherical shell Q€ lies in the fact that the mixed
curvature tensor of its middle surface is a scalar multiple of the Kronecker 9: bg = bég,
with b = —1/R. To see this, we introduce the spherical coordinates on the middle
surface (x1 for the longitudes and x9 for the latitudes) and let the normal direction

point outward. With these coordinates, the covariant components of metric tensor are

a1l = R? cos? T9, a99 = R2, a12 = a9q = 0.

The covariant components of the curvature tensor are

bi1 = —Rcos? r9, byg = —R, b1y = b9y = 0.
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Note that, the mixed curvature tensor is given by bg = b6ﬁ. We know that when

the curvilinear coordinates are changed, the mixed components of a second order tensor
change according to the rule of similarity matrix transformation. Therefore, on a sphere,
the mixed curvature tensor always takes this special form, no matter what coordinates
are used. Because of the special form of the mixed curvature tensor, we have the following
special relations that will substantially simplify the analysis.
« (67 « 1 (61
g = (1-— bt)55, Cﬂ = méﬂ.

H=b, K= p=(1-0b)% n=1-"bt,
(5.2.1)

go =1 —bt)ay, g%=-——a",

Jop = (1 - bt)2aaﬁ7 baﬁ = baaﬂ, Caff = bQCLaﬂ.

For the spherical shell, the rescaled stress components that was defined for general

shells in (4.3.1) become
g0 = (1 - bt)36078, 593 =530 = (1 —bt)20P, 3 = (1) (5.2.2)

Note that the matrix of rescaled stress components is symmetric, a property particular

to spherical shells. By using the equation (4.3.3), we can write the divergence of a stress
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field in terms of the rescaled stress components as

1 N N -
m[aaﬁ |5+ (1 — bt)9p5 3 — 2653,

o|; =
(5.2.3)

o3|, = 5163015 + 0,633 + ba, \ 67,

(1—bt)

The shell is subjected to surface forces p4 on I'y, and pp on I'p per unit area. It
is loaded by a body force g per unit volume. The shell is clamped on I'jy. The rescaled
components of the applied forces are connected to the contravariant components through

the relations, see (4.3.4), (4.3.5), and (4.3.6),

: 1 : 1 : 1
Pt =14 g; :pit;gi, PT = Prg; :pZTaai, a=1qg; :qZ;ai- (5.2.4)

In terms of the rescaled stress components 5 and the rescaled applied force
components, the equilibrium equation ol I it qi = 0 can be equivalently written as, see
(4.3.8),

595+ (1 — bt)9y53* — 2663 + ¢ = 0,
(5.2.5)

539 5+ 0533 + ba, \6 1 + 2 = 0,

The unit outer normal vector on the upper surface I'y is obviously given by ny = g3
and on the lower surface ', n_ = —g3. The surface force conditions o/ n; = p]j: onI'¢

are equivalent to

) =pY, U —e)=—p%, () =L, 7%(—¢)=—p>. (5.2.6)

Qe
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On the lateral surface I'p, let the unit outer normal vector at a point on the middle
curve yp be n = nga®, which should be in the middle surface. Note that along the
vertical straight fiber through this point, the unit outer normal should not change, so
n* = n;‘gi = nqa®. The components are ng, = (1—bt)ng, nj = 0. The lateral surface

force condition o/ n;‘ = p‘% on I'r, can be equivalently written as

5% =3¢, 5 ng =i (5.2.7)
In terms of the rescaled applied surface force components, we define the odd and weighted
even parts of the surface forces by

o PP L P4 5 -2 5 P+
bo = 9 y DPe = P y DPo = 9 y DPe = P .

For the body force, we define the components of the transverse average by

We assume that the body force density q is constant in the transverse coordinate. This is
equivalent to g = qgai. Under this assumption, the rescaled body force components are
quadratic polynomials in ¢, and we have (ji = qé + tq% + t2q%, with qé = qé, q% = —2bq2,

and q% = qué.
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For the lateral surface force, we define the components of the transverse average

and moment by

i_ L[ i i 3 [ i
= — -a’dt, = — tpp - a’dt.
Pa 26/_EPT Pm 92¢3 . pT

We assume that the lateral surface force density pp changes linearly in the transverse
coordinate, or equivalently pp = (pfl + tpfn)ai. Under this assumption, the rescaled
lateral surface force components ﬁiT are quadratic functions in ¢, and we have ]5%1 =
p% + tpzi + t2p%, with p6 = pé, pZi = pfn — bpg, and pé = —bp%n. The following
analyses can be carried through if (ji and ]5%1 are arbitrary quadratic polynomials in t.

The restriction on the body force density and lateral surface force density can be further

relaxed, see Remark 6.3.1.

5.3 The spherical shell model

The model is a 2D variational problem defined on the space H = H b(w) X
H }) (w) x Hllj (w). The solution of the model is composed of five two variable functions
that can approximately describe the shell displacement arising in response to the applied

loads and boundary conditions. For ( g U, w) € H, we define

1
Tap (W) = 5 (uq|g + Ugle) — baggw,
(5.3.1)

1
paﬁ(g) = 5(0a|ﬂ + 05|a)7 Tﬁ(gv}\‘;aw) = eﬂ + aﬂw + buﬁa
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which give the membrane, flexural, and transverse shear strains engendered by the dis-

placement functions (¢, u,w). The model reads: Find (0€, u,w) € H, such that

1
5 [ a0y (0)00(0)Viadz
w
+/ aaﬁmvm(gﬂwe)mg(g,Z)\/Edg+gu/ a®Prg(0°, ut, w)ra (@, v, 2)Vadz
w w

= (Ffo+ € f1,(0.5.2) ¥ (¢ y.2) € H, (5.3.2)

where a®N = 2a%AaPY + A*a®P oY is the 2D elasticity tensor of the shell and

20\

= )
24+ A

The leading term in the resultant loading functional is given by

5 A
(fo. (& y:2) /%MQ% fﬁ—%HA/3“%w%>ﬁ%

+ / (a3 — 2693 + pS)ya + (45 + PSla + pi)2]vadz + / PaYa, (5.3.3)
w T

and the higher order term is

(1ol .2 = g5y L0+ wod)a () Vads

1
+3b / [ba&ya + bapz — (308 + 243 )balVadz
w

1

T3 / [~bp%ya + 2bp, 2 + (0% — pd)dal. (5.3.4)
T



122

REMARK 5.3.1. [t is noteworthy that the leading term pg of the transverse component
of the lateral surface force is not incorporated in the expression of the leading term of
the resultant loading functional fq. Our explanation for this unreasonable phenomena is
that the effect of pg is represented by the odd part of the upper and lower surface forces

pS through the compatibility condition (5.4.9).

This is the variational formulation of our spherical shell model. This model is a
close variant of the classical Naghdi model. The differences lie in the shear correction

factor 5/6, and more significantly, the expression of the flexural strain

1
Papp = 50als + Opja)

The flexural strain in the Naghdi model is given by

1
Pas = 3005+ 93j0) — brap(u,w)

where 7,5 is the membrane strain defined in (5.3.1).
We will derive a model for general shells in Chapter 6. When the general shell
model is applied to spherical shells, a spherical shell model that is slightly different from

the one we derived here will be obtained. Especially, the flexural strain will be given by

1

It seems that the model (5.3.2) is closer to that of Budianski-Sanders [14].
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We will prove the convergence of the spherical shell model in the next section, and
prove the convergence for general shell model in the next chapter. The discrepancy can
be explained by the difference in the resultant loading functional. What we can learn
from the difference between the two spherical shell models we derived is that the model
can be changed, but the crux is that the resultant loading functional must be changed
accordingly, otherwise, a variant in the model might lead to divergence.

To prove the well posedness of the classical Naghdi shell model, the following

equivalence was established in [11].
N
1 (0200 gy + ) sy + 128 )l
= HQHHI(W) + HEHHl(w) + HwHHl(w) V(0,u,w) € H,
from which, by the observation
o) gy + (1 DI )l sy + 120 )] g
N
21V (8 ) )+ 1280 m )+ 120 0y,
the following equivalency easily follows:

2Ol symy + w0l gy + 1200, 10l ()

= HQHIjl(u}) + H,%Hgl(w) + HwHHl(w) v (,@gﬂv) € H. (5.3.5)
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Since the elastic tensor a®?*7 and the contravariant metric tensor of the middle
surface a®’ are uniformly positive definite and bounded, the bilinear form in the left
hand side of the variational equation (5.3.2) is continuous and uniformly elliptic over the

space H. Therefore, we have

THEOREM 5.3.1. If the resultant loading functionals (5.3.3) and (5.3.4) are linear con-
tinuous functionals on the space H = lng(w) X lng(w) X Hll)(w), the model (5.3.2) has

a unique solution (6€, u®,we) in this space.
REMARK 5.3.2. The condition on the loading functionals for the existence of the model
solution can be met, if, say, the loading functions satisfy the conditions

ﬁ?k S LZ(w)a qa € LQ(w)v ﬁi = g(divaw)v pz,v p;n S H_1/2(8Tw)‘ (536)

For simplicity, the flexural, membrane, and shear strains engendered by the model

solution will be denoted by

Paﬂ = Paﬁ(ﬁe), 72[3 = ’Yag(ge,we), 7—& = Ta(ee, uE’,wE)'

~ '~

5.4 Reconstruction of the admissible stress and displacement fields

From the model solution (0¢, u® w®), we can reconstruct a statically admissible
stress field and a kinematically admissible displacement field by explicitly giving their

components, and compute the constitutive residual so that we can use the two energies
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principle to bound the error of the model solution in the energy norm. We will see that
the constitutive residual is formally small. A rigorous justification, which crucially hinges

on the asymptotic behavior of the model solution, will be given in the next section.

5.4.1 The admissible stress and displacement fields

Based on the model solution (0€, u®,w®) € H, we define the following 2D tensors

B

08 , 0(116, and a 2D vector 08’0‘ by

af _ ,afAY € 3 af
JO a PY)\')/ + 2M + )\p0a 9
af _  afAy € 3 3\ af 5.4.1
o, =a p)\,y+2u+)\(pe+bp0)a : ( )
3o _ §

o0 = a5 — pg).

By using the model equation, it is readily checked that, in weak sense, these tensor- and

vector-valued functions satisfy the following system of differential equations.

56 o'?m - 50004 —¢€ bpg—f—gbe qg?
2 1.9 9
o5 15 - gb(f%a =205 = pg — (1+ 3b” €)qg, (5.4.2)

2 1
baaﬁ"gﬁ + §08a|a = —pSla—pi — (1 + §b€2)qg
and the boundary conditions on yp

B B 3o

1
03 ng = pq — gbezp%, a(ll ng = pm — g, 0g%na = €2 bp%. (5.4.3)
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Indeed, if we substitute (5.4.1) into the above equations and boundary conditions, and
write the resulting equations and boundary conditions in weak form, we will get the

model equation (5.3.2). This is in fact how the model was derived.

g ab

The functions 03 , J‘f and 080‘ furnish the principal part of the statically ad-

missible stress field. To complete the construction of the stress field, we need to define

B 33

another 2D tensor-valued function Jg and two scalar valued functions o) and 0:1)’3.

&

The tensor-valued function a(; will be determined by the equation

036’5 = —4b08’a Y qq (5.4.4)

and the boundary condition

B

03 ng=— e bpsy, on yp. (5.4.5)

This equation and boundary condition together do not uniquely determine 03 g . We will

choose one so that

2 2 2
19571 ) S 1131 oy + 0% € Wy + BL WSl 12y (5:46)

holds. This is possible in view of Theorem 6.3.1 below.

3

The other two scalar functions 003 and 0%3 are explicitly defined by

1

(5.4.7)

1 2
0%3 =3 e[baaﬁogﬁ + gbaaﬁagﬁ + 5o —|—p2 +(1+ b2 ez)qg].
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With all these tensor-, vector-, and scalar-valued 2D functions determined, we

define the rescaled components 510 of the stress field by

58 = 607 4 169 1 r(t)o5”

ad

= 5% = p +1p2 + q(t)op®, (5:4.8)

533 = p3 + tp2 + q(t) o3 + s(t)a$3,

where r(t), q(t), and s(t) were defined in (2.4.6). From the definition, it is obvious that
the surface force conditions (5.2.6) on the upper and lower surfaces are precisely satisfied.

By using the boundary conditions (5.4.3), (5.4.5), and the compatibility condition

Pona =py — Ebpy,  pina =pim — by on A7, (5.4.9)

we can verify that the lateral surface force condition (5.2.7) is also exactly satisfied.
By using the equation (5.4.2), (5.4.4), and the definition (5.4.7), after a straight-
forward calculation, we can verify that the equilibrium equation (5.2.5) is precisely satis-
fied by the constructed rescaled stress components. Therefore, the functions 517 defined

by (5.4.8) are the rescaled components of a statically admissible stress field o, whose
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contravariant components, by the relation (5.2.2), are given by

1
o — m[ogﬁ + to?ﬁ + T(t)o‘;ﬁ],
1
030 = 03 = m[pg + tpg + Q(t)US)aL (5.4.10)
1
o33 = m[pg + tpg’ + q(t)08’3 + S(t)ffifg]-

REMARK 5.4.1. On the shell edges I' . NI'r and I' _NI'p, where the upper and lower sur-
faces meet the lateral surface, the surface forces exerted on the upper and lower surfaces

must be compatible with the force applied on the lateral surface in the sense that

pr-n(e)=pp-g3onTyNlp, p_-n"(—e)=—pp-g3 onT_NTp.

This compatibility condition is precisely equivalent to (5.4.9).

The kinematically admissible displacement field v is defined by giving its rescaled
components as

Vo = ug, + 05, 03 = w + twy, (5.4.11)

in which wy € Hp(w) is a correction function to the transverse deflection whose definition
will be given in the next section. The clamping boundary condition on I'f is obviously

satisfied.
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5.4.2 The constitutive residual

For the admissible stress field o and displacement field v constructed in the pre-
vious subsection, we denote the residual of the constitutive equation by g; j= A; j klakl —

Xij(’v)' By Lemma 4.3.2, the covariant components of strain tensor Xij(’v) engendered

by the displacement v defined in (5.4.11) are

Yop(®) = (1= b5+t 5) — (1 — bywiags,

(5.4.12)

1 1
X3a(v) = Xxa3(v) = 575 +5t0awy,  x33(v) = wr.

For the admissible stress field o defined by (5.4.10), we can compute Az’j klakl by
using the definition of the 3D compliance tensor, the relations (5.2.1), and the definition

(5.4.1). The results are

Anprio™ = (1= bt) (v 5 + 1ol ) — bt (P2 + b)agg

2p(2p + 30)

A 33 33
_ m[q(t)oo + s(t)oy ]aaﬁ

1 A A
+ (1 — bt)r(t)ﬂ[aa/\aﬁ,y — maaﬁaA'}/]Jer’

(5.4.13)

1 3
Agapo™ = ﬂaaﬂ[pg + tph +q(t)005],

1 2u+A) . 3 3 33 33
A ki _ +tp2 + gt + s(t




;5

A
2p + 3\

(1= 1)o7 + 107 + r(1)05 )agg).
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Subtracting (5.4.12) from (5.4.13), we get the explicit expression of the residual

A

A

_ m[q(t)ag3 +s(t)o1%)ags

A

1 A
+ (]. - bt)r(t)ﬂ[aa)\aﬂ,y - maaﬂaAv]Uzr}/

+b(1 — bt)twlaaﬁ,

4
030 = 5-1a(t) — £laggoh

1 1 3 A af_e
IR TS LA s G s
bt A af
AT b2 202 1 3y B0
1 2(u+A
N | (1 + )( 3
2u(1 — bt)2' 20 + 3
X
2p+ 3\

033 =

(1= b0)(t057 + ()05 )an 5.

In the next section, we will prove that under some assumptions,

tpg + q(t)aps + s(t)o}d)

(5.4.14)
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as € — 0. By the estimate (5.4.6), we know that Jgﬂ will converge to zero. From the
definition (5.4.7) we know that 08’3 and a:f?’ are formally small. To make p33 small, we
will choose wy € Hllj(w) to minimize

1 3 A

[2u+)\p0_2,u+)\

aaﬁyaﬁ(ge,we)] —wy. (5.4.15)

At the same time, due to the involvement of t0nw; in the expression of o3, the quan-
tity e ||wq|| H(w) needs to be small. With all these considerations, we can expect the

constitutive residual to be small.

5.5 Justification

The formal observations we made in the last subsection do not furnish a rigorous
justification, since the applied forces and the model solution may depend on the shell
thickness in an unexpected way. To prove the convergence, we need to make some
assumptions on the applied loads, and have a good grasp of the behavior of the model
solution when the shell thickness tends to zero. When € — 0, everything may tend to
zero, so to prove the convergence, we need to consider the relative error. In addition to
the upper bound that can be obtained by bounding the constitutive residual, we need

to have a lower bound on the model solution.

5.5.1 Assumption on the applied forces

Henceforth, we assume that all the applied force functions explicitly involved in

the resultant loading functional in the model are independent of €. L.e., we assume that
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the functions

pf), pé, qé, pé, p?n are independent of e. (5.5.1)

This assumption is different from the usual assumption adopted in asymptotic
theories, according to which, the functions el pg, rather than pg themselves, should
have been assumed to be independent of . Our assumption on pé and qg is the same as
the usual assumption [18].

Our assumption will reveal the potential advantages of using the Naghdi-type
model over the Koiter-type model. The convergence theorem can also be proved under
the usual assumption on the applied forces, but in that case, the difference between the

two types of models is negligible.

5.5.2 Asymptotic behavior of the model solution

Under the loading assumption (5.5.1), the shell model (5.3.2) fits into the abstract
e-dependent variational problem (3.2.2) of Chapter 3. To apply the abstract theory, we
define the following spaces and operators. As above H = H }) (w) x H })(w) X H})(w)

with the usual product norm. We let U = é;ym(w) with the equivalent inner product

1
(ph pPu = g/wao‘mvpivpig\/adg Vplp?el,

and define A : H — U, the flexural strain operator, by
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We also define B : H — ésym(w) X Lg(w), combining the membrane and shear strain
operators, by

B0, u,w) = [y(u,w), (8, w,w)] V(0,u,w)eH.

The equivalence (5.3.5) guaranteed the condition (3.2.1) required by the abstract theory.
A totally or partially clamped spherical shell is stiff in the sense that it does not
allow for non-stretching deformations. If 2 (u,w) =0, we must have u = 0 and w = 0
[18]. Therefore, ker B = 0. According to the classification of the abstract e-dependent
variational problem in Section 3.5, a spherical shell can never be a flexural shell.
For spherical shells, the most significant difference from the plane strain cylindrical
shells is that the operator B does not have closed range. We need to consider the space

W =DB(H) C g;ym(w) x Lo(w), in which the norm is defined by

H[l(gaw)v Z(gv ng)]HW = H(,‘gv ng)HH

Equipped with this norm, W is a Hilbert space isomorphic to H. The operator B is, of
course, surjective from H to W.

The space V is defined as the closure of W in ggym(w) x Lo(w), with the inner
product

5}
((;);17:7\:1)7 (2;27,7;2))‘/ = / aaﬁ/\ry’)//l\,y’ygéﬁ\/adgz + E,U/ aﬁTéTo%\/adgz,
w

a
w

. . . . Sym
which is equivalent to the inner product of £2y (w) X Lo(w).
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The range of the operator B then is dense in V| as was required by the abstract
theory. The space V actually is equal to the product of Vj, the closure of the range of
membrane strain operator 7 in g;ym(w), and the closure of the range of shear strain
operator 7 in Lo(w). The latter, since the range of 7 is dense in Lg(w), is just equal to

Lo(w). Therefore, we have the factorization

V="Vx £/2(w). (5.5.2)

According to the discussions in Section 3.4, the leading resultant loading func-
tional f( determines the asymptotic behavior of the model solution.

Since ker B = 0 and B is an onto mapping from H to W, by the closed range
theorem, there exists a CQ € W¥*, such that the leading term in the loading functional

can be equivalently written as

<-f07 (Q?Q)Z» = <CQ=B(Q7%72)> v (52,%,2) € H.

We recall that without further assumption, the solution of this essentially singular per-
turbation problem is untractable. To sort out the tractable situations, we imposed the

condition (3.3.24) on ¢! in Chapter 3. Namely,

Qevr (5.5.3)
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This condition is equivalent to the requirement that the loading functional can be written

as

<f07 (f7£72)> = <<>97B(Q7%7Z)>V*XV = (CO,B(Q,%,Z))V’

here CO € V is the Riesz representation of (9 € V*. Therefore the condition (5.5.3) is

equivalently requiring the existence of (79, 7 Nev=1px Lo(w) such that

5!
(fo (Qagaz» —/ aaﬁ)"y’y?\,ﬂaﬂ(%,z)\/ﬁdg + Eu/ aaﬁTgTa(Q,%,z)\/Ed;’g. (5.5.4)
w w

Recalling the expression of the leading loading functional

5 A
(fo:(¢,y,2) = g/wpg‘m(g,g,Z)\/Edg— 2H+)\/wp§ao‘5'ya5(;g,Z)\/5dg

+ / [(ag — 2693 + pD)ya + (@ + PSla + pP)2]vadz + / PaYaes (5.5.5)
w T

we can see that the condition (5.5.4) is equivalent to the existence of r € Vp, such that

/ N iy gy, 2)Vadz
w

= / [(q§ — 2bp + P2 )ya + (g5 + PG |a + pE)2]Vadz + / PaYa
w T

V (y,2) € Hp(w) x Hh(w). (5.5.6)
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Note that the second term in (5.5.5) can be equally written as

_2M+)\/wpoa 'YQﬁ(;yﬂZ)\/ad,{UJ = —m/wa a)\’ypO’Yozﬁ(;sz)\/adfga
(5.5.7)
so if pg € Ly(w), we can determine lo €V as
105 = o — 5o Py () (5.5.8)
af af 2u(2p +31)" V0 afPo)>

where PVO is the orthogonal projection from g;ym(w) to its closed subspace V[, with
respect to the inner product of U.
By defining

1
o= ;aagpg, (5.5.9)

we obtain ¢V = (;LO, ZO) € V such that the loading functional can be reformulated as

<.f07 (gv Y Z)>H*><H = ((lov TO)? B(,@? Y Z))V

~

5}
—/aaﬁ/\%y?w*yaﬁ(%,z)\/&drxv—l—éu/ aaﬁTgTa(Q,%,z)\/Edg. (5.5.10)
w w

Therefore, to use the abstract theory, the crux is the existence of = Vo, such
that the problem (5.5.6) is solvable. We will see that for totally clamped spherical shells,
under the data assumption (5.3.6), the existence of € Vp is guaranteed automatically.
But for partially clamped spherical shells, this requirement imposes a stringent restriction
on the applied forces. Even if the shell data are infinitely smooth, this requirement might

not be met.
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Under the condition (5.5.6), the asymptotic behavior of the model solution follows
from Theorem 3.3.5 and (3.4.7). We have the convergence
. € . e 0y . e 0 _
limlelp ”g;ym(w) +r" -2 ||£zym(w) 7" = 2l g ()l = 0- (5.5.11)

From this, we get the estimates

-1
H£€H£;ym(w) So(e ), “g€“£;ym(w) S, |’ZG|’£2(W) S L

From the equivalency (5.3.5), we get the a priori estimates on the model solution

190 g1y + NN 1 gy S o™,

(5.5.12)
1o g1y SHEN Lo ) + 145 £y )
If we assume more regularity on (;LO, ZO)’ say,
079 emw,v 5.5.13
(17 2) € W.V]i_g 4 (5.5.13)

for some 6 € (0,1) and g € [1,00], or 0 € [0,1] and g € (1, 00), according to Theorem 3.3.4
and (3.4.6), we have the stronger estimate on the asymptotic behavior of the model

solution:

0
lefllpsyme 127 = 2 gy + 12 2y S Ko (0 2 v s &

(5.5.14)
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And the estimates

< 69—1

€ . € . <
||£ ||£zyrn(w) ~ ) ||;L ||£zyrn(w) N

€ <
Nz gy 1

By the equivalency (5.3.5), we get the a priori estimates

<L

19N g1 0y + 1l 1)
(5.5.15)

1ol g1y S N8N Ly () + 15 £y w)-

The correction function wy, based on its involvements in the constitutive residual,
will be defined as the solution of the variational equation

I 3 A aB0

2
€ (le’VQ})QQ(w) + (wl,v)LQ(w) = (mpo - 2% + )\a Vaﬁav)LQ(w)v

(5.5.16)

wy € Hh(w), Y ve Hh(w).

Note that this definition of the correction function is not a simple analogue of the
definition of wj in the plane strain cylindrical shell problems. Here we use ﬁlo’ rather
than zf to define the correction. Due to the possible boundary layer of ‘;yf, if we put
236 in the place of 2;0 in (5.5.16), the convergence rate of the model solution will be
substantially reduced. Our correction on the transverse deflection is not an a posteriori

correction.
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From the definition (5.5.8) of 'y , we know 'y € Lsym( ), so we have aaﬁfygﬁ c

Lo(w). By (3.3.38) in Theorem 3.3.6, we have

aﬁO

cllwnll g + 1 - 15+ 5Pl Lyw) = 0 (€—0).  (5517)

EETES 2+ A

If we assume

Na® 5 — ) € [Hp (W), (@)1, (5.5.18)

for some 6§ € (0,1) and p € [1,00], or # € [0,1] and p € (1,00), by (3.3.36) in Theo-

rem 3.3.6, we have

A 04[3 0 1

S K(e, 290 3 — pi [La(w), Hp (@)]) S ¥ . (5.5.19)

5.5.3 Convergence theorem

With the estimates on the asymptotic behavior of the model solution established
in the previous subsection, and the expression of the constitutive residual (5.4.14), we
are ready to prove the convergence theorem. We denote the energy norms of a stress

field o and a strain field x by on the shell Q¢ by

D=

1 ..
Kl _ijy L kil
ol e = / Agjro™e')2  and HXHEEZ(/QGCW Xk1Xij)
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respectively. Since the elastic tensor Okl and the compliance tensor A; jkl are uniformly
positive definite and bounded, the energy norms are equivalent to the sums of the Lo (w®)

norms of the tensor components.

THEOREM 5.5.1. Let v* and o™ be the displacement and stress fields on the spherical
shell arising in response to the applied forces and boundary conditions determined from
the 3D elasticity equations. And let v be the kinematically admissible displacement field
defined by (5.4.11) based on the model the solution (¢, u®,w*) and the correction func-
tions wy defined in (5.5.16), o the statically admissible stress field defined by (5.4.10).
If there exists a K€ Vo such that the functional reformulation (5.5.6) holds, then

we have the convergence

Lo o = ol e + (o) = x(@) e
e Ix(®)

0. (5.5.20)

If we further have the regularity (5.5.18) and (5.5.18), we have the convergence rate

lo* = allpe + Ix(v*) = x(@)lpe - o0

Ix ()]l e S (5.5.21)

Proof. We give the proof of (5.5.21). The proof of (5.5.20) is similar. For brevity, the
norm | - HLQ(WE) will be denoted by || - ||. Any function defined on w will be viewed as a

function, constant in ¢, defined on w€.
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First, we establish the lower bound for ||x('v)||]256 By the convergence (5.5.14),

we have
€ 3 < 0 € 0 . < 0 € 0 < 0
€ ||£ ngym(w) <e€’, ||;L 7 ngym(w) Se, Tt -1 H£2(w) <€ (5.5.22)
Since lo and I,O can not be zero at the same time (otherwise fj = 0), we have
0 0
Hgf\\gym(u}) + \\26\\£2(w) ~ |y \\gzym(w) 7 pg ) = 1 (5.5.23)

~

By the equivalence (5.3.5), we have 6H(ge’%E’wE)HHl(w)XHl(w)XHI(w) < . The

convergence (5.5.17) shows that

ellwrll gy S € and llwrll ) = 13a*105 = Pl L, ()

With all these estimates, it is easy to see that in the expression (5.4.12) of x;;(v),

the terms 7, 3 and 75 dominate in y,, 3 and X3, respectively, therefore,

2 2
2 2 €2 €12
Eﬁ 1”on5(’”)” + §1H><3a(v)|! R el N psym gy 12y R &
a,p= a= ~

S0,

Ix(0)[|%e 2 €. (5.5.24)
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From the two energies principle, we have

3
2 2 ¥ 2
lo* = olge + lIx(v") = x(0)|[Fe = /Q A0 5 Y lleijI®. (5.5.25)
ij=1

From the definition (5.4.1) and the definition of Tg, we have

afl _ afN\y. € A3 ap
99 a Ty + 2H+)\poa )

af _ aBAy € A 3 3\ af
o) =a® M p + 2M+)\(pe + bpp)a”,

30(75

90 = Z[Maaﬁ(

3 [3) ?

2 ap2 1426 ap 2 3a12 1+26
E 02 T 002 Se, (0B S 0 (5.5.26)

By the estimate (5.4.6), we get HJSBHQ < el 29, From the last two equations of (5.4.7),

we see ||0'83 12 < 3120 Ha%gHz < €3, Apply all the above estimations to the expression
of 003 it is readily seen that the square integral over w® of every term is bounded by
0(63), except the one in the third line, whose square integral on w® is bounded by
O(el+26). Therefore we have ||Qa5\|2 < el 120,

From the convergence (5.5.19), we know € le”Hl(w) < e so [t0aw |2 < el 120,

together with (5.5.26), we have ||o34]/2 < 1120,
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Our last concern is about p33. In its expression, we equally write the first line as

1 1 3 A af.e
_ 1 1 3 A afB,.0
= _bt)2(2u+)\po 2 Tas wy)

2t — b2t2

1 A € 0
Yag = Vag) ¥ Tz L

~ af
(1—bt)22u+ A" (

By the convergence (5.5.22) and (5.5.19), wee see that the square integral of this ex-
pression is bounded by O(el+29). The second and third lines are obviously bounded by
O(e3). The last line is bounded by O(€1+29), so, we have ||033/|2 < e172¢. We obtained
the upper bound [|o* — |3, + [|x(v*) = x(0)[[%e S 1T

The estimate (5.5.21) follows from the lower bound (5.5.24) and this upper bound.
The proof of (5.5.20) is a verbatim repetition, except replacing (120 by o(e), and e? by

o(1). O

REMARK 5.5.1. If the odd part of the applied tangential surface forces pS is not zero,
the deformation violates the Kirchhoff-Love hypothesis. Actually, the estimate (5.5.22)

1
shows that the transverse shear strain converges to the finite limit —aaﬂpg .
I
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5.5.4 About the condition of the convergence theorem

The convergence theorem hinges on the existence of £ € V[, such that
S

/ aaﬁ/\,y’%)\'yﬂ)/aﬂ(,gv z)\/Edg
w

= / (S — 2bp3 + P2 )ya + (g5 + PG |a + pe)2]Vadz + / Pa Yo
w T

YV (y.2) € Hh(w) x Hh(w). (5.5.27)

The membrane strain operator y (y,#) defines a linear continuous operator 1 1D(w) X
Hllj(w) — Vp, whose range is dense in V{. Since ker 7 = 0, the function ”l(%’ Z)HL;ym
~
defines a norm on the space H }) (w) x H}) (w), which is weaker than the original norm.
In the notation of [18], we denote the completion of Iib(w) X Hllj(w) with respect to
this new norm by V]&(w). Obviously, 7 can be extended uniquely to V]@(w), and the
extended linear continuous operator, still denoted by 2 defines an isomorphism between
V&(w) and V{j. By the closed range theorem, for any f € [V]%/[ (w)]*, there exists a unique

K€V, such that

V(y,2) € V]L(w).

(5.5.28)

aaﬁ/\ry’% Y 72)\/adx = f7 ,Z)>

L st Vs = 5.0y VE @IV @)
Therefore, the question of existence of £ € Vj in (5.5.27) is equivalent to the

question that whether or not the linear functional defined on the space H b(w) X Hllj (w)

by the right hand side of (5.5.27) can be extended to a linear continuous functional on

vE ().
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Under some smoothness assumption on the boundary  of the middle surface, the
following Korn-type inequality was established in [23] and [19]: There exists a constant

C such that for any u € Ii(l)(w), w € Lo(w)

I8y + 10l Z ) < Cll s )l som . (5.5.29)

~

Therefore, if the shell is totally clamped, by this inequality, it is easily seen that
Viw) = B(w) x Ly(w).

In this case, the mild condition (5.3.6) is enough to guarantee the existence of K€ Vo,
and therefore the convergence (5.5.20).

If the shell is partially clamped, the space VJT\Z (w) can be huge and its norm can be
very weak, so that the existence of £ can not be guaranteed even if the loading functions
are in D(w), the space of test functions of distribution, see [38].

As to the convergence rate, the regularity requirements (5.5.13) and (5.5.18) are
quite abstract. Except for the cases in which we purposely load the shell in such a way
that the conditions are satisfied, we have no idea about how to explain them for partially
clamped shells.

For totally clamped spherical shells, under the smoothness assumption on the
shell data: v € C4, Py € H3(w), P € HY(w), p?’) € H2(w), pg’ € H2(w), ¢ € Hl(w),

g5 € H%(w), we can prove

K(e, (70, 70), v, w]) g ¢!/
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and

K (e, 2050 5 — 13, [Lo(w), Hi (@))) S €V/2.

Therefore, the regularity conditions (5.5.13) and (5.5.18) hold for § = 1/6, and so the
convergence rate in (5.5.21) can be determined as e1/6. If the odd part of the tangential

surface forces vanishes, or very small, the value of  is 1/5. See Section 6.6.4.

5.5.5 A shell example for which the model might fail

The condition CQ € V*, or equivalently, the reformulation (5.5.10) of the leading
term of the resultant loading functional, is necessary for our justification of the spherical
shell model (5.3.2). As we have seen, this condition is almost trivially satisfied for a
totally clamped spherical shell, but it imposes a stringent restriction on the shell data if
the shell is partially clamped. We give an example, for which the the condition can not
be satisfied, and so the model can not be justified.

Consider a partially clamped spherical shell not subject to any body force (g =
0), or upper and lower surface forces (p4 = 0), loaded by lateral surface force pp =
e 2tM%ay, (pz =0, p;’n =0, and pf, = e 2 M®). The vector valued function M is
defined on Opw, and independent of €. To get the physical meaning, we can imagine
applying a pure bending moment of fixed magnitude on the traction lateral surface of
a sequence of spherical shells with thickness tending to zero. With this load applied on

the 3D shell, the resultant loading functional in the model will be

(Fo+ fru(gops) =5 [ M0a ~bya).

T
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The condition ¢ € V* is equivalent to, see (5.5.10), the existence of (WO,ZO) € W x

~

Lo(w), such that

a
w

W =

)
| M0 Ga = bye) = [ 0998 (.2 Wads + 2 [ aFrra(@, .2 Vada
T w

V(¢,y,2) € H.

Recalling the definition (5.3.1) of the operators Yap and Tq, we can see that this is a
condition impossible to satisfy, therefore the model (5.3.2) can not be justified for this
specially loaded spherical shell. The limiting membrane shell model has no solution for
this problem. Our model gives a solution in the space H, but convergence in the relative

energy norm can not be proved.
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Chapter 6

General shell theory

6.1 Introduction

In this chapter, we present and justify the 2D model for general 3D shells. The
form of the model is similar to that of the cylindrical and spherical shell models of
Chapters 2 and 5. The model is a close variant of the classical Naghdi shell model,
which can be fit into the abstract e-dependent variational problem of Chapter 3, and it
can be accordingly classified as a flexural shell or a membrane—shear shell. By proving
convergence of the 2D model solution to the 3D solution in the relative energy norm,
the model is completely justified for flexural shells and totally clamped elliptic shells.
The latter are special membrane—shear shells. Convergence in the relative energy norm
is also proved for other membrane—shear shells under the assumption that the applied
forces are “admissible”. Convergence rates are established, which are related to the shell
data in an abstract notion.

For general shells, the main difficulty to overcome is that, unlike for the special
shells, we can not construct a statically admissible stress field from the model solution,
so the two energies principle can not be used to justify the model. As an alternative,
we will reconstruct a stress field that is almost admissible, which has small residuals in
the equilibrium equation and lateral traction boundary condition. We will establish an

integration identity (6.3.17) to incorporate the equilibrium residual and lateral traction
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boundary condition residual. This identity is a substitute to the two energies principle
for the analysis of general shells.

The model is justified for flexural shells in Section 6.5. In this case, convergence
in the relative energy norm can be proved without any assumption. If solution of the
limiting flexural model, which is an e-independent problem, is assumed to have some
regularity in the notion of interpolation spaces, convergence rate of the 2D model solution
toward the 3D shell solution can be established. The theory will be applied to the
plate bending problem, which is a special flexural shell problem, to reproduce the plate
bending theory. We can use the known results for this special problem to argue that the
convergence rate we determined for flexural shells is the best possible.

We justify the model for totally clamped elliptic shells in Section 6.6. The reason
of sorting out these special membrane—shear shells is that totally clamped elliptic shells
possess some special properties, especially the Korn-type inequality (6.6.2), so that we
can prove the convergence theorem without making any assumption. Convergence rate
will be determined if the solution of the limiting membrane shell model has some regu-
larity. With some smoothness in the usual Sobolev sense assumed on the shell data, the
convergence rate O(el/ 6) in the relative energy norm will be determined.

Section 6.7 is devoted to the justification of the model for all the other membrane—
shear shells. In the general situation, there are more difficulties to overcome. The model
justification can only be obtained under some restrictions on the applied forces. There
are two sources for the new difficulties, one is rooted in the model, the other is due
to the residuals of equilibrium equation and lateral traction boundary condition of the

reconstructed almost admissible stress field. The first one is resolved by concreting the
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condition (3.3.24) that we introduced in Chapter 3 on the abstract level. The second will
be resolved by adopting the condition of “admissible applied forces” proposed in [18].
Under these assumptions, the convergence of the model solution to the 3D solution in
the relative energy norm will be proved.

To address the potential superiority of our Naghdi-type model over the Koiter-
type model, we make an assumption on the loading functions, which is slightly different
from what usually assumed in asymptotic theories. We will see that under this loading
assumption, there is no significant difference between the two types of models for flexural
shells. But for membrane—shear shells, it is very likely that the Koiter-type model does
not converge while the Naghdi-type model does. In Chapter 7, we will show that under
the usual assumption on the applied forces, the difference between these two types of

models is not significant.

6.2 The shell model

The general 3D shell problem is what was described in Chapter 4. The shell Q€
is assumed to be clamped on a part of its lateral surface I'p. It is subjected to surface
traction force on the remaining part I'p of the lateral surface, whose density is pp. The
shell is subjected to surface forces on the upper and lower surfaces I'y., whose densities
are p4, and loaded by a body force with density q.

In terms of the rescaled surface force components ﬁit, see (4.3.4), we define the
odd and weighted even parts of the surface forces by

S A LN (i TR S A LA i i

e — e 2.1
f 28 5 Pe 5 Do 5 Pe 5 (6.2.1)
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For the body force, we define the components of the transverse average by
T _ 1
g = — q-adt. (6.2.2)

We assume the body force density is constant in the transverse coordinate. This as-
sumption is equivalent q = qgai. Under this assumption, the rescaled components of
the body force density §¢ = pqg, see (4.3.6), are quadratic polynomials of ¢, and we have
qi = qé—ktqi +t2q%, with q6 = qé, qi = —2Hqé, and qé = Kqé. The following calculation
can be carried through if (ji are arbitrary quadratic polynomials of t.

We assume that the rescaled lateral surface force components, see (4.3.5), are
quadratic functions of ¢. IL.e. ﬁ% = p% + tpli + t2p§, with pé, pli, and pé independent of
t. The restriction on the body force density and lateral surface force density can be
relaxed.

The model is a 2D variational problem defined on the space H = H b(w) X
H }) (w) x Hllj (w). The solution of the model is composed of five two-variable functions
that can approximately describe the shell displacement arising in response to the applied

loads and boundary conditions. For ( g U, w) € H, we define the following 2D tensors.

1
YaB(8w) = 5 (g5 + tga) = bagw,
1 1
Paﬁ(Q, U,w) = 5(0045 + 05|a) + i(béuap\ + béuﬂ)\) — Ca W, (6.2.3)

~

75(8, u,w) = bg“)\ + 05 + dgw,
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which give the membrane strain, flexural strain, and transverse shear strain engendered
by the displacement functions (0, u,w). The model reads: Find (8¢, u® w®) € H, such

that

L9 A
3¢ /waaﬁ '7,0)\7(0 u ,w )Pas (s Y. 2) \/—dx
+ [ N (e Wads + 2 [ aOrg(ef ) Vadg
uJa My (85w )0y, 2)Vadz + i uJa 730 u , W) T, 92 ;Q, x
2
= (fo+e f1,(¢,y,2) V(d,y,2) € H, (624)
in which the forth order 2D contravariant tensor a®?7 is the elastic tensor of the shell,

defined by a®M = 24 aPY + A\*q®B oM.

The resultant loading functionals are given by

_5 A
(fo. (¢, y.2) /poTa ¢, y,2)Vadz — 2H+)\/p§ 5y, 2)Vadz

+/Mk+%—%wwm+@%ﬁm3W$%ﬁ%+/‘ﬁw,@2®
w YT

and

(1ol = [ [GRva + 5Kads — 0557 + 3 Hag)oulVady

A

—m/(Pe+2Hpo Paﬂ (¢, y,2) \/—dx

1
+ _/ (P ¢a +P3Ya — Qp%z). (6.2.6)
3 T
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Note that the leading term pg of the transverse component of the lateral surface force is
not incorporated in the leading term of the resultant loading functional f(. The reason
is the same as what we remarked for the spherical shell model, see Remark 5.3.1.

This model is a close variant of the classical Naghdi shell model. See [49], [10],

[18], [11], [6], [15], etc., where the latter was cited or derived in various ways. This model
is different from the generally accepted Naghdi model in three ways. First, the resultant
loading functional is more involved. The noticeably different form of the leading term
fo is a consequence of our loading assumption. The classical loading functional is the
leading term of the functional defined in Section 7.5. The higher order term €2 f1 does
not affect the convergence and convergence rate theorems in the relative energy norm.
See Section 7.1. Second, the coefficient of the transverse shear term is 5/6 rather than
the usual value 1. The third, and most significant, difference is in the expression of the
flexural strain p,, 3 Comparing our expression

1 1
Pap(f, u,w) = 5(9045 + ‘96|a) + §(bgu04|/\ + béum)\) — CuBW

~ o~

with that of Naghdi’s

1 1
pgﬂ(ﬂv u,w) = 5(9045 + 95|a) - 5(63?%@ + béu/\m) + cqpw,

we see the relationship

Pad = Pag + a0 + Vias (6.2.7)

where 7,3 is the membrane strain defined in (6.2.3).
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To establish the well posedness of the classical Naghdi model, the following equiv-

alency was proved in [11].

N
1Y (8w, + 0l + 128wl

=10l g1 + lull gy + llwlgr v (8, u,w) € H,

from which, by using the relation (6.2.7) and the observation

(8w w)lgy + (1 +2B) (w0, + I17(8 w0l g,

~ S~

N
2 10N (8, w )l + 7 (ww)l 1y + 178, w0l Ly,

where B is the maximum absolute value of the components of the mixed curvature tensor

b% over w, the following equivalency easily follows

1208 )l gy + 1wy + 178wl

~

~ (0]l 1 + ull g1 + llwlljn ¥V (0, u,w) € Ho (6.2.8)

Since the elastic tensor a®’A7 and the contravariant metric tensor a®’ are uni-
formly positive definite and bounded, so the bilinear form in the left hand side of the

model (6.2.4) is continuous and uniformly elliptic on the space H. Therefore, we have
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THEOREM 6.2.1. If the resultant loading functional fq + €2 f1 in the model (6.2.4)
defines a linear continuous functional on the space H, then the model has a unique

solution (¢, u®,w) € H.
REMARK 6.2.1. The condition of the this existence theorem can be met, if, for example,
the applied force functions satisfy the condition

ﬁi € Ly(w), ¢, € Lo(w), p € H(div,w), p%),pzl,pé € H_1/2(8Tw). (6.2.9)

Henceforth, we will assume that the loading functions satisfy this condition.
For brevity, the membrane, flexural, and transverse shear strains engendered by
the model solution will be denoted by

724[3 = 7045(}\’;67“]6)7 1035 — paﬂ(ge’%e’ME)’ 7_& — Ta(ee’ ue’we).

~ o~

6.3 Reconstruction of the stress field and displacement field

From the model solution (8¢, u®, w®), we can reconstruct a stress field o by giv-
ing its contravariant components, and a displacement field v by giving its covariant
components. The displacement field is kinematically admissible, but the stress field is
not exactly statically admissible since the equilibrium equation and the lateral surface

force condition on I'p can not be precisely satisfied. We will compute the equilibrium
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residual, lateral force condition residual, and the constitutive residual between the con-
structed stress and displacement fields, and establish an identity to express the errors of
the reconstructed stress and displacement fields in terms of all these residuals so that a

rigorous proof of the model convergence can be obtained by bounding these residuals.

6.3.1 The stress and displacement fields

Based on the model solution, we define the following 2D symmetric tensor-valued

functions 08 A , 0(116 , and a 2D vector-valued function 080‘.

af _ afNy e A 3 3\«
or” = a®p 7+2M+A(pe+2ﬂpo)a ¢
2 A
08‘5 _ 5H€2 0?5 T TS, + it )\pgaaﬂ’ (6.3.1)

)
op® = 2(ua®75 - pf).

It can be verified that, in weak sense, these tensor- and vector-valued functions satisfy

the following system of differential equations and boundary condition.

2
€ 2 2
Sotlp— sof = W5l + SHa),
1 2 1
(036 ~3 ¢ dgaiyy)lﬁ — gbgag’)‘ = Qb%pg —pg —(1+ gK ez)qg, (6.3.2)

1 2 1 o
bag (o T3¢ 47N 370 a——P3|a—p2—(1+§K€)Q2,

1 1
( of §€2 dgaclw)nﬁ :p8‘+—62p5‘, a?ﬁ

3
3 ng = ¥, aoﬂnﬁ = — er‘;’ on yp. (6.3.3)
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Indeed, by substituting (6.3.1) into (6.3.2), we will recover the model (6.2.4) in differential
form. In fact, this is how the model was derived.

These functions furnish the principal part of the stress field. To complete the

construction of the stress field, we need to define another 2D symmetric tensor-valued

B 3 B

function a; and two scalars 003 and 0%3. The tensor-valued function a; is required

to satisfy the following equation and boundary condition

(O‘;ﬂ e dgaclw)m = —46,%087 — K¢ ¢ in w,
(6.3.4)

(036 —é dga(lm)nﬁ = eng on .

This system does not uniquely determine ag s . We will choose Jg s to minimize its

75ym

Ls (w) norm, see the next subsection. The scalars are explicitly defined by

2
€
083 = E(baﬁaféﬁ + %o — 2Hq2), (6.3.5)

€ 1 2
0%3 = Q[baﬁ((agﬁ —3 ¢ dgaclw) + gbaﬂ(agﬁ — ¢ dga?y)

%0+ P8+ 1+ €K@ (6.3.6)
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With all these 2D functions determined, we define the contravariant components ol of

our stress field o by

o = Cg‘(g[(faw + taiw + ’r(t)ag\'y],

1
o3 = 53 ;[pg +tpd + q(t)od), (6.3.7)

1
o33 = ;[p?; +tpE 4+ q(t)opd + ()0,

here

The stress field %/ is obviously symmetric. Following classical terminologies, we call

of

% the membrane stress resultant, 0'?6 the first membrane stress moment, and a; A

the second membrane stress moment.

By the definition (4.3.1), the rescaled components G of this stress field are

590 = p@? oy +to]" +r(t)os ],

— 5_@3

= p% + tp& + (1) o3, (6.3.8)

533 = p + tpp + q(t) o33 + s(t)oi.

By using the relation ,0(5 = 5€ — tdg , the rescaled membrane stress components can be

written as

50 = (036 - é €2 dgo?y) + ta?ﬁ + r(t)(agﬂ e dgafw) - tdg[aéw + r(t)ag[’y].
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By the definition (6.3.7), we easily see that the surface force conditions (4.2.4),

or equivalently, (4.3.7) on 't are precisely satisfied by the constructed stress field. To
simplify the verification of the lateral force condition, we write the rescaled lateral surface

force components as

- 1
P =pf + 0] + 298 = pf + 5 08+ 0] + () 98,
(6.3.9)

By = D3+ tp} + t2p3 = pj + €2 p3 + tp} — q(t) ¢ p3.

It can be verified that the compatibility condition of the applied surface forces on the

shell edges, see Remark 5.4.1, is equivalent to

pSng = p% + €2 p%, ping = p“;’. (6.3.10)

On the lateral boundary I', by using the compatibility condition (6.3.10) and the bound-
ary conditions imposed in (6.3.3) and (6.3.4), we get the residual of the lateral surface

force condition:

(6.3.11)
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By using the identities (4.3.8), the equations in (6.3.2), and the equation in (6.3.4),

we can get the residual of the equilibrium equation:

i t A A
0%+ ¢ = —;cs[diog +r(t)dy o Mg,
(6.3.12)

] t A A
03]||j + q3 = —;baﬂ[dé\galg + T(t)dgog ].

Formally, these residuals are small. More importantly, they are explicitly expressible in
terms of the two-variable functions, so they are not far beyond our control.

The displacement field v is defined by giving its rescaled components:
Do = ul, + 165, T3 = we + twy + t2wo, (6.3.13)

in which wy, wo € H}) are two correction functions that will be defined later. This
correction does not affect the basic pattern of the shell deformation which has already
been well captured by the primary displacement functions (0, u¢, w®) given by the shell

model. Obviously, v is kinematically admissible.

6.3.2 The second membrane stress moment

g

In the construction of the stress field, the tensor-valued function 03 was required

to satisfy

(O‘;ﬂ e dgaclw)m = —46,%087 ~Ké ¢ inw
(6.3.14)

(036 — ¢ dga(lm)nﬁ = eng‘ on Opw.
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The weak form of this problem is

A A
) + v d'U +d (%
Ay g IS
w w

—I—/w(ﬁlbf\‘ag)‘—i—equg‘)va\/Edg—i—eQ/y Piva Y u € IA{}) (6.3.15)
T

We have

THEOREM 6.3.1. Among all symmetric tensor-valued functions satisfying the equation

(6.3.15), we can choose one such that

(00 (6:316)

o 3 2 e} 2 2
10571, S Bl I, + € Blot L, + € Kllad 1, + € 165112

where B = max{|b%|}.

To prove this theorem, we need some lemmas. Let 7, 3 be the linear continuous

operator from H }) to ggym defined by

v +v
Tas(z) = 5P vy € b w).

We have
LEMMA 6.3.2. The operator Yop 18 1njective.

Proof. The equation 7, 5( v) =0 is a system of three first order PDE’s:

81’02 + 821}1

A
> —Iun =0,

01v] — I‘{‘lv/\ =0, Ogvg — Fé\Z’U)\ =0,
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and we have the boundary condition vy = 0 on dpw. The first two equations and
the boundary condition constitute an elliptic system for the variables v; and v9, see
[25], with the Cauchy data imposed on part of the domain boundary. Therefore, by the
unique continuation theorem of Hérmander [31], v1 and vy must be identically equal to

Zero. O

LEMMA 6.3.3. The operator Yap defines an isomorphism between gb and a closed sub-

7Sym sym
space £2 of £2 .

Proof. Considering the compact operator Ag : H 1D — (L2)3 defined by

Ag(v) = (D vy, Tguy. T0))

and treating 7,, 3 as the operator Ay in Lemma 2.3.2, the following inequality then follows

from the Korn’s inequality of plane elasticity,

vl S v sym.
”N”I;ID ”’Yozﬁ(m)”£2

Therefore, the operator 7, 3 has closed range. U
Proof of Theorem 6.3.1. We consider the three terms in the right hand side of
(6.3.15) separately, and write 036 = 02€+0 ﬂ—l—a ﬂ The estimate (6.3.16) will follow

Ozﬁ

from superposition. The tensor valued function 0,7 is required to satisfy the equation

+ v d>\'U —|—d>\U
/ ozﬁ 04|5 ﬂ|afdx—e /J?ﬁ B 0‘|)\2 o 6|>\\/Ed£.
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We define the linear continuous operator Dy : Lsym Zym by

A A
Do lals T, 45%lr T davs)y

which is the composition of the inverse of Yo and a self explanatory operator. It is
. . af 2 Hx, _of . .
obvious that the symmetric tensor o5’y = € D7 (01 ) satisfies the above equation. Here

D7 is the dual of Dy.

The tensor valued function Jg g is required to satisfy the equation

+v
/ aﬂM\/_d:r /( b 3/\+62qu)va\/5d£ Ve Ii})
w
We consider the operator Dy : L S Lo defined by

Va3 + U8|a
Dy — o
which is the composition of the inverse of Va8 and the identical inclusion of H }) in
Ly. The symmetric tensor determined by O'Qg = D3(4b5o 3)‘ + 2 Kq2) satisfies this
equation.

of

The tensor valued function 09318 required to satisfy the equation

+ v
/ aﬁialﬁ ﬁla\/_dx*e / PSva Voue Ii})
T
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We consider the operator Dg : g;ym — H (1)(/)2 (Opw) defined by

YalB T Y8l

D3( 5 )=2v

which is the composition of the inverse of ¥, 3 and the trace operator. The symmetric
tensor determined by Jg g = €2 D§ (pg‘) satisfies this equation. By superposition, the

solution of (6.3.15) can be chosen as
Jgﬂ =2 DT(J?ﬂ) + D§(4b§f(f%>‘ + K@) + € D3(p5).

The theorem then follows from the fact that DY, D3, and D3 are bounded operators
from ézym’ Lo, and lg_l/z(@Tw) to g;ym, respectively. O
Note that g;ym is a closed subspace of g;ym is in consistence with the nonuniqueness

of the solution of (6.3.14).

6.3.3 The integration identity

Due to the residuals of the traction boundary condition (6.3.11) and the equilib-
rium equation (6.3.12), we can not have the two energies principle (4.2.7) precisely hold
for the constructed stress and displacement fields. However, for these fields, we have the

identity (6.3.17) below, which is a substitute to the two energies principle.
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THEOREM 6.3.4. For the stress field o and displacement field v defined by (6.3.7) and

(6.3.13), we have the following identity

| A = a0l = o) 1 [ Mg 0) < a0 )]vig(0) = xig(0°)

- /Q [Aijre™ = xij ()07 = Ry @)] 47, (6.3.17)

in which

r g 290 +r(t) 292 ](Coﬂ)'y Cavv)‘ﬁ\/a tdx
wJ—€

. /w /_ R @300 + r(t)d303 (w5 — vg)vadtdz, (6.3.18)

and v* = v and 0¥ = o* are the displacement and stress fields on the shell determined

from the 3D elasticity equations respectively.

Proof. For a stress field o = 0% and an admissible displacement field v, the
following identity follows from an integration by parts over the shell Q€.

e it = M o' = 0" /Q CHM [ (0) = Xt (035 (0) = x5 (0")]

B . Ll Kl - m . -
= /QE[UZ] oL Xkl(v)”Aijk‘lO- — XZ](’U)] + 2/Qe(UZ]H] —|—ql)(v;< UZ)

—2(f e CRR | @ = [ R T

(6.3.19)
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Substituting the displacement field v (6.3.13), the stress field o (6.3.7), the resid-
ual of the lateral surface force condition (6.3.11), and the residual of the equilibrium

equation (6.3.12) into the integration identity (6.3.19), we get

| A = a0l = o) [ Mg 0) < a0l xig(0) = xig(0°)
= [ o = Aot i) =2 [ Tagldfol + (0o} )5 - va)
t o t
2 /Q P (dyog +r(t)dy o3 V| 5ok~ va>+2/ Ty ;dg[ff&“r(t) 73 In g (05 ~va):

(6.3.20)

The key observation here is that the last two integrals in this identity can be merged
into a single term. Recalling the meanings of p and 7, we can convert the integrals to

the coordinate domain w® and write the sum of the last two integrals as

—2/ / td) & + r(1)dy o8| 3¢ (v — vy)Vadz dt
—€Jw

€
+ 2 /_ ) /(9Tw tdf[ag& + r(t)agA]nﬂgg(v§ - vv)stdt'

Note that the covariant derivatives in this expression are all taken with respect to the

metric on the middle surface S and 4 /aaﬁjcaa'cﬁ ds = dry is just the arc length element of
vy For each ¢t € (—¢,€) we can use the Green’s theorem (4.1.4) on the middle surface

S. The above two-term sum is equal to

2/—5/ [dﬂrfo)‘—kr( )dﬂ O‘A](C Cav/y)w\/_d:cdt
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The second integral in the right hand side of the equation (6.3.20) can also be converted
to the coordinate domain w®. The desired identity then follows.

The above calculations are formal because the stress field o might not be eligible
for integration by parts. Note the fact that the possible singularities of the stress field o
arise at the lateral boundary points where the type of boundary condition changes. We
can get around this difficulty by approximating v* — v by infinitely smooth functions
with compact supports in the domain (dpw Uw) X [— ¢, €]. Here, we assume that dpw =
Ow — dpw. O

Using the fact that r(¢) is an even function of ¢ and the expression (6.3.13), we

can further write the expression of r as

=2 / / " o 1 r()d3os N ()| gvadtds
w J— €

€
—9 / / thgldyog™ +r(t)dyoq i vadtde
w

— €

€
—2/ / tQ[dfag‘A+r(t)d§a§‘A]0a|ﬂ\/Edtd£
wJ—€

€ A N
+2 /w /_ 6t2b7g[d§08 +r(t)d§a; Jwyadtdz. (6.3.21)

The identity (6.3.17) expresses the energy norms of the errors of the stress field o and
displacement field v in terms of the constitutive residual between these two fields, and
the extra term r. Note that in the expression of r, the 3D displacement v* was involved.
To bound r, in addition to knowledge of the behavior of the model solution, some bounds

on the 3D displacement v* will also be needed.
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REMARK 6.3.1. If the body force density q is not constant in the transverse coordinate,

the additional term

2 [ @ o0~ v) + @~ o) (05 - v3)

needs to be added to the expression (6.3.18) of r. Under the assumption

1" = pail g (e S o), (6.3.22)

the ensuing analyses can be carried through, and the convergence theorems can be proved
in all the cases.

If the rescaled lateral surface force components qNZ;F are not quadratic polynomsials in

t, we can replace cj% by their quadratic Legendre expansions cj%, and cj% by the quadratic
3

interpolation g at the points —€,0, €, see (6.3.9) for explanations, and we need to add

yet another term

_2/8Tw/_6 5 — PP (0F, — va) + (5 — ) (v — v3)]

to the expression of r. The following convergence theorems can be proved in all the cases
if

187 = Pl oy (— ee)] S o€¥/). (6.3.23)
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6.3.4 Constitutive residual

In this subsection, we compute the constitutive residual g;; = A;; klakl — X4 (v)
for the stress field o (6.3.7) and the displacement field v (6.3.13) constructed previously.
First, by using Lemma 4.3.2 and the definition (6.2.3), we can compute the strain tensor

engendered by the displacement v. The result is

Xap(v) = Y55+ tros — t(béniﬁ + bgfy;a> + (teg — bag) (twy + t2ws)
_1 217 pe Y pe
5t (baly)5+b5050),

1 1
Xa3(v) = x3q(v) = 573 + §(t3aw1 +120ws),  x33(v) = wy + 2tws. (6.3.24)

Next, by using the definition of the 3D compliance tensor Az’jklv the relation (4.1.5),

the formulae (6.3.7), the definition (6.3.1), and the identities

1 22 My 224 + )

— Ay
24 (aanbgya™" +barag,a 20+ 32 BN 20(2p + 3X) P

and
1 Aydp Avép 2X Avdp A A
Z(ao&\bﬂya T5p T baragya Top — mbaﬁakya T(;p) =bam\g + bﬂT)\a

for any symmetric tensor 7, 35 after a lengthy calculation, we get the following expressions

for Aijklokl:

Aagrio™ = 255 + o — HBarss + 035)
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e ans(d + D)+ 24(Hagg — bos)pd)
20(21 + 3X) apf\Po e af af/Po

2.2 20 ¢ A 3 3

3 CYCTEET 2H
+3 € [Paﬁ + 2020+ 30 an3(pe + 2Hpy)]
24 ZHE) A+ D — b B 4 2HD)]

3 04/0)\[3 ﬂp)\a 2”(2M+3)\) af DPe Po

t2 A \ \ \
55 Parby — 5grbasaxyloy” 1oy +r(t)oy”]
r(t) " ) .
oy 1@ = thar) @y = th3,)05" = 5mma g0,

A

202+ 30) b s +tpe + a(t)og” + s(t)o?],

(6.3.25)

1

Kl 3 t
A3aklo 2 aary[pd + UOV(J(t)] + Z{aavpg

2H —tK

3
+ (tcow - Qbav + gow)[pg + tpg + Q(t)a()’y]}a

(6.3.26)

1
Asgpo™ = — (3

A

1
+ tE(pg’ — Vaaﬁa(fﬁ) — %r(t)aaﬁogﬁ

1
+E {q(t)ag3 + s(t)azl)’3

2H —tK
T [p3 + tpd + q(t)op? + s(H)ot ]}, (6.3.27)

where

241 + 3
g - H2r+ 3

A
Y and
1

V= ——
2(p+A)
are the Young’s modulus and Poisson ratio of the elastic material comprising the shell.

Combining (6.3.1), (6.3.24), (6.3.25), (6.3.26), and (6.3.27), after some calcula-

tions, we get the explicit expression of the constitutive residual:

2.9 9 2, 2, 2\ A L9\ A
H €3 —(t +§Hte )(bap§ﬂ+bﬂp§a)+§t (ba«9§\|ﬁ+bﬂ0f\|a)
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2
t A Ay Ay Ay
A 33 33
- t + s(t
r(t) Ay A Ay
+ 2% [(aax — tba)\)(a6'y - tbﬂ’y)az - 2%+ SAgaﬁaA’yO-Q ]
A 4.3 9 2, 2.9 2 3
A 2.9 9 2, 4., 9 3 3
+m[§H € aa6+(4t +§Ht€ )baﬁ—t Caﬁ]pe
+(ba — teap)(twy + tws), (6.3.28)
1 ) 4.t 2
Qa = ﬂaa/\ao [q(t) — g] - anzwl - anﬂl@

2H —tK

t
+ @{aa)\pé‘ + (tegn — bay + ga)\)[pé‘ + tpé‘ -+ q(t)a(?f‘]}, (6.3.29)

1 1
033 = [ (08 — vaaog”) = wi] + t7 (0F — vaggot”) — 2uy)

1
+ E[q(t)o(?;?’ + s(t)oi)’?’ — Vaaﬁr(t)agﬂ]

t 2H —tK
+ ET[}?% +tpS + q(t)od® + s(t)o ). (6.3.30)
REMARK 6.3.2. If we had not defined the flexural strain Pas different from that of
Naghdi’s (pé\fﬂ), there would be an additional term t(bé’y)\g + bé’y)\a) in the residual

203" Our variant does make the constitutive residual smaller, at least formally.

Based on their involvements in (6.3.29) and (6.3.30), the two correction functions

w1 and w9 will be chosen to make

1 A 1 v3
E(Pg—uaaﬁagﬁ)—wl = T )\ao‘ﬁ’ygﬁ+2ﬂ+ )\pg—EQHEQ aaﬁof‘ﬁ—wl (6.3.31)
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and
1
E(p6 —vaggoy’) — 2wg
A B 1 3 2H\? 3
=— — -2 6.3.32
2+ A Pap + 2+ APe w2+ N)(2u + 3)\)p0 wy )

small in the Lo(w) norm. At the same time, their H!(w) norms must be kept under
control.

These formulae make it possible to prove the the model convergence. A rigorous
justification of the model requires a great deal of information about the behavior of the
model solution, and we must consider the relative energy norm. In addition to the upper
bound on the residuals, we also need a lower bound on the energy contained in the 2D
model solution. Since the 3D solution v™ was involved in the extra term r in the identity
(6.3.17), we also need to bound the 3D solution. To this end, we need a Korn-type

inequality on thin shells.

6.3.5 A Korn-type inequality on three-dimensional thin shells

In this subsection, we establish an inequality to bound the term r in the inte-
gration identity (6.3.17). With this inequality, we will be able to show that the extra
term r, which is due to the the residuals of equilibrium equation and lateral surface force
condition of our almost admissible stress field, do not affect the convergence of the model
solution toward the 3D solution in the cases of flexural shells and totally clamped elliptic
shells. For all the other membrane—shear shells, this inequality will be used to prove the

convergence theorem under some other assumptions on the loading functions.
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It is well known that Korn’s inequality, which bounds the H I norm of a displace-

ment field by its strain energy norm, contains a constant depending on the shape and

size of the elastic body. On a thin shell, the H L norm of a displacement field can not be

bounded by its strain energy norm uniformly with respect to the shell thickness. The

following e-dependent inequality (6.3.35) of Korn-type was established in [18] and [22],
see also [32] and [1] for similar results.

Let w! = wx (=1,1) be the scaled coordinate domain, and dpw! = dpw x [-1,1]

be the part of the scaled clamping lateral boundary. For any v € H })(wl), we define a

displacement field v¢ on Q¢ by
v (2,t) = vz, E) Vo ew te(—ee) (6.3.33)
We define the scaled strain tensor for the vector field v by
V55 (0) = i (0°). (6.3.31)

There exists an €y > 0, such that when € < ¢( the inequality

3
ol o1y S €77 D2 ING@IT, 0 (6.3.35)
1,j=1

uniformly holds for all € and v € H }) (wl).

From this inequality, we immediately have
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0

THEOREM 6.3.5. There exists a constant € > 0 such that, for all e < € and any

v=u; € HlD(w€), we have

2 -2
ZuvaHHl )x(—e) T I3 Ty S Zuxw I, e
i,j=1

6.4 Classification

The shell model (6.2.4) is an e-dependent variational problem whose solution
can behave dramatically different in different circumstances. To get accurate a priori
estimates, the problem must be classified. By making some assumptions on the applied
forces, we can fit the shell model into the abstract problem (3.2.2) of Chapter 3, and

accordingly classify the problem.

6.4.1 Assumptions on the loading functions

We assume all the loading functions explicitly involved in the model, namely, the
odd and weighted even parts pg and pé of the applied surface forces, the coefficients pé,
pli, and pé of the rescaled lateral surface force, and the components qg of the body force,
are independent of e.

Roughly speaking, the convergence theory established under this assumption has
the physical meaning that when the model is applied to a realistic shell, no matter how

the shell is loaded, the thinner the shell the better the results the model provides.
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6.4.2 Classification

To use the results of Chapter 3, we introduce the following spaces and operators.
As above, H = g})(w) X IilD(w) X HlD(w) with the usual product norm. We let U =

L;ym(w) with the equivalent inner product
S

1
(g =5 [Pt ¥l g e
w

and define A : H — U, the flexural strain operator, by

A0, u,w) = p(0,u,w) V(0,u,w) € H.

We also define B : H — LY™(w) x Lo(w), combining the membrane and shear strain

operators, by

Equipped with this norm, W is a Hilbert space isomorphic to H/ker(B). The operator

B is, of course, an onto mapping from H to W.
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The space V is defined as the closure of W in g;ym(w) X Lg(w), with the inner
product
11y .2 2\ _ aB . 1 2 o aB_1_2
() (5 2y = /wa g T YapVadz + gﬂ/w a*PrgTavadz,
which is equivalent to the inner product of g;ym(w) X Lo(w).
The range of the operator B then is dense in V| as was required by the abstract
theory of Chapter 3. The space V' actually is equal to the product of V, the closure of

the range of 5 in gzym(w)’ and the closure of the range of 7 in Lo(w). The latter, since

the range of 7 is dense in Lo(w), is just equal to Lo(w), so we have the factorization
V= VO X £2(w). (6.4.1)

From the definitions of the membrane, flexural, and shear strains (6.2.3), we
easily see that A and B are continuous operators. The equivalency (6.2.8) guaranteed

the condition (3.2.1).

REMARK 6.4.1. It should be noted that, in contrast to the fact that V is a product space,
the space W can not be viewed as a product space generally. If the shell is flat, the mem-
brane strain will be separated from the flexural and shear strains. The model is split to the
Reissner—Mindlin plate stretching model and bending model. When the flat shell (plate)
is totally clamped, the space W can be identified as [a closed subspace of g;ym] X Ig(rot),

see [8], [13] and [35]. For the plane strain cylindrical shell problems, the operator B has
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closed range, and so W is simply equal to V. For general shells, the characterization of

W in the Sobolev sense is either unclear or impossible.

Under the loading assumption, in the resultant loading functional f + €2 f1 of
the model (6.2.4), both f and f1, see (6.2.5) and (6.2.6), are independent of ¢, so the
loading functional is rightfully in the form of the right hand side of the abstract problem
(3.2.2) of Chapter 3. According to the classification of Section 3.5, if fq|ker g # 0, the
shell problem is called a flexural shell. If fo|ie B = 0, then, since B is surjective from

H to W, by the closed range theorem, there exists a unique CQ € W* such that

<f0,(£,%,’ll))> = <<>973(,€7ng)> v (gvgaw) €H.

If CQ € V*, the shell problem is called a membrane-shear shell. If fg|xer g =0, but CQ
is not in V*, the shell model is not justified.

The kernel space ker B, according to the definition of the operator B, is com-
posed of admissible displacement fields of the form (uq + t0)a® + wa?, from which the
engendered membrane strain y (u,w) and the transverse shear strain 7(6, u,w) vanish.
The displacement in this space is pure flexural. In this kind of deformation, the intrinsic
metric of the middle surface does not change infinitesimally, and there is no transverse
shear strain. The condition fq|ier g 7 0 means that the applied forces do bring about
the pure flexural deformation. Thus the name flexural shell.

In the case of membrane—shear shells, the membrane energy and transverse shear

energy together dominate the strain energy. It seems that there is no way to distinguish
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the contributions to the total energy from the membrane and the transverse shear strains.
This is the reason why we call the shells in the second category the membran—shear shells.

Flexural shells, of course, require ker B # 0 (pure flexural deformation is not
inhibited). Membrane-shear shells include two different kinds, namely, ker B = 0 (pure
flexural is inhibited, henceforth, shells of this kind will be called stiff shells) and ker B # 0
but folker B = 0 (pure flexural is not inhibited, but the loading function does not make
the pure flexural happen). A typical example of this second kind membrane-shear shells

is plate stretching.

6.5 Flexural shells

We prove the convergence of the 2D model solution toward the 3D solution in the
relative energy norm for flexural shells as classified in the last section. The convergence
can be proved without any extra assumption. Under some regularity assumption on the
solution of the limiting flexural model (6.5.3), convergence rate (as a power of €) will be
established.

First, we resolve the term 7 in the identity (6.3.17). From (6.3.18), we see that

< ES _ *x _
LIS 6[Hg0|!5ym(we) + ng\\g;ym(we)][l!g Ut ()% Ly(— ) T 103 — V3l (we)):

We will show that ||go||£;ym(w€) and Hg2||£;ym(w€) are so small in the case of flexural

shells that we can totally give the factor € to the second half of the above right hand
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side. Using Theorem 6.3.5 and Cauchy’s inequality to the identity (6.3.17), we get

e Aigni(@™ = o™ = 0" 4 /Q CR g (0) = xga (0] i (0) = i (0]

R ij _ ijkl 2 2
g/QE[Awkla Xij(®)|[e" —C Xk.l(’v)]+Hg0”£3ym(we)+”g2”£%ym(we).

(6.5.1)

6.5.1 Asymptotic behavior of the model solution

As we have seen in Chapter 3, if the shell is flexural, the model solution blows
up at the rate of 0(6_2). To get more accurate estimates, we need to scale the loading

functions by assuming

ph=ePh ph=Pl, q=¢Q, ph=¢P), pi=€P, phy=¢P,
(6.5.2)
with Pg, Pei, é, Pg, Pli, and P2i independent of €. Therefore, Foze_2 fo is a functional
independent of €. Since we will consider the relative energy norm, this assumption is not
a requirement on the applied loads. It is just a technique to ease the analysis.
Under this scaling, the model solution (6¢, u w®) converges to the solution

(69, }30, w?) of the e-independent limiting problem:

~

<777 [fl(go’wo)%(ﬁo,go,wo)b =0, V (,?’,QVZ) €H, Vne W*, (6.5.3)

(0%, 4% w0 e H, ) e W,

~
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This problem has a unique solution (QO, go,wo) € ker B, 50 € W*. It is important to

note that @(go, }VLO,wO) =% 0. Otherwise, (ﬂvo, go,wo) = 0, which is contradicted to the

flexural assumption folyer g # 0. From (3.3.5) of Chapter 3, we have

0,0, 0 0
107 w™ wi)ll g + €7l = [ Foll g+

~ '~

The equation (6.5.3) is the limiting flexural shell model. This equation and its
solution provide indispensable supports to the ensuing analysis. For brevity, we denote
s = Pap(8’, u’ uwl).

Without any assumption on the regularity of the Lagrange multiplier §O e w*
defined in the limiting problem (6.5.3), according to Theorem 3.3.3 and (3.4.5), we have

the strong convergence
-1 -1
lp© - ,g0||£3ym(w) +e ng\légym(w) €Nz N o) =0 (€= 0). (6.5.4)
If we assume more regularity on 50, say,
e VR g, (6.5.5)

for some 0 € (0,1) and ¢ € [1,00] or § € [0,1] and ¢ € (1,00), by Theorem 3.3.2 and

(3.4.4), we have

-1 -1 9
lp® — QOHL;W“(W) eI psymy e T Ly S K (e, &0, [W*,v¥)) g .

(6.5.6)
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Recall that the K-functional on the Hilbert couple [W*, V*] see [9], is defined as

€&, , ~ WHeV* = in 1w +ell&lly*)- 0.
K (e, (W, V) ~ €] (I e +ell€Blye).  (65.7)
50251"‘52

Based on the requirements imposed on the correction functions wy and wy, and

recalling the expressions (6.3.31) and (6.3.32) which need to be small, we define
wy =0 (6.5.8)

and define wy as the solution of

A
e (Vuy, VO Ly(w) + (020 Ly(w) = =50 0 (@ o 0) Ly ()
(6.5.9)

wy € Hh(w), ¥ ve Hpw).

The right hand side of the equation (6.5.9) is not a trivial extension of its analogue
in the Reissner-Mindlin plate theory developed in [2], according to which, pg 3 rather
than pgﬁ, would have been used. We make this choice not only because of lack of
regularity of the € dependent model solution, this choice of the correction functions
is also sufficient for us to prove the convergence and determine the convergence rate
in the next two subsections. The physical meaning of (6.5.8) is that, in the flexural
dominating deformation, the change of the shell thickness is negligible. In contrast,
the relative motion of the location of the middle surface is significant. For example, if
locally, the shell were bent down, the middle point would move toward the upper surface

and vise versa. The existence of such correction functions such that the convergence
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can be proved is a sufficient justification of the model. Note that the correction does
not affect the middle surface deformation, which has already been well captured by the
model solution. In the forthcoming analysis of membrane—shear shells, we will choose
the opposite, wg = 0.

Since the solution of the limiting problem (6.5.3) always guarantees that go €

g;ym(w), we have aaﬁpgﬁ € Lo(w). By (3.3.38) in Theorem 3.3.6, we have

A
€ ”QUZHHI(W) + | —wg — maaﬂpgﬂﬂh(w) —0 (e—0). (6.5.10)
If we assume
a®Ppd 5 € [HH (), La(@)1_g (6.5.11)

for some § € (0,1) and p € [1,00], or # € [0,1] and p € (1,00), by (3.3.36) in Theo-

rem 3.3.6, we have

A
ellwall i)+l = w2 = 5550 Papla) S K0 ol o) Hpw)) S

(6.5.12)

REMARK 6.5.1. Both the assumptions (6.5.5) and (6.5.11) are requirements on regu-
larity of the solution of the € independent limiting problem (6.5.3), which are indirect
requirements on the shell data. The explicit dependence of the indices on these data
needs more analysis. The value of the index 0 in (6.5.5) may be different from that in
(6.5.11). We choose the least one so that both the estimates (6.5.6) and (6.5.12) hold

stmultaneously.
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The asymptotic behavior of the model solution described by (6.5.4) and (6.5.6)
together with the equivalency (6.2.8) tell us that under the scaling of the loading functions

(6.5.2), the H I norm of the model solution is uniformly bounded:

||£6||Ii1(w) S HEEHgI(W) S ||1UEHH1(W) S

while the following estimate (6.5.18) shows that the strain energy engendered by the this
displacement is only of order 0(63). This is the magnitude of strain energy that flexural

shells could sustain without collapsing.

6.5.2 Convergence theorems

As in Chapter 5, we denote the energy norms of a stress field o and a strain field
x on the shell Q€ by |lo||ge and || x|| ge, which are equivalent to the sums of the Lo(w®)
norms of the tensor components.

Without making any assumption further than (6.2.9), it can be proved that the

model solution converges to the 3D solution in the relative energy norm. We have

THEOREM 6.5.1. Let v* and o™ be the solution of the 3D shell problem, v the dis-
placement field defined by the solution (0, u®,w®) of the model (6.2.4) together with
the correction functions wy and wy defined in (6.5.8) and (6.5.9) through the formulae

(6.3.13), and o the stress field defined by (6.53.7). We have the convergence

Lo o = ol e + (o) = x(@) e

0. (6.5.13)
e—0 Ix(v)l| ge
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If the solution (¢ 0 go, wo) and €0 of the e-independent limiting problem (6.5.3)

satisfies the condition
0 V * W * af3 )0 f]1 L 6.5.14
£ € [ ) ]1—9,q= a Pa@ € [ D(W)a 2(w)]1—9,p ( -9 )

for some 6 € (0,1) and p, ¢ € [1,00] or § € [0,1] and p, g € (1,00), we have the two

estimates (6.5.6) and (6.5.12) hold simultaneously, and we have

THEOREM 6.5.2. If the reqularity condition (6.5.14) is satisfied for some 6, we have the

convergence rate

lo* = allge + Ix(@") = x()lge - o (6.5.15)
Ix ()]l ge

~

We give the proof of Theorem 6.5.2. The proof of Theorem 6.5.1 is similar.

Proof. The proof is based on the inequality (6.5.1), the above two estimates (6.5.6)
and (6.5.12), the inequality (6.3.16) to bound 0(216, the expressions (6.3.28), (6.3.29) and
(6.3.30) for the constitutive residual g;;, and the scaling on the loads (6.5.2). In the
proof, the norm || - ||L2(We) will be simply denoted by || - ||. Any function defined on w
will be viewed as a function, constant in ¢, defined on w*.

First, we establish the lower bound for Hx(v)H%6 By the estimate (6.5.6), we
have

0 0 1+6
||£6 - p ‘|£;}’m(w) Se, Hngg;ym(w) Se + ) ||Z

Npp) S0 (65.16)

SO

||£E||£3ym(w) =~ H,go\lgéym(w) ~ 1. (6.5.17)
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From the equivalence (6.2.8), we see

1(0°€, u,w )HH1 Jx H(w)x HL(w ~||£ ||L5ym( y= 1.

The convergence (6.5.12) shows that H’U)QHLQ Hao‘ﬂpaﬂHL2 < 1. Recalling the

expression (6.3.24)

Xap(®) =155+ 1055 — t(b(/)\/}/g\ﬂ + bgfyja) + (teap — bag)t?ws — (lﬂé?6 <15+ 85050

we can see that the dominant term in the right hand side of this equation is t,o;ﬁ.

Therefore
2
2 3
> Iag®)I? 2 € gl pymy,
a,B=1 ~
We obtain

Ix(0)[|%e 2 €. (6.5.18)

We then derive the upper bound on ||o* — 0'||2E€ + |Ix(v*) — x('v)H%e. By the

inequality (6.5.1), we have

2

3
lo* —o | Be+Ix(@) —x@)he S 3 loijI2+ S 108712+ Z 15712, (6.5.19)
1,5=1 a,f=1 o, =1
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From the equations (6.3.1), we have

af _ 2.2 af oSNy € A 2 p3 o
o —gHe oy —I-aﬁfy’y)\,y—i-me Pra ﬁ,

A A 9,3 3
e e KL e

5)
oA = Dtz 2 g,

and so, we have the estimates
I 212 S e oG 12 S ¥4, o ? < ST (6.5.20)
By the estimate (6.3.16), we have
log P 5 3420 (6.5.21)
From the equations (6.3.5) and (6.3.6), we have

2
€
o = S agot’ + & Pa —2H 2 Q).

€ 1 2
0%3 = Q[baﬁ((agﬁ —3 €2 dgaiw) + gbaﬂ(ogﬁ — €2 dgafw)

+62P0a|a+€2P63+(1+€2K)62Q3],

and so the estimates

B2 S &, (o332 5 DT, (6.5.22)
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Applying all the above estimates to the expression (6.3.28) of 03 it is readily

seen that the square integral over w® of every term is bounded by 0(65), except the term

A A A
(ag) — tbaA)(%’y - tbﬂy)"ﬂ - mgaﬂGA’yO_Q’ya
whose square integral on w®, according to (6.5.21), is bounded by 0(63+29). Therefore

we have

loagl? S 12 (6.5.23)

From the convergence (6.5.12), we know 6Hw2||H1(w) =¥ so [£200ws|2 < 3120,
Together with (6.5.20), we get

lozall? < 720 (6.5.24)
Our final concern is about p33. In the expression (6.3.30), the first term is

1 o 1

2
—(pg - Vaaﬂaoﬂ) —wy = E( Pg’ — Vaaﬁo(o)[

B
i3 )

whose square integral over w® is bounded, according to (6.5.20), by 0(63+29). The

second term is, see (6.3.32),

1 A
08— vaqoy”) = 2un] = tl-2uy — 5" sa®p )~

af
E ™

e 0
2 Pap Pap)

2H \?
- A Py
2+ A w2+ N) (2 + 3X)

+te]
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By the convergence (6.5.12) and the estimate (6.5.16), we easily see that the square
integral of this term on w€ is bounded by O(e3+26). The last term in (6.3.30) is also

bounded, by using (6.5.21) and (6.5.22), by O(€3+29). We get
logs)|? < 720 (6.5.25)
Therefore, by (6.5.20), (6.5.21), and (6.5.19), we have the upper bound
lo* = ol + Ix(0*) = x(0)[[Fe < 2. (6.5.26)

The conclusion of the theorem follows from the lower bound (6.5.18) and the upper
bound (6.5.26) O
By replacing ¢ and €29 with o(1) in this proof, we will obtain a proof of Theo-

rem 6.5.1.

REMARK 6.5.2. The estimate ||Z€||£2(w) < 0 gp (6.5.16) together with the conver-
gence theorem furnishes a justification of the Kirchhoff-Love hypothesis in the case of

flexural shells.

6.5.3 Plate bending

If the shell is flat, the model (6.2.4) degenerates to the Reissner—-Mindlin plate
bending and stretching models analyzed in [2]. The limiting problem (6.5.3) combines

the mixed formulation of the Kirchhoff-Love biharmonic plate bending model and the
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limiting plate stretching model. Under the loading assumption of this section, the solu-
tion of the limiting stretching equation is }VLO = 0. If the plate is totally clamped, the

solution of the limiting problem is given by, see [§],

with w? given as the solution of the biharmonic equation. If the plate boundary is
smooth, or is a convex polygon, and the loading function is smooth enough, such that
the regularity wY € H3 holds, then we have ¢0 e g;ym(w) x Lo(w), which is equivalent
to V*. Therefore, the index 6 determined from (6.5.5) is 1.

It is readily seen that a®’ pg 3= ~Aw’ € HY(w). By the standard cut-off
argument, it can be shown that the index value 6 determined from (6.5.11) is at least
1/2. Taking the minimum of these two values, the index value in (6.5.14) is at least 1/2,
which gives the convergence rate of the Reissner—Mindlin plate bending model. This
rate has already been shown to be optimal, see [16]. Therefore, Theorem 6.5.2 gives the
best possible estimate for flexural shells.

Plate stretching and shear dominated plate bending are also special shell problems
which are second kind membrane—shear shells, and will be remarked in the last section

of this chapter.

6.6 Totally clamped elliptic shells

For totally clamped elliptic shells, convergence of the model solution toward the

3D solution in the relative energy norm can be proved under the loading assumption
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(6.2.9). Convergence rate will be determined and attributed to the regularity of the
solution of the e-independent limiting membrane shell model. This regularity is defined
in terms of interpolation spaces. The rate O(el/ 6) will be established if the shell data
are smooth enough in the usual Sobolev sense.
A shell Q€ is elliptic, if its middle surface S is uniformly elliptic in the sense that
the Gauss curvature K is strictly positive. ILe., there exists a Ky > 0, such that K > K.
For any given t € (—¢,¢), We define S(t) = {®(z,?)|z € w)}, which is a surface parallel
to the middle surface S and at the height t. Let K(t) be the Gauss curvature of S(t),
from (4.1.6). It is easy to see that K (t) = K/(1 —2tH +t2K). So if S is elliptic, S(t) is
elliptic if ¢ is small enough.
We assume the shell is totally clamped, So dpw = dw and Ipw® = dw x [— €, €.
The space H then is H (1)(w) x H %)(w) X H& (w). Under some smoothness assumption on
the shell middle surface S, the following Korn-type inequality was established in [23] and

[19]: There exists a constant C' such that for any u € Ii%)(w), w € Lo(w)

31y + ol ) < cul(g,w)n%;ym(w), (6.6.1)

~

where 7 (u,w) is the membrane strain engendered by the displacement uqa® + wad

on
the middle surface, see (6.2.3). It was shown in [58] that this inequality is valid only on

totally clamped elliptic shells. Applying this inequality to the surface S(t), we get

l4l771 ) + 1017 y0) < COIXag (T sy

~
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Xa ﬂ( u, w) is the tangential part of the 3D strain y; ;j engendered by a displacement whose

restriction on S(t) is uag® + wg3. If € is small enough, this inequality uniformly holds
for all t € [—€,€].

Taking integration at both sides of the above inequality with respect to t, we

see that there exists a constant ey > 0 such that if e < ¢V, for any displacement field

v=0; € H})(we), we have

3
vaaqu Lo co 81 ey S Z iy ()12, - (6.6.2)

Comparing this inequality to that given in Theorem 6.3.5, which is valid for all shells,
we see that the particularity of totally clamped elliptic shells is remarkable.
As what we did for the flexural shells, we first resolve the term r in the identity

(6.3.17). Using the expression (6.3.18), we have

1S ellgollgrm ey + 12l o 18 = 2l o) (- 0 + 195~ vsllzywe)

The inequality (6.6.2) allows us to give the factor € to the first half of the above right
hand side. Using the inequality (6.6.2) and Cauchy’s inequality to the identity (6.3.17),

we get

| At = 0t = o) [ Mg 0) a0 )lxig(0) ~ i 0°)

< T ij gkl 2 2 2 2
N/QE[AZ]MJ Xij(0)][o" = C X (v)] + € \|g0||£;ym(we)+€ ||g2||£;ym(we)'

(6.6.3)
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6.6.1 Reformulation of the resultant loading functional

From the inequality (6.6.1), it is immediately seen that for totally clamped elliptic
shells, we have ker B = 0. Therefore, no matter what is the resultant loading functional
in the model, the shell problem can never be flexural. Theorem 3.3.4, Theorem 3.3.5,
(3.4.6), and (3.4.7) in Chapter 3 are the right tools to analyze the asymptotic behavior of
the model solution. According to the classification of Section 3.5, if the condition (6.6.4)
below is satisfied, the totally clamped elliptic shell problem is of membrane—shear.

Since ker B = 0 and B is surjective from H to W, by the closed range theorem,
there exists a CQ € W*, such that the leading term of the resultant loading functional

can be equivalently written as

<f07 (Q?Q)z» = <<>97B(Q7ygz)> v (,@%Z) e H.

We recall that without further assumption, the solution of the model problem is un-
tractable. The condition we imposed in Chapter 3 is CQ € V*. Under this condition, the

loading functional can be further written as

(fo.(0,y.2)) = (Y, B(d,y,2)) = (¢°, B(¢. y,2)y. (6.6.4)

here, (0 € V is the Riesz representation of CQ € V*. Therefore the condition (6.6.4) is

equivalent to the existence of (;LO, ZO) €V =V x Ly(w), such that

(fo, (¢, y.2)) = /wao‘m%&mg(g,z)\/&dg + gu/ aﬁTgTa(g,%,z)\/Ed;’g. (6.6.5)

a
w
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Recall that the expression of the leading term in the loading functional is

(fo:(¢,y,2) = %/pg‘m(g,g,Z)\/Edg— /pgao‘ﬁ’ya@(;g&)\/ﬁdg

24+ A

+ / (02 + 4§ — 26508 )ya + (03 |a + P + 45)2]v/adz.  (6.6.6)
w
Comparing this expression to (6.6.5), we just need to choose
1
o = ;aaﬂpg 7 (6.6.7)

obviously, ZO € Lo(w).
Thanks to the inequality (6.6.1), we know that 7 defines an isomorphism between
the space gé(w) x Lo(w) and a closed subspace of g;ym(w), which should be Vj. Since the

last two terms in (6.6.6) together define a continuous linear functional on H %)(w) X Lo (w),

by the Riesz representation theorem, there exists a unique (go,wo) €EH %)(w) X Lo (w)
such that
0_ 0,0
1= l(% ,wh) € V) (6.6.8)
and

A
204+ A

[ a0 (0 w2 aads = ~ 52 | B0y 2 ad
w w
+ / (P2 + 4§ — 26919 )ya + (03 |a + P2 + ¢5)2]Vadz

w

Y (y,2) € Hj(w) x Ly(w). (6.6.9)
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Therefore, (6.6.7) and (6.6.8) together reformulated the resultant loading functional in
the desired way (6.6.5).

Note that the equation (6.6.9) can be viewed as an equation to determine the

functions (go,wo) € Ij:(l)(w) X Lo(w). This is formally the same as the limiting elliptic

membrane shell model of [18], but note that the right hand side is different. Here, the

odd part of the surface force pé is incorporated.

6.6.2 Asymptotic behavior of the model solution

From Theorem 3.3.5 and (3.4.7), we get the asymptotic behavior of the model

solution (0°€, u®, we):

€ € 0 € 0
cllg |’£;ym(w) +12" -2 |’£Zym(w) 2= 2l pyw) =0 (€—0).  (6.6.10)
If we assume more regularity on (;yf), ZO)’ say,
(1% 20 e W VI g, (6.6.11)

for some 6 € (0,1) and ¢ € [1,00], or 6 € [0,1] and ¢ € (1,00), by Theorem 3.3.4 and

(3.4.6), we get the stronger estimate of the asymptotic behavior of the model solution:

0 0 0.0 0

Ngfllymiy + 17 = 20 gy +17° = 20y S Ko Q2 VW) £ 7.
(6.6.12)
We assume that lo and zo can not be zero simultaneously, otherwise fo = 0.

Under some further assumptions on the smoothness of loading functions, with a similar
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but more tedious analysis, we can prove the convergence of the model solution to the 3D
solution even if fg = 0.

Based on the requirements imposed on the correction functions wy and wo, and
recalling the expressions (6.3.31) and (6.3.32), which need to be small, we define wy as

the solution of the equation

) A 0 1 3
€ (le, vv)£2(<ﬂ) + (wl’v)Lg(u)) = (_2,u n )\aaﬁ'yaﬁ + 42# T APOuv)LQ(U})u
(6.6.13)
wy € H&(w), Vove H&(w)
and define
wy = 0. (6.6.14)

The explanation of this choice of the correction functions is right in contrast to
what we made for flexural shells on page 181.
s 0 0 - rsym aB 0
From the definition (6.6.8) of 7, we see that 7 € Lg (w), soa Yo € Lo(w).

By (3.3.38) in Theorem 3.3.6, we have the convergence

a0
Qa ﬁ’yaﬁ—i-

A\
elwill gy + 1l w1 =3 Pollfyw) =0 (€—0).  (66.15)

w4 A 24+ A

If we assume

)\aaﬁﬂ)/gcﬂ - pg € [H(% (w)vLZ(w)]l—&p (6.6.16)
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for some 6§ € (0,1) and p € [1,00], or # € [0,1] and p € (1,00), by (3.3.36) in Theo-

rem 3.3.6, we have,

A aBo 3
ol + 1 =wr =5 =500 + 53 Pollaw)

S K(e, 20" 5 = pd, [La(w), Hy @)]) S /. (6.6.17)

The values of the index 6 in (6.6.11) and (6.6.16) might be different. We choose
the least one so that the convergences (6.6.12) and (6.6.17) hold simultaneously.

From the asymptotic estimates (6.6.10) we see

-1
H£€H£;ym(w) Sole ), “g€“£;ym(w) S, |’ZG|’£2(W) S L
Under the regularity assumption (6.6.11), we have
0—-1
||£6||£zym(w) Se ) ||l€||£zym(w) <1 ||,7;6H£2(w) S L

By the equivalency (6.2.8) and the inequality (6.6.1), we get the a priori estimates

I i) ST 1y ST 18010 S ol or O™, it (6.6.10),

10010y S 1 1010 S 18N o) + 1N Lo

(6.6.18)
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6.6.3 Convergence theorems

The convergence of the 2D model solution to the 3D solution can be proved if
the loading functions satisfy the condition (6.2.9). Under further assumption on the

regularity of (;LO’ ZO), convergence rate can be established.

THEOREM 6.6.1. Let v™ and o™ be the 3D solution of the shell problem, v the displace-
ment defined by the model solution (g‘f,ge,uf) together with the correction functions
wi,wy defined in (6.6.13) and (6.6.14) through the formulae (6.3.13), and o the stress

field defined by (6.5.7). Under the condition (6.2.9), we have the convergence

lo* — allpe + Ix(v") - x(@)llge _ (6.6.19)

lim
e—0 [x(v)[ e

1
If 70 = ’y(uo, wo) and 7y = —a, 5p§ satisfy the regularity condition
I3 A Y H
(%20 e W, Vli_g, and X305 —pd e [Hiw) Low)i_g,  (6.6.20)

for some 6 € (0,1) and p,q € [1,00], or 6 € [0, 1] and p,q € (1,00), then the convergences

(6.6.12) and (6.6.17) hold simultaneously, and we have

THEOREM 6.6.2. If the reqularity condition (6.6.20) is satisfied, we have the convergence

rate

lo” — ollpe + [Ix(v*) = x(®)llge - 6 (6.6.21)
Ix(v)ll ge -

With all the preparations of the last subsection, the proofs of these theorems are

almost the same as that of Theorem 5.5.1 for spherical shells, except that now we need
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to use the inequality (6.6.3) rather than the two energies principle. For this reason, and
for lack of space, the proofs are omited.

The regularity condition (6.6.20) is not easy to interpret. We just give an un-
realistic example to explain its meaning. We will determine the index 6 in the next
subsection under some smoothness assumption on the shell data in the usual sense.

Let the shell be loaded in such a special way that in the reformulation of the
loading functional (6.6.5), F;y’o and 20 are given by

ﬂ 0 (go’wo O)’

1
f‘)/gﬂ:’)/aﬁ(go’wo) and paaﬁpo :Ta:Ta

with 0° € Ig(l)(w),wo € H&(w), and u° € lg(l)(w) N Igz(w). We assume ps € Hl(w). It
is easy to see that (2,0’ ZO) € W, so the index 6 determined from (6.6.11) is equal to 1.
Since Aa®? fyg 8= pg eH 1(w), by the standard cut-off argument, the index 6 determined
from (6.6.16) is at least 1/2. The convergence rate then is determined by the smaller

one of these two values. l.e., at least el/2,

6.6.4 Estimates of the K-functional for smooth data

We have seen in the last subsection that the convergence rate of the model solution
to the 3D solution in the relative energy norm is determined by the the values of the
K-functionals in (6.6.12) and (6.6.17). In this subsection we estimate these values for the
elliptic shell under the assumption that the shell boundary, middle surface, and loading

functions are smooth enough.
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Based on the definitions of the spaces W, V, and the K-functional (6.5.7), the

two K-functionals involved in the convergence can be equivalently expressed as

K(e,(vo,zo),[‘ﬂw]): inf [H(’YO—%zo—z)HereH(%z)HW]
_ 0 _ 0_ com
= (e,ul,r’llj)EH[H(l l(%vw)vz Z(gvgaw))“£2y (W)XQQ(W) +€”(Q,E,U))”H]
(6.6.22)
and
af. 0 .3 1 _ a0 3
K(e, A, po,[LQ(w),Ho(w)])—wggﬁ(w)ﬂlm Yap~Po~ WLy Felwlgl )
(6.6.23)

The strategy to determine the K-functional values is to make a good choice for
(0,u,w) € Ij:(l)(w) X I;T(l)(w) X Hé (w) in the former and a good choice for w € H& (w) in
the latter so that the infimums can be roughly reached. This can be done by doing a
little more delicate cut-off argument, which requires some regularity results.

We assume the following smoothness on the shell data: The shell boundary v =
dS € C*. The loading functions p? € H3(w), p& € Hl(w), p3 € H2(w), p5 € H?(w),

¢ € HY(w), ¢5 € H2(w).

LEMMA 6.6.3. Under this assumption, the solution of the equation (6.6.9) has the reg-
ularity

%0 € Hg(w) N H&(w) and w’ € Hz(w).

This lemma follows from a more general regularity theorem on the solution of the limiting

membrane shell model in [27]. Under the above smoothness assumption on the data, we
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have the regularity

1
Tog = Taplu’w’) € HAw), 0= ;aagpg € H(w), /\ao‘ﬁ’ygg —p € H?(w).
(6.6.24)

We also need the following cut-off lemma.

LEMMA 6.6.4. Let w C R2 be an open connected domain, and Ow € C?. Let a >0 and
€ > 0 be two positive numbers. Then for any f € H1 (w), there exists a e H& (w) such

that
If— f0||L2(w) < e [FAFAE Hfougl(w) <e @ Hfuﬂl(w)'
If f e Hz(w), we further have HfOHHQ(w) < 3 HfHHQ(w)

The proof of this lemma can be found in [36]. An equivalent result can be found in [43].

With these preparations, we can prove

THEOREM 6.6.5. Under the above smoothness assumption on the shell data, we have the

following estimates on the K -functionals:
K(e. (3%, 79, [v.w)) < /6 (6.6.25)

and

K (e, 3a®0 5 — p3, [Lo(w), Hy )]) < /2. (6.6.26)

Therefore the value of the index 0 is at least 1/6, which gives, by Theorem 6.6.2, the

convergence rate of the shell model.
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Proof. According to (6.6.22), we need to estimate

Since u? € Htl)(w), we can choose u = u”, so we have
~Y ~Y ~Y ~Y

Yo 10") = (1, w) = bog(w —u).

Taking a positive number a, since w' € H 2(ou), by Lemma 6.6.4, there exists a

w e Hé (w) N H%(w) such that

Iw? =~ wily) < € Ielp) Il < < 1wl ),

< 6—3@ Hw

[l g2, "l 20y

From the definition (6.2.3), we have 7o(0, u,w) = o + qw + bé‘éu)\. Let b be
a positive numberi. By Lemma 6.6.4, for the above chosen u and w, there exists a

[BS Ii(l)(w) such that

2

0 A 0
77 = 708, w0l Loy = D 100+ daw + bauy = Tall Ly ()
~ a=1
b 2 A
0
<€) [|0aw + byuy — 7ol Ly (w)
a=1
<

b—a, 0 by,,0 b0
w1y + € M8 Ly @) + € 1 Lo(w)
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and

2
100571y < €77 D 100w +bauy =l g1,

a=1

6—b—3aHu

IN

0 —by, 0 —b .0
D20y + €180 g1 ) + €PN g1

With these ( 0, u, w) substituted in the arguments of the infimum, we see

b— b
K(e, (2" 2 VWD) S ey ) + € w0l gy + € 1l Ly
b 1-b— 1-b
+ 17 M @) T T N g2 + (TNl g

1-b..0 1— 0
te HZ”HH@** an”Huw-

Note that 20, }30 and wV are all e-independent functions. The best values for a and b

should make a =b—a =1—b — 3a, and are given by a = 1/6,b = 1/3. We obtain
K(e, (1, 70), v, w]) < /6. (6.6.27)

The proof of (6.6.26) is simpler and so ignored. O

Based on this estimate, we can compare the strain energy that can be sustained by
a totally clamped spherical shell with that which can be sustained by a totally clamped
flexural plate. The former is a special totally clamped elliptic shell, and the latter is a
special flexural shell. For the plate, by (6.5.18), the strain energy is O(e?’), and the model

solution tends to a finite limit in the space H. For spherical shell, by (5.5.24), the strain
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energy is O(e), but by the estimate (6.6.18), the H norm of the solution is only bounded
by 0(6_5/ 6). To keep the solution bounded, we have to reduce the loads by multiplying a
factor of 0(65/6). The strain energy will be scaled to 0(6[65/6]2) = 0(68/3). Therefore,
without blowing up in displacement, the strain energy that can be sustained by a totally
clamped spherical shell is O(e_l/ 3) times that can be sustained by a plate.

If Tg = %aaﬁpg = 0, we can make another choice of (6, u,w) € H in the proof

of Theorem 6.6.5 and prove
K(e,(30,0), [V, W]) < €l/5. (6.6.28)

This can be done by letting u = go, choosing w € Hg(w) such that

0 1/5 —-1/5 —4/5
lo =@l Lyw) S €% Tl S5 Tl S,
and taking 6, = —0qw — béu ) The existence of such w can be proved by using a lemma

of [45]. Therefore, if the odd part of the tangential surface forces vanishes, the model
convergence rate is O(el/ 5) in the relative energy norm.

The estimate (6.6.12) not only plays a crucial role in establishing the convergence
rate of the model, but also gives an estimate on the difference between our model solution
and the solution (go, w) of the limiting model (6.6.9). The K-functional value will be
used to prove the convergence rate of the limiting model solution in Section 7.4.

As we have mentioned at the end of the last subsection, the convergence rate can
1/2

be as high as €'/“, but we can only prove this when the loading functions are special.
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If we only assume the smoothness on the shell data in the usual Sobolev sense, under
the most general loading assumption, the convergence rate O(el/ 6) is the best we can
prove. It seems possible to get better results by other methods, see [33], [52], [53], [26],

and [39].

REMARK 6.6.1. The convergence ||7¢ — zo||£2(w) — 0 (e — 0) in (6.6.10), or the
estimate || 7€ — EOHQQ(M) < in (6.6.12), together with the expression (6.6.7) and
Theorems 6.6.1 and 6.6.2 violate the Kirchhoff-Love hypothesis if the odd part of the
tangential surface force p§ is not zero. This is in sharp contrast to the case of flexural
shells for which the Kirchhoff-Love assumption can always be proved, see Remark 6.5.2.

On the other hand, these convergences furnish a proof for this hypothesis if, say, the odd

part of the tangential surface force vanished, cf., [40].

6.7 Membrane—shear shells

The totally clamped elliptic shells we discussed in the previous section are special
examples of general membrane—shear shells defined in Section 3.5 and Section 6.4. There
are two major difficulties in general situation. One lies in the reformulated resultant

loading functional:

(fo, (gvg)vz» = <CQ=B(Q7%72)> v (gvgvz) €H, (6.7.1)

with CQ € W*. To apply the abstract theory of Chapter 3 to analyze the asymptotic

behavior of the model solution, we need to assume CQ € V*. This condition, which
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was unconditionally satisfied by totally clamped elliptic shells, now imposes a stringent
restriction on the resultant loading functional.

Another difficulty, which is even more formidable, lies in resolving the extra term
r in the integration identity (6.3.17). This identity, as in the last two sections, plays
the keystone role in the model justification. We can neither resolve this extra term in
the way of handling totally clamped elliptic shells, see (6.6.3), since the e-independent
Korn-type inequality (6.6.2) is no longer valid, nor can we resort to the measure for

flexural shells, see (6.5.1), because the quantity Hg OH%sym is not small any more.
2

(we)

Both of these difficulties will be eluded by imposing further conditions. The
formulations and proofs of convergence theorems will otherwise be the same as those in
the last section. The shell problems that are ruled out by these conditions abound, for

which the convergence of the model solutions to the 3D solutions might not hold in the

relative energy norm.

6.7.1 Asymptotic behavior of the model solution

In this subsection, we interpret the abstractly imposed condition CQ € V* for
general membrane—shear shell problems, and analyze the asymptotic behavior of the

model solution by using the abstract theory of Chapter 3.
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The condition ¢¥ € V* is equivalent to the existence of (2,07 ZO) €V, such that

¢V =(3" 7", and

(Fo.(¢,3,2)) = (<, B(,y,2)y

)
= / aaﬁ)qugv’yaﬁ(%,z)\/adrxv + E,u/ aaﬁTgTa(Q,%,z)\/Edg V(¢,y,2) € H.
w w

(6.7.2)

Recalling the expression (6.2.5)

5 A
(fo.(¢,y,2) = g/wpg‘m(g,g&)\/adg— 2M+)\/wp?5ao‘ﬁ'ya@(;g,Z)\/5dg

+ / (P2 + 45 — 265P8)ya + (W5 |a + PE + ¢3) 2]V adz + / PYa (6.7.3)
w T

and the factorization (6.4.1) of the space V' = V{y x Lo(w), we see that the requirement

(6.7.2) is equivalent to the following two requirements. First,
p§ € Ly(w) and p?’) € Lo(w). (6.7.4)
Second, there exists a K€ Vo, such that

/ a5y, 2)Vads = / (P2 + 45 — 269P8)ya + PG |a + PE + ¢3) 2]V adz
w w

+/ P Yy (y,2) € Iﬁ)(w) X HlD(w). (6.7.5)
T
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Note that the second term in the right hand side of (6.7.3) can be equally written

as

A 3 af A af 3
— dy = —— Y .
2H+)\/wpoa Yap (Y 2)Vadz 20(2p + 3N) /w“ axyPoYas(Ys 2)Vadz
(6.7.6)
Therefore, if p3 € Ly(w), we can determine 2;0 eV as
=k, — #PV (ap,305) (6.7.7)
af = "ol gu(2p + 3x) " Vo Tadtol
where Py is the orthogonal projection from g;ym(w) to V. By defining
1
Tg = paaﬁpg, (6.7.8)

we obtain ¢0 = (lo’ jvo) € V such that the loading functional be reformulated as (6.7.2).
Under the condition (6.7.2), the asymptotic behavior of the model solution then

follows from Theorem 3.3.5 and (3.4.7). We have

€ ng\lggym(w) +y° - go\lggym(w) +r€ - ZO\|£2(W) —0 (e—0). (6.7.9)

If we assume more regularity on 0, 70 , say,
gularity on (77, 7"), say

(%70 e W Vi_g, (6.7.10)
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for some 6 € (0,1) and ¢ € [1,00], or 6 € [0,1] and ¢ € (1,00), by Theorem 3.3.5 and

(3.4.6), we have the stronger estimate of the asymptotic behavior of the model solution:

)
“O
23
>
=
=
A
(@}
>

0 0
€ H,gellégym(w) +l -1 ||£;ym(w) 2= 27l () S K6
From the asymptotic estimate (6.7.9), we see

<o

T -1 €l . <
Hg ‘|£;}’m(w) Sole ), Hl ‘|£;}’m(w) S

€ <
Nz Ly ) S 1

Under the regularity assumption (6.7.10), by (6.7.11), we have

€ < 0—1 € < € <
”@ |’£;ym(w) ~ € ) ”l |’£;ym(w) S L ”Z H%ﬂw) S L

By the equivalency (6.2.8), we get the a priori estimates

10N g1 )+ 1 g1y + 10l g1 S 0le™)

(or HQEHHl(w) + HEEHHl(w) + Hw€||H1(w) < =1, if the regularity (6.7.10) holds),

H/wEHHl(u}) S.; ||£6||£2(w) + ||£€6||£2(W)

(6.7.12)
These estimates are much weaker than those for totally clamped elliptic shells, see
(6.6.18), because of lack of the Korn-type inequality (6.6.1), which is a characteriza-

tion of totally clamped elliptic shells.



209

The two conditions (6.7.4) and (6.7.5) together are equivalent to the condition

(6.7.2). The first condition (6.7.4) is trivially satisfied, while the second one (6.7.5), i.e.,

the existence of K€ Vp such that (6.7.5) holds, can be connected to the “generalized
membrane shell” theory, see [20] and [18], in the following way.

The membrane strain operator o ( Yo z) defines a linear continuous operator

: Ii})(w) X H})(w) — V),

=2

whose range is dense in V{;. We first consider the case of kerl = 0. In this case,
”;;Y,(Q’Z)HVO defines a norm on the space IilD(w) X HlD(w), which is weaker than the
original norm. In the notation of [18], we denote the completion of H }) (w) x HlD (w) with
respect to this new norm by ij@ (w). Obviously, 7, can be uniquely extended to V]I\j4(w),
and the extended linear continuous operator, still denoted by 2 defines an isomorphism
between ij@ (w) and V{y. By the closed range theorem, for any f € [V]I\Z(w)]*, there exists

a unique K€ Vo, such that

/OJGO‘BM"@AWaﬂ(%’Z)\/Edﬂ = (f,(y,2)) V¥ (y,2) € VE, (). (6.7.13)

Therefore, the problem of existence of K€ Vo in (6.7.5) is equivalent to the problem

that whether or not the linear functional

/ (P2 + 45 — 269P8)yar + (05 |a + PE + ¢3) 2]V adz + / Py Y
w T
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which is defined on the space if})(w) X Hllj(w) by the right hand side of (6.7.5), can be
extended to a linear continuous functional on the space V]@(w).
The characterization of the space V&(w) depends on the geometry of the shell
middle surface, shape of the lateral boundary, and type of lateral boundary condition.
If the shell is a totally clamped elliptic shell, by the inequality (6.6.1), it is easily
determined that

Vi (W) = Hyw) x Ly(w),

and, as we have shown, the mild condition (6.2.9) is enough to guarantee the existence

of k €V such that (6.7.5) holds.

If the shell is a stiff hyperbolic shell, it was shown in [44], see also [18], that
V]j\j/[(w) = a closed subspace of Lg(w) X H_l(w),
therefore, the existence of £ € Vp is guaranteed if
pS +q5 — 2b9y‘pg € Lo(w), pYla —i—pg’ + qg € H&(w), and p{ = 0. (6.7.14)
If the shell is a stiff parabolic shell, it was shown in [44], see also [18], that
V&(w) = a closed subspace of g_l(w) X H_Q(w),
so, the existence of £ € Vp is guaranteed if

pS +q5 — 2b9;p2 € H&(w), Pa+p2+q € Hg(w), and pff = 0. (6.7.15)
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If the shell is a partially clamped elliptic shell, the space ij\j4(w) can be huge and

its norm so weak, that the equation (6.7.5) may have no solution even if the loading

functions are in D(w), the space of test functions of distribution. In this case, even if the

loading functions make the problem solvable, the problem can not afford an infinitesimal
smooth perturbation on the loads, see [38].

Since 2 defines an isomorphism between V]T\Z (w) and Vjy, so the existence of K€V

f

means the existence of (u,w) € V}&(w)(the element in Vy (w) must be viewed as an
entity, the notation in components might have no usual sense), such that k = 'y(uo, wO).
S [ e

Therefore, the problem (6.7.5) of determining K€ W is equivalent to finding (go, wo) €

V}&(w), such that

/ a0 (w0 w00y, 5y, 2) Vadz
w
= / (02 + S — 269P3)yar + (DS |a + P2 + 43) 2]V adz
w

+/ PyYa YV (y,2) EV}\Z(w). (6.7.16)
T

This variational equation is the same as the “generalized membrane shell” model, except
that in the formulation of the right hand side we incorporated the odd part of the surface
forces. Note that we are not looking for the solution of this generalized membrane shell
problem in the space ij\j4 (w). Our interest is in the existence of K€ Vo-

The case of ker 2 # 0 can be divided in two different kinds corresponding to
ker B = 0 and ker B # 0. The first kind is the “second kind generalized membrane

shells” of [20] and [18]. The second kind is our second kind membrane-shear shells.
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Since there is not an imaginable realistic example of the “second kind general-
ized membrane shell”, we will not discuss it in details here, but just remark that the
requirement (6.7.5), which leads to the convergence of the model solution to the 3D
solution in the relative energy norm, is not equivalent to the condition imposed in [18].
Our requirement is more restrictive, and might have excluded some situations analyzed
there. In other word, some of the “second kind generalized membrane shells” made the
equivalent representation CO of the resultant loading functional f( belong to (V*, W*].
The Naghdi-type model is no longer membrane—shear dominated. Their analysis shows
that in some weak sense, and in a quotient space, it is still possible to replace the non-
membrane dominated problem by a membrane problem.

Examples for the second kind membrane—shear shells include plate stretching and
shear dominated plate bending, which have been thoroughly analyzed, and the condition
(6.7.5) does not impose a stringent restriction on the loading functions, see [2] and [5].
Another example is the membrane—shear cylindrical shell analyzed in Chapter 2, for
which, we have V' = W, so the condition (6.7.5) is trivially satisfied.

Based on the requirements imposed on the correction functions wy and wy, and
the expressions (6.3.31) and (6.3.32), which need to be small, we define wy as the solution

of the equation

2 71 3
€ (Vw]_’V’U)£2(W) + (’U)]_,’U)L2(w) = (—2Iu n )\CL ’Yaﬁ + 2H+ APO;”)LQ(Q}):
(6.7.17)
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and define

wo = 0. (6.7.18)

The explanation of this choice of the correction functions is similar to that made for
totally clamped elliptic shell.
iy 0 0 sym af .0
From the definition (6.7.7) of 7 we know 77 € Lg (w), so we have a Yo €

Ly(w). By (3.3.38) in Theorem 3.3.6, we have

A 1
€leHHl(w) + | — w1 - 2+ )\aaﬁ’Ygﬁ + o+ )\p?)”Lg(w) —0 (e—0). (6.7.19)

If we assume
20 5 — 3 € [Hh(w). La(w)]1_g (6.7.20)

for some § € (0,1) and p € [1,00], or # € [0,1] and p € (1,00), by (3.3.36) in Theo-

rem 3.3.6, we have

A B0 I 3
ol + 1 =wr =5 =50 ap + 53 Pollaw)

S K (e, AaP90 5 = b3, [La(w), Hp(w)]) S . (6.7.21)

6.7.2 Admissible applied forces

To prove the convergence theorem, in addition to the asymptotic behaviors of the
model solution (6.7.9) and (6.7.19), which hinge on the validity of the condition (6.7.5),
we also need to bound the term r in the right hand side of the integration identity

(6.3.17). Except for some special shells, like plates and spherical shells, the desirable
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bound can only be obtained under some restrictions on the applied forces on the 3D
shell. As a sufficient condition, we adopt the condition of “admissible applied forces”
proposed in [18].

We recall that, the 3D shell Q€ is subjected to body force and surface tractions
on the upper and lower surfaces I't, it is clamped along a part of its lateral surface I'p,
and loaded by a surface force on the remaining part of the lateral face I'p. The body
force density is ¢ = qigi, the upper and lower surface force densities are p4 = pﬁtgi, and
the lateral surface force density is pp = pf;rgi. To describe the concept of “admissible
applied forces”, we consider the work done by these applied forces over an admissible

displacement v = vigi, which is given by

L(v)—/ qivﬁ/ pivﬁ/ ;. (6.7.22)
Q¢ | I'p

Let v* € H b(we) be the displacement solution of the 3D shell problem. By
adapting the notation of [18], we denote the actual stress distribution by ng =

L;ym (w). Therefore,

L(v) = /w 6 Fxij(v) Jadadt. (6.7.23)

We scale the 3D shell displacement v* and the stress ng from the coordinate

1

domain w€ to the fat domain w*, and denote the scaled displacement by v*(¢) and the

scaled stress by FiJ (€), by defining

v*(e)(z, °) = v*(z,1), Fij(e)(g,Z):ng(g,t), Vzew te(—ce). (6.7.24)
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In [18], the tensor valued function F (¢) was directly introduced to reformulate
the linear form L(v) (6.7.22) in the form (6.7.23), but on the scaled domain w!. The
connection between the tensor valued function FJ (€) and the actual stress distribution
over the loaded shell is our observation.

The applied forces are called admissible, if

1. F(e) is uniformly bounded in L;ym(wl) with respect to e.

sym

2. There exists a tensor field FJ € Ly (wl), independent of ¢, such that

limy Fil(e) = FY in L™ (W), (6.7.25)
see page 265 in [18].

Since F'J(e) is the actual stress distribution scaled to w!, this condition also
implies the convergence of the scaled strain tensor x€(v*(e)) defined in (6.3.34). It
seems that this condition has assumed the convergence of the solution of the 3D shell
problem when ¢ — 0. But the question is how to identify the limit F’ iJ, This limit can
only be correctly determined by resorting to a lower dimensional shell model. Therefore,
the shell theories established under the assumption of “admissible applied forces” is not
totally trivial.

From the first condition, we see that the scaled strain ng(v*(e)) of the shell
deformation (see (6.3.33) and (6.3.34) for definition), is uniformly bounded in L;ym(Q).

By the Korn-type inequality on thin shells (6.3.35), we get the following bound on the
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scaled displacement

e||v* (e) <1 (6.7.26)

Under the second condition, we can extract a weak convergent subsequence from {e v*(e)}
in H }) (wl), then find the weak limit and pass to strong convergence, and finally prove

the following convergence,

li * =0, 6.7.27
tim e [[o" (€)1 1) (6727

see [18] for details. Note that this behavior of the 3D shell solution is compatible with
the behavior (6.7.12) of the 2D model solution, yet another evidence for the necessity of
the assumption on the admissibility of the applied forces.

By rescaling the convergence (6.7.27) back to the domain w®, we will get

2
1/2
2O 0N 1 )Ly ) + 105 Ly () S o) (6.7.28)
a=1
This inequality is what we need to prove our theorem.

6.7.3 Convergence theorem

For the general membrane—shear shells, under the condition (6.7.5) assumed on
the 2D model problem (6.2.4) and the condition (6.7.25) imposed on the 3D shell problem,

we have the convergence theorem:

THEOREM 6.7.1. Let v* and o™ be the displacement and stress of the shell determined

from the 3D elasticity equations, v the displacement defined through the formulae (6.3.13)
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in terms of the 2D model solution (0¢, u®,w®) and the correction functions wy,wy de-
fined in (6.7.17) and (6.7.18), and o the stress field defined by (6.3.7). We have the

convergence

* *\
e—0 Ix (V) e

Proof. Except for the different way to bound the term r in the identity (6.3.17), the proof
is otherwise the same as that of the Theorems 6.6.1 and 5.5.1. The proof is based on
the identity (6.3.17), the inequality (6.7.28), the two convergences (6.7.9) and (6.7.19),
the inequality (6.3.16) to bound 0(216, and the expressions (6.3.28), (6.3.29) and (6.3.30)
for the constitutive residual g;;. Again, for brevity, the norm || - ||z, o (W) will be simply
denoted by || - ||. Any function defined on w will be viewed as a function, constant in ¢,
defined on w€.

First, we establish the lower bound for the strain energy engendered by the dis-

placement v. By the convergence (6.7.9), we have
€ . € O . € 0
cllgfl gy S o) 3 = 2l S, Iz = 2y S olt) (6730
Since lo and I,O can not be zero at the same time (otherwise fj = 0), we have
0 0
12N gy + 1N g = I mg + 120y = 1 (6.7.31)
By the equivalence (6.2.8), we have

€ H(fﬁ }\Qea we)HHl(w)le (w)x H(w) So(l). (6.7.32)
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The convergence (6.7.19) shows

cllwrllig, S o) and Jwill Ly = 160 5 =3l o) (6.7.33)
Recalling the expression (6.3.24), we have
Xap(v) =15 + 105 — t(bé‘niﬂ + bf}yja) +H(tcqp — bag)w — (lﬂe6 5t b707|a)

and

1 1
Xa3(v) = 575 + 57530411)17

in which, by the estimates (6.7.30), (6.7.31), (6.7.32), and (6.7.33), the terms 72ﬂ and

75, dominate respectively. Summerizing these estimates, we get

2
2 2 2
> Ixag® +Zu><3a I 2 el gy + 10y 2
a,B=1 ~ ~

Therefore,

Ix(0)[|%e 2 €. (6.7.34)

We then derive the upper bound on ||o* — UH2E€ + |Ix(v*) — X(?J)H2E6 From the

identity (6.3.17), we have

3
lo* — al|%e + Ix(©*) = x()1%e < Y lloglI* + Ir] (6.7.35)
i,j=1



From the expression (6.3.21) of r, we see

2
s e Y Ulog”l+llog It Zuvauﬂl Lyl ec) T 10311
a,f=1 a=1

2
+ 237 oG I+ o5 DU g ) + o1l )

=1

From the equations (6.3.1) and (6.7.8), we have

304[3
2+)\ ’

aﬂ:gHe oy 6+aa/8)‘7’y —l—

A
0(116 = aaﬁ/wpfw + o )\(pg + 2Hp2)aa6,
5
o = 4[ a1 — ) = Jlna’ (5 — 7)),

and so, the estimates

2 2 2 2
a2 Sole), 105712 S e (10812 S ole).

By the estimate (6.3.16), we have
los 112 5 ofe).

Combining (6.7.37) and (6.7.38), we see

2

ST UosP 1+ 1057 1) S 0l/?).

a,=1

219

(6.7.36)

(6.7.37)

(6.7.38)

(6.7.39)
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Together with the inequality (6.7.28), we get the upper bound on the first term in the

right hand side of (6.7.36):

2 2
> (o =13 DU Il 1y g ey + 03I S 00 (67.40)
a,f=1 a=1

Using (6.7.32), (6.7.33) and (6.7.39), we get the bound on the second term:

2
23 U I+ 105 NG g1 ) + Tl ()] S o). (6.7.41)
a,f=1 ~
Therefore, we obtain

Ir| < o(e) (6.7.42)

The proof of

3
2
> el S ofe)

i,j=1
is a verbatim repetition of the relevant part in the proof of Theorem 5.5.1. By (6.7.35),
we get

2 2
lo* = ollge + Ix (™) = x(v)lI e < ofe).

The conclusion of the theorem follows from this inequality and the lower bound (6.7.34).
]

To get a convergence rate, we need to use the asymptotic behaviors (6.7.11) and
(6.7.21) of the model solution, whose validity depends on the assumptions (6.7.10) and

(6.7.20), and a more strict requirement on the applied forces on the 3D shell. Otherwise,
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the statement of the theorem on the convergence rate is the same as Theorem 6.6.2, and
the proof would be a modification of that of Theorem 6.7.1.

The conclusion of this theorem seems stronger than other theories for the general

membrane—shear shells.
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Chapter 7

Discussions and justifications

of other linear shell models

In this final chapter, we briefly discuss the justifications of some other linear
shell models based on the convergence theorems we proved for the model (6.2.4). The
discussion is in the context of Chapter 6. All these models can be viewed as variants of
the general shell model (6.2.4). We recall that the solution of the general shell model
(6.2.4) was denoted by (6¢, u, w). In terms of this model solution and the transverse
deflection correction functions wy and w9, we defined an admissible displacement field
v by the formulae (6.3.13). The convergence and convergence rate in the relative energy
norm of v toward the 3D displacement solution v* were proved.

For each variant of the general shell model, we will re-define displacement func-
tions ( Q ¢, u,w) € H from its solution. The the correction functions wy and wy will be
defined either by (6.5.8) and (6.5.9) or by (6.7.17) and (6.7.18), depending on whether
the model problem is flexural or of membrane-shear. In terms of ( ?f, u,w) and wy
and wo, we define an admissible displacement field © by the formulae (6.3.13). We will

use the notations
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which give the membrane, flexural, and transverse shear strains (6.2.3) engendered by

(0€, u, w"). By the formulae (6.3.24), we can easily get the expression for x(v) —x(®),

which is the difference between the 3D strain tensors engendered by v and wv:

XaB(®) = Xap(®) = V55 — Tos +H0hs — P5p) — tha(iis — 7s) + P3(05a — Vo]

1 217 (p€ ne Y € ne
—5t bal?y5 = 0y5) + 0500510 = 0510)):

Xa3(®) ~ Xa3(®) = X30(v) ~ X3a(0) = (75 —76),  X33(0) — x33(8) = 0.

The variant of the model will be justified by proving the convergence rate

[x(v) —x(@)llge - ¢
Ix(@)lge ~ 7

or the convergence

o X)) = x(@)llpe _
T @l

)

(7.0.1)

(7.0.2)

(7.0.3)

which together with the theorems of Chapter 6 give convergence rate or convergence of

the solution of the variant of the model to the 3D solution in the relative energy norm.

7.1 Negligibility of the higher order term in the loading functional

We first show that the higher order term €2 f1 in the resultant loading func-

tional of the model (6.2.4) is negligible. Let’s just retain the leading term f( in the

loading functional, and denote the solution by (0€, u¢, w®) € H. For flexural shells, by
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Theorem 3.3.2 and Theorem 3.3.3, we can prove the estimates

125~ £ gy + < I gy ¢ IE ) S Ko VTV £
(7.1.1)

if the regularity condition (6.5.5) is satisfied by €Y. If we only have €0 € W*, then

12~ 7 ggmiy + M2 pgmi + M IT ) = 0 (=01 (712

For membrane—shear shells, by Theorem 3.3.4 and Theorem 3.3.5 we have

—_€ ~€ 0 —€ 0 < 0 0 < 0
gl ggmi + 127 = 2 gmi + 12 = Pl S K (L0 VW) £
(7.1.3)
if the condition (6.6.11) or (6.7.10) is satisfied by (7, 79). If we only have (7Y, ZO) eV,

[a e [ad

the convergence

g pgyme) + 13 = 2l pgm) + 12 = 2lp) =0 (=0 (714

holds. Here, 50, 2;0, ZO’ and 50 are what were defined in Chapter 6. Combining (7.1.1)
with (6.5.6) together with the lower bound (6.5.18), under the condition of Theorem 6.5.2,
we will get the convergence rate (7.0.2) for flexural shells. Combining (7.1.2) with (6.5.4),
under the condition of Theorem 6.5.1, we get the convergence (7.0.3) for flexural shells.
Similarly, under the condition of Theorem 6.6.1 or Theorem 6.7.1, the estimate (7.1.3),
the estimate (6.6.12) or (6.7.11), and the lower bound (6.7.34) together lead to the

convergence rate for membrane—shear shells, and under the condition of Theorem 6.6.1
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or Theorem 6.7.1, the estimate (7.1.4) and the estimate (6.6.10) or (6.7.9) give the
convergence. Therefore, we just need to keep the leading term f( in the resultant
loading functional. Cutting-off the higher order term E2f 1 will not affect the convergence
property of the model solution to the 3D solution in the relative energy norm.

It should be noted that the higher order term €2 f1 is also negligible in other norms
for flexural shells and stiff membrane—shear shells, but in the case of the second kind
membrane-shear shells, if fqler g = 0 but filker g # 0, although the contribution of
the higher order term €2 f1 is negligible in the energy norm, but it might be significant in
other norms. To see this, we use (6, u{,w]) to denote the solution of the model (6.2.4)
in which the loading functional is replaced by €2 f1. The above analysis has already

shown the negligibility of (0, u{,w{) in the relative energy norm. On the other hand,

by our analysis of the flexural shell, see (6.5.4), we have the convergence

€ , € € 0
lp(07, ut, wi) — @1“5ym(w)

-1 -1
te |’l(£§agiawi)“£;ym(w)+€ |’Z(0§7%ivwi)|’£2(w) —0 (€_>0)7

~

in which g? # 0 is defined by the limiting flexural model (6.5.3) with Fj replaced by
F1. So, (07, uf,w]) does not converge to zero in, say, the Lo norm. Therefore, in this
special case, we can not determine the convergence of the model (6.2.4), either with or
without €2 f1, in norms other than the relative energy norm. For plates, asymptotic
analysis shows that the higher order term helps in this case. In the following discussion,
we will discard €2 f1. When we mention the model (6.2.4), the loading functional is

understood as f.
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7.2 The Naghdi model

The Naghdi model can be obtained by replacing the flexural strain operator L in

the model (6.2.4) with gN. The model reads: Find (0€, u®,w®) € H, such that

1
562/waaﬁ/\”ﬁﬁ\;(ﬂeage,we)pé\fg(ggﬂ)\/ﬁdg

~

)
+ [ 0P (0 a2 Wadz + g [ aTp(0, 0, g )z

= (f0,(¢,y,2) Y (9,y,2) € H, (7.2.1)

in which f( is what was defined by (6.2.5), and

1 1
pévﬁ(ﬂ, u,w) = 5(9045 + 9ﬁ|a) - Q(bgu/\m + béuA|6) + copw-

~ o~

Let’s define (QE, ut,we) = (0, u,w). This model can be fitted in the abstract problem
of Chapter 3, and classified in the same way in which we classified the model (6.2.4). If
in (7.1.1), (7.1.2), (7.1.3), or (7.1.4), ge is repalced by gN(ge,g€,w€), these estimates

hold under exactly the same conditions. From the relation

Pas = Pag + DA + byras

it is easy to see that the estimates (7.1.1), (7.1.2), (7.1.3), or (7.1.4) themselves hold.
By defining the corrections wy and w9 in the same way as of Chapter 6, we can define
an admissible displacement field © by the formulae (6.3.13). The convergence properties

we established in the last chapter for the model (6.2.4) all apply to this Naghdi model.
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In the Naghdi model (7.2.1), if the correction factor 5/6 of the transverse shear
term and the factor 5/6 in the first term of the expression of fq (6.2.5) are replaced by

1 simultaneously, all the convergence theorems are still true.

7.3 The Koiter model and the Budianski—Sanders model

The Koiter model is defined as the restriction of the Naghdi model (7.2.1) on
the subspace HE = {0, u,w) : (0, u,w) € H;7(0,u,w) = 0} of H = Ii})(w) X
Ii})(w) X Hll)(w) The constraint 7(0,u,w) = 0 is equivalent to 6o = —0qw — bg\éuA.
So, it removed the independent variable §. From this constraint we also see that Oqw €

IilD(w) Therefore, the space HE = IilD(w) X H%(w) Constrained on H| the model

(7.2.1) becomes: Find (u€,w®) € HE | such that
L afr\y K (e e K
3¢ [ @ (B )z
+ /w PNy (w5 (g 2)WVade = (F5 (y,2)) ¥ (y,2) € HY. (7.3.0)
The operator QK is the restriction of the operator gN on HX:
pgﬂ(g,w) = —wlaﬁ - bému)\ — (bé‘éuMﬂ + bguMa) + CopW,

here, w| af = 83 {W = Fg ﬁ&yw, and the resultant loading functional is the restriction of

fo on HE:
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+ / (P2 + 45 — 269P3)ya + (PG |a + PE + ¢3) 2]V adz + / Py Y,
w T

The well posedness of this Koiter model easily follows from that of the Naghdi model if we
assume fK is in the dual space of H K Based on the model solution (ufw®) € H K , wWe
can define (ée,ge,u_)e) € H by setting 05, = —0qw® — béug\, u¢ = u, and w® = w°. By
defining the transverse corrections wy and wy in exactly the same way as of Chapter 6, we
can construct the admissible displacement field © by the formula (6.3.13). The Koiter
model can also be fitted in the abstract problem of Chapter 3 by properly defining
operators and spaces. The problem can be accordingly classified as a flexural shell or
a membrane shell (no shear). For flexural shells, by the same scaling on the loading

functions, the estimate
165 = g0l psym gy + € M7 Ml psymy S € 2=0 (7.3.2)
A e ®) 2lgymey s =0 3.
or the convergence
_ 0 1= 3
Ig" = g lpgmey + e I pgmey =0 (=0 280 (7:33)

can be proved, depending on the “regularity” of the Lagrange multiplier associated with
a limiting problem which is slightly different from (6.5.3). Here, go is the same as what
was defined in (6.5.3). The value of # might not be the same as what was defined in
(6.5.5). If different, we take the least one to determine the model convergence rate. The

estimate (7.3.2) and the estimate (6.5.6) together will give a convergence rate of the form
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(7.0.2). The convergence (7.3.3) together with (6.5.4) lead to a convergence of the form
(7.0.3).

For membrane shells, the estimate
ell g€l psvm oy + 176 = 20l psvm ) S €€, 7€ =0, (7.3.4)
£2 (w) ~ ~ £2 (w) ~ ~
or the convergence

gl pyym iy +12° - l0|yL;ym(w) —0 (e—0), 7°=0. (7.3.5)

can be proved depending on the “regularity” of ‘;);0. Here, ;V,O is what was defined in
(6.6.8) or (6.7.7). Again, the value of § might be different from that defined in (6.6.11) or
(6.7.10). For example, for a totally clamped elliptic shell, our estimate of the value of 6 in
(6.6.11) is 1/6, while from (6.6.28), we know that the value of 6 in (7.3.4) should be 1/5.
Note that if 7'8 = %aaﬁpg # 0, these estimates are essentially different from (6.6.12)
and (6.6.10), or (6.7.11) and (6.7.9). In this case, the difference (7.0.1) can not be small,
so the model can not be justified. Actually, the Koiter model diverges. If, say, p§ = 0,
then the difference (7.0.1) is small, and the Koiter model can therefore be justified, and
for totally clamped elliptic shells, by (6.6.28), we know that the convergence rate of the
Koiter model is 0(61/5), which is the same as that of the model (6.2.4).

The Budianski-Sanders model is a variant of the Koiter model. The only differ-

K

ence is in the flexural strain operator. If in the Koiter model (7.3.1), p is replaced by
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@BS that is defined by

B K 1
53 = rks+ §(b<§mg +b)7%a),

we will get the Budianski-Sanders model. By using the theory of Chapter 3 and the
above relation, we can easily get a convergence or an estimates of the form (7.3.2),
(7.3.3), (7.3.4), or (7.3.5). So the convergence property of the Budianski-Sanders model

is the same as that of Koiter’s.

7.4 The limiting models

For flexural shells, the limiting model is the variational problem (6.5.3) which is

defined on ker B: Find (QO, go,wo) € ker B, such that

1
3 0 (8010 )50 IV = (B0 (4 D

V(¢,y,2) €ker B. (7.4.1)

We let (ge,gf,we) = (Ho,go,wo), and so we have

_ 0 - 1=

We define the corrections wq and wy with (6.5.8) and (6.5.9). The above equation

together with the estimate (6.5.6) or the convergence (6.5.4) prove the convergence rate
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of the form (7.0.2) under the condition of Theorem 6.5.2, or the convergence of the form
(7.0.3) under the condition of Theorem 6.5.1.

For totally clamped elliptic shells, we assume that the shell data satisfy the
smoothness assumption of Section 6.6.4. The limiting model reads: Find (go,wo) €

H& (w) x Lo(w) such that

A
2+ A

/ PV w5y, 2)Vade = - / p3a® 1a5(y, 2)Vadze
w w
+ [ 108 +43 285000 + 0l + 9 + )2 ads
w
YV (y.2) € Hj(w) x Lo(w). (7.4.2)

By construction, we have already shown in Section 6.6.4 that there exists a ( Q ) U, w) € H,

with v = uo, such that

_ ‘ 1/6
T8 w0y NG el S5 (73)
Therefore, we can take (ge, uc,w) = (0, }éo,w). From (7.4.3), we have

OH < 61/6'

gl pgym ey +12° = 2 g 12— 2y S

We define wq and wy by (6.6.13) and (6.6.14). This estimate and the estimate (6.6.12)
(in which @ = 1/6) together lead to an estimate of the form (7.0.2) in which § = 1/6.

The convergence rate of ¥ to the 3D solution in the relative energy norm then is O(el/ 6).
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1
If Tg = ;aaﬁpg = 0, we can take (g,%,w) € H as defined on page 203, and

define (0€, @€, w) in the same way, we then have

OH <€1/5'

_ - 0 =
Dy T3 2 e F 1T~ 2l =

The convergence rate of ¥ to the 3D solution in the relative energy norm then is O(el/ 5)
Note that without }_f = }30, we can not say the above argument furnishes a justification
for the limiting model (7.4.2).

For other membrane-shear shells, the limiting model is defined by (6.7.5), the form
of which is the same as the limiting model for totally clamped elliptic shells, but the
model is defined on the space V]b(w). It is easy to show that there exists (0€, u€,w) € H
such that an estimate of the form (7.1.3) or (7.1.4) hold, but it seems that the best way
to find such (Aéf, 4, w) might be solving the model (6.2.4). The limiting model is hardly

useful.

7.5 About the loading assumption

In our analysis of the shell models, we have assumed that the components of the
odd part of surface forces pg, the components of the weighted even part of surface forces
pé, the components of the body force qg, and the coefficients of the rescaled lateral
surface force components p%), pzi, and p% are all independent of e. This assumption is
different from the assumption assumed in asymptotic theories, see [18]. In this section,
we briefly discuss the justification of the general shell model (6.2.4) under the loading

assumption of asymptotic theories.
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With a slight abuse of notations, we now use pg to denote the components of

the weighted odd part of the surface forces in this section, i.e., pf) = (ﬁz_i_ — ]52)/2 €.

The meanings of pé, qé, and p%, pli, and pé are the same as before. The new loading
assumption then is that pg, pé, qg, and pé, pli, and p% are all independent of e.

With the changed meaning of pg, the form of the resultant loading functional in

the model (6.2.4) will be changed. By replacing p! with €p? in (6.2.5) and (6.2.6), the

loading functional will be changed to fo + € f1 + €2 fo+ €3 f3, in which, the leading

term is given by

Forlo o) = [ 108+ + 6} + i)zl adg + /7 P va
w T

This functional is roughly the same as the loading functional obtained by asymptotic
analysis. By using (3.4.9) and (3.4.10) we can get the asymptotic behavior of the model
solution (0€, u® w®) when e — 0. The justification of the model is otherwise the same
as what we did in Chapter 6. For flexural shells, there is nothing new. For membrane—
shear shells, in the expression of ¢ 0= (lo’ ZO)’ the reformulation of the leading term of

the loading functional (6.7.2), we now have 20 = 0. As a consequence, the convergence

(7.1.3) or the estimate (7.1.4) should be replaced by

€ HéGHL;ym(w) + Hzf - HL;ym(w) + ”ZGHLQ(w) <e (7.5.1)

or

18N pym ) 13 = 20 gy + 12l ) = 0 (=0 (7.5.2)
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These estimates are similar to (7.3.4) and (7.3.5). Therefore, under the new loading

assumption, when the Naghdi model converges, the Koiter also converges. This is the

reason why under this new loading assumption, there is no significant difference between
the Naghdi-type model and the Koiter-type model.

All the other issues that we discussed in the last few sections can be likewisely

discussed under the new loading assumption. In the literature, the classical models are

usually defined under the loading assumption of this section.

7.6 Concluding remarks

The model was completely justified for plane strain cylindrical shells, flexural
shells, and totally clamped elliptic shells without imposing extra conditions on the shell
data. For other membrane—shear shells, the model was only justified under the as-
sumption that the representation (9 € W* of the leading term of the resultant loading
functional is in the smaller space V* and the applied forces on the shell is admissible.
A rigorous analysis for the case of CQ does not belong to V* is completely lacking. By
increasing the number of trial functions in the variational methods, more complicated
models can be derived. It seems that the more involved models might be more accurate
[42] and the range of applicability might also be enlarged.

The mathematical analysis of the derived model given in this thesis is sufficient for
our purpose of proving the model convergence in the relative energy norm, but far from
enough for other purposes. For example, for numerical analysis of the Reissner—-Mindlin
plate model, stronger estimates on the model solution are needed and were established

in [7].
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Index

A — flexural strain operator, 47, 66, 132,
175

Aaﬁ A compliance tensor in plane
strain elasticity, 23

Az’j % — compliance tensor, 107

B — maximum absolute value of curva-
ture tensor components, 27, 154

B — membrane—shear strain operator,
48, 66, 133, 175

CBNY  elasticity tensor in plane
strain elasticity, 23

ciikl elasticity tensor, 107

F — Young’s modulus, 170

H —mean curvature of middle surface,
97

H — space on which the model is de-
fined, 47, 66, 120, 151

K — Gauss curvature of middle surface,
97

L — arc length of middle curve, 26
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Pi, Pi, P2i — coefficients of scaled lateral
surface force components, 179
Pei — component of scaled weighted even
part of surface forces, 179
Pg — component of scaled odd part of
surface forces, 179
P — component of scaled weighted
even part of surface forces
for cylindrical shell, 51
P — component of scaled odd part
of surface forces for cylindrical
shell, 51
Qz — component of scaled transverse
average of body force
density, 179
QY — component of scaled transverse
average of body force density
for cylindrical shell, 51
Q%, — component of scaled transverse

moment of body force density

for cylindrical shell, 51



R — radius of sphere, 116

S — middle curve or middle surface, 26,
96

U — space containing range of flexural
strain operator, 47, 66, 132, 175

V' — closure of W, 47, 66, 133, 176

W — range of membrane—shear strain
operator, 68, 133, 175

FZ% — Christoffel symbol on cross sec-

tion of cylinder, 21

T7F — Christoffel symbol, 99

rl 5 — Chiistoffel symbol on middle sur-
face, 98

I'g — left side of the cross section of a
cylinder, 26

I'y, — right side of the cross section of a
cylinder, 26

I' p — clamping part of shell lateral sur-
face, 105, 150

I'r — traction part of the lateral surface,
105, 150

I't. — upper and lower surfaces, 26, 105,

150

243
Q¢ — shell body, 26, 98, 150
F(y — leading term of scaled resultant
loading functional, 51, 179
F'{ — higher order term of scaled resul-
tant loading functional, 51
a’ — contravariant basis vector on mid-

dle surface, 97

a; — covariant basis vector on middle
surface, 96
aq — covariant basis vector on middle

curve of cylindrical shell cross
section, 26

fo — leading term of resultant loading
functional, 34, 122, 153

f1 — higher order term of resultant
loading functional, 34, 122, 153

gi — contravariant basis vector in the
shell, 98

g; — covariant basis vector in the shell,
98

(07

g% — contravariant basis vector on the

cross section of cylinder, 21



g, — covariant basis vector on the cross
section of cylinder, 21

n® — unit outer normal on lateral sur-
face, 105

n4 — unit outer normals on upper and
lower surfaces of shell, 105

pr — lateral surface force density, 106,
150

p+ — upper and lower surface force den-
sities, 106, 150

q — body force density, 106, 150

v — displacement field reconstructed
from the model solution,
128, 155

v* — displacement solution of 3D elas-
ticity equations, 108

® — mapping defining curvilinear coor-
dinates on shells, 21, 26, 98

¢ — mapping defining curvilinear coor-
dinates on middle curve or mid-
dle surface, 26, 96

o — stress field reconstructed from the

model solution, 128, 155

244
o* — stress field determined from the
3D elasticity equations, 108
Xq3 — strain tensor in plane strain elas-
ticity, 23
Xjj — strain tensor, 107
n — ratio of lateral surface area element,
106
v — middle surface boundary, 96

~v(u,w) — membrane strain on middle

curve of cross section of cylin-

drical shell, 33

~¢ — membrane strain engendered by

cylindrical shell model solution,
37

fyg 3 membrane strain engendered by
model solution, 124, 155

’yO — limit of membrane strain of cylin-
drical shell, 53

'yg 53 limit of membrane strain, 135,
192, 206

vp — clamping part of the middle sur-

face boundary, 104



v — traction part of the middle surface
boundary, 104

YaB — membrane strain on middle sur-
face, 121, 152

kqp — reformulation of loading func-
tional, 135, 206

A — Lamé coefficient, 23

¥ =2u\/(2u + N), 33

@ — Lamé coeflicient, 23

u% = 5%‘ — tbg, 102

v — Poisson ratio, 170

w — coordinate domain of middle sur-
face, 21, 96

w® — coordinate domain of the shell, 26,
98

w! — scaled coordinate domain of the
shell, 173

p — ratio of volume element, 102

p(0,u, w) — flexural strain in cylindrical
shell, 33

p¢ — flexural strain engendered by cylin-

drical shell model solution, 37

245

P, 3 flexural strain engendered by the

model solution, 124, 155

,00 — flexural strain engendered by the

limiting flexural cylindrical shell

model solution, 52

pg 3 flexural strain engendered by the

limiting flexural model solution,
180

,o]avﬁ — Naghdi’s definition of flexural
strain, 122, 153

Paf — flexural strain, 121, 122, 152

o*@B __ stress solution of plane strain

elasticity equations, 24

o] stress solution of 3D elasticity

equations, 108

oll o1t o1l 12, 622 522

stress field reconstruction func-
tions for cylindrical shells, 37,

38

af  _aBf o  3a
9% > %1 » %2 ,

33 33
» 90 o1 —

I UO)

stress field reconstruction func-
tion for spherical shell and gen-

eral shells, 125, 126, 156, 157



7(0,u,w) — transverse shear strain in
cylindrical shell, 33
7¢ — transverse shear strain engendered

by cylindrical shell model solu-

tion, 37

7§, — transverse shear strain engendered
by model solution, 124, 155

7'8 — limit of transverse shear strain,

135, 192, 206

To — transverse shear strain, 121, 152

0¢ — component of cylindrical shell
model solution, 33

65, — component of model solution, 121,
152

90 — component of solution of limiting
cylindrical shell model, 52

08 — component of limiting model solu-
tion, 179

ﬂf — rescaled lateral surface force com-
ponent, 112, 118

ﬁit — rescaled upper and lower surface

components, 112, 118, 150

246

P} — rescaled upper and lower surface
components in cylindrical shell,
31

cji — rescaled component of body force
density, 112, 118, 151

G® — rescaled component of body force
density in cylindrical shell, 30

v; — rescaled displacement components,
113

U — rescaled displacement
component in cylindrical shell,
32

5P — rescaled stress tensor
component in cylindrical shell,
29

5 — rescaled stress tensor components,
109

0qp3 — constitutive residual for cylindri-
cal shell problem, 41

0ij — constitutive residual, 129, 169

50 — Lagrange multiplier associated
with limiting flexural shell

model, 73, 180



CO — Riesz representation of reformu-
lated leading term of loading
functional, 52, 74, 78, 84, 135,
192, 206

(Q — reformulated leading term of load-
ing functional, 73, 84, 134, 177,
204

C‘é‘ — inverse of u%, 103

a — determinant of covariant metric ten-
sor of middle surface, 102

a®AY — elasticity tensor of the shell,
121, 152

a®P — contravariant metric tensor of
middle surface, 97

Uof — covariant metric tensor of middle
surface, 97

b — curvature of middle curve or sphere,
27, 116

b% — mixed curvature tensor of middle
surface, 97

b, 8 covariant curvature tensor of
middle surface, 97

Caff — the third fundamental form, 97

247

d% — cofactor of the mixed curvature
tensor, 103

g — determinant of metric tensor of the
shell, 27, 98

go‘ﬂ — contravariant metric tensor on
cylindrical shell cross
section, 21, 27

9o — covariant metric tensor on cylin-
drical shell cross section, 21, 27

gij — contravariant metric tensor of the
shell, 98

gij — covariant metric tensor of the
shell, 98

n:‘ — covariant component of unit outer
normal on lateral surface, 105,
119

nq — covariant components of the unit
outer normal on the boundary of
shell middle surface , 102, 105,
119

p%), pzi, p% — coefficients of rescaled lat-
eral surface force density, 120,

151



p% — component of lateral surface

force, 106

pg — component of lateral surface
force average, 120

p%n — component of lateral surface
force moment, 120

pé — component of weighted even part
of upper and lower surface
forces, 119, 151

pg — component of odd part of upper
and lower surface
forces, 119, 151

pit — components of upper and lower

surface forces, 106

pg‘ — component of weighted even part
of upper and lower surface
forces for cylindrical shell, 31

ps — component of odd part of upper

and lower surface forces for
cylindrical shell, 31

p§ — component of surface force densi-
ties on upper and lower surfaces

of cylindrical shell, 28
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qi — body force component, 106
qé — component of transverse average of
body force density, 151
q® — component of body force density
in cylindrical shell, 23, 28
q§ — component of transverse average of

body force density in cylindrical

shell, 30

gy, — component of transverse moment
of body force density in cylindri-
cal shell, 30

r — extra term in the integration iden-
tity, 165

u® — component of cylindrical shell
model solution, 33, 69

ug, — component of model solution, 121,

152

ud — imiting model solution, 52, 73

ug — component of limiting model so-
lution, 179, 193

vs, — component of displacement solu-

tion of plane strain elasticity

equations, 24



vq — component of displacement field
reconstructed from solution of
cylindrical shell model, 22, 41

w€ — component of model solution, 33,

121, 152

wd — component of limiting model so-
lution, 52, 179, 193

wy — transverse deflection correction,
40, 138, 181, 195, 212

w9 — transverse deflection correction,

40, 181, 195, 212
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