
TETRAHEDRAL BISECTION AND ADAPTIVE FINITE
ELEMENTS

DOUGLAS N. ARNOLD∗ AND ARUP MUKHERJEE†

Abstract. An adaptive finite element algorithm for elliptic boundary value prob-
lems in R3 is presented. The algorithm uses linear finite elements, a-posteriori error
estimators, a mesh refinement scheme based on bisection of tetrahedra, and a multi-grid
solver. We show that the repeated bisection of an arbitrary tetrahedron leads to only
a finite number of dissimilar tetrahedra, and that the recursive algorithm ensuring con-
formity of the meshes produced terminates in a finite number of steps. A procedure for
assigning numbers to tetrahedra in a mesh based on a-posteriori error estimates, indicat-
ing the degree of refinement of the tetrahedron, is also presented. Numerical examples
illustrating the effectiveness of the algorithm are given.

Key words. finite elements, adaptive mesh refinement, error estimators, bisection
of tetrahedra

AMS(MOS) subject classifications. 65N50.

1. Introduction. In this article, we describe an algorithm for the
accurate and efficient computation of solutions to elliptic boundary value
problems in R3. The algorithm creates a sequence of adapted tetrahedral
meshes starting form an initial coarse tetrahedral mesh, and the solution is
computed on each mesh using the hierarchy of meshes below it. Piecewise
linear finite elements are used to discretize the problem on a mesh, the
resulting linear system is solved using a multi-grid solver, and a-posteriori
error estimators based on estimating the residual in an appropriate norm
determine which portions of the current mesh need to be refined. Individ-
ual tetrahedra marked for refinement are bisected, and further bisection is
employed to ensure that the new (adapted) mesh is conforming. We prove
that the recursive algorithm that ensures mesh conformity terminates, and
also prove that the tetrahedral shapes produced via repeated bisection do
not degenerate.

In particular, we consider boundary value problems of the form

−div(A∇u) + bu = f in Ω,(1.1)
u = gD on ΓD,(1.2)

A∇u · n+ cu = gN on ΓN ,(1.3)

where Ω ⊂ R3 is an open, bounded, polyhedral domain with boundary
Γ = Γ̄D ∪ Γ̄N , and n is the unit outward normal to Γ. The coefficients
aij of the symmetric matrix A are assumed to be piecewise continuously

∗Department of Mathematics, The Pennsylvania State University, University Park,
PA 16802. Email: dna@math.psu.edu
†Department of Mathematics–Hill Center, Rutgers University, 110 Frelinghuysen Rd.,

Piscataway, NJ 08854-8019. Email: arup@math.rutgers.edu

1



2 DOUGLAS N. ARNOLD AND ARUP MUKHERJEE

differentiable while b and c are piecewise continuous with respect to the
tetrahedral meshes introduced later. Also assume that f and gN are piece-
wise continuous, and gD is the restriction to ΓD of a continuous square
integrable function uD. Further, assume that the differential operator in
(1.1) is elliptic, and write the weak formulation of (1.1)–(1.3) as:

Find û ∈ VD such that a(û, v) = l(v) for all v ∈ V0,(1.4)

where V0 (resp. VD) are spaces of H1 functions on Ω which are zero (resp.
equal to gD) on ΓD, and the forms a : H1(Ω)×H1(Ω)→ R and l : H1(Ω)→
R are

a(u, v) =
∫

Ω

[(A∇u) · ∇v + buv] dx+
∫

ΓN

cuv ds,(1.5)

l(v) =
∫

Ω

fv dx+
∫

ΓN

gNv ds.(1.6)

We now introduce some notation that facilitates the description of the
discrete problem associated with (1.4) and will be used later. For a tetra-
hedron τ let N (τ), E(τ), and F(τ) denote the set of its vertices, edges, and
faces, respectively. A mesh T of the domain Ω is a set of closed tetrahe-
dra with disjoint interiors whose union is Ω̄. The vertex, edge, and face
sets of T are denoted by N (T ), E(T ), F(T ) respectively (the Dirichlet,
Neumann, and interior nodes of T are represented by ND(T ), NN (T ), and
NΩ(T ), with similar definitions and for the corresponding faces and edges).
A mesh is conforming if the intersection of any two distinct tetrahedra in
it is either a common face, a common edge, a common vertex, or empty.
Assume that the meshes conform to the subdivision of the boundary into
its Dirichlet and Neumann parts in the sense that any face contained in
Γ belongs entirely to ΓD or ΓN . Denote the diameter of τ by h(τ) and
by ρ(τ) the diameter of the maximum ball contained in τ , and define by
σ(τ) = h(τ)/ρ(τ) the shape constant of τ (for a mesh T , the mesh size
h(T ) is the maximum diameter of all tetrahedra in T and the shape con-
stant σ(T ) is defined similarly). A family of meshes {T } is shape regular
if infT h(T ) = 0 and supT σ(T ) <∞. Using the subspaces

X(T ) =
{
v ∈ H1(Ω) : v|τ ∈ P1(τ) for every τ ∈ T

}
,

V0(T ) = {v ∈ X(T ) : v(ν) = 0 for all ν ∈ ND(T )} ,
VD(T ) = {v ∈ X(T ) : v(ν) = gD(ν) for all ν ∈ ND(T )} ,

where P1(τ) is the space of linear functions on τ , the discrete problem for
(1.4) is:

Find uT ∈ VD(T ) such that a(uT , v) = l(v) for all v ∈ V0(T ).(1.7)

It is well known (see, for example, [11]) that if the bilinear form a is coercive,
(1.4) has a unique solution û. Moreover, for a family {T } of conforming,



TETRAHEDRAL BISECTION AND ADAPTIVE FINITE ELEMENTS 3

shape regular meshes of Ω, (1.7) has a unique solution uT for every mesh
in the family, these converge to û in H1 as the mesh size goes to zero, and
there exists a constant C such that if û ∈ H2(Ω), then

‖û− uT ‖ ≤ Ch(T )‖û‖2.(1.8)

In general, locally adapted meshes contain tetrahedra with widely varying
diameters and the mesh diameter is not a useful measure of the size of such
meshes. It is common to use the number of nodes in the mesh instead. A
finite element method is said to be of order α if the discretization error
decreases like N−α/3 where N = card(N (T )), in the H1 or energy norm.
Since for a uniform mesh T , N−1/3 = O(h(T )), our algorithm should have
an optimal order of 1.

Figure 1 shows the structure of the algorithm used for solving (1.1)–
(1.3). It produces a sequence of nested meshes Tk and corresponding finite
element solutions uTk . The meshes are adapted to the solution of the
problem being solved via the error estimator.

1. Begin with an initial coarse conforming tetrahedral mesh T0,
and set k = 0.
Repeat until accurate solution is obtained:

2. On the current mesh Tk discretize the problem using piecewise
linear finite elements.

3. Solve the problem (1.7) using full multi-grid to obtain the
approximate solution uTk (on the coarse mesh T0, uT0 is found
using an exact solver).

4. Assign error indicators ητ to each tetrahedron in the current
mesh and a number qτ based on ητ indicating the degree of
refinement needed for τ .

5. Unless stopping criterion is met, refine the mesh as indicated.
Refine further to restore conformity thus obtaining the next
finer mesh Tk+1.

Fig. 1. Structure of the code.

Remark: A simple modification the code can be used to solve semi-
linear elliptic boundary value problems of the form

−div(A∇u) + f(x, u) = 0 in Ω,(1.9)

with the boundary conditions (1.2)–(1.3). The generation of initial data for
computing the gravity waves emanating from the spiraling coalescence of
two black holes (and many other applications) involves the solution of such
boundary value problems. Using Newton’s iteration to reduce the semi-
linear problem (1.9) to a sequence of linear boundary value problems, and
solving these linear problems by the algorithm described in figure 1, we have



4 DOUGLAS N. ARNOLD AND ARUP MUKHERJEE

efficiently computed accurate initial data for binary black hole systems (for
a more detailed description of the equations and physical model together
with some results, see [2]).

In section 2, we describe the residual error estimator used in the code
together with an algorithm for determining the numbers qτ . The numbers
qτ are chosen so as to ensure that the sequence of meshes have geometric
increase in the number of nodes, and the error is approximately equidis-
tributed on each mesh. The mesh refinement algorithm used is presented
in section 3. The basic building block for mesh refinement is bisection
of tetrahedra. We show that given a conforming mesh T and a subset
S ⊂ T of tetrahedra in it, bisection can be effectively used to generate
a conforming mesh T ′ such that all tetrahedra in S have been bisected.
The tetrahedral shapes do not degenerate (even after an arbitrary number
of bisections of a tetrahedron), and the recursive algorithm that ensures
conformity of the adapted mesh T ′ terminates without over refining the
mesh T . We also discuss the relationship of our mesh refinement algorithm
with other bisection based algorithms. Finally, we present some numerical
results in section 4.

2. Error Estimator. If the residual functional, R : H1(Ω) → V ∗0 , is
defined as

〈R(u), v〉 = a(u, v)− l(v) = a(u− û, v) for u ∈ H1(Ω) and v ∈ V0,

then for any u ∈ VD, ‖û−u‖1 ≤ C‖R(u)‖V ∗0 . Integrating 〈R(u), v〉 by parts,
taking u = uT and using the equality 〈R(uT ), vT 〉 = 0 for any vT ∈ V0(T ),
and choosing the Clément interpolant for vT leads to the estimate

‖û− uT ‖1 ≤ C
(∑
τ∈T

h(τ)2‖ − div(A∇uT ) + buT − f‖20;τ

+
∑

µ∈FΩ(T )

h(µ) ‖[A∇uT · nµ]µ‖20;µ(2.1)

+
∑

µ∈FN (T )

h(µ) ‖A∇uT · nµ + cuT − gN‖20;µ

)1/2

,

where C is a constant depending on the shape constant of the mesh and [ϕ]µ
is the jump of ϕ across µ. The integrals involved in (2.1) may be calculated
using either quadrature or by replacing the data by simpler functions (pro-
jection onto appropriate spaces) and then using exact integration. Note
that on any τ ∈ T , div(A∇uT ) = divA · ∇uT , since uT is piecewise linear
and div is applied to A column-wise. Letting ϕτ (resp. ϕµ) denote the
projection of a continuous function ϕ onto the space P0(τ) (resp. P0(µ)),
we define the residual error estimator ητ as the easily computable quantity

ητ =
(
h(τ)2‖ − (divA)τ · ∇uT ) + bτuT − fτ‖20;τ



TETRAHEDRAL BISECTION AND ADAPTIVE FINITE ELEMENTS 5

+
1
2

∑
µ∈F(τ)∩FΩ(T )

h(µ) ‖[Aµ∇uT · nµ]µ‖20;µ(2.2)

+
∑

µ∈F(τ)∩FN(T )

h(µ) ‖Aµ∇uT · nµ + cµuT − (gN )µ‖20;µ

)1/2

.

Observing that each interior face is counted twice in a summation over all
tetrahedra in the mesh, we see that

‖û− uT ‖1 ≤ C
(∑
τ∈T

η2
τ + consistency terms

)
.

Verfürth [14] has shown that ητ is bounded by the H1 norm of the error
on a set of tetrahedra neighboring τ together with the L2 norms of some
consistency terms. The expression (2.2) for ητ is used in the code (note that
it suffices to evaluate ϕτ (resp. ϕµ) at a single point on τ (resp. µ) and we
choose the barycenter). Residual error estimators like ητ were introduced
by Babus̆ka and Rheinboldt [3], and our analysis and computation follows
the outlines provided by Verfürth [14]. Details of the derivations may be
found in [10].

The estimator ητ is used to assign numbers qτ to every tetrahedron in
T so that the refined mesh T ′ obtained after bisecting each tetrahedron in T
qτ times (some additional bisection may be required to ensure a conforming
mesh) meets the following requirements.

• The number of nodes in T ′ are approximately 2N (T ) (this makes
the multi-grid solver efficient).
• The error is approximately equidistributed on T ′.

The two goals stated above are achieved in practice by using the expression

qτ = − ln[(η̄T
′
)2 − η2

τ ]
ln 25/3

, where η̄T
′

=
2−2/3

2card(T )

∑
τ∈T

η2
τ .(2.3)

For an asymptotic analysis leading to the expression (2.3), see [10].

3. Mesh Refinement. The basic component of our mesh refinement
algorithm is tetrahedral bisection (introducing a new vertex on a selected
edge–called the refinement edge—of the tetrahedron and creating two new
edges joining the new vertex to the two vertices that do not lie on the re-
finement edge). An alternative is to use octasection (cutting a single tetra-
hedron into eight in a particular pre-determined manner) to sub-dividing
individual tetrahedra. Bey [6], generalizing the work of Bank [5] in R2,
uses octasection combined with bisection to generate adapted tetrahedral
meshes. A case-by-case analysis of the many intermediate strategies is
needed to guarantee that the meshes produced are conforming and that
the tetrahedra in them do not degenerate. Algorithm LocalRefine intro-
duced in this section produces a conforming mesh T ′ from a conforming



6 DOUGLAS N. ARNOLD AND ARUP MUKHERJEE

mesh T and a subset S of tetrahedra to be sub-divided, and uses only
bisection of individual tetrahedra. Moreover, in applications where a se-
quence of nested meshes Tk are produced from a coarse conforming mesh
T0, LocalRefine guarantees that only a finite number of similarity classes
are produced for every tetrahedron in the initial mesh.

Special care is needed in choosing the refinement edges of the children
produced via bisection in order to ensure that the tetrahedral shapes do not
degenerate. One approach, which follows its analogue in R2, is to always
choose the longest edge of a tetrahedron as its refinement edge. Rivara
and coworkers [12, 13] conjecture and provide numerical evidence that this
does not lead to element degeneration in R3. The algorithm of Liu and
Joe [7] is also motivated by longest edge bisection. Their algorithm uses
a mapping between an arbitrary tetrahedron and a tetrahedron of equal
volume having a special shape. The special tetrahedron and its children are
bisected using longest edge bisection, with the mapping determining the
corresponding refinement edges for the tetrahedron and its children. They
prove a bound of 168 for the number of similarity classes of tetrahedra
produced. Below we shall give a sharp bound of 72 for our algorithm.

Other approaches for tetrahedral bisection are all based on general-
izations of opposite-edge (or newest-vertex) bisection of triangles in R2.
Opposite-edge bisection guarantees that repeated bisection of an arbitrary
triangle yields at most four similarity classes, and may be described as fol-
lows: for every triangle in the initial mesh choose an arbitrary edge as its
refinement edge, and for each child created via bisection, choose the edge
opposite the newest vertex to be its refinement edge. A naive generaliza-
tion to R3 quickly leads to degenerate shapes as the same edges get cut
repeatedly. Bänsch [4] developed an algorithm for local tetrahedral mesh
refinement based on the generalization of opposite-edge bisection. He shows
that the tetrahedral shapes produced do not degenerate but does not prove
finiteness of similarity classes. Our algorithm is essentially equivalent to
that of Bänsch, but uses a formulation that we find easier to state and
analyze. A data structure called the marked tetrahedron, which is key to
our formulation is introduced. In particular, a marked tetrahedron τ is a
4-tuple (N (τ), rτ , (mϕ)ϕ∈F(τ), fτ ) where

• N (τ) is the vertex set of τ ;
• rτ ∈ E(τ) is the refinement edge of τ ;
• mϕ ∈ E(ϕ) is the marked edge of ϕ, with mϕ = rτ if rτ ⊂ ϕ;
• fτ ∈ {0, 1} is the flag for τ .

The faces of τ containing rτ are the refinement faces and rτ is taken as
the marked edge for both refinement faces. The two non-refinement faces
also have a marked edge and each tetrahedron has a boolean flag fτ . Each
marked non-refinement edge of a marked tetrahedron is either adjacent of
opposite to the refinement edge. All marked tetrahedra are classified into
types as follows (cf. Figure 2).

• Type P , planar: the marked edges all lie on a plane. This is



TETRAHEDRAL BISECTION AND ADAPTIVE FINITE ELEMENTS 7

P

O M

A

Fig. 2. The four types of marked tetrahedra. Each marked edge is indicated by
a double line and the refinement edge is marked for both faces containing it. Each
tetrahedron is shown in three dimensions and cut open (unfolded) into two dimensions.

further sub-classified into type Pf (Planar-flagged) or Pu (Planar-
unflagged) according to whether fτ is 1 or 0.
• Type A, adjacent: the marked edges for the non-refinement faces

are adjacent to rτ , but are not coplanar.
• Type O, opposite: the marked edges of the non-refinement faces do

not intersect rτ . In this case, a pair of opposite edges are marked
in the tetrahedron–one for the two refinement faces intersecting it
and another for the two non-refinement faces intersecting it.
• Type M , mixed: the marked edge of exactly one non-refinement

face intersects rτ .
We impose that the flag fτ = 0 for types A, O, and M . Thus, the
flag is only relevant for planar tetrahedra.

If τ1 and τ2 are the children of τ , a face ϕ ∈ F(τi) is called an inherited
face if ϕ ∈ F(τ), a cut face if ϕ ⊂ ϕ′ for some ϕ′ ∈ F(τ), and a new face
otherwise.

Algorithm BisectTet is described in figure 3 and figure 4 shows the
types of tetrahedra output by BisectTet. The two children τ1 and τ2
output by BisectTet always have the same type. Moreover, types M and
O are never output by BisectTet—thus, in an adaptive mesh refinement
algorithm that uses BisectTet, these can only occur in the initial mesh.

Maubach [8] generalizes opposite-edge bisection of triangles to
BisectSimplex, an algorithm for bisecting n-simplices in Rn. In [1], we
prove the following theorem bounding the number of similarity classes pro-
duced by the repeated bisection of an arbitrary n-simplex.

Theorem 3.1. When an arbitrary n-simplex is bisected repeatedly
using BisectSimplex, at most 2n−2n! similarity classes arise in each gen-
eration and the set of similarity classes depends on the generation modulo



8 DOUGLAS N. ARNOLD AND ARUP MUKHERJEE

Algorithm {τ1, τ2} = BisectTet(τ)
input: marked tetrahedron τ
output: marked tetrahedra τ1 and τ2

1. Bisect τ by joining the midpoint of its refinement edge to
each of the two vertices not lying on the refinement edge.
This defines N (τi) for i = 1 and 2.

Mark the faces of the children as follows:
2. The inherited face inherits its marked edge from the par-

ent, and this marked edge is the refinement edge of the
child.

3. On the cut faces of the children mark the edge opposite
the new vertex with respect to the face.

4. The new face is marked the same way for both children. If
the parent is type Pf , the marked edge is the edge connect-
ing the new vertex to the new refinement edge. Otherwise
it is the edge opposite the new vertex.

5. The flag is set in the children if and only if the parent is
type Pu.

Fig. 3. Algorithm BisectTet.

n. Thus in two dimensions there are only two classes of each generation
and only four total. In three dimensions the corresponding numbers 12
and 36. By computation on a particular tetrahedron we showed that these
numbers are sharp [1]. Maubach recently proved that the result is sharp
for all n [9]. Further, for the particular case n = 3, we construct a 2 to 1
and onto mapping from the subset of 3-simplices which can be input into
BisectSimplex to the subset of all marked tetrahedra with adjacent mark-
ings (the marked edges for the non-refinement faces are adjacent to rτ–the
tetrahedra may be planar or of type A). This shows that the repeated
application of BisectTet to an arbitrary marked tetrahedron produces a
maximum of 36 similarity classes. Since one application of BisectTet to
a tetrahedron of type M or O produces children of type Pu, the repeated
bisection of an arbitrary marked tetrahedron will produce at most 72 sim-
ilarity classes.

Thus, even though our algorithm is closely related to that of Bänsch,
we can prove that only a finite number of similarity classes ever arise and
this number is optimal. The marked tetrahedron data-structure is also use-
ful in proving that LocalRefine, the recursive algorithm used to generate
adapted sequence of meshes, terminates.

In order to successfully implement step 5 of the algorithm in figure 1,
an algorithm that begins with a conforming tetrahedral mesh and a subset



TETRAHEDRAL BISECTION AND ADAPTIVE FINITE ELEMENTS 9

u

P

A

M

O

P A

P

P

Pf

u

u

P

f

u

Fig. 4. Bisection rules for marked tetrahedra.

of tetrahedra pre-selected for refinement and returns a conforming tetrahe-
dral mesh in which all of the pre-selected tetrahedra have been sub-divided
is needed. Algorithm LocalRefine, based on BisectTet, performs this
duty. If ν is a vertex of some tetrahedron in a mesh and ν belongs to an-
other tetrahedron τ but is not a vertex of τ , we say that ν is a hanging node
of τ (i.e., if τ ∈ T and ν ∈ N (T ), ν is a hanging node of τ if ν ∈ τ \N (τ)).
A mesh is conforming if no tetrahedron in it is has a hanging node and
every face of every tetrahedron in the mesh either belongs to the boundary
or is a face of another tetrahedron in the mesh. A mesh will be called
marked if each tetrahedron in it is marked. A marked conforming mesh is
conformingly-marked if each face has a unique marked edge (that is, when
a face is shared by two tetrahedra, the marked edge is the same for both).
The tetrahedra in any conforming mesh may be marked so as to yield a
conformingly-marked mesh. For example, this may be accomplished by the
following procedure. Strictly order the edges in the mesh in an arbitrary



10 DOUGLAS N. ARNOLD AND ARUP MUKHERJEE

but fixed manner, e.g., by using length with a well-defined tie-breaking
rule. Then choose the maximal edge of each tetrahedron as its refinement
edge and the maximal edge of each face as its marked edge. Unset the flags
on all the tetrahedra in the mesh.

Algorithm T ′ = LocalRefine(T ,S)
input: conformingly-marked mesh T and S ⊂ T
output: conformingly-marked mesh T ′

1. T = BisectTets(T ,S)
2. T ′ = RefineToConformity(T )

Fig. 5. Algorithm LocalRefine

The algorithm in the first step of figure 5, BisectTets is trivial: we simply
bisect each tetrahedron in S:

BisectTets(T ,S) = (T \ S) ∪
⋃
τ∈S

BisectTet(τ).(3.1)

In the second step, we perform further refinement as necessary to obtain a
conforming mesh (algorithm RefineToConformity is described in figure 6).

Algorithm T ′ = RefineToConformity(T )
input: marked mesh T
output: marked mesh T ′ without hanging nodes

1. set S = {τ ∈ T | τ has a hanging node }
2. if S 6= ∅ then

T = BisectTets(T ,S)
T ′ = RefineToConformity(T )

3. else
T ′ = T

Fig. 6. Algorithm RefineToConformity

The recursion in figure 6 could conceivably continue forever. Moreover,
even if the recursion terminates, the output mesh may not be conforming (a
mesh without hanging nodes can nonetheless be non-conforming; cf., Fig-
ure 7). However, the following theorem, which is proved in [1] ensures that
the recursion does terminate in the application of RefineToConformity
in algorithm LocalRefine and that the resulting output mesh is confor-
mingly-marked. Moreover, it gives a bound on the amount of refine-



TETRAHEDRAL BISECTION AND ADAPTIVE FINITE ELEMENTS 11

ment which can occur before termination. To state the theorem pre-
cisely, we consider an initial marked mesh T0, set Q0 = T0, and Qk+1 =
BisectTets(Qk,Qk), for k = 0, 1, . . .. Thus, Q1 consists of all children
of tetrahedra in the initial mesh, Q2 of all grandchildren, etc. We assign
generation k to all tetrahedra in Qk. The proof of the theorem depends on
the classification of the edges that arise from an unflagged marked tetra-
hedron and uses the intermediate result that the types of tetrahedra and
the generation of the edges occuring in Qk can be obtained explicitly and
that the meshes Q3k are conformingly-marked (for details see [1]).

Theorem 3.2. Let T0 be a conformingly-marked mesh with no
flagged tetrahedra. For k = 0, 1, . . ., choose Sk ⊂ Tk arbitrarily, and
set Tk+1 = LocalRefine(Tk,Sk). Then for each k, the application of
RefineToConformity from within LocalRefine terminates producing a
conformingly-marked mesh, and each tetrahedron in Tk has generation at
most 3k. Moreover, if the maximum generation of a tetrahedron in Tk
is less than 3m for some integer m, then the maximum generation of a
tetrahedron in Tk+1 is less than or equal to 3m.

Fig. 7. A non-conforming mesh without hanging nodes (the barycenter is NOT a
vertex of the mesh).

The marked tetrahedron data structure is essential to guarantee con-
formity since the assignment of a marked edge ensures that two tetrahedra
sharing a common face are not bisected inconsistently. Also, the flag plays
a key role in the analysis. If the requirement that the planar marked tetra-
hedra in the initial mesh are unflagged is removed, Theorem 3.2 need not
be valid.

4. Numerical Results. The code was run on a variety of problems
with known solutions to test its performance. In this section, we report
on the typical performance for two problems posed on [0, 1]3. The coarse
mesh T0 is taken to be a uniform mesh having 96 tetrahedra and 35 nodes.
For the first problem we set A = I, the identity matrix, b = 0, ΓN = ∅,
and gD = uex in (1.1)–(1.3) with

uex = (x2 − x)(y2 − y)(z2 − z)e−α[(x−a)2+(y−b)2+(z−c)2].(4.1)

In particular, we solve −∆u = f on [0, 1]3 where f is chosen such that û
satisfies the equation (the exact solution is smooth but strongly peaked at



12 DOUGLAS N. ARNOLD AND ARUP MUKHERJEE

(a, b, c) ∈ R3 for large values of α). For our second example, we solve the
semi-linear problem −∆u+u3 = h with ΓN = ∅, gD = û = (xyz)α/2 and h
chosen so that the exact solution satisfies the equation (for moderately large
values of α most of the variation in the exact solution occurs in the vicinity
of (1, 1, 1)). On each mesh Tk, the semi-linear problem is linearized around
the current discrete solution and the resulting linear problem is solved.
The process is repeated until a final (good) approximation is obtained on
the current mesh and this final approximation is used for the linearization
process on the next mesh (obtained by employing the error estimators for
the linear problem and using LocalRefine). All integrals involved in the
computation of errors, as well as those appearing in the computation of the
stiffness matrices and the right hand sides, are evaluated using quadrature
rules. The linear systems are solved using a standard V -cycle multi-grid
solver. For the numerical tests, the stopping criterion is that we compute
solutions using the highest possible number of nodes allowed on our ma-
chine (we performed our calculations on a 1993 DEC 3000 model 500 with
a single 150 MHz Alpha processor).

We show for both problems that the algorithm in figure 1 converges
with optimal order 1 in the H1 (equivalently energy) norm. We also report
the convergence rate in the L2 norm (under some additional assumptions
on the boundary value problem (1.1)–(1.3) this is expected to be 2 and
these smoothness assumptions are satisfied by the problems we solve). The
error plots are on a log-log scale and we plot the error against N−1/3 where
N is the number of nodes in the mesh. Figures 8 and 9 show the errors
and rates for the two problems (lines with slopes 1 and 2 are shown for
easy comparison). Using uniform refinement in problem 1, the finest mesh
has 68, 705 nodes and a relative percentage energy error of approximately
15.85% while the maximum number of nodes using adaptive refinement
are 62, 738 and the corresponding relative percentage energy error is 4.95%.
The numbers for problem 2 are 14.24% using uniform refinement, and 2.3%
using the finest adapted mesh with 59, 323 nodes.

In figure 10 we show how well the meshes adapt to the different features
of the solutions for the two problems. For problem 1 the intersections of
the tetrahedra with a plane are shown slightly shrunk to improve visibility
while the figure for problem 2 shows the edges of the tetrahedra intersecting
the boundary. The other three faces of the unit cube show a uniform mesh
for problem 2 (this is expected–the solution and its derivatives are zero on
these faces).

Finally, figure 11 shows a plot of the CPU time versus the number of
nodes in the mesh for problem 2. The plot shows that the computation
time is nearly proportional to the degrees of freedom (as is to be expected
of a fast multi-grid solver).

REFERENCES



TETRAHEDRAL BISECTION AND ADAPTIVE FINITE ELEMENTS 13

[1] D. N. Arnold, A. Mukherjee, and L. Pouly, Locally adapted tetrahedral
meshes using bisection, Submitted to SIAM J. Sci. Comp. (1997). (available
at http://www.math.psu.edu/dna/publications.html)

[2] D. N. Arnold, A. Mukherjee, and L. Pouly, Adaptive finite elements and
colliding black holes, Numerical analysis 1997: Proceedings of the 17th Bi-
ennial Conference on Numerical Analysis, Addison Wesley, D. F. Griffits and
G. A. Watson, eds. (1998).

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

Fig. 8. Problem 1 with α = 100, (a, b, c) = (0.25, 0.25, 0.25). The energy (◦)
and L2 (×) errors and rates. The plots with lines joining the ◦ (resp. ×) show the
energy (resp. L2) errors for uniform refinement while the disjoint ones are for adaptive
refinement.

10
−2

10
−1

10
0

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Fig. 9. Problem 2 with α = 20. The energy (◦) and L2 (×) errors and rates. The
plot with lines joining the ◦ (resp. ×) show the energy (resp. L2) errors for uniform
refinement while the disjoint ones are for adaptive refinement.



14 DOUGLAS N. ARNOLD AND ARUP MUKHERJEE

Fig. 10. Cut along the plane x = 1/4 for Problem 1 (the mesh has 11, 418 tetrahedra
and 2, 116 nodes) and a view of the locally adapted mesh for Problem 2 (5, 988 tetrahedra
and 1, 321 nodes)—the x = 1, y = 1, and z = 1 faces are shown.

[3] I. Babus̆ka and W. C. Rheinboldt, Error estimates for adaptive finite element
computations, SIAM J. of Numer. Anal., 15 736–754 (1978).

[4] E. Bänsch, Local mesh refinement in 2 and 3 dimensions, Impact of Comp. in Sci.
and Engrg. 3 181–191 (1991).

[5] R. Bank PLTMG: a software package for solving elliptic partial differential equa-
tions. User,s guide 7.0, SIAM, Philadelphia, 1994.

[6] Jürgen Bey, Tetrahedral grid refinement, Computing 55 71–288 (1995).
[7] A. Liu and B. Joe Quality local refinement of tetrahedral meshes based on bisec-

tion, SIAM J. Sci. Comput. 16(6) 1269–1291 (1995).
[8] J. M. Maubach Local bisection refinement for n-simplical grids generated by re-

flection, SIAM J. Sci. Comput. 16(1) 210–227 (1995).
[9] J. M. Maubach The amount of similarity classes created by local n-simplical

bisection refinement, preprint (1997).
[10] A. Mukherjee, Ph.d. Thesis, The Pennsylvania State University, 1996. (available

at http://www.math.rutgers.edu/∼arup/publications.html)
[11] A. Quarteroni and A. Valli, Numerical approximation of partial differential

equations, Springer-Verlag, 1994.
[12] M. C. Rivara, Local modification of meshes for adaptive and/or Multi-grid finite

element methods, J. Comput. Appl. Math. 36 79–89 (1991).
[13] M. C. Rivara and C. Levin A 3-D refinement algorithm suitable for adaptive and

multi-grid techniques, Comm. in App. Num. Meth. 8 281–290 (1992).
[14] R. Verfürth, A review of a posteriori error estimation and adaptive mesh refine-

ment techniques, Technical report, Lecture notes of a Compact Seminar at TU
Magdeburg, June 2–4, 1993.



TETRAHEDRAL BISECTION AND ADAPTIVE FINITE ELEMENTS 15

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
1

10
2

10
3

10
4

10
5

10
−1

10
0

10
1

10
2

10
3

slope = 1

Fig. 11. Total CPU time in seconds (y axis) versus number of nodes (x axis)


