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Summary. We consider the solution of systems of linear algebraic equa-
tions which arise from the finite element discretization of variational prob-
lems posed in the Hilbert spacEs(div) andH (curl ) in three dimensions.

We show that if appropriate finite element spaces and appropriate additive
or multiplicative Schwarz smoothers are used, then the multigrid V-cycle is
an efficient solver and preconditioner for the discrete operator. All results
are uniform with respect to the mesh size, the number of mesh levels, and
weights on the two terms in the inner products.
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1. Introduction

The Hilbert space#] (div) and H (curl ) consist of square-integrable vec-
tor fields on a domaim2 C R? with square-integrable divergence and curl,
respectively. Define bilinear forms

A(u,v) = p*(u,v) + K2 (divu, dive),
A(p,q) = p2(p, q)+ RQ(curlp, curlqg),
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where on the right hand sidés, -) denotes the inner product ih?> =
L?(2) andp and « are positive parameters. Fpr= x = 1, these are
precisely the inner products H (div) and H (curl ), respectively, and for
any positivep andx, they define equivalent inner products. We stress from
the outset that the results in this paper hold uniformlyfet p, k < oc.

Given afinite element subspab®, of H (div), we determine a positive
definite symmetric operatad : V;, — V, by (A%u,v) = Ad(u,v)
for all w, v € V7, and, analogously, given a finite element subsp@ge
of H(curl), we determine a positive definite symmetric operaAgr :
Q) — Q;, by (Ajp,q) = A°(p, q) for all p, g € Q,;,. These operators are
discretizations oA := p?I — k2grad div andA°¢ := p*I + k?curl curl,
respectively, with natural boundary conditions. For gh¥ V;, andg <
Q;,, the equations

(11) hu - .f7 zp =g,

admit unique solutions € V;, andp € Q,,, respectively. In this paper we
study the efficient solution of these equations using multigrid.

The spacedd (div) and H (curl ) arise naturally in many problems of
fluid mechanics, solid mechanics, and electromagnetism. Frequently these
applications require a fast solution method for one or both of the equations
1.1. In some applications, essential boundary conditions are imposed. That
is, the bilinear formA¢ is restricted toH (div), the subspace off (div)
consisting of vector fields whose normal component vanisheg{@nor
the bilinear formA° is restricted toH (curl ), the subspace o (curl)
consisting of vector fields whose tangential component vanishei(bn
Although we will not treat this situation explicitly here, the results and
analysis we give adapt to the case of essential boundary conditions with
only minor and straightforward modifications.

In Sect.7 of [2], we discuss in detail the application of fast solvers for the
equatlon/lhu = f to both mixed and least squares formulations of second
order elliptic boundary value problems, including one in whichg 1.
Several other applications are discussed briefly as well. Applications of fast
solvers forAjp = g arise in various contexts in electromagnetism. For
example, in simple time-discretizations of Maxwell’s equations, this occurs
with x proportional to the time step. See [12] for a detailed discussion. Such
solvers also have applications to some formulations of the Navier—Stokes
equations as discussed in [8] and [9].

Multigrid methods have been established as among the most efficient
solvers for discretized elliptic problems and a considerable theory has been
developed to justify their use. See, e.g., [5, 10, 18]. Unfortunately, some of
the simplest and most frequently used smoothers for elliptic problems do not
yield effective multigrid iterations when applied to the problems considered
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here (see, for example, [6]). This failure can be traced to a key difference
between the operatord? and A° on the one hand and elliptic operators

on the other. Namely, the eigenspace associated to the least eigenvalue of
the former operators contains many eigenfunctions which cannot be rep-
resented well on a coarse mesh (while low eigenvalue eigenfunctions for
standard elliptic operators are always slowly varying). This is because the
operatorA? reduces to the identity when applied to solenoidal vector fields,
although it behaves like a second order elliptic operator when applied to
irrotational vector fields. Exactly the reverse holds At It is therefore not
surprising that the Helmholtz decomposition of an arbitrary vector field into
irrotational and solenoidal components plays an important role in the under-
standing and analysis of these problems. In particular, we make substantial
use of discrete versions of the Helmholtz decomposition in our analysis of
multigrid methods.

The main result of this paper is a proof that the standard V-cycle multigrid
algorithm is an effective solver or preconditioner for problems involving
the operatorsl% or Aj in three dimensions if (1) appropriate finite element
subspaces dff (div) andH (curl ) are taken, and (2) appropriate smoothers
are used. More precisely, we show that if we takg to be the Raviart—
Thomas—Nedelec space of any order with respect to a tetrahedral mesh of
sizeh, and if ©¢ is the approximate inverse of! defined by the V-cycle
algorithm using any of several additive or multiplicative Schwarz smoothers,
thenI — @} A is a positive definite contraction, whose norm is bounded
away from1 uniformly in the mesh sizé, the number of mesh levels,
and the parameters x € (0,00). Of course, this implies tha®§ is a
good preconditioner as well: the condition number@f A¢ is bounded
independently of, the number of mesh levels, apdindx. To define the
Schwarz smoothers, we can use a decompositide pinto local patches
consisting of all elements surrounding either an edge or a vertex, or a third
decomposition can be used based on the Helmholtz decomposition (see 4.2).
Precisely analogous results hold in e curl ) case if we také&),, to be the
Nedelec edge spaces of any order. In this case, the smoothers can be based
either on a decomposition based on vertex patches or on the decomposition
4.4 arising from the Helmholtz decomposition.

The results of this paper generalize to three dimensions ones which
we obtained forH (div) in two dimensions [2]. The spacdd (div) and
H (curl) are essentially the same in two dimensions, and so our analysis of
multigrid in [2] adapts taH (curl ) with only the most mechanical changes.

In three dimensions, while there are many similarities betwidé¢div) and

H (curl), there are also significant differences, especially between their
finite element discretizations. For this reason, the analysiBff@rurl ) re-

quires a number of additional ideas. In our presentation, we have stressed
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the similarity between théf (div) andH (curl ) cases as much as possible,
limiting the differences to the proofs of the two-level estimates for mixed
methods in the final section, where they are described explicitly.

The first results for multigrid i (div) in three dimensions are due to
Hiptmair in [11]. The same author obtained the first results for multigrid
in H(curl) in [12]. A unified and simplified treatment of those important
works is given by Hiptmair and Toselli in[13]. Our results are closely related
to the results in [11-13], and some of our arguments derive from them. The
major difference between our approach and theirs is that we employ a multi-
grid framework as presented, for example, in [5], and verify the hypotheses
required by this approach by developing necessary estimates for mixed fi-
nite element methods based on discretization#dtliv) and H (curl).
Specifically, we take Theorem 3.1 below as the basis for our analysis, and
developtwo-level estimatefor mixed methods in Sect.5 in order to apply
this theorem. By contrast, Hiptmair and Toselli use an overlapping Schwarz
method framework as presented, for example in [16]. An important benefit
of our approach, which is also somewhat less complicated, is that we obtain
estimates which are independent of the parametarsd~ occuring in the
bilinear form. By contrast, in [12], the condition humber@f, A;, is only
shown to beD(1/x3) whenp = 1 andx is small (and the case af/p large
is not discussed).

Concerning notation, we use boldface type for vector-valued functions,
operators whose values are vector-valued functions, and spaces of vector-
valued functions. The norm in the Sobolev spatE$s?) and H*((2) are
both denoted by - ||, with the indexs = 0 suppressed. The norm associated
to the bilinear formi“is denoted - || ya, or simply| - || gr(aiv) if p = £ = 1,
and analogously for the norm associatedito

We conclude the section with an outline of the remainder of the paper. In
the next section, we introduce the finite dimensional subspacEg dfv)
and H (curl) that we shall consider in this paper, the Raviart-Thomas—
Nedelec spaces and Nedelec edge spaces, respectively. We then state some
of the key properties of these spaces which we shall use in the subsequent
analysis, the most important of which are discrete Helmholtz decomposi-
tions of each space. In Sect.3, we state some standard results for multigrid
iterations, in order to isolate sufficient conditions on additive and multi-
plicative Schwarz smoothers for efficient algorithms. In Sect.4, we apply
these result to obtain the convergence of the standard multigrid V-cycle for
the operatorsd% and Aj using appropriately defined additive and multi-
plicative Schwarz smoothers. The proof hinges on certain two-level error
estimates for mixed methods based on the Raviart—-Thomas—Nedelec and
Nedelec edge spaces. These estimates are stated and proved in Sect. 5.
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2. Finite element discretization

We suppose tha® is a bounded and convex polyhedronRA and7;, a

mesh of (2 consisting of closed tetrahedra. We assume that the mesh is
shape regular and quasi-uniform. More precisely, the constants that appear
in the estimates below may depend on the shape regularity constant (the
maximum ratio of the diameter of an element to the diameter of the largest
ball contained in the element) and the quasi-uniformity constant (the maxi-
mum ratio of the largest to the smallest element diameter) of the mesh, but
are otherwise mesh-independent. We denot®¥h\¢;, andF, the sets of
vertices, edges, and faces of the mesh, respectively. Edv, UEL UF, UTy,

we define

T ={TeTh|vcT}, =interior| 7).

Thus (2} is the subdomain of? formed by the patch of elements meeting
atv, and7, is the restriction of the mesf, to (2}.

Fix an integerk > 0. We then recall the following spaces (the spaces
Q;, andV;, were introduced in [15]; see also [3] and [14] for the connection
between these spaces and differential forms, which illuminates many of their
properties):

W, : continuous piecewise polynomials of degree at niostl,

Q;, : the Nedelec edge discretization Hf(curl ) of indexk,

V', . the Raviart—-Thomas—Nedelec discretizatiobfdiv) of indexk,
Sy, : arbitrary piecewise polynomials of degree at miast

To define these spaces, we specify the corresponding polynomial spaces used
on each elementand the corresponding sets of degrees of freedom. Restricted
to a tetrahedror?’, the elements oil/;, and .S;, are, of course, arbitrary
elements ofP,(T") andPy(T"), respectively, wher@,(T") denotes the
space of polynomials of degree at mésestricted tdl'. The restrictions of

the elements oV, are functions of the formp(x) +r(x)x with p € P (T)

andr € P,(T). The elements of);, are functions of the fornp(x) + r(x)

with p € Pr(T) andr € Py41(T) such thatr - « = 0. The degrees of
freedom foru € V;, are of two sorts. First, the moments®f n of order

at mostk on each facef (more precisely the functionals that associate to

w its inner product inL?(f) with each element of a basis @, (f)); and
second, the moments afof degreek — 1 on each tetrahedron. The degrees

of freedom ofq € @), are (1) the moments a@f - s of order at mosk on

each edge, (2) the momentsg@i n of order at most — 1 on each face,

and (3) the moments @f of order at mosk — 2 on each tetrahedron. For

Sy, we use as degrees of freedom the tetrahedral moments of order at most
k. For Wy, we use (1) the values at the vertices, (2) the edge moments of
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Fig. 1. Degrees of freedom for the spadds,, Q,,, V1, andS;, in the lowest order case
k=0.

order at mosk — 1, (3) the face moments of order at mést 2, and (4) the
tetrahedral moments of order at mést 3.

We now consider the decomposition of these spaces as sums of spaces
supported in small patches of elements. Define

Qr ={reQ, : suppr C !_2,1;}, veV,U&,UF,UTh,
and analogously witld,, replaced by}, V1, or Sy,. Then
Wh = Z’UGV}L W;l)7
Qh = Zvevh Q’lf; = Zeegh Q?L’ P
Vh = Evevh V;)z = Eeeﬁh erl = Zfe]—'h }/}p
Sh = ovev, Sh = Lece, Sh = Lger, S = Lrer, Sh-
For each of these decompositions there is a corresponding estimate on the
sum of the squares of the norms of the summands. For example, we can

decompose an arbitrary element Q;, asq = Zeegh q° with ¢°¢ € Qf,
so that the estimate

(2.2) > gl < cllql®

ec&y

2.1)

holds withc depending only on the shape regularity of the mesh. We remark
also that the decompositions not stated in fact don’t hold. For example,
Wh # 2 cce, Wi

The proof of these decompositions and the corresponding estimates all
follow the same lines. For example, to prove the edge-based decomposition
of Q,, and the estimate 2.2, we note that the degrees of freedom of the space
Q),, determine a canonical decomposition of an arbitrary elementQ,,
asq = >_ ¢ where the sum runs over all the degrees of freedo@,gfand
q‘ is the element of),, with all degrees of freedom other thaset equal to
zero. A standard scaling argument then impliesfigéf| < cllgll 22 (suppqt)-
Now to each degree of freedgfywe may assign an edgef the mesh such
thatsuppg® C £2¢ (for an edge-based degree of freedom, chedede that
edge and for a face- or tetrahedron-based degree of freedom, chiodse
any edge contained in the face or tetrahedron). Combining the corresponding
q¢ gives the desired decomposition.
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These degrees of freedom specified for the spdgsQ@,, V1, and
S, determine interpolation operatorg;" H,?, H}f, and H;f mapping
functions which are sufficiently smooth that the required function values
and moments exist into the subspaces. Specificﬂl,& is a standard in-
terpolation operator and is defined on continuous functionsﬂé;fuiis the
L?-projection operator, defined on dlf functions. As the domain fafZ},
we can choos#l . Moreover, a standard argument based on the Bramble—
Hilbert lemma and scaling gives the error estimate

(2.3) |v — IT) v|| < ch|v|1, veH.

Because of the dependence on edge moments, the situation is more compli-
cated for the operatcﬂg. It is bounded on the space &' vector fields
whosecurl belongs toL?, for any fixedp € (2, cc]. This follows from
Lemma 4.7 of [1] and the Sobolev embedding theorem. In particular, it is
defined forH! vector fields whoseurl belongs tdV ;,. Moreover we have

(2.4) |lg—I%q| < chlqlh, q € H' such thaturlq € V.

To show this, we follow [13]. First consider the case where the mesh consists
of only the unit simplexl’. Let @ andV denote the corresponding spaces

andfTQ the interpolant. Using the equivalence of normdinwe get

Q. . . )
L™ q|| < c([[g]l + [leurlg||z=) < ¢/}

for all ¢ € H'(T) such thatcurl ¢ € V. A Bramble—Hilbert argument
then gives||q — IT°q| < || for ¢ € H'(T") such thatcurlg € V
where now only theH! seminorm appears on the right hand side. If we
scale this estimate to a general simglex= F~17" with F affine, using the
appropriate contravariant transfogn— (DF')*(q o F'), and add up over
all the simplices in the mesh, we get 2.4.

The interpolation operators also satisfy the commutativity properties

curlITi2 = I} curl, divII) = H;?div, grad II}V = Hggrad

when applied to sufficiently smooth vector fields. These well-known re-
lations follow from the definitions of the interpolation operators and the
theorems of Green and Stokes.

In addition to these interpolation operators, we also deﬁlﬂeo be the
orthogonal projection ont®;, with respect to the inner product H (div)
and Pj, to be the orthogonal projection on,, with respect to the inner
product inH (curl).
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A key property relating the spacég;,, Q,,, V1, andSy, is that (for a
convex, or more generally, contractible domain) the following sequence is
exact:

0 — Wy/REX Q, ™ v,) g,y — 0,

i.e., that the range of each of the operators in the sequence coincides with
the nullspace of the following operator. It follows that if we defgred ;, :

S, — V, as theL? adjoint of the map-div : V;, — S, andcurly, :

Vi — Q,, as theL? adjoint ofcurl : Q;, — V7, then we have the two
orthogonal decompositions:

V5 =curlQ, ® grad;S;, Q) = curl,V;, &gradW,,.

Thesediscrete Helmholtz decompositiomse orthogonal inL? and in
H (div) for the first andH (curl ) for the second.

Remark 2.1If we were to consider the case where essential boundary con-
ditions are imposed, the appropriate spaces wouldthe= W}, N HY,

Q, = Q, N H(curl), andV ), = V;, N H(div), and the correspondlng
exact sequence would be

grad curl div,

0— W= Q, 5 V), 255, /R — 0.

3. Abstract multigrid convergence

Inthis section, we recall some standard results for multigrid iterations, which
will be the starting point for our analysis of multigrid methods for the linear
systems of equations discussed in the previous section. Suppose

XiCcXoC---CXy=X

is a sequence of finite dimensional subspaces of a Hilbert spacand

A: X x X — Ris asymmetric positive definite bilinear form. For each
J, we defined; : X; — X; by (Ajz,y) = A(z,y) forall z,y € X;.
Our goal is the construction of an efficient multigrid iteration to solve or
precondition equations of the formh;z = f. Let M; : X — X, denote
the Y-orthogonal projectionP; : X — X; the A-orthogonal projection,
andR; : X; — X; alinear operator (the smoother). For egclve define
anyY- symmetrlc operato@ X,; — X; by the standard multlgrld V-cycle
recursion withm > 1 smoothlngs That is, we sé€ = A7 and forj > 1
andf € X;, we defined; f = ya,,,1 Where

Yo = 0e Xj,

vi=vi1 + Ri(f —Ajyic1), i =1,2,...,m,

Ym+1 = Ym + 8j—ljwj—l(f - Ajym)7

Vi =Yi-1 + Rj(f — Ajyi—1), i=m+2,m+3,...,2m+ 1.
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Then®; is the V-cycle preconditioner fat ;. The following theorem gives
conditions on the smoothef; which ensure convergence of the multigrid
V-cycle (cf., [4], [6, Theorem 3.6], or [2, Theorem 5.1]).

Theorem 3.1 Suppose that for each= 1,2,... ,J, the smootheR; is
Y -symmetric and positive semidefinite and satisfies the conditions

A(I — RjAjlz,z) >0, x € Xj,
and
(R;'z,z) < ad(z,z), xe(I—-Pi1)Xj,
wherea is some constant. Then
0 < A([I —O A ]z, x2) < A(x,x), xr e X,
whered = a/(a + 2m).

Hence, the multigrid error operatdr— © ;A ; is a positive definite con-
traction with norm at mosi < 1 independent of/f and decreasing im,
and the preconditioned operat@r A ; has eigenvalues betweén- 6 and
1.

To obtain smoothers which satisfy the conditions of Theorem 3.1, we
consider additive and multiplicative Schwarz operators. To describe these,
we assume that for eaghthere are space’é]’? C Xjsuchthateach € X;

can be written in the formy_;_, =¥, with z* € X¥. Letting P denote the
A-projection operator onto the spaKt;l“, we can then define the unscaled

additive Schwarz smoother by} = S PFA~! and then the smoother
R; = nRj, wheren is a scaling factor. We also denote B the usual

multiplicative Schwarz smoother associated with the spaéj’é,si.e., for
f e X, R f .= z*%, where

¥ =0,

ob = gF = PR AT, k=1,.. K,

af = ah - PP AT ), k=K 41, 2K,

The following theorem gives conditions on the decompositions of¥he
under which the Schwarz smoothers lead to a convergent multigrid iteration.

Theorem 3.2 Suppose that

(3.1) ZZ\A 2*,y)| < 8

k=11=1

X 1/2
> AW, yl)] 7
=1

¥ e X]]?"’, yl € X]l-,

K 1/2
3 At k>]

k=1
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and
K
(3.2) inf A(zF, 2F) < yA(z, 2), ze (Il —-P_1)X;,
zkeXxk
x:Z:EJk k=l

for some constant§ > 0,y > 0. Then,

(i) If n < 1/p, the scaled additive smoothefs = nk; satisfy the hy-
potheses of Theorem 3.1 with= /7.
(if) The multiplicative smootherg; = R’ satisfy the hypotheses of The-

orem 3.1 withn = 324.

Results of this type can be found in many places, for example in [5, Chap-
ters 3 and 5], [7], [16, Chapter 5], and [18]. Therefore we merely sketch a
proof here. The first hypothesis of Theorem 3.1 for the additive smoother
follows from 3.1 withz* = y* = PFz and Schwarz's inequality. It is

well known that the left hand side of 3.2 is precisely equa(lﬁ@‘lx,x)

(cf. equation (2.1) of [2]). The second hypothesis of Theorem 3.1 follows
directly for the additive smoother. For the multiplicative smoother, the first
hypothesis follows from the identitl([] — R;Aj]z,z) = A(Ez, Ex)
where £ = (I — PX)(I — P~")... (I — P}). The second hypothesis

is a consequence of the inequaliti}z, z) < ﬂQ(R}“x,a:), which is just
Corollary 4.3 of [2], using the argument given at the end of Sect.5 of that
paper.

4. Multigrid convergence in H (div) and H (curl )

We consider a nested sequence of quasi-uniform tetrahedral mgshes
1 <j < J. These give rise to spacég;, Q;, V;, andsS; and operators
A;-i :V; — VjiandAj : Q; — Q;. Inthis section, we use Theorem 3.2 to
obtain a convergence result for the multigrid V-cycle applied to the equation
Afi,u = f or AS5p = g in the spaceX = V; or Q. For the enclosing
Hilbert spac&” we takeL?. We note that properties 3.1 and 3.2 only involve
subspaces at two levels. Lietlenote the mesh size of some mgsland let
H denote the mesh size of the next coarser nfgsh. To simplify notation,
we shall write7;, and 7 for 7; and7;_1, and similarly in other cases where
the subscriptg and;j — 1 arise.

To define the Schwarz smoothers, we must decompose the Bpaoe
Q,,. For the spac®’;, three possible decompositions, based on face patches,
edge patches, and vertex patches, are given in 2.1. From the point of view
of implementation of the corresponding Schwarz smoother, the face-based
decomposition, which has only two elements per patch, is most efficient, the
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edge-based less efficient, and the vertex-based Schwarz smoother the least
efficient. However, as our theory will suggest and numerical computations

in analogous situations reinforce [6], the face-based Schwarz smoother does
not lead to an efficient multigrid algorithm. Below we shall prove that both
decompositions

(4.1) Vi=> Vi and  V,=)> Vj,

e€&y vEV)

yield Schwarz smoothers that satisfy the conditions of Theorem 3.2 with
constants independent éfand . In [11] Hiptmair generalizes to three
dimension a decomposition used in two dimensions by Vassilevski and Wang
[17], namely,

(4.2) V=Y Vi+Y curl@y.

fe€Fn ecéy

The implementation of the corresponding smoother, which may be more
efficient than the smoother based on edge patches, is discussed in [11]. Our
analysis below applies to this smoother as well.

For the spacé);, we may use either the decomposition

(4.3) Q=) Qi

vEV)

or one due to Hiptmair [12],

(4.4) Q,=)Y_ Qi+ > gradWy.

ecéy vEV)

It is easy to check that since no point belongs to more than six of the
¢ or four of the2! or 2/, all these decompositions satisfy the condition
3.1 with 3 independent ok, p, andx (G will never exceed0). It thus only
remains to verify condition 3.2, which we state for the particular case of the
first smoother in 4.1 and the smoother in 4.3 in the following two theorems.
The verification for the other smoothers will be remarked on below. For these
theorems (only) we require the bounded refinement hypotligsisch. (In
practice, values of around2 are common.)

Theorem 4.1 Assume thatl < ch and thatv € (I — P$;)V, be given.
There exists a decompositian= Zeegh v¢, wherev® € V¢, and a con-
stanty depending or but independent df, p, andx such that

Z AY(v®, v°) < yAY (v, v).

ecly,
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Theorem 4.2 Assume that! < ch and thatq € (I — P%)Q,, be given.
There exists a decompositign= Zvevh q", whereq” € @7}, and a con-
stanty depending or but independent df, p, andx such that

Y A%g",q%) <74%(q, 9).
VEV)

To prove these results, we will make use of the discrete Helmholtz de-
compositions described in Sect.2. For these decompositions, the following
two propositions, fotH (div) and H (curl ), respectively, will be the key
ingredients of the analysis. The proofs of these propositions, unlike the
proof of Theorems 4.1 and 4.2, do not require that< ch. Also, since
Theorems 4.1 and 4.2 are unaffected by scaling of the bilinear form, in the
remainder of the paper we assume, without loss of generalitypthat.

Proposition 4.3 Suppose that, € V', and thatu — P4u € V, has the
discrete Helmholtz decomposition

u — P}i{u = grad s, + curl gy,
for somes;, € S, andg;, € curl, V. Then
rllgrad psal| < cH|u — Plull o, |lgnll < cH|u — Piull.

Proposition 4.4 Suppose thap € Q) and thatp — P4 p € Q,, has the
discrete Helmholtz decomposition

p — Pyp = grad wy, + curl vy,
for somewy, € W}, /R andwvy, € V', with dive, = 0. Then
|wall < cH[lp = Pypl|,  &lcurlpon| < cH|p — Pypl|ae.

The proof of these results requires a series of intermediate results and will
be given in the next section. We now show how these propositions may be
used to establish Theorems 4.1 and 4.2.

Proof of Theorem 4.1Sincev € (I — P%,)V}, it follows from Propo-
sition 4.3 and the bounded refinement hypothesis#hatimits a discrete
Helmholtz decomposition

v = + curlgq,
wherev € grad ;S;, andq € @), satisfy the bounds

(4.5) o]l < llvll,  &lloll < chllvllaa, [lql] < chlvll.
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Following the discussion of Sect.2, we can white= } . v° andg =
Zeesh q° with

(4.6) Dol <clol? Y llafl® < clal®.

ecéy ecéy

Thenv = Zeesh v¢ wherev® := v° 4 curl g¢. Moreover, using an inverse
inequality,

@.7) D 0% = D (18°) 34 + llcurl g°||*)
ecéy ee&y
<) [+ A7)0 + b2,
ec&y

and the theorem follows from 4.5-4.70

Proof of Theorem 4.2Sinceq € (I — P%)Q),,, it follows from Proposi-
tion 4.4 and the bounded refinement hypothesisghatgiven by

q=q+ gradw,
whereq € curl ,V;, andw € W), satisfy the estimates

gl <llqll,  #lgll < chligllac, [lw] < chllq].

Writing ¢ = Zvevh g’ andw = Zvevh w?, and settingg" = q¢¥ +
grad w", we complete the proof as for the preceding theorem.

Remark 4.1The proof of Theorem 4.1 applies almost without modification

if the decompositior’V,, = Zeegh Vi is replaced by either the second
decomposition in 4.1 or the decomposition in 4.2. Similarly, the proof of
Theorem 4.2 applies to the decomposition in 4.4 as well. It is also clear why
we cannot use the face-based decompositio¥W pfin Theorem 4.1, since

the proof would require a corresponding face-based decompositi@y of
which does not exist.

5. Two-level estimates for mixed finite elements

In this section we prove Propositions 4.3 and 4.4. Our proofs are based on
estimates for the approximation of discretely irrotational vector fields in
V1, and discretely solenoidal vector fields@, by discretely irrotational

and solenoidal fields i% ;; andQ ;, respectively. These two-level approx-
imation results, in turn, rely on estimates for mixed finite element methods
based orH (div) and H (curl ). We begin this section with a discussion of
such methods.
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For the H (div) case, letf € L? and defings, v) as the unique critical
point (a saddle) of

£9(s,v) = g loll? + (divo, ) — (£,5)

over L2 x H(div). This is a mixed variational formulation of the Dirichlet
boundary value problem

(5.1) v=grads, divo = fin 2, s=00naf.

The mixed finite element approximatiqny, v;,) to (s,v) is the unique
critical point of £*% overS;, x V. Itis determined by the equationg =
grad p,sp, divy, = H,ff, andwv;, alone is characterized as the unique
function in grad ;, S}, satisfying the latter equation. A basic estimate for
mixed methods is

(5.2) lv —wpll < o~ I}v|,  veH,

which is a consequence of the commutativity propelityll} = H;fdiv.
From the properties of the operatﬁf}{ one also easily derives the inf-sup
condition: _
inf sup (V)
seSp veVy [Vl H@iv) 18]
A useful consequence is the discrete Poiadaequality:

o> 0.

(5.3) Isll < o "llgrad sl s € Sh.

To describe the corresponding situation in #iécurl ) case, we introduce
the space

Z :={ze H(div)|divz =0}
= H(div) N (grad H')* = curl H(curl),
and the discrete analogue
Zy ={zpeVyl|divzp =0} =V N (grathh)J‘ =curlQ,,.

The mixed variational problem we consider now begins with a function
f € Z and characterize&z,q) € Z x H(curl) as the unique critical
point (again a saddle) of

1
L(z,q) = §HqH2 — (curlg, 2) + (f, 2).
This corresponds to the boundary value problem

(5.4) g=curlz, curlg= f, divz=0in{2, zxmn=00nJ9f2.
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For this problem we have, z € H'! and

(5.5) lglly <cllfll, Nzl < cliqll-

Indeed, since the normal componenigof= curl z is the tangential diver-
gence ofz x n, which vanishes o2, it follows thatqg - n = 0 on 9{2.
The estimates og and z are then given in Theorems 2.1 and 2.2 of [8],
respectively. (These results depend on the assumption of convexity.)

The mixed finite element approximatiday,, g;,) is the unique critical
point of £¢ overZ;, x Q,,. Itis determined by the equatiogs = curl; z,
curlq, = IT? f,wherell? : L*> — Z,, istheL? projection, andy,, alone
is characterized as the unique functionciarl ;, V';, satisfying the latter
equation. At this point, an essential difference between the mixed approx-
imation of 5.4 and 5.1 arises. It i®ot true thatcurl ng = H,{curlq
for all smooth functionsy (since ITZ does not coincide witdT) , even
when applied to irrotational fields). As a result, it is not in general true that
lg—aqnll < |lg— HEqH. However, this estimate is true in the special case
thatf € Z;, i.e.,

(5.6) llg—aqunll <llg— ngH, q € H' such thaturlq € V.
Indeed, in this case
curl ng = HZcurlq =curlqg = churlq = curlg;,,

soﬂffq—qh is curl-free. Itthen follows directly from the defining equations
of the mixed method thalg — g, IT2q — q;,) = 0, which gives 5.6.

Notice that the hypothesisurl ¢ € V7, is also what is needed for the
approximation estimate 2.4. Combining 5.6, 2.4, and the continuous inf-sup
condition, we get the discrete inf-sup condition,

curlqg, z
inf sup ( 2,%) >0 >0,

z2€EZR qEQy, HQHH(curl)HzH B

in the usual way. This in turn implies an analogue of the discrete P@ncar
inequality,

(5.7) Iz < o7 Yeurl 2], = € Z).

Having completed the necessary discusion of mixed methods, we now
turn to the keytwo-level error estimategrom which Propositions 4.3 and
4.4 will follow. Given a finite element vector field with respect to some fine
mesh, these estimates give bounds for the approximation to it obtained using
mixed finite elements on a coarser mesh. Discrete norms compensate for the
lack of regularity of the fine mesh solution.
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Lemma 5.1 Given v, € grad;Sy, let vy be the unique element of
grad y Sy satisfyingdivvy = II7,divvy,. Then

lon — virll < cH|divoy |, |div(oy — vg)|| < cH]grad pdivoy].

Lemma5.2 Givengq,; € curl,V,, let gy be the unique element of
curl ;V  satisfyingcurl q; = IT%curl g,,. Then

g, —aqull < cHllcurlq,|, |[curl(g,—qgy)| < cH|curl,curlgy||.

We shall first prove Lemma5.1. Combining it with an appropriate duality
argument, we establish Proposition 4.3. We shall then prove Lemma 5.2 and
Proposition 4.4.

Proof of Lemma 5.1Define (v, s) from 5.1 with f = divwvy,. Thenwvy,
andwvy are the mixed approximations toin V;, and V g, respectively.
Applying 5.2, 2.3, and 2-regularity for the Dirichlet problem on a convex
polyhedron, we obtain

lv —vall < llv — ol < cH|lv|ly < cH||divoy|,

and, similarly,||v — vy || < chl|divuy||. The first estimate thus follows from
the triangle inequality.
Next we prove that for any, € Sy,

(5.8) |rp, — 5| < cH||lgrad ,rp]|.
In particular, we may take, = divwvy, in this estimate, to get
|divey, — divog|| < cH||grad pdivoy||.
To prove 5.8, we define a functianwhich satisfies
divu = ry — 5, |y < |lrn — gy
Then
Hrh—H}zthQ = (divu, rp — ngh) = (divu, H;Lgrh — H}jrh)
= ([[T7 — II3))divu, rp,) = (div[IT}) — ITY]u, )
= ([T} — ITY)u, grad )
< (T w — u| + |lu — M jul)llgrad 47|
< cH||ul|1||grad yra|| < cH|r, — H7ry|||lgrad prall,

which implies 5.8. O

Proof of Proposition 4.3The proposition directly generalizes the corre-
sponding two-dimensional result, Lemma 3.1 of [2]. The proof of the bound
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ongrad s, is entirely analogous to the argument in [2], but the bound for
q;, requires the use of a more complicated duality argument. First, observe
that

(5.9) (curlg,,curlr) = A%u — PYu, curlr) =0, r € Qy.
h H H

Define(q, z) as in 5.4 withf replaced bycurl g;,. Theng,, € Q,, is the
mixed approximation tg, and hence, by 5.6, 2.4, and 5.5,

(5.10) la - anll < llg -~ ITq|l < chllgls < chljcurl gyl

Sincedivz = 0,divIT Y}z = 0,andsdT ),z € curl Q. We may therefore
apply 5.9, 2.3, and 5.5 to obtain

lq||> = (g, curlz) = (curlgq, z) = (curlgy, z)
—(curl gy,  — 1Y 2) < cHllz|1curl g,]| < cH gl curl ;]

Hence,

q|| < cH||curl g;||. Combining this with 5.10, we obtain
lgnll < cHllcurl g, || < cH |u — Piull.

This completes the proof of the second estimate of the proposition.
Since the first estimate is vacuous:it= 0, we assume > 0. SinceA}
mapsgrad 5, S;, onto itself, we havey;, = (A})~'grad s;, € grad S},
Definingvy € Vi asin Lemma 5.1, we have
lon—vil%y < cHA(|divon|? + ?||grad pdivos )
< B2k (|[op])® + 262 divoy|)® + #*|lgrad pdivos %)

= cH?k 72| Awp|? = cH?k2||grad 1,552
Hence,

|lgrad 1,5 |*> = Ad(grad »sp,, vi) = AY(u — PYu, vy,)
=4%4(u — Pfu, v, —vy) < |lu— Pjul| gallvy, — vl g0
<cHr'||u — P$ul| 4a||grad ;.0

We now prove Lemma 5.2, and then Proposition 4.4, which will follow
easily. The proof of the lemma is substantially more involved than that of
Lemma5.1, because the error estimie-q ;|| < ||q— H%qH is not valid
(reflecting the lack of the commutativity propetwrl IT S =1ITI ,% curl).

Proof of Lemma 5.2The lemma does not involve the parameteiSo as
not to introduce additional notation, the notatidfis used in this proof to
denote the unweighted inner productffi(div) (x = 1), and PY; is used
to denote the corresponding orthogonal projection.



214 D.N. Arnold et al.

Sincecurl q;; = IT%curl q,, whereITZ is theL? projection ontdZ 5,
we obviously have

(5.11) [curl gyl < c/[curlgp||.

Define(q, z) by the boundary value problem 5.4 wiftreplaced byurl g;,.
Sinceg,, is the mixed approximation af in Q;, andcurlqg € V', we are
able to use 5.6 to estimage- g;,. While g is the mixed approximation af

in Q g, itis nottrue thaturl g € V 7, so we cannot estimatg— g in the
same way. Therefore we defif@, z) by 5.4 with f replaced bycurl ;.
(The analogous complication did not arise in the proof of Lemma 5.1.)
Settinggp = g — q andy = z — z, we obtain

curlyy = ¢, [¥]1 < cf|@]],
curl ¢ = curl (g — q) = curl(q;, — gp),
9|1 < cllcurlqy[| + cf|curl gy || < cf|curl gy,

16— (an —aqu)ll < llg = anl + @ — qull < cHl|lcurlg,,

where in the last estimate we have used 5.6, 2.4, and 5.5 twice, and then
5.11.
We estimats|¢|| using the same duality argument we used to estimate
|| q|| inthe proof of Proposition 4.3. Sindd ¥,v» € Z ; (which follows from
the commutativity relatiodivITY, = IT3div),andcurl (q,—qy) L Zy,
we find

I9]” = (¢, curley) = (curl ¢, ) = (curl[q, — qy), %)

curl{g, — qpl, ¥ — ) < cH|curl (g, —ap)| ¥
< cH|[curl(q), — qu)ll| 9]

This implies thatl|¢|| < cH||curl(q;, — qg)|| < CH||curlg,], and so
we obtain the first estimate of the lemma.

It remains to prove the second estimate. For this estimate, too, we cannot
simply use the analogue of the argument that established the second estimate
of Lemma 5.1. This time the problem can be traced to the failure of the
commutativity property%curl = curl H%, even though the analogous
propertyH%div = divﬂz is valid. Instead we shall derive the estimate
by establishing the following three facts:

=
= (

curlg, — curlqy = (I — P%)curlq, + grad ysy,

for somesy € Sy,
(5.13) lgrad rsu|l < cl|(I — Pf)curl gy,
(5.14) |u — PYu| < cH||curl yul, u € curl Qy,.

(5.12)
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The desired estimate follows by takimg= curl g;, in 5.14 and using 5.12
and 5.13.
The first statement follows from the equations

(curl gy, curlry) = (curlg,, curlry) = A%(curl g, curl )

AY(PY curl gy, curl )

(PY,curl g, curlry), T € Qpy.

To prove 5.13, we use the Helmholtz decompositio#gfcurl ¢, and
the definition ofP%, to see that foranyy € Vg,

(divgrad g sy, diveoy) = (divP%curl g, divoy)

= Ad(P%curl qy,vH) — (P%curl q,VH)

(5.15) 4
= (curlqy,,vy) — (Pycurlg,,vy)
=([I- P%}curlqh,vH).
Now
|lgrad HsHH2 = —(divgrad g sy, sg) < ||[divgrad gsgl|||su]]

< c||divgrad gsgll||grad gsm||,
by the discrete Poincainequality 5.3. Thus
llgrad gsy|| < c||divgrad gsg||,
and takingvy = grad gsy in 5.15, we get
|lgrad sy ||* < c||divgrad gsg|*
= ¢([I — P%]curlq,, grad ysy)
< ¢|(I - P§)curlg,|||lgrad msul,

as desired.
Itremainsto prove 5.14. Far € curl Q,,, we use the discrete Helmholtz
decomposition to write

(I — P{)u=curlp+grad,s, scS, pececurl,Vy,
and then to write
(I — P%)curlp =curlm+grad,r, r €S, meEcurl,Vy.

From the first estimate of Proposition 4.3 and the fact thit divergence-
free, we have that

lrad sl < cH [u — Plull ) < cHllullpran) = cHull.
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Again using the vanishing afivu, we obtain

|curl p||? = Ad(curlp, [I — P4|u) = AY([I — PYcurl p, u)

= ([I — PY]curlp,u) = (curlm,u) = (m, curl yu).
From the second estimate of Proposition 4.3 we then get
lm|| < cH||(I — Pf)curl p| a)
< cH||curl p| g(aiv) = cH||curlp].
Hence,||curl p|| < cH||curl,u||. Finally,
lu — Pful| < [lcurlp|| + |grad s|| < cH(|lul| + [lcurl yul),

which, together with 5.7, establishes 5.141

Proof of Proposition 4.4Since
(grad wp,grad pu) =0, pe€ Wy,
it follows from the standard duality argument, exploiting convexity, that
lwn| < cH|lgrad | < cHllp — P5p].

To prove the second estimate, we note that sidgenapscurl , V', onto
itself, we haver, = (A$) !curl,v;, € curl, V). By Lemma 5.2 there
existsry € Q such that

lry, — rul|| < cHllcurlryl|, |[curl (ry, — rg)| < cH|curlcurlry||.
Thus
|7y — THH%; < CHQ(”CU_I‘IT}LHZ + /£2chrl hcurlthQ)

< cH?72(||rp||? + 262 curl 7y ||? + £*||curl ycurlry, ||?)

= cH?k 72| ASrp||? = cH?K72||curl v ||%.
Therefore,

|curl v ||* = A°(curl yu,, ) = A(p — PSp, 1)
=A(p— Pyp.rr —ru) < |p— Pypllagllrn — vl
< cH& Y|p — P§p| ac|curl o ||,

as desired. O
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