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Summary. We consider the solution of systems of linear algebraic equa-
tions which arise from the finite element discretization of variational prob-
lems posed in the Hilbert spacesH(div) andH(curl ) in three dimensions.
We show that if appropriate finite element spaces and appropriate additive
or multiplicative Schwarz smoothers are used, then the multigrid V-cycle is
an efficient solver and preconditioner for the discrete operator. All results
are uniform with respect to the mesh size, the number of mesh levels, and
weights on the two terms in the inner products.

Mathematics Subject Classification (1991):65N55, 65N30

1. Introduction

The Hilbert spacesH(div) andH(curl ) consist of square-integrable vec-
tor fields on a domainΩ ⊂ R

3 with square-integrable divergence and curl,
respectively. Define bilinear forms

Λd(u,v) = ρ2(u,v) + κ2(divu,divv),
Λc(p, q) = ρ2(p, q) + κ2(curlp, curl q),
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where on the right hand sides( · , · ) denotes the inner product inL2 =
L2(Ω) and ρ and κ are positive parameters. Forρ = κ = 1, these are
precisely the inner products inH(div) andH(curl ), respectively, and for
any positiveρ andκ, they define equivalent inner products. We stress from
the outset that the results in this paper hold uniformly for0 < ρ, κ < ∞.

Given a finite element subspaceV h ofH(div), we determine a positive
definite symmetric operatorΛd

h : V h → V h by (Λd
hu,v) = Λd(u,v)

for all u, v ∈ V h, and, analogously, given a finite element subspaceQh

of H(curl ), we determine a positive definite symmetric operatorΛc
h :

Qh → Qh by (Λc
hp, q) = Λc(p, q) for all p, q ∈ Qh. These operators are

discretizations ofΛd := ρ2I−κ2graddiv andΛc := ρ2I+κ2curl curl ,
respectively, with natural boundary conditions. For anyf ∈ V h andg ∈
Qh, the equations

Λd
hu = f , Λc

hp = g,(1.1)

admit unique solutionsu ∈ V h andp ∈ Qh, respectively. In this paper we
study the efficient solution of these equations using multigrid.

The spacesH(div) andH(curl ) arise naturally in many problems of
fluid mechanics, solid mechanics, and electromagnetism. Frequently these
applications require a fast solution method for one or both of the equations
1.1. In some applications, essential boundary conditions are imposed. That
is, the bilinear formΛd is restricted toH̊(div), the subspace ofH(div)
consisting of vector fields whose normal component vanishes on∂Ω, or
the bilinear formΛc is restricted toH̊(curl ), the subspace ofH(curl )
consisting of vector fields whose tangential component vanishes on∂Ω.
Although we will not treat this situation explicitly here, the results and
analysis we give adapt to the case of essential boundary conditions with
only minor and straightforward modifications.

In Sect.7 of [2], we discuss in detail the application of fast solvers for the
equationΛd

hu = f to both mixed and least squares formulations of second
order elliptic boundary value problems, including one in whichκ � 1.
Several other applications are discussed briefly as well. Applications of fast
solvers forΛc

hp = g arise in various contexts in electromagnetism. For
example, in simple time-discretizations of Maxwell’s equations, this occurs
with κ proportional to the time step. See [12] for a detailed discussion. Such
solvers also have applications to some formulations of the Navier–Stokes
equations as discussed in [8] and [9].

Multigrid methods have been established as among the most efficient
solvers for discretized elliptic problems and a considerable theory has been
developed to justify their use. See, e.g., [5,10,18]. Unfortunately, some of
the simplest and most frequently used smoothers for elliptic problems do not
yield effective multigrid iterations when applied to the problems considered
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here (see, for example, [6]). This failure can be traced to a key difference
between the operatorsΛd andΛc on the one hand and elliptic operators
on the other. Namely, the eigenspace associated to the least eigenvalue of
the former operators contains many eigenfunctions which cannot be rep-
resented well on a coarse mesh (while low eigenvalue eigenfunctions for
standard elliptic operators are always slowly varying). This is because the
operatorΛd reduces to the identity when applied to solenoidal vector fields,
although it behaves like a second order elliptic operator when applied to
irrotational vector fields. Exactly the reverse holds forΛc. It is therefore not
surprising that the Helmholtz decomposition of an arbitrary vector field into
irrotational and solenoidal components plays an important role in the under-
standing and analysis of these problems. In particular, we make substantial
use of discrete versions of the Helmholtz decomposition in our analysis of
multigrid methods.

The main result of this paper is a proof that the standard V-cycle multigrid
algorithm is an effective solver or preconditioner for problems involving
the operatorsΛd

h orΛc
h in three dimensions if (1) appropriate finite element

subspaces ofH(div) andH(curl ) are taken, and (2) appropriate smoothers
are used. More precisely, we show that if we takeV h to be the Raviart–
Thomas–Nedelec space of any order with respect to a tetrahedral mesh of
sizeh, and ifΘd

h is the approximate inverse ofΛd
h defined by the V-cycle

algorithm using any of several additive or multiplicative Schwarz smoothers,
thenI −Θd

hΛ
d
h is a positive definite contraction, whose norm is bounded

away from1 uniformly in the mesh sizeh, the number of mesh levels,
and the parametersρ, κ ∈ (0,∞). Of course, this implies thatΘd

h is a
good preconditioner as well: the condition number ofΘd

hΛ
d
h is bounded

independently ofh, the number of mesh levels, andρ andκ. To define the
Schwarz smoothers, we can use a decomposition ofV h into local patches
consisting of all elements surrounding either an edge or a vertex, or a third
decomposition can be used based on the Helmholtz decomposition (see 4.2).
Precisely analogous results hold in theH(curl ) case if we takeQh to be the
Nedelec edge spaces of any order. In this case, the smoothers can be based
either on a decomposition based on vertex patches or on the decomposition
4.4 arising from the Helmholtz decomposition.

The results of this paper generalize to three dimensions ones which
we obtained forH(div) in two dimensions [2]. The spacesH(div) and
H(curl ) are essentially the same in two dimensions, and so our analysis of
multigrid in [2] adapts toH(curl ) with only the most mechanical changes.
In three dimensions, while there are many similarities betweenH(div) and
H(curl ), there are also significant differences, especially between their
finite element discretizations. For this reason, the analysis forH(curl ) re-
quires a number of additional ideas. In our presentation, we have stressed
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the similarity between theH(div) andH(curl ) cases as much as possible,
limiting the differences to the proofs of the two-level estimates for mixed
methods in the final section, where they are described explicitly.

The first results for multigrid inH(div) in three dimensions are due to
Hiptmair in [11]. The same author obtained the first results for multigrid
in H(curl ) in [12]. A unified and simplified treatment of those important
works is given by Hiptmair and Toselli in [13]. Our results are closely related
to the results in [11–13], and some of our arguments derive from them. The
major difference between our approach and theirs is that we employ a multi-
grid framework as presented, for example, in [5], and verify the hypotheses
required by this approach by developing necessary estimates for mixed fi-
nite element methods based on discretizations ofH(div) andH(curl ).
Specifically, we take Theorem 3.1 below as the basis for our analysis, and
developtwo-level estimatesfor mixed methods in Sect.5 in order to apply
this theorem. By contrast, Hiptmair and Toselli use an overlapping Schwarz
method framework as presented, for example in [16]. An important benefit
of our approach, which is also somewhat less complicated, is that we obtain
estimates which are independent of the parametersρ andκ occuring in the
bilinear form. By contrast, in [12], the condition number ofΘhΛh is only
shown to beO(1/κ3) whenρ = 1 andκ is small (and the case ofκ/ρ large
is not discussed).

Concerning notation, we use boldface type for vector-valued functions,
operators whose values are vector-valued functions, and spaces of vector-
valued functions. The norm in the Sobolev spacesHs(Ω) andHs(Ω) are
both denoted by‖ · ‖s, with the indexs = 0 suppressed. The norm associated
to the bilinear formΛd is denoted‖ · ‖Λd , or simply‖ · ‖H(div) if ρ = κ = 1,
and analogously for the norm associated toΛc.

We conclude the section with an outline of the remainder of the paper. In
the next section, we introduce the finite dimensional subspaces ofH(div)
andH(curl ) that we shall consider in this paper, the Raviart–Thomas–
Nedelec spaces and Nedelec edge spaces, respectively. We then state some
of the key properties of these spaces which we shall use in the subsequent
analysis, the most important of which are discrete Helmholtz decomposi-
tions of each space. In Sect.3, we state some standard results for multigrid
iterations, in order to isolate sufficient conditions on additive and multi-
plicative Schwarz smoothers for efficient algorithms. In Sect.4, we apply
these result to obtain the convergence of the standard multigrid V-cycle for
the operatorsΛd

h andΛc
h using appropriately defined additive and multi-

plicative Schwarz smoothers. The proof hinges on certain two-level error
estimates for mixed methods based on the Raviart–Thomas–Nedelec and
Nedelec edge spaces. These estimates are stated and proved in Sect. 5.
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2. Finite element discretization

We suppose thatΩ is a bounded and convex polyhedron inR
3 andTh a

mesh ofΩ consisting of closed tetrahedra. We assume that the mesh is
shape regular and quasi-uniform. More precisely, the constants that appear
in the estimates below may depend on the shape regularity constant (the
maximum ratio of the diameter of an element to the diameter of the largest
ball contained in the element) and the quasi-uniformity constant (the maxi-
mum ratio of the largest to the smallest element diameter) of the mesh, but
are otherwise mesh-independent. We denote byVh, Eh, andFh the sets of
vertices, edges, and faces of the mesh, respectively. Forν ∈ Vh∪Eh∪Fh∪Th

we define

T ν
h = { T ∈ Th | ν ⊂ T }, Ων

h = interior(
⋃

T ν
h ).

ThusΩν
h is the subdomain ofΩ formed by the patch of elements meeting

atν, andT ν
h is the restriction of the meshTh to Ων

h.
Fix an integerk ≥ 0. We then recall the following spaces (the spaces

Qh andV h were introduced in [15]; see also [3] and [14] for the connection
between these spaces and differential forms, which illuminates many of their
properties):

Wh : continuous piecewise polynomials of degree at mostk + 1,
Qh : the Nedelec edge discretization ofH(curl ) of indexk,
V h : the Raviart–Thomas–Nedelec discretization ofH(div) of indexk,
Sh : arbitrary piecewise polynomials of degree at mostk.

To define these spaces, we specify the corresponding polynomial spaces used
on each element and the corresponding sets of degrees of freedom. Restricted
to a tetrahedronT , the elements ofWh and Sh are, of course, arbitrary
elements ofPk+1(T ) andPk(T ), respectively, wherePk(T ) denotes the
space of polynomials of degree at mostk restricted toT . The restrictions of
the elements ofV h are functions of the formp(x)+r(x)xwithp ∈ Pk(T )
andr ∈ Pk(T ). The elements ofQh are functions of the formp(x)+ r(x)
with p ∈ Pk(T ) andr ∈ Pk+1(T ) such thatr · x ≡ 0. The degrees of
freedom foru ∈ V h are of two sorts. First, the moments ofu · n of order
at mostk on each facef (more precisely the functionals that associate to
u its inner product inL2(f) with each element of a basis forPk(f)); and
second, the moments ofu of degreek − 1 on each tetrahedron. The degrees
of freedom ofq ∈ Qh are (1) the moments ofq · s of order at mostk on
each edge, (2) the moments ofq × n of order at mostk − 1 on each face,
and (3) the moments ofq of order at mostk − 2 on each tetrahedron. For
Sh we use as degrees of freedom the tetrahedral moments of order at most
k. For Wh, we use (1) the values at the vertices, (2) the edge moments of
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Fig. 1. Degrees of freedom for the spacesWh, Qh, V h, andSh in the lowest order case
k = 0.

order at mostk −1, (3) the face moments of order at mostk −2, and (4) the
tetrahedral moments of order at mostk − 3.

We now consider the decomposition of these spaces as sums of spaces
supported in small patches of elements. Define

Qν
h = {r ∈ Qh : suppr ⊂ Ω̄ν

h }, ν ∈ Vh ∪ Eh ∪ Fh ∪ Th,

and analogously withQh replaced byWh, V h, or Sh. Then

Wh =
∑

v∈Vh
W v

h ,

Qh =
∑

v∈Vh
Qv

h =
∑

e∈Eh
Qe

h,

V h =
∑

v∈Vh
V v

h =
∑

e∈Eh
V e

h =
∑

f∈Fh
V f

h,

Sh =
∑

v∈Vh
Sv

h =
∑

e∈Eh
Se

h =
∑

f∈Fh
Sf

h =
∑

T∈Th
ST

h .

(2.1)

For each of these decompositions there is a corresponding estimate on the
sum of the squares of theL2 norms of the summands. For example, we can
decompose an arbitrary elementq ∈ Qh asq =

∑
e∈Eh

qe with qe ∈ Qe
h

so that the estimate ∑
e∈Eh

‖qe‖2 ≤ c‖q‖2(2.2)

holds withc depending only on the shape regularity of the mesh. We remark
also that the decompositions not stated in fact don’t hold. For example,
Wh 6= ∑

e∈Eh
W e

h .
The proof of these decompositions and the corresponding estimates all

follow the same lines. For example, to prove the edge-based decomposition
ofQh and the estimate 2.2, we note that the degrees of freedom of the space
Qh determine a canonical decomposition of an arbitrary elementq ∈ Qh

asq =
∑
qξ where the sum runs over all the degrees of freedom ofQh, and

qξ is the element ofQh with all degrees of freedom other thanξ set equal to
zero. A standard scaling argument then implies that‖qξ‖ ≤ c‖q‖L2(suppqξ).
Now to each degree of freedomξ, we may assign an edgee of the mesh such
thatsuppqξ ⊂ Ωe

h (for an edge-based degree of freedom, choosee to be that
edge and for a face- or tetrahedron-based degree of freedom, choosee to be
any edge contained in the face or tetrahedron). Combining the corresponding
qξ gives the desired decomposition.
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These degrees of freedom specified for the spacesWh, Qh, V h, and
Sh determine interpolation operatorsΠW

h , ΠQ
h , ΠV

h , andΠS
h mapping

functions which are sufficiently smooth that the required function values
and moments exist into the subspaces. Specifically,ΠW

h is a standard in-
terpolation operator and is defined on continuous functions, andΠS

h is the
L2-projection operator, defined on allL2 functions. As the domain forΠV

h ,
we can chooseH1. Moreover, a standard argument based on the Bramble–
Hilbert lemma and scaling gives the error estimate

‖v −ΠV
h v‖ ≤ ch‖v‖1, v ∈ H1.(2.3)

Because of the dependence on edge moments, the situation is more compli-
cated for the operatorΠQ

h . It is bounded on the space ofH1 vector fields
whosecurl belongs toLp, for any fixedp ∈ (2,∞]. This follows from
Lemma 4.7 of [1] and the Sobolev embedding theorem. In particular, it is
defined forH1 vector fields whosecurl belongs toV h. Moreover we have

‖q −ΠQ
h q‖ ≤ ch‖q‖1, q ∈ H1 such thatcurl q ∈ V h.(2.4)

To show this, we follow [13]. First consider the case where the mesh consists
of only the unit simplexT̂ . Let Q̂ andV̂ denote the corresponding spaces

andΠ̂
Q

the interpolant. Using the equivalence of norms inV̂ , we get

‖Π̂Q
q̂‖ ≤ c(‖q̂‖1 + ‖curl q̂‖L∞) ≤ c‖q̂‖1

for all q̂ ∈ H1(T̂ ) such thatcurl q̂ ∈ V̂ . A Bramble–Hilbert argument

then gives‖q̂ − Π̂
Q
q̂‖ ≤ c|q̂|1 for q̂ ∈ H1(T̂ ) such thatcurl q̂ ∈ V̂

where now only theH1 seminorm appears on the right hand side. If we
scale this estimate to a general simplexT = F−1T̂ with F affine, using the
appropriate contravariant transform̂q 7→ (DF )∗(q̂ ◦ F ), and add up over
all the simplices in the mesh, we get 2.4.

The interpolation operators also satisfy the commutativity properties

curlΠQ
h = ΠV

h curl , divΠV
h = ΠS

h div, gradΠW
h = ΠQ

h grad

when applied to sufficiently smooth vector fields. These well-known re-
lations follow from the definitions of the interpolation operators and the
theorems of Green and Stokes.

In addition to these interpolation operators, we also defineP d
h to be the

orthogonal projection ontoV h with respect to the inner product inH(div)
andP c

h to be the orthogonal projection ontoQh with respect to the inner
product inH(curl ).
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A key property relating the spacesWh, Qh, V h, andSh, is that (for a
convex, or more generally, contractible domain) the following sequence is
exact:

0 −→ Wh/R
grad−→ Qh

curl−→V h) div−→ §h) −→ 0,

i.e., that the range of each of the operators in the sequence coincides with
the nullspace of the following operator. It follows that if we definegrad h :
Sh → V h as theL2 adjoint of the map−div : V h → Sh, andcurl h :
V h → Qh as theL2 adjoint ofcurl : Qh → V h, then we have the two
orthogonal decompositions:

V h = curlQh ⊕ grad hSh, Qh = curl hV h ⊕ gradWh.

Thesediscrete Helmholtz decompositionsare orthogonal inL2 and in
H(div) for the first andH(curl ) for the second.

Remark 2.1If we were to consider the case where essential boundary con-
ditions are imposed, the appropriate spaces would beW̊h = Wh ∩ H̊1,
Q̊h = Qh ∩ H̊(curl ), andV̊ h = V h ∩ H̊(div), and the corresponding
exact sequence would be

0 −→ W̊h
grad−→ Q̊h

curl−→ V̊ h
div−→Sh/R −→ 0.

3. Abstract multigrid convergence

In this section, we recall some standard results for multigrid iterations, which
will be the starting point for our analysis of multigrid methods for the linear
systems of equations discussed in the previous section. Suppose

X1 ⊂ X2 ⊂ · · · ⊂ XJ = X

is a sequence of finite dimensional subspaces of a Hilbert space,Y , and
Λ : X × X → R is a symmetric positive definite bilinear form. For each
j, we defineΛj : Xj → Xj by (Λjx, y) = Λ(x, y) for all x, y ∈ Xj .
Our goal is the construction of an efficient multigrid iteration to solve or
precondition equations of the formΛJx = f . Let Mj : X → Xj denote
the Y -orthogonal projection,Pj : X → Xj the Λ-orthogonal projection,
andRj : Xj → Xj a linear operator (the smoother). For eachj, we define
anY -symmetric operatorΘj : Xj → Xj by the standard multigrid V-cycle
recursion withm ≥ 1 smoothings. That is, we setΘ1 = Λ−1

1 and forj > 1
andf ∈ Xj , we defineΘjf = y2m+1 where

y0 = 0 ∈ Xj ,

yi = yi−1 + Rj(f − Λjyi−1), i = 1, 2, . . . , m,

ym+1 = ym + Θj−1Mj−1(f − Λjym),
yi = yi−1 + Rj(f − Λjyi−1), i = m + 2, m + 3, . . . , 2m + 1.
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ThenΘJ is the V-cycle preconditioner forΛJ . The following theorem gives
conditions on the smoothersRj which ensure convergence of the multigrid
V-cycle (cf., [4], [5, Theorem 3.6], or [2, Theorem 5.1]).

Theorem 3.1 Suppose that for eachj = 1, 2, . . . , J , the smootherRj is
Y -symmetric and positive semidefinite and satisfies the conditions

Λ([I − RjΛj ]x, x) ≥ 0, x ∈ Xj ,

and
(R−1

j x, x) ≤ αΛ(x, x), x ∈ (I − Pj−1)Xj ,

whereα is some constant. Then

0 ≤ Λ([I − ΘJΛJ ]x, x) ≤ δΛ(x, x), x ∈ X,

whereδ = α/(α + 2m).

Hence, the multigrid error operatorI − ΘJΛJ is a positive definite con-
traction with norm at mostδ < 1 independent ofJ and decreasing inm,
and the preconditioned operatorΘJΛJ has eigenvalues between1 − δ and
1.

To obtain smoothers which satisfy the conditions of Theorem 3.1, we
consider additive and multiplicative Schwarz operators. To describe these,
we assume that for eachj, there are spacesXk

j ⊂ Xj such that eachx ∈ Xj

can be written in the form
∑K

k=1 xk, with xk ∈ Xk
j . LettingP k

j denote the
Λ-projection operator onto the spaceXk

j , we can then define the unscaled

additive Schwarz smoother byRa
j =

∑K
k=1 P k

j Λ−1 and then the smoother
Rj = ηRa

j , whereη is a scaling factor. We also denote byRm
j the usual

multiplicative Schwarz smoother associated with the spacesXk
j , i.e., for

f ∈ Xj , Rm
j f := x2K , where

x0 = 0,

xk = xk−1 − P k
j (xk−1 − Λ−1

j f), k = 1, . . . , K,

xk = xk−1 − P 2K+1−k
j (xk−1 − Λ−1

j f), k = K + 1, . . . , 2K.

The following theorem gives conditions on the decompositions of theXj

under which the Schwarz smoothers lead to a convergent multigrid iteration.

Theorem 3.2 Suppose that

(3.1)
K∑

k=1

K∑
l=1

∣∣∣Λ(xk, yl)
∣∣∣ ≤ β

[
K∑

k=1

Λ(xk, xk)

]1/2 [
K∑

l=1

Λ(yl, yl)

]1/2

,

xk ∈ Xk
j , yl ∈ X l

j ,
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and

inf
xk∈Xk

j

x=
∑

xk

K∑
k=1

Λ(xk, xk) ≤ γΛ(x, x), x ∈ (I − Pj−1)Xj ,(3.2)

for some constantsβ > 0, γ > 0. Then,

(i) If η ≤ 1/β, the scaled additive smoothersRj = ηRa
j satisfy the hy-

potheses of Theorem 3.1 withα = γ/η.
(ii) The multiplicative smoothersRj = Rm

j satisfy the hypotheses of The-
orem 3.1 withα = β2γ.

Results of this type can be found in many places, for example in [5, Chap-
ters 3 and 5], [7], [16, Chapter 5], and [18]. Therefore we merely sketch a
proof here. The first hypothesis of Theorem 3.1 for the additive smoother
follows from 3.1 withxk = yk = P k

j x and Schwarz’s inequality. It is
well known that the left hand side of 3.2 is precisely equal to(Ra

j
−1x, x)

(cf. equation (2.1) of [2]). The second hypothesis of Theorem 3.1 follows
directly for the additive smoother. For the multiplicative smoother, the first
hypothesis follows from the identityΛ([I − RjΛj ]x, x) = Λ(Ex, Ex)
whereE = (I − PK

j )(I − PK−1
j ) · · · (I − P 1

j ). The second hypothesis
is a consequence of the inequality(Ra

jx, x) ≤ β2(Rm
j x, x), which is just

Corollary 4.3 of [2], using the argument given at the end of Sect.5 of that
paper.

4. Multigrid convergence inH(div) andH(curl )

We consider a nested sequence of quasi-uniform tetrahedral meshesTj ,
1 ≤ j ≤ J . These give rise to spacesWj , Qj , V j , andSj and operators
Λd

j : V j → V j andΛc
J : Qj → Qj . In this section, we use Theorem 3.2 to

obtain a convergence result for the multigrid V-cycle applied to the equation
Λd

Ju = f or Λc
Jp = g in the spaceX = V J or QJ . For the enclosing

Hilbert spaceY we takeL2. We note that properties 3.1 and 3.2 only involve
subspaces at two levels. Leth denote the mesh size of some meshTj and let
H denote the mesh size of the next coarser meshTj−1. To simplify notation,
we shall writeTh andTH for Tj andTj−1, and similarly in other cases where
the subscriptsj andj − 1 arise.

To define the Schwarz smoothers, we must decompose the spaceV h or
Qh. For the spaceV h, three possible decompositions, based on face patches,
edge patches, and vertex patches, are given in 2.1. From the point of view
of implementation of the corresponding Schwarz smoother, the face-based
decomposition, which has only two elements per patch, is most efficient, the



Multigrid in H(div) andH(curl ) 207

edge-based less efficient, and the vertex-based Schwarz smoother the least
efficient. However, as our theory will suggest and numerical computations
in analogous situations reinforce [6], the face-based Schwarz smoother does
not lead to an efficient multigrid algorithm. Below we shall prove that both
decompositions

V h =
∑
e∈Eh

V e
h and V h =

∑
v∈Vh

V v
h,(4.1)

yield Schwarz smoothers that satisfy the conditions of Theorem 3.2 with
constants independent ofh and κ. In [11] Hiptmair generalizes to three
dimension a decomposition used in two dimensions by Vassilevski and Wang
[17], namely,

V h =
∑

f∈Fh

V f
h +

∑
e∈Eh

curlQe
h.(4.2)

The implementation of the corresponding smoother, which may be more
efficient than the smoother based on edge patches, is discussed in [11]. Our
analysis below applies to this smoother as well.

For the spaceQh we may use either the decomposition

Qh =
∑
v∈Vh

Qv
h,(4.3)

or one due to Hiptmair [12],

Qh =
∑
e∈Eh

Qe
h +

∑
v∈Vh

gradW v
h .(4.4)

It is easy to check that since no point belongs to more than six of the
Ωe

h or four of theΩv
h or Ωf

h , all these decompositions satisfy the condition
3.1 withβ independent ofh, ρ, andκ (β will never exceed10). It thus only
remains to verify condition 3.2, which we state for the particular case of the
first smoother in 4.1 and the smoother in 4.3 in the following two theorems.
The verification for the other smoothers will be remarked on below. For these
theorems (only) we require the bounded refinement hypothesisH ≤ ch. (In
practice, values ofc around2 are common.)

Theorem 4.1 Assume thatH ≤ ch and thatv ∈ (I − P d
H)V h be given.

There exists a decompositionv =
∑

e∈Eh
ve, whereve ∈ V e

h, and a con-
stantγ depending onc but independent ofh, ρ, andκ such that∑

e∈Eh

Λd(ve,ve) ≤ γΛd(v,v).
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Theorem 4.2 Assume thatH ≤ ch and thatq ∈ (I − P c
H)Qh be given.

There exists a decompositionq =
∑

v∈Vh
qv, whereqv ∈ Qv

h, and a con-
stantγ depending onc but independent ofh, ρ, andκ such that∑

v∈Vh

Λc(qv, qv) ≤ γΛc(q, q).

To prove these results, we will make use of the discrete Helmholtz de-
compositions described in Sect.2. For these decompositions, the following
two propositions, forH(div) andH(curl ), respectively, will be the key
ingredients of the analysis. The proofs of these propositions, unlike the
proof of Theorems 4.1 and 4.2, do not require thatH ≤ ch. Also, since
Theorems 4.1 and 4.2 are unaffected by scaling of the bilinear form, in the
remainder of the paper we assume, without loss of generality, thatρ = 1.

Proposition 4.3 Suppose thatu ∈ V h and thatu − P d
Hu ∈ V h has the

discrete Helmholtz decomposition

u− P d
Hu = grad hsh + curl qh,

for somesh ∈ Sh andqh ∈ curl hV h. Then

κ‖grad hsh‖ ≤ cH‖u− P d
Hu‖Λd , ‖qh‖ ≤ cH‖u− P d

Hu‖.

Proposition 4.4 Suppose thatp ∈ Qh and thatp − P c
Hp ∈ Qh has the

discrete Helmholtz decomposition

p− P c
Hp = gradwh + curl hvh,

for somewh ∈ Wh/R andvh ∈ V h with divvh = 0. Then

‖wh‖ ≤ cH‖p− P c
Hp‖, κ‖curl hvh‖ ≤ cH‖p− P c

Hp‖Λc .

The proof of these results requires a series of intermediate results and will
be given in the next section. We now show how these propositions may be
used to establish Theorems 4.1 and 4.2.

Proof of Theorem 4.1.Sincev ∈ (I − P d
H)V h, it follows from Propo-

sition 4.3 and the bounded refinement hypothesis thatv admits a discrete
Helmholtz decomposition

v = ṽ + curl q,

whereṽ ∈ grad hSh andq ∈ Qh satisfy the bounds

‖ṽ‖ ≤ ‖v‖, κ‖ṽ‖ ≤ ch‖v‖Λd , ‖q‖ ≤ ch‖v‖.(4.5)
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Following the discussion of Sect.2, we can writeṽ =
∑

e∈Eh
ṽe andq =∑

e∈Eh
qe with∑

e∈Eh

‖ṽe‖2 ≤ c‖ṽ‖2,
∑
e∈Eh

‖qe‖2 ≤ c‖q‖2.(4.6)

Thenv =
∑

e∈Eh
ve whereve := ṽe +curl qe. Moreover, using an inverse

inequality,

(4.7)
∑
e∈Eh

‖ve‖2
Λd =

∑
e∈Eh

(‖ṽe‖2
Λd + ‖curl qe‖2)

≤ c
∑
e∈Eh

[(1 + κ2h−2)‖ṽe‖2 + h−2‖qe‖2],

and the theorem follows from 4.5–4.7.ut
Proof of Theorem 4.2.Sinceq ∈ (I − P c

H)Qh, it follows from Proposi-
tion 4.4 and the bounded refinement hypothesis thatq is given by

q = q̃ + gradw,

whereq̃ ∈ curl hV h andw ∈ Wh satisfy the estimates

‖q̃‖ ≤ ‖q‖, κ‖q̃‖ ≤ ch‖q‖Λc , ‖w‖ ≤ ch‖q‖.

Writing q̃ =
∑

v∈Vh
q̃v and w =

∑
v∈Vh

wv, and settingqv = q̃v +
gradwv, we complete the proof as for the preceding theorem.ut
Remark 4.1The proof of Theorem 4.1 applies almost without modification
if the decompositionV h =

∑
e∈Eh

V e
h is replaced by either the second

decomposition in 4.1 or the decomposition in 4.2. Similarly, the proof of
Theorem 4.2 applies to the decomposition in 4.4 as well. It is also clear why
we cannot use the face-based decomposition ofV h in Theorem 4.1, since
the proof would require a corresponding face-based decomposition ofQh,
which does not exist.

5. Two-level estimates for mixed finite elements

In this section we prove Propositions 4.3 and 4.4. Our proofs are based on
estimates for the approximation of discretely irrotational vector fields in
V h and discretely solenoidal vector fields inQh by discretely irrotational
and solenoidal fields inV H andQH , respectively. These two-level approx-
imation results, in turn, rely on estimates for mixed finite element methods
based onH(div) andH(curl ). We begin this section with a discussion of
such methods.
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For theH(div) case, letf ∈ L2 and define(s,v) as the unique critical
point (a saddle) of

Ltd(s,v) :=
1
2
‖v‖2 + (divv, s) − (f, s)

overL2 ×H(div). This is a mixed variational formulation of the Dirichlet
boundary value problem

v = grad s, divv = f in Ω, s = 0 on∂Ω.(5.1)

The mixed finite element approximation(sh,vh) to (s,v) is the unique
critical point ofLtd overSh × V h. It is determined by the equationsvh =
grad hsh, divvh = ΠS

h f , andvh alone is characterized as the unique
function in grad hSh satisfying the latter equation. A basic estimate for
mixed methods is

‖v − vh‖ ≤ ‖v −ΠV
h v‖, v ∈ H1,(5.2)

which is a consequence of the commutativity propertydivΠV
h = ΠS

h div.
From the properties of the operatorΠV

h one also easily derives the inf–sup
condition:

inf
s∈Sh

sup
v∈V h

(divv, s)
‖v‖H(div)‖s‖ ≥ σ > 0.

A useful consequence is the discrete Poincaré inequality:

‖s‖ ≤ σ−1‖grad hs‖, s ∈ Sh.(5.3)

To describe the corresponding situation in theH(curl ) case, we introduce
the space

Z := { z ∈ H(div) |divz = 0 }
= H(div) ∩ (grad H̊1)⊥ = curlH(curl ),

and the discrete analogue

Zh := { zh ∈ V h |divzh = 0 } = V h ∩ (grad hSh)⊥ = curlQh.

The mixed variational problem we consider now begins with a function
f ∈ Z and characterizes(z, q) ∈ Z × H(curl ) as the unique critical
point (again a saddle) of

Lc(z, q) :=
1
2
‖q‖2 − (curl q,z) + (f ,z).

This corresponds to the boundary value problem

q = curl z, curl q = f , divz = 0 in Ω, z × n = 0 on∂Ω.(5.4)
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For this problem we haveq,z ∈ H1 and

‖q‖1 ≤ c‖f‖, ‖z‖1 ≤ c‖q‖.(5.5)

Indeed, since the normal component ofq = curl z is the tangential diver-
gence ofz × n, which vanishes on∂Ω, it follows thatq · n = 0 on ∂Ω.
The estimates onq andz are then given in Theorems 2.1 and 2.2 of [8],
respectively. (These results depend on the assumption of convexity.)

The mixed finite element approximation(zh, qh) is the unique critical
point ofLc overZh×Qh. It is determined by the equationsqh = curl hzh,
curl qh = ΠZ

h f , whereΠZ
h : L2 → Zh is theL2 projection, andqh alone

is characterized as the unique function incurl hV h satisfying the latter
equation. At this point, an essential difference between the mixed approx-
imation of 5.4 and 5.1 arises. It isnot true thatcurlΠQ

h q = ΠZ
h curl q

for all smooth functionsq (sinceΠZ
h does not coincide withΠV

h , even
when applied to irrotational fields). As a result, it is not in general true that
‖q− qh‖ ≤ ‖q−ΠQ

h q‖. However, this estimate is true in the special case
thatf ∈ Zh, i.e.,

‖q − qh‖ ≤ ‖q −ΠQ
h q‖, q ∈ H1 such thatcurl q ∈ V h.(5.6)

Indeed, in this case

curlΠQ
h q = ΠV

h curl q = curl q = ΠZ
h curl q = curl qh,

soΠQ
h q−qh is curl-free. It then follows directly from the defining equations

of the mixed method that(q − qh,ΠQ
h q − qh) = 0, which gives 5.6.

Notice that the hypothesiscurl q ∈ V h is also what is needed for the
approximation estimate 2.4. Combining 5.6, 2.4, and the continuous inf–sup
condition, we get the discrete inf–sup condition,

inf
z∈Zh

sup
q∈Qh

(curl q,z)
‖q‖H(curl )‖z‖

≥ σ > 0,

in the usual way. This in turn implies an analogue of the discrete Poincaré
inequality,

‖z‖ ≤ σ−1‖curl hz‖, z ∈ Zh.(5.7)

Having completed the necessary discusion of mixed methods, we now
turn to the keytwo-level error estimates, from which Propositions 4.3 and
4.4 will follow. Given a finite element vector field with respect to some fine
mesh, these estimates give bounds for the approximation to it obtained using
mixed finite elements on a coarser mesh. Discrete norms compensate for the
lack of regularity of the fine mesh solution.
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Lemma 5.1 Given vh ∈ grad hSh, let vH be the unique element of
grad HSH satisfyingdivvH = ΠS

Hdivvh. Then

‖vh − vH‖ ≤ cH‖divvh‖, ‖div(vh − vH)‖ ≤ cH‖grad hdivvh‖.

Lemma 5.2 Given qh ∈ curl hV h, let qH be the unique element of
curl HV H satisfyingcurl qH = ΠZ

Hcurl qh. Then

‖qh −qH‖ ≤ cH‖curl qh‖, ‖curl (qh −qH)‖ ≤ cH‖curl hcurl qh‖.

We shall first prove Lemma 5.1. Combining it with an appropriate duality
argument, we establish Proposition 4.3. We shall then prove Lemma 5.2 and
Proposition 4.4.

Proof of Lemma 5.1.Define (v, s) from 5.1 with f = divvh. Thenvh

andvH are the mixed approximations tov in V h andV H , respectively.
Applying 5.2, 2.3, and 2-regularity for the Dirichlet problem on a convex
polyhedron, we obtain

‖v − vH‖ ≤ ‖v −ΠV
Hv‖ ≤ cH‖v‖1 ≤ cH‖divvh‖,

and, similarly,‖v−vh‖ ≤ ch‖divvh‖. The first estimate thus follows from
the triangle inequality.

Next we prove that for anyrh ∈ Sh,

‖rh − ΠS
Hrh‖ ≤ cH‖grad hrh‖.(5.8)

In particular, we may takerh = divvh in this estimate, to get

‖divvh − divvH‖ ≤ cH‖grad hdivvh‖.

To prove 5.8, we define a functionu which satisfies

divu = rh − ΠS
Hrh, ‖u‖1 ≤ ‖rh − ΠS

Hrh‖.

Then

‖rh−ΠS
Hrh‖2 = (divu, rh − ΠS

Hrh) = (divu, ΠS
h rh − ΠS

Hrh)

= ([ΠS
h − ΠS

H ]divu, rh) = (div[ΠV
h −ΠV

H ]u, rh)

= ([ΠV
h −ΠV

H ]u,grad hrh)

≤ (‖ΠV
h u− u‖ + ‖u−ΠV

Hu‖)‖grad hrh‖
≤ cH‖u‖1‖grad hrh‖ ≤ cH‖rh − ΠS

Hrh‖‖grad hrh‖,

which implies 5.8. ut
Proof of Proposition 4.3.The proposition directly generalizes the corre-
sponding two-dimensional result, Lemma 3.1 of [2]. The proof of the bound
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ongrad hsh is entirely analogous to the argument in [2], but the bound for
qh requires the use of a more complicated duality argument. First, observe
that

(curl qh, curl r) = Λd(u− P d
Hu, curl r) = 0, r ∈ QH .(5.9)

Define(q,z) as in 5.4 withf replaced bycurl qh. Thenqh ∈ Qh is the
mixed approximation toq, and hence, by 5.6, 2.4, and 5.5,

‖q − qh‖ ≤ ‖q −ΠQ
h q‖ ≤ ch‖q‖1 ≤ ch‖curl qh‖.(5.10)

Sincedivz = 0,divΠV
Hz = 0, and soΠV

Hz ∈ curlQH . We may therefore
apply 5.9, 2.3, and 5.5 to obtain

‖q‖2 = (q, curl z) = (curl q,z) = (curl qh,z)

=(curl qh,z −ΠV
Hz) ≤ cH‖z‖1‖curl qh‖ ≤ cH‖q‖‖curl qh‖.

Hence,‖q‖ ≤ cH‖curl qh‖. Combining this with 5.10, we obtain

‖qh‖ ≤ cH‖curl qh‖ ≤ cH‖u− P d
Hu‖.

This completes the proof of the second estimate of the proposition.
Since the first estimate is vacuous ifκ = 0, we assumeκ > 0. SinceΛd

h

mapsgrad hSh onto itself, we havevh = (Λd
h)−1grad hsh ∈ grad hSh.

DefiningvH ∈ V H as in Lemma 5.1, we have

‖vh−vH‖2
Λd

h
≤ cH2(‖divvh‖2 + κ2‖grad hdivvh‖2)

≤ cH2κ−2(‖vh‖2 + 2κ2‖divvh‖2 + κ4‖grad hdivvh‖2)

= cH2κ−2‖Λd
hvh‖2 = cH2κ−2‖grad hsh‖2.

Hence,

‖grad hsh‖2 = Λd(grad hsh,vh) = Λd(u− P d
Hu,vh)

=Λd(u− P d
Hu,vh − vH) ≤ ‖u− P d

Hu‖Λd‖vh − vH‖Λd

≤cHκ−1‖u− P d
Hu‖Λd‖grad hsh‖.ut

We now prove Lemma 5.2, and then Proposition 4.4, which will follow
easily. The proof of the lemma is substantially more involved than that of
Lemma 5.1, because the error estimate‖q−qH‖ ≤ ‖q−ΠQ

Hq‖ is not valid
(reflecting the lack of the commutativity properycurlΠQ

h = ΠZ
h curl ).

Proof of Lemma 5.2.The lemma does not involve the parameterκ. So as
not to introduce additional notation, the notationΛd is used in this proof to
denote the unweighted inner product inH(div) (κ = 1), andP d

H is used
to denote the corresponding orthogonal projection.
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Sincecurl qH = ΠZ
Hcurl qh whereΠZ

H is theL2 projection ontoZH ,
we obviously have

‖curl qH‖ ≤ c‖curl qh‖.(5.11)

Define(q,z) by the boundary value problem 5.4 withf replaced bycurl qh.
Sinceqh is the mixed approximation ofq in Qh andcurl q ∈ V h, we are
able to use 5.6 to estimateq−qh. WhileqH is the mixed approximation ofq
inQH , it is not true thatcurl q ∈ V H , so we cannot estimateq−qH in the
same way. Therefore we define(q̄, z̄) by 5.4 withf replaced bycurl qH .
(The analogous complication did not arise in the proof of Lemma 5.1.)
Settingφ = q − q̄ andψ = z − z̄, we obtain

curlψ = φ, ‖ψ‖1 ≤ c‖φ‖,

curlφ = curl (q − q̄) = curl (qh − qH),
‖φ‖1 ≤ c‖curl qh‖ + c‖curl qH‖ ≤ c‖curl qh‖,

‖φ− (qh − qH)‖ ≤ ‖q − qh‖ + ‖q̄ − qH‖ ≤ cH‖curl qh‖,

where in the last estimate we have used 5.6, 2.4, and 5.5 twice, and then
5.11.

We estimate‖φ‖ using the same duality argument we used to estimate
‖q‖ in the proof of Proposition 4.3. SinceΠV

Hψ ∈ ZH (which follows from
the commutativity relationdivΠV

H = ΠS
Hdiv), andcurl (qh−qH) ⊥ ZH ,

we find

‖φ‖2 = (φ, curlψ) = (curlφ,ψ) = (curl [qh − qH ],ψ)

= (curl [qh − qH ],ψ −ΠV
Hψ) ≤ cH‖curl (qh − qH)‖‖ψ‖1

≤ cH‖curl (qh − qH)‖‖φ‖.

This implies that‖φ‖ ≤ cH‖curl (qh − qH)‖ ≤ CH‖curl qh‖, and so
we obtain the first estimate of the lemma.

It remains to prove the second estimate. For this estimate, too, we cannot
simply use the analogue of the argument that established the second estimate
of Lemma 5.1. This time the problem can be traced to the failure of the
commutativity propertyΠZ

Hcurl = curlΠQ
H , even though the analogous

propertyΠS
Hdiv = divΠV

H is valid. Instead we shall derive the estimate
by establishing the following three facts:

curl qh − curl qH = (I − P d
H)curl qh + grad HsH ,

for somesH ∈ SH ,
(5.12)

‖grad HsH‖ ≤ c‖(I − P d
H)curl qh‖,(5.13)

‖u− P d
Hu‖ ≤ cH‖curl hu‖, u ∈ curlQh.(5.14)
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The desired estimate follows by takingu = curl qh in 5.14 and using 5.12
and 5.13.

The first statement follows from the equations

(curl qH , curl rH) = (curl qh, curl rH) = Λd(curl qh, curl rH)

= Λd(P d
Hcurl qh, curl rH)

= (P d
Hcurl qh, curl rH), rH ∈ QH .

To prove 5.13, we use the Helmholtz decomposition ofP d
Hcurl qh and

the definition ofP d
H to see that for anyvH ∈ V H ,

(divgrad HsH ,divvH) = (divP d
Hcurl qh,divvH)

= Λd(P d
Hcurl qh,vH) − (P d

Hcurl qh,vH)

= (curl qh,vH) − (P d
Hcurl qh,vH)

= ([I − P d
H ]curl qh,vH).

(5.15)

Now

‖grad HsH‖2 = −(divgrad HsH , sH) ≤ ‖divgrad HsH‖‖sH‖
≤ c‖divgrad HsH‖‖grad HsH‖,

by the discrete Poincaré inequality 5.3. Thus

‖grad HsH‖ ≤ c‖divgrad HsH‖,

and takingvH = grad HsH in 5.15, we get

‖grad HsH‖2 ≤ c‖divgrad HsH‖2

= c([I − P d
H ]curl qh,grad HsH)

≤ c‖(I − P d
H)curl qh‖‖grad HsH‖,

as desired.
It remains to prove 5.14. Foru ∈ curlQh, we use the discrete Helmholtz

decomposition to write

(I − P d
H)u = curlp+ grad hs, s ∈ Sh, p ∈ curl hV h,

and then to write

(I − P d
H)curlp = curlm+ grad hr, r ∈ Sh, m ∈ curl hV h.

From the first estimate of Proposition 4.3 and the fact thatu is divergence-
free, we have that

‖grad hs‖ ≤ cH‖u− P d
Hu‖H(div) ≤ cH‖u‖H(div) = cH‖u‖.
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Again using the vanishing ofdivu, we obtain

‖curlp‖2 = Λd(curlp, [I − P d
H ]u) = Λd([I − P d

H ]curlp,u)

= ([I − P d
H ]curlp,u) = (curlm,u) = (m, curl hu).

From the second estimate of Proposition 4.3 we then get

‖m‖ ≤ cH‖(I − P d
H)curlp‖H(div)

≤ cH‖curlp‖H(div) = cH‖curlp‖.

Hence,‖curlp‖ ≤ cH‖curl hu‖. Finally,

‖u− P d
Hu‖ ≤ ‖curlp‖ + ‖grad hs‖ ≤ cH(‖u‖ + ‖curl hu‖),

which, together with 5.7, establishes 5.14.ut
Proof of Proposition 4.4.Since

(gradwh,gradµ) = 0, µ ∈ WH ,

it follows from the standard duality argument, exploiting convexity, that

‖wh‖ ≤ cH‖gradwh‖ ≤ cH‖p− P c
Hp‖.

To prove the second estimate, we note that sinceΛc
h mapscurl hV h onto

itself, we haverh = (Λc
h)−1curl hvh ∈ curl hV h. By Lemma 5.2 there

existsrH ∈ QH such that

‖rh − rH‖ ≤ cH‖curl rh‖, ‖curl (rh − rH)‖ ≤ cH‖curl hcurl rh‖.

Thus

‖rh − rH‖2
Λc

h
≤ cH2(‖curl rh‖2 + κ2‖curl hcurl rh‖2)

≤ cH2κ−2(‖rh‖2 + 2κ2‖curl rh‖2 + κ4‖curl hcurl rh‖2)

= cH2κ−2‖Λc
hrh‖2 = cH2κ−2‖curl hvh‖2.

Therefore,

‖curl hvh‖2 = Λc(curl hvh, rh) = Λc(p− P c
Hp, rh)

= Λc(p− P c
Hp, rh − rH) ≤ ‖p− P c

Hp‖Λc
h
‖rh − rH‖Λc

h

≤ cHκ−1‖p− P c
Hp‖Λc‖curl hvh‖,

as desired. ut
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