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Obius Transformations Revealed
is a short Im that illustrates a
beautiful correspondence between
Mobius transformations and mo-
tions of the sphere. The video
received an Honorable Mention in the 2007
Science and Engineering Visualization Challenge,
cosponsored by the National Science Foundation
and Science magazine. It subsequently received
extensive coverage from both traditional media
outlets and online blogs. Edward Tufte, the
world's leading expert on the visual display of
information, came across the video and reported
on his blog “ Mobius Transformations Revealed
is a wonderful video clarifying a deep topic...
amazing work...” But the Im has also attracted
a far less expert audience. As of this writing,
it has been viewed nearly 1.5 million times on
the video-sharing website YouTube and is rated
as the number three top favorite video of all
time in YouTube's educational category. Over
11,000 viewers have declared it among their
favorites, which makes it one of the YouTube top
favorites of all time. From the more than 4,000
written comments left by YouTube viewers it is
clear that many of them had little mathematical
background, and some were quite young. To
view Mobius Transformations Revealed , visit the
website http://umn.edu/~arnold/moebius/
In this article we discuss some of the technical
details behind the video and o er a “behind the
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scenes” look at its production. We begin with a
brief overview of the visualization of functions

of a complex variable, especially the technique
used throughout the video, which we refer to
as homotopic image mapping
a discussion of Mobius transformations and the
speci ¢ theorem illustrated in the video. We con-
clude by describing aspects of the movie that
are generally unnoticed by the public but can be
appreciated by mathematicians.

Visualization of Functions
Among the most insightful tools that mathematics
has developed is the representation of a function
of a real variable by its graph. In fact, historically,
graphs of functions appeared before the notion
of function itself. A graph of the inclinations of
planets as a function of time appears already
in a tenth century manuscript [1], and in the
fourteenth century Nicolas Oresme published a
graphical method for displaying data that leads to
graphs that appear quite familiar (see Figure 1).

By the late seventeenth and early eighteenth
century, when the notion of function was devel-
oped by Leibniz, John Bernoulli, Euler, and others,
graphs appeared in their works that would not
be out of place in today's calculus texts. Who
today would attempt to teach the trigonometric
functions, without drawing a graph?

The situation is quite di erent for a function of
a complex variable. The graph is then a surface in
four-dimensional space, and not so easily drawn.
Many texts in complex analysis are without a single
depiction of a function. Nor is it unusual for aver-
age students to complete a course in the subject
with little idea of what even simple functions, say
trigonometric functions, “look like”. (Fortunately
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Figure 3. A colored rectangle and its image
mapped via cosz.

Figure 1. Tenth and fourteenth century graphs.

there are some exceptional textbooks, such as the
lovely Visual Complex Analysis by Needham [2].)
The most straightforward way to visually repre-

sent a function w f f,z...of a complex variable is

to depictthe imageinthe  w-plane of some identi -

able point set in the domain. At the simplest level,

this may consist of nitely many labeled points

or curves, but more information is transmitted by Figure 4. The rst author's photo under z8.

depicting the image of a region labeled with an

easily identi able pattern, such as a checkerboard

(see Figure 2). With the aid of computer graphics, of domain pattern can signi cantly enhance the

one can easily incorporate colors or even images. communication of salient features of the function.
Transparency is a commonly implemented feature
in many computer graphics systems, and the use
of partially transparent domain patterns can help
with the diculties image mapping encounters
with multivalent functions (see Figure 5). (An al-
ternative method of depicting complex functions,
called domain coloring , avoids the di culties with
multivalence by depicting the inverse image of a
pattern in the range [3].)

Figure 2. A checkerboard on the unit square
and its image under  f,z...f z%.

This can help the viewer to ascertain the con g-

uration of large parts of the image at a glance.

See Figures 3 and 4. Note that this image mapping

approach to visualizing complex functions o ers

a great deal of freedom in comparison to standard

graphs of real functions, in which the only signi -

cant choices to be made are the ranges and scales Figure 5. f,z...f ,2z® 6z2 z 2..6.

of the axes. For complex image mapping we have

the choice of the region in the  z-plane to display

and the domain pattern , i.e., the pattern, coloring, Even with a well-chosen domain pattern, it may
or other labeling of the region. Di erent choices be di cult to relate points in the image plane to
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their inverse images in the domain plane. Anima-
tion is a very e ective tool in this regard. With
homotopic image mapping  we depict not just the
image of the domain pattern under the mapping

f, but the evolution of the image under a ho-
motopy connecting the identity map to f. In this
way a great deal of information can be conveyed
quickly. A glance at even four frames from such a
homotopy, shown in Figure 6, makes it easy to see
how the complex exponential map takes the rec-
tangle jRe,z..} a,jlm,z.j onto the annulus
e? jwj e?. In this example, we use a sim-
ple linear homotopy, F,z;t...f ,1 t...z texp,z..,
0 t 1, but the choice of homotopy is another
factor that can be used to advantage. For exam-
ple, to visualize the function f,z...f z® we might
want to use a homotopy through power maps:
F.z;t..f zZ"4,0 t 2.

Figure 6. Homotopy to  f,z...f €*.

Mdbius Transformations

Mobius transformations, i.e., non-constant rational
maps of the form

az, b,

cz, d’

are fundamental complex maps, useful in many
applications, and studied in most courses on com-
plex analysis. They are invertible meromorphic
functions (in fact the group of meromorphic au-
tomorphisms of the extended complex plane C:
consists precisely of the Modbius transformations),
and so are conformal everywhere. They also pos-
sess the less common geometrical property that
they map arcs of circles (understood to include line
segments as a limiting case) to arcs of circles. Thus
Mobius transformations are natural candidates for

foz...f
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visualization by image mapping. These can be ani-
mated e ectively by using a homotopy consisting
entirely of Mobius transformations that joins the
identity (which is a Mdobius transformation) to
the given transformation. This technique is used
extensively in  Mo6bius Transformations Revealed
The characterization of the Mobius transfor-
mations as the meromorphic automorphisms of
the extended complex plane can be interpreted
geometrically. The extended plane can be identi-
ed with the unit sphere in R? as usual. Namely,
we identify the complex plane with the plane
xsz f 0in R3, and map it to the unit sphere by
inverse stereographic projection from the north
pole. Completing the identi cation by mapping
the point at in nity in C; to the north pole, the
Méobius transformations correspond to the holo-
morphic automorphisms of this Riemann sphere.
However, it is not obvious what the holomorphic
automorphisms of the sphere look like, and it
takes some e ort and sophistication to get a clear
picture of the Mdbius transformations in this way.
Stereographic projection can be used to char-
acterize Mobius transformations in a distinctly
di erent way, which is both elegant and visual-
ly accessible. Call a sphere S in R® admissible
if its north pole lies in the upper half-space
H f f x3 > 0g, and, for such spheres, denote by
Ps the stereographic projection from the north
pole sy of S, which identies C; with S. Choose
some such sphere, and also a rigid motion T of R®
suchthat S°:f TSis also admissible,i.e., Tsy2 H.
Consider the composition Pso T Pg?', which maps
C; to itself. It is easy to verify that the composi-
tion is a Mdbius transformation, either by direct
calculation, or, from a more advanced viewpoint,
by noting that it corresponds to the map from S
to itself given by Pg® Pso T, which is surely a
holomorphic automorphism.
In fact, every Mobius transformation is obtained
in this way.

Theorem 1. A complex mapping is a Mobius trans-
formation if and only if it can be obtained by stere-
ographic projection of the complex plane onto an
admissible sphere in R3, followed by a rigid motion
of the sphere in  R® which maps it to another admis-
sible sphere, followed by stereographic projection
back to the plane.

We have not been able to ascertain the origin of
this simple, elegant result. A broad, if unscienti c,
survey of colleagues indicates that the theorem is
known by some, but no one has been able to pro-
vide a concrete reference. In 2006 it was added by
an anonymous contributor as the second sentence
of the article on Mobius transformations in the
web-based free content encyclopedia Wikipedia
(“A Mbbius transformation may be performed
by performing a stereographic projection from a
plane to a sphere, rotating and moving that sphere
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to a new arbitrary location and orientation, and
performing a stereographic projection back to the
plane.”) More recently, in 2008 this sentence was
removed from Wikipedia by a contributor whose
comments indicate a misunderstanding of the
result.

To prove Theorem 1, we must show that for
any Mobius transformation  f there exists an ad-
missible sphere S and a rigid motion T such that
S f TS is admissible and that

(1) ffPso T Pl

We rely on the elementary fact that the Mdbius
transformations are generated by the translations

z, z, ( 2C..therotations z, e ( 2 R),
the dilations z, z ( > 0), and the inversion
z , 1=z. In fact, it is easy to write any M&bius
transformation (except a linear polynomial, which

is an easier case) as

@) fz..f ,

for appropriate ; 2 Cand ; 2 R. In other
words, f is obtained as the composition

(1) translation by
(2) inversion

(3) dilation by
(4) rotation by
(5) translation by

Now, the translation by may be realized in the
form (1) by choosing S to be any admissible sphere
and T to be the same translation extended to R3.
For each of the other maps, rotation, dilation, and
inversion, we choose S to the be the unit sphere.
To obtain a rotation, of course, we take T to be
the same rotation extended to ~ R? (rotation about
the xz-axis). To obtain dilation by ,we take T to
be translation of the sphere  upwards a distance

1. And to obtain the inversion, we take T to
be rotation around the real axis of the complex
plane through an angle . Therefore, we can write
the general Mdbius transformation (2) in the form
(1) by choosing S to be a sphere of unit radius
centered at the point of the complex plane,
and construct T as the composition of translation
by , rotation by around the real axis, rotation
by around the axis orthogonal to the plane,
translation upwards by 1, and translation by

Note that the choice of the sphere S and rigid
motion T are far from unique. After all, they
o er ten degrees of freedom, while the Md&bius
group is just six-dimensional. An example of non-
uniqueness is shown in Figure 7, which displays
two representations of thMt')bius transfornpiion
fz...f t, 1, i..z = 2%=t, 1, i..z, 2% using
spheres of unit radius. In the rst, T is a rotation
about the center of the initial sphere S, so the
nal sphere S° coincides with S. In the second
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Figure 7. Distinct representations of the same
Mobius transformation.

representation, T involves translation as well as

rotation.

Mobius Transformations Revealed

Thevideo Mobius Transformations Revealed dem-
onstrates various geometric properties of Mdbius
transformations—e.g., conformality, circle-to-
circle mapping, and generation by translations, ro-
tations, dilations, and inversion—using homotopic
image mapping. With the addition of 3-dimensional
computer animation, it demonstrates the relation
between Mobius transformations of the plane to
stereographic projections of a sphere and gives
a convincing demonstration of the elusive Theo-
reml.

A very satisfying aspect of the production of the
video is that the theorem it demonstrates—that
Méobius transformations can be obtained by sim-
ple rigid motions of a sphere through 3-space via
stereographic projection—was a key to producing
the video itself. As we often teach in the classroom,
stereographic projection is the mathematical real-
ization of the physical process of illuminating a
plane from a bright light placed at the far pole of
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a translucent sphere and following the light rays
from the pole through the sphere onto the plane.
See Figure 8. The frames of Mobius Transforma-

Figure 8. Stereographic projection.

tions Revealed were produced using ray-tracing
software. We used the Persistence of Vision Ray-
tracer (POV-Ray), a totally free and widely available
program that runs on most computer platforms.
With ray-tracing, the user enters the con gura-
tions and attributes (such as texture, color, and
transparency) of objects, light sources, and a cam-
era in a virtual 3-dimensional world. The software
then renders the 2-dimensional image seen by the
camera as a result of light rays interacting with
the objects.

The 3-dimensional world of
mations Revealed is very simple. We needed only
to provide a sphere, appropriately colored and
translucent, a plane with appropriate markings
(grid) and re ectivity, and a light source on the
pole of the sphere opposite the plane. For each
frame we positioned and oriented the sphere and
the camera appropriately, and POV-Ray did the
rest.

Of course this is oversimpli ed. The description
for POV-Ray of a transparent sphere colored with
a translucent image of a rainbow-colored square
under inverse stereographic projection involves
a messy calculation with spherical coordinates,
and we used Mathematica to compute it. A fair
amount of calculation was needed as well to
choose the positions and orientations, and a lot
of adjustment of visual attributes was needed to
obtain images of high quality. In mathematical
videos, as in other movies, production values are
important, and thought has to be given to non-
mathematical issues such as color choices, line
thickness, viewing area, choice and depiction of
axes, speed of the homotopies, etc. As with any ed-
ucational activity, decisions had to be made about
what to include and what to omit, and the level
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Mobius Transfor-

of presentation. M®obius Transformations Revealed
could even be said to have a simple plot, in which
the Mdbius transformations are introduced in two
dimensions, and then “revealed” by moving the
camera from straight overhead, looking down at
the plane, with the sphere invisible, to a side view
in which the sphere becomes visible and can be
seen together with the plane. It is set to music,
and the a nity between the images on the screen
and the selection from Schumann's  Kinderscenen
performed by pianist Donald Betts undoubtedly
contributed to the popularity of the video.

An interesting aspect of the ray-traced frames
in the 3-dimensional portion of the video, is that
they combine the e ects of stereographic projec-
tion onto a plane and perspective projection of the
plane onto the camera's imaging plane. Because
of the perspective projection, the image of a line
segment under a Mdbius transformation, i.e., the
image under stereographic projection on the com-
plex plane of a circular arc on the sphere, does not
appear as a circular arc on the screen, but rather
as an ellipse. In some cases, the eccentricity of
the ellipse is large: circles with a large radius may
appear to be nearly straight lines until they bend
sharply in the distance; see Figure 9. As was dis-
covered by artists during the Renaissance, a circle
rendered as the appropriate ellipse via projection
conveys a more genuine sense of a circle, than if
it were rendered as a circle.

Figure 9. A circle appears to bend sharply at
upper left.

In fact, the situation is more complicated. The
black curves drawn as a grid on the sphere are not
1-dimensional curves at all, but have width. There-
fore, even without the perspective projection, they
would not be projected onto true circles and lines
on the plane, but rather onto two-dimensional
tubular neighborhoods of circles and lines. These
neighborhoods become quite distorted when the
curves are close to the light source. Figure 10, for
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example, shows a line which should be project-
ed onto the positive imaginary axis, but in fact
becomes arbitrarily wide. Readers will also notice
the varying width of the circular arcs in the image.

Again this contributes to a sense of reality of the

image.

Figure 10. A thin segment becomes very thick
near in nity.

The correspondence between stereographic
projection and its ray-tracing realization illus-
trated in Figure 8 is not perfect. Mathematically,
the case where the sphere intersects the plane
is perfectly allowable, but the physical model of
stereographic projection we used in the video
breaks down in that case. Figure 11 shows this
situation clearly. Inside the unit circle jzj f 1light
rays hit the plane before reaching the color on
the sphere. We avoided choosing such spheres in
Mobius Transformations Revealed

Figure 11. The physical model of stereo-
graphic projection fails when the sphere
intersects the plane.

The rst part of  Mobius Transformations Re-
vealed is 2-dimensional, but we still used ray-
tracing to generate the Md&bius transformations.
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Figure 12. In the video, unlike in this image,
the sphere underneath the plane is hidden
from view and the camera points straight
down to get a 2-dimensional view.

How did we hide the sphere? We placed the camera
directly above the origin of the plane, looking down
at it, but placed the sphere  underneath the plane
with the light source at the south pole, causing
the plane to be illuminated by colors from below.
See Figure 12, where the camera has been moved
away from the z-axis and the plane is transparent
enough to see the sphere. Note that this sphere
is not admissible, as de ned above, showing that
Theorem 1 can be generalized further.

In our own experience, computer visualization
of mathematical concepts is an insightful tool
for both research and education. The reaction to

Mobius Transformations Revealed demonstrates

the breadth of its appeal.
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