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Background on the
continuous problem

Exterior calculus

The de Rham complex

Hodge theory and the Hodge Laplacian



Differential forms

Let Ω be a domain in Rn, f : Ω→ R smooth.

∀x ∈ Ω, dfx : Rn → R is a linear map: dfx(v) = v · ∇f (x).

(More generally, on any smooth manifold, dfx : TxΩ→ R is linear)

f is a 0-form, df is a 1-form, Λ0(Ω), Λ1(Ω)

ω is a k-form ⇐⇒ ∀x , ωx is an alternating k-linear form on Rn (TxΩ)

dx1, . . . , dxn: standard dual basis of Rn =⇒
dx1∧ · · · ∧dxk , i1 < · · · < ik , basis for alternating k-linear forms.

ω ∈ Λk(Ω) ⇐⇒ ω =
∑

fi1···ik dx1∧ · · · ∧dxk .

A k-form has
(n
k

)
coefficients (so Λk(Ω) = 0 for k > n).
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Exterior calculus

Exterior derivative. A k-form ω can be differentiated to get a
(k + 1)-form dkω : take the directional derivative of
ωx(v1, . . . , vk) in the direction vk+1 and skew-symmetrize.

dk+1 ◦ dk = 0, i.e., Bk := range(dk−1) ⊂ Zk := ker(dk)

If F : Ω→ Ω′, the pullback F ∗ maps Λk(Ω′)→ Λk(Ω):
(F ∗ω)x(v1, . . . , vk) = ωF (x)(dFxv1, . . . , dFxvk)

If S ⊂ Ω is a submanifold, the pullback of the inclusion is the
trace, tr : Λk(Ω)→ Λk(S). This is not just the restriction.

There is a natural integral of a k-form ω over a k-dimensional
surface:

∫
S ω ∈ R

Stokes theorem:

∫
Ω

dω =

∫
∂Ω

trω, ω ∈ Λn−1(Ω)
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The de Rham complex

We work in a Hilbert space setting.

d = dk is a closed densely-defined unbounded operator
L2Λk(Ω)→ L2Λk+1(Ω) with closed range.

Its domain is HΛk(Ω) = {ω ∈ L2Λk(Ω) | dω ∈ L2Λk+1(Ω) },
a Hilbert space with the graph norm ‖ω‖2

HΛ = ‖ω‖2 + ‖dω‖2.

They connect to form the de Rham complex:

0→ HΛ0(Ω)
d0

−→ HΛ1(Ω)
d1

−→ · · · dn−1

−−→ HΛn(Ω)→ 0

The kth de Rham cohomology group is Zk/Bk .

Since we are in a Hilbert setting, the cohomology space is
isomorphic to the space of harmonic k-forms:

Hk := {ω ∈ Zk |ω ⊥ Bk }
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The case of Ω ⊂ R3

For Ω ⊂ R3, the de Rham complex boils down to

0→ H1(Ω)
grad−−→ H(curl,Ω)

curl−−→ H(div,Ω)
div−−→ L2(Ω)→ 0

scalar fn vector field vector field scalar fn

�Physical vector quantities may be divided into two classes, in one of

which the quantity is de�ned with reference to a line, while in the other

the quantity is de�ned with reference to an area.�

� James Clerk Maxwell, Treatise on Electricity & Magnetism, 1891

dim(Hk) =


# components of Ω, k = 0

# tunnels thru Ω, k = 1

# voids in Ω, k = 2

0, k = 3

For Ω contractible (e.g., convex)
H0 = R, Hk = 0, k > 0
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Hodge theory

Using the inner product, we have:

Hodge decomposition: L2Λk(Ω) = Bk ⊕ Hk ⊕ Zk⊥

Poincaré’s inequality: ‖ω‖L2 ≤ c ‖dω‖L2 , ω ∈ HΛk , ω ⊥ Zk

adjoint: d∗ : L2Λk+1(Ω)→ L2Λk(Ω), closed densely-defined

H = ker(d) ∩ ker(d∗)

Hodge Laplace problem:
Given f ∈ Λk (0 ≤ k ≤ n), find u ∈ Λk such that

(d∗d + d d∗)u = f plus BC

The harmonic functions determine well-posedness:

(1) ∃u ⇐⇒ f ⊥ Hk , (2) u is determined only mod Hk
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Naive weak formulation of the Hodge Laplacian

An obvious weak formulation (in the case of no harmonic forms):
Find u ∈ HΛk ∩ H∗Λk such that

〈du, dv〉+ 〈d∗u, d∗v〉 = 〈f , v〉, v ∈ HΛk ∩ H∗Λk

Equivalently, 1
2‖du‖2 + 1

2‖d
∗u‖2 − 〈f , u〉 → minimum

This formulation is problematic for discretization.
Lagrange elements, or any conforming finite elements, converge. . .
but not to the solution!

curl curl u − grad div u = f (with natural BC)
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Mixed formulation of the Hodge Laplacian

Given f ∈ L2Λk(Ω), find σ ∈ HΛk−1, u ∈ HΛk , p ∈ Hk :

〈σ, τ〉 − 〈dτ, u〉 = 0 ∀τ ∈ HΛk−1

〈dσ, v〉+ 〈du, dv〉+〈p, v〉 = 〈f , v〉 ∀v ∈ HΛk

〈u, q〉 = 0 ∀q ∈ Hk

Equivalently 1
2 〈σ, σ〉 −

1
2 〈du, du〉 − 〈dσ, u〉 − 〈u, p〉+ 〈f , u〉 → saddle point

Special cases:

k = 0: ordinary Laplacian k = n: mixed Laplacian
k = 1, n = 3: σ = − div u, gradσ + curl curl u = f
k = 2, n = 3: σ = curl u, curlσ − grad div u = f

Includes the problems

curl curl u = f , div u = 0 and div u = f , curl u = 0
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The mixed formulation is well-posed

Well-posedness of the mixed formulation follows directly from the
Hodge decomposition and the Poincaré inequality. We must prove
the inf-sup condition for the bilinear form

B(σ, u, p; τ, v , q) = 〈σ, τ〉−〈dτ, u〉−〈dσ, v〉−〈du, dv〉−〈v , p〉−〈u, q〉,

i.e., given (σ, u, p) ∈ HΛk−1 × HΛk × Hk , we need to control
‖σ‖HΛ + ‖u‖HΛ + ‖p‖ by a bounded choice of τ , v , and q.

τ = σ controls ‖σ‖, v = dσ controls ‖dσ‖, v = p controls ‖p‖
v = u controls ‖du‖. How to control ‖u‖?

Hodge decomp.: u = dη + s + z , η ∈ HΛk−1, s ∈ Hk , z ∈ Zk⊥

τ = η controls ‖dη‖ and q = s controls ‖s‖. How to control ‖z‖?

Poincaré’s inequality: ‖z‖ ≤ c‖dz‖ = c‖du‖
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Requirements for discretization

Subcomplexes

Bounded cochain projections

Discretization

Choose finite dimensional subspaces Λk−1
h ⊂ HΛk−1, Λk

h ⊂ HΛk .

Assume that dΛk−1
h ⊂ Λk

h so we get a subcomplex.

· · · −−→ HΛk−1 dk−1

−−−→ HΛk −−→ · · ·x∪ x∪
· · · −−→ Λk−1

h
dk−1

−−−→ Λk
h −−→ · · ·

We may then define Bk
h , Zk

h , Hk
h = (Bk

h)⊥ ∩ Zk
h

(and obtain the discrete Hodge decomp: Λk
h = Bk

h ⊕ Hk
h ⊕ (Zk

h)⊥)

Galerkin’s method: discretize the mixed formulation with

Λk−1, Λk , Hk −→ Λk−1
h , Λk

h , Hk
h

When is it stable, consistent, and convergent?
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A simple case

Stable discretization is not obvious, even in simple cases.

σ ∈ H(div), u ∈ L2 :
〈σ, τ〉 − 〈div τ, u〉 = 0 ∀τ ∈ H(div)

〈div σ, v〉 = 〈f , v〉 ∀v ∈ L2

P1-P0 Raviart–Thomas - P0
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Bounded cochain projections

Key property: Suppose that there exists a bounded cochain projection.

· · · −−→ HΛk−1 dk−1

−−−→ HΛk −−→ · · ·yπk−1
h

yπk
h

· · · −−→ Λk−1
h

dk−1

−−−→ Λk
h −−→ · · ·

πk
h bounded

πk
h a projection

πk
h dk−1 = dk−1πk−1

h

Theorem

If ‖v − πk
hv‖ < ‖v‖ ∀v ∈ Hk , then the induced map on

cohomology is an isomorphism.

gap
(
Hk ,Hk

h

)
≤ sup

v∈Hk

‖v‖=1

‖v − πk
hv‖

The discrete Poincaré inequality holds uniformly in h.

Galerkin’s method is stable and convergent.
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Proof of discrete Poincaré inequality

Thm. There is a positive constant c , independent of h, such that

‖ω‖ ≤ c‖dω‖, ω ∈ Zk⊥
h .

Proof. Given ω ∈ Zk⊥
h , define η ∈ Zk⊥ ⊂ HΛk(Ω) by dη = dω. By

the Poincaré inequality, ‖η‖ ≤ c‖dω‖, so it is enough to show that
‖ω‖ ≤ c‖η‖. Now, ω − πhη ∈ Λk

h and d(ω − πhη) = 0, so
ω − πhη ∈ Zk

h . Therefore

‖ω‖2 = 〈ω, πhη〉+ 〈ω, ω − πhη〉 = 〈ω, πhη〉 ≤ ‖ω‖‖πhη‖,

whence ‖ω‖ ≤ ‖πhη‖, and the result follows.
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Subspaces of finite element
differential forms

Shape functions

Degrees of freedom

Dual bases and explicit bases

Finite element de Rham subcomplexes

Bounded cochain projections

Applications

Finite element differential forms

Let T = Th be a triangulation of Ω ⊂ Rn. We wish to construct
finite element spaces Λk

h ⊂ HΛk(Ω) which form a finite
dimensional subcomplex with bounded cochain projections.

The Λk
h are finite element spaces in the sense that they can be assembled

from the following data on each simplex:

a finite dimensional space of polynomial forms on the simplex, and

a decomposition of its dual space into subspaces associated to the
subsimplices (degrees of freedom)

Special cases:

Lagrange finite element spaces Pr Λ0(T )

Discontinuous piecewise polynomials of degree r : Pr Λn(T ).

Whitney k-forms (one DOF per k-face): P−1 Λk(T )
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Construction of FE differential forms

Key to the construction is the Koszul differential κ : Λk → Λk−1:

(κω)x(v 1, . . . , vk−1) = ωx(x , v 1, . . . , vk−1)

0 ←−− Pr Λ0 κ←−− Pr−1Λ1 κ←−− · · · κ←−− Pr−nΛn ←−− 0

Koszul complex

0← Pr Λ0 •X←−− Pr−1Λ1(R3)
×X←−− Pr−2Λ2(R3)

X←−− Pr−3Λ3(R3)← 0

C.f., the polynomial de Rham complex

0 −−→ Pr Λ0 d−−→ Pr−1Λ1 d−−→ · · · d−−→ Pr−nΛn −−→ 0

Key relation: (dκ+ κd)ω = (r + k)ω ∀ω ∈ Hr Λk (homogeneous polys)

κ is a contracting chain homotopy

Ex: grad(u · x) + (curl u)×x = 3u, u ∈ H2(R3,R3)

Hr Λk = dHr+1Λk−1 ⊕ κHr−1Λk+1
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Pr Λk and P−r Λk

Using the Koszul differential, we define a special space of
polynomial differential k-forms between Pr Λk and Pr−1Λk :

Pr
−Λk := Pr−1Λk + κHr−1Λk+1 + dHr+1Λk−1X

P−r Λk(Th) =

8><>:
Pr Λk(Th), k = 0,

Pr−1Λk(Th), k = n,

strictly between, 0 < k < n

dimPr Λk =

(
n + r

n

)(
n

k

)
=

(
n + r

n − k

)(
r + k

k

)
dimP−r Λk =

(
n + r

n − k

)(
r + k − 1

k

)
For each form degree k and polynomial degree r , Pr Λk and P−r Λk

are the two natural finite element subspace of HΛk(Ω).

For example, they are invariant under pull-pack by any affine map Rn → Rn,
and they are almost the only such spaces of polynomial k-forms.
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Degrees of freedom

To define the finite element spaces, we must specify degrees of freedom,

i.e., a decomposition of the dual spaces Pr Λk(T )∗ and P−r Λk(T )∗, into

subspaces associated to subsimplices f of T .

DOF for P−r Λk(T ): to a subsimplex f of dim. d ≥ k we associate

ω 7→
∫

f
Trf ω ∧ η, η ∈ Pr+k−d−1Λd−k(f ) Hiptmair

DOF for Pr Λk(T ): ω 7→
∫

f
Trf ω ∧ η, η ∈ P−r+k−dΛd−k(f )

The resulting FE spaces have precisely the continuity required by HΛk :

Theorem: Pr Λk(T ) = {ω ∈ HΛk(Ω) : ω|T ∈ Pr Λk(T ) ∀T ∈ T }
and similarly for P−r .

The projections associated to these DOF
commutes with d (Stokes theorem).

Λk−1 dk−1

−−−→ ΛkyPk−1
h

yPk
h

Λk−1
h

dk−1

−−−→ Λk
h
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Finite element differential forms/Mixed FEM

P−r Λ0(T ) = Pr Λ0(T ) ⊂ H1 Lagrange elts

P−r Λn(T ) = Pr−1Λn(T ) ⊂ L2 discontinuous elts

n = 2: P−r Λ1(T ) ⊂ H(curl) Raviart–Thomas elts

n = 2: Pr Λ1(T ) ⊂ H(curl) Brezzi–Douglas–Marini elts

n = 3: P−r Λ1(T ) ⊂ H(curl) Nedelec 1st kind edge elts

n = 3: Pr Λ1(T ) ⊂ H(curl) Nedelec 2nd kind edge elts

n = 3: P−r Λ2(T ) ⊂ H(div) Nedelec 1st kind face elts

n = 3: Pr Λ2(T ) ⊂ H(div) Nedelec 2nd kind face elts
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Ex: DOFs for P3Λ1 on a tetrahedron

Cubic Nedelec 2nd kind edge elements, dim = 60

DOFs are:

For each edge, moments versus P−3 Λ0(e) (4 DOF/edge × 6 edges)

For each face, moments versus P−2 Λ1(f ) (8 DOF/face × 4 faces)

On the tet, moments versus P−1 Λ2(f ) (4 DOF)
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Dual bases

As a computational basis for Pr Λk(T ) and P−r Λk(T ) one choice is
the dual basis to the degrees of freedom.

For k = 0 this is the standard Lagrange basis.

For P−1 Λk(T ) there is one basis element for each k-simplex
f = [xi0 , . . . , xik ], namely the Whitney form given in barycentric
coordinates by

φi0···ik :=
k∑

p=0

(−1)p λip dλi0∧ · · · ∧d̂λip∧ · · · ∧dλik

P−1 Λ0 = P1Λ0:
P−1 Λ1:
P−1 Λ2:
etc.

λi

λidλj − λjdλi

λi dλj∧dλk − λj dλi∧dλk + λk dλi∧dλj
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Explicit geometric bases

The Bernstein basis is an explicit alternative to the Lagrange basis
for the Lagrange finite elts.

Pr = span{λα := λα0
0 · · ·λαn

n | |α| = r }

︸ ︷︷ ︸︷ ︸︸ ︷

Pr (T , f ) := span{λα | sptα = {i0, . . . , ik}, |α| = r }

Pr (T ) =
⊕

f

Pr (T , f )

Pr (T , f )
∼=−→
tr
P̊r (f ) ∼= Pr−dim f−1(f )

There are similar geometric bases for all k:

Pr Λk(T ) =
⊕

dim f≥k

Pr Λk(T , f ), Pr Λk(T , f )
∼=−→
tr
P̊r Λk(f ) ∼= P−r+k−dim f Λdim f−k(f )

P−r Λk(T ) =
⊕

dim f≥k

P−r Λk(T , f ),P−r Λk(T , f )
∼=−→
tr
P̊−r Λk(f ) ∼= Pr+k−dim f−1Λdim f−k(f )

26 / 41

Example: explicit bases for P−r Λ2 and Pr Λ2 on a tet

P−r Λ2

r Face [xi , xj , xk ] Tet [xi , xj , xk , xl ]

1 φijk

2 λiφijk , λjφijk , λkφijk λlφijk , λkφijl , λjφikl

Pr Λ2

r Face [xi , xj , xk ] Tet [xi , xj , xk , xl ]

1 λkdλi∧dλj , λjdλi∧dλk , λidλj∧dλk

2 λ2
kdλi∧dλj , λjλkdλi∧d(λk − λj) λkλldλi∧dλj , λjλldλi∧dλk

λ2
j dλi∧dλk , λiλjd(λj − λi )∧dλk λjλkdλi∧dλl , λiλldλj∧dλk

λ2
i dλj∧dλk , λiλkdλj∧d(λk − λi ) λiλkdλj∧dλl , λiλjdλk∧dλl
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Finite element de Rham subcomplexes

We don’t only want spaces, we also want them to fit together into
discrete de Rham complexes.

One such FEdR subcomplex uses P−r Λk spaces of constant degree r :

0→ P−r Λ0(T )
d−−→ P−r Λ1(T )

d−−→ · · · d−−→ P−r Λn(T )→ 0

0→ grad−−→ curl−−→ div−−→ → 0

Whitney 1957, Bossavit 1988

Another uses Pr Λk spaces with decreasing degree:

0→ Pr Λ0(T )
d−−→ Pr−1Λ1(T )

d−−→ · · · d−−→ Pr−nΛn(T )→ 0

0→ grad−−→ curl−−→ div−−→ → 0

Demkowicz–Monk–Vardapetyan–Rachowicz 2000

These are extreme cases. For every r ∃ 2n−1 such FEdR subcomplexes.
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Constructing bounded cochain projections

We also need projections πk
h : HΛk → Λk

h which are uniformly
bounded in h and commute with d .

The projections Pk
h defined via the DOFs, commute with d .

Unfortunately they are not bounded on HΛk .

So first we regularize, and then project: Qk
h u := Pk

h (ρε ∗ u)
This map is bounded, uniformly in h if ε = δh, and still commutes
with d . Unfortunately it is not a projection.

If we choose the δ sufficiently small, we can prove that
Qk

h |Λk
h

: Λk
h → Λk

h is close to the identity, uniformly in h, hence

invertible. Then the composition

πk
h = (Qk

h |Λk
h
)−1 ◦ Qk

h

is the desired bounded cochain projection.

Christiansen, Schöberl, AFW
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Stable finite elements for the Hodge Laplacian

Putting this altogether we obtain four different stable families of
mixed finite elements for the Hodge Laplacian.
(reduces to 2 for k = n and 1 for k = 0)

P−r Λk−1(T )× P−r Λk(T )

Pr Λk−1(T )× P−r Λk(T )

P−r+1Λk−1(T )× Pr Λk(T )

Pr+1Λk−1(T )× Pr Λk(T )

For each we obtain optimal order estimates for σ and u.
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Other applications

Maxwell’s equations and related EM problems

Mixed eigenvalue problems
(bounded cochain projections =⇒ discrete compactness)

Preconditioning and multigrid

A posteriori error estimation

Stable mixed FEM for elasticity
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Application to elasticity



Stress–displacement mixed finite elements for elasticity

Find stress σ : Ω→ R3×3
sym , displacement u : Ω→ R3 such that

Aσ = ε(u), div σ = f∫
Ω

(
1

2
Aσ :σ + div σ · u + f · u

)
dx

σ,u−−−−−−−−−−→
H(div;S)×L2(Rn)

stationary point

Search for stable finite elements dates back to the ’60s, very limited success.

�It is, of course, possible to derive elements that exhibit complete
continuity of the appropriate components along interfaces and
indeed this was achieved by Raviart and Thomas in the case of the
heat conduction problem discussed previously. Extension to the full
stress problem is di�cult and as yet such elements have not been
successfully noted.�

� Zienkiewicz, Taylor, Zhu
The Finite Element Method: Its Basis & Fundamentals, 6th ed., 2005

Thanks to FEEC, we can retire that statement!
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Recent progress coming from the FEEC perspective

First stable elements based on polynomials, 2D
(Arnold–Winther 2002), all degrees r ≥ 1:

3D stable elements, all degrees r ≥ 1
(Arnold–Awanou–Winther 2007): for r = 1 stress space has
162 degrees of freedom (27 per component on average)
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A computation using the new elements

From Eberhard, Hueber, Jiang, Wohlmuth 2006
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Mixed formulation with weak symmetry

Idea goes back to Fraeijs de Veubeke 1975, Amara–Thomas 1979
In the classical Hellinger–Reissner principle, symmetry of the stress
tensor (balance of angular momentum) is assumed to hold exactly.
Instead we impose it weakly with a Lagrange multiplier (the rotation).

∫
Ω

(
1

2
Aσ :σ + div σ · u + f · u

)
dx

σ,u−−−−−−−−−−→
H(div;S)×L2(Rn)

stationary point

∫
Ω

(
1

2
Aσ :σ + div σ · u + σ :p + f · u

)
dx

σ,u,p−−−−−−−−−−−−−−−→
H(div;M)×L2(Rn)×L2(K)

S.P.

FEEC has led to very simple stable elements

σ u p
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The elasticity complex

There is a complex for elasticity analogous to the de Rham complex.
It has versions both for strong symmetry and weak symmetry.

displacement rotation strainy y y
0→H1(Ω; R3)×L2(Ω,K)

(grad,−I )−−−−−−→ H(J,Ω; M)
J−−→

J−−→ H(div,Ω; M)

0@ div

skw

1A
−−−−−→ L2(Ω; R3)×L2(Ω; K)→0x x x

stress load couple

J is second order!
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New mixed finite elements for elasticity

The elasticity complex can be derived from the de Rham complex
by an intricate construction. Mimicking this construction on the
discrete level we have derived stable mixed finite elements for
elasticity. (Arnold-Falk-Winther 2006, 2007).

Main result

Choose two discretizations of the de Rham complex:

0 −−→ Λ0
h

grad−−→ Λ1
h

curl−−→ Λ2
h

div−−→ Λ3
h −−→ 0

0 −−→ Λ̃0
h

grad−−→ Λ̃1
h

curl−−→ Λ̃2
h

div−−→ Λ̃3
h −−→ 0

Surjectivity Hypothesis: (roughly) for each DOF of Λ2
h there is a

corresponding DOF of Λ̃1
h.

Then


stress: Λ̃2

h(R3)

displacement: Λ̃3
h(R3)

rotation: Λ3
h(K)

 is a stable element choice.
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The simplest choice

0→ grad−−→ curl−−→ div−−→ → 0

0→ grad−−→ curl−−→ div−−→ → 0

σ u p
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Features of the new mixed elements

Based on HR formulation with weak symmetry; very natural

Lowest degree element is very simple: full P1 for stress, P0 for
displacement and rotation

Works for every polynomial degree

Works the same in 2 and 3 (or more) dimensions

Robust to material constraints like incompressibility

Provably stable and convergent
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Conclusions

Capturing the right geometric structure on the discrete level
can be essential to get stable methods. For PDE related to
the de Rham complex, this is achieved by using subspaces
which form a subcomplex with bounded cochain projections.

There are two natural families of finite element subspaces of
HΛk , the spaces Pr Λk and P−r Λk . They can be assembled
into complexes with bounded cochain projections (in numerous
ways). They are inter-related and must be studied together.

These spaces unify and clarify many known mixed finite
element methods that were derived independently. This
approach allows for a systematic way of choosing degrees of
freedom, dual bases, and explicit geometric bases.

Through FEEC we believe we have completed the long search
for “just the right” mixed finite elements for elasticity.
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