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Fundamental metatheorem of numerical analysis
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A model boundary-value problem

Find u : Ω→ R such that

−div C gradu = f in Ω, u = 0 on ∂Ω
strong

u = argmin
v∈H1

0(Ω)

(
1
2

∫
Ω

C grad v · grad v dx−
∫

Ω

fv dx

)
variational

Find u ∈ H1
0(Ω) such that∫
Ω

C gradu · grad v dx =
∫

Ω

fv dx

for all v ∈ H1
0(Ω)

weak
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Discretization

Ritz method: uh = argmin
v∈Wh

(
1
2
B(v, v)− F (v)

)
Wh ⊂W finite-diminsional

⇐⇒ Galerkin method:

Find uh ∈Wh such that B (uh, v) = F (v) for all v ∈Wh

Find uh ∈Wh such that Bh(uh, v) = Fh(v) for all v ∈ Vh

discrete operator: Lh : Wh→ V ∗h , Lhuh = Fh
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Approximability, consistency, stability, convergence

Given a norm on W the error ‖u− uh‖ depends on 3 factors:

Approximability: A.E. = inf
χ∈Wh

‖u− χ‖

Consistency: C.E. = sup
v∈Vh

|Bh(u, v)− Fh(v)|
‖v‖

‖v‖ := sup
χ∈Vh

Bh(χ, v)
‖χ‖

Stability: S.C. = ‖L−1
h ‖L(V ∗

h
,Wh)

‖u− uh‖ ≤ (1 + S.C.)(A.E. + C.E.)
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Stability and quasioptimality

For the Ritz method for the model problem

uh = argmin
v∈Wh

(
1
2
B(v, v)− F (v)

)

there is no consistency error. In the H1 norm stability is

automatic . Therefore we get quasioptimality :

‖u− uh‖H1 ≤ c inf
v∈Wh

‖u− v‖H1

Estimates in other norms (L2, L∞, . . . ) require additional

work
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Finite element spaces

For a finite element method Wh is a piecewise polynomial

space defined by the FE assembly procedure:

the domain Ω is triangulated by simplices

on each simplex T a f.d. space of shape functions WT is

given together with a set of degrees of freedom, each DOF

associated to a subsimplex

Wh consists of functions piecewise in WT with equal

DOFs on shared subsimplices

Ex: WT = P2(T ), DOFs are vertex vals., edge avgs.
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Lagrange finite elements

shape fns: P2

DOFs: vertex vals.
& edge averages

P1 P2 P3

A.E. in H1 for u ∈ Hk

≤ cp−khmin(p,k)
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Computing the sound of a drum

Drum sound determined by standing wave solutions to wave

equation with Dirichlet boundary conditions. These are

expressed in terms of solutions of an eigenvalue problem:

Find nonzero u : Ω→ R, λ ∈ R:

−div C gradu = λu in Ω, u = 0 on ∂Ω

u, λ critical pts.,vals. of

∫
Ω

C gradu · gradu dx∫
Ω
|u|2 dx

on H1
0(Ω)\{0}

Eigenvalues form a sequence of positive numbers tending to infinity; give

the fundamental frequencies; eigenfunctions give fundamental modes.
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Discretization

We can discretize by the Ritz method (find critical points

over Wh ⊂ H1
0), or equivalently the Galerkin method.

Discrete problem has finite sequence of eigenvalues for which

the smaller ones will approximate well the true eigenvalues if

approximability is good.
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Electromagnetic resonator

Similarly, to compute the resonant frequencies of an

electromagnetic cavity, we need to find standing wave

solutions of Maxwell’s equations, which give rise to an

eigenvalue problem on Ω ⊂ R3:

Find nonzero E : Ω→ R3, λ ∈ R:

curl curlE = λE, div E = 0, E × n = 0 on ∂Ω

The eigenvalues are all positive, finite multiplicity, and form

a sequence tending to infinity.

The divergence constraint is redundant except for when

λ = 0. Dropping it adds an infinite dimensional space of

(nonphysical) zero eigenfunctions.
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Discretization

A numerical method is obtained by looking for

the nonzero critical values of the Rayleigh

quotient over nonzero E ∈ Qh ⊂ H(curl)

∫
| curlE|2∫
|E|2

As a test case we choose Ω
square, for which the positive

eigenvalues are known:

λ = m2 + n2, 0 ≤ m,n ∈ Z.

We triangulate Ω and

take Qh to consist of

continuous piecewise

linear vectorfields.

Ω
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Eigenvalues computed with piecewise linear finite elements

The discrete eigenvalues
give no clue as to the
location of the
true eigenvalues!
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Edge elements

Shape fns: T := { (a− bx2, c + bx1) | a, b, c ∈ R }

DOFs: values of the (constant)

tangential component on each edge

Almost perfect!
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←edge elementsexact→
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D. White, EMSolve, LLNL
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Mixed methods for the model problem

−div C gradu = f

Sometimes it is better to work with a first-order system:

σ = C gradu, −div σ = f

(σ, u) = argcrit
H(div)×L2

[ ∫
(
1
2
C−1τ · τ + v div τ) dx +

∫
fv dx

]

It’s not an extremum, but a saddle-point.

Discretization leads to a mixed method.
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Stability conditions

(σh, uh) = argcrit
Sh×Vh

[ ∫
(
1
2
C−1τ · τ + v div τ) dx +

∫
fv dx

]
Stability is not automatic. Discrete system could be singular,

or inverse could blow up as mesh is refined.

Stability conditions (Brezzi ’74):

For all τ ∈ Sh satisfying div τ ⊥ Vh,

∫
C−1τ · τ ≥ γ‖τ‖2H(div)

(E.g., div Sh ⊂ Vh.)

For all v ∈ Vh, ∃ 0 6= τ ∈ Sh s.t.

∫
v div τ ≥ γ‖v‖L2‖τ‖H(div)

(E.g., div Sh ⊃ Vh and div |Sh
admits a bounded 1-sided inverse.)

Brezzi’s conditions =⇒ stability =⇒ quasioptimality.
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Mixed finite elements

It is not easy to satisfy both stability conditions!

Simplest stable elements are due to Raviart, Thomas and

Nedelec. Face elements for σh, piecewise constants for uh.

shape fns: a+ bx, a ∈ R3, b ∈ R
DOFs: σh · n on each face
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The de Rham complex

What does this have to do with differential complexes?

R ↪→
∧0(Ω) d−→

∧1(Ω) d−→ · · · d−→
∧n(Ω)→ 0

ω ∈
∧k(Ω) means ω(x) : TxΩ× · · · × TxΩ→ R alternating k-linear

0-forms are smooth maps Ω→ R

1-forms are co-tangent vector fields

For Ω a domain in R3 the de Rham complex becomes

R ↪→ C∞(Ω, R)
grad−−−→ C∞(Ω, R3) curl−−→ C∞(Ω, R3) div−−→ C∞(Ω, R)→ 0
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Mixed formulation revisited

Separating the algebraic and differential operations we have

gradu=γ, −divσ=f, σ = Cγ
↑
0
↑
1

↑
2
↑
3

First two equations are just exterior differentiation.

Last is a linear algebraic map from 1-forms to 2-forms:

Hodge star operator

The coefficient matrix C furnishes the inner product

determining the Hodge operator.
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Stability

R ↪→C∞(Ω, R)
grad−−−→ C∞(Ω, R3) curl−−→ C∞(Ω, R3) div−−→ C∞(Ω, R) −→ 0

ΠS
h

y yΠV
h

Sh
div−−→ Vh −→ 0
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The electromagnetic resonator revisited

curlµ−1

B︷ ︸︸ ︷
curlE︸ ︷︷ ︸
H

= λ

D︷︸︸︷
ε E

curlE=B, curlH= λD, B = µH, D = εE.
↑
1
↑
2

↑
1

↑
2

Two exterior differentiations, two Hodge star operations.

2-forms: face elts 1-forms: edge elts
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Analysis

R ↪→ C∞(Ω, R)
grad−−−→ C∞(Ω, R3) curl−−→ C∞(Ω, R3) div−−→ C∞(Ω, R) −→ 0y y y y

R ↪→ Wh
grad−−−→ Qh

curl−−→ Sh
div−−→ Vh −→ 0

R ↪→ grad−−−→ curl−−→ div−−→ −→ 0

The exactness and commutativity of the diagram are exactly what is
needed to analyze eigenvalue discretization based on edge elements using
mixed method stability theory. Boffi–Fernandes–Gastaldi–Perugia ’99.

The completion of the diagram is the statement that the curl-free edge

elements are precisely the gradients of standard piecewise linear elements.

This explains completely the zero eigenspace for the discrete problem.
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Whitney forms

The complex of discrete differential forms

R ↪→ grad−−−→ curl−−→ div−−→ −→ 0

was constructed already by Whitney ’57. Connection to

mixed FEM first realized by Bossavit ’88.
Hiptmair, Demkowicz, Monk, Winther,. . .

Yee scheme; Mimetic finite differences. Hyman, Shashkov,. . .

Mixed FEM provides higher order versions as well:

R ↪→ grad−−−→ curl−−→ div−−→ −→ 0
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Elasticity

Given the load f : Ω→ R3, linearized elasticity finds

displacement field u : Ω→ R3

strain field κ : Ω→ S:= R3×3
sym

stress field σ : Ω→ S

ε u = κ, div σ = f, σ = Cκ
ε u := [∇u + (∇u)T ]/2
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Mixed finite elements for elasticity

(σ, u) = argcrit
H(div,Ω,S)
×L2(Ω,R3)

[ ∫
(
1
2
C−1τ : τ + v · div τ) dx−

∫
f · v dx

]

A question which attracted a lot of attention over four decades:

How to construct stable mixed finite elements for elasticity

Σh ⊂ H(div,Ω, S), Vh ⊂ L2(Ω, R3)

2D: first stable elements with polynomial shape fns:
Arnold–Winther, Numer. Math. 2001

3D case remains open
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The elasticity complex

ε u = κ, div σ = f, σ = Cκ

These are not differential forms. However, there is a relevant
differential complex:

T ↪→ C∞(Ω, R3) ε−→ C∞(Ω, S) J−→ C∞(Ω, S) div−−→ C∞(Ω, R3) −→ 0
↑

displacement
↑

strain
↑

stress
↑

load

J = curlc curlr is a second order differential operator.

This complex can be derived from the de Rham complex by the

Bernstein–Gelfand–Gelfand resolution (Eastwood ’99).
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New mixed elements for plane elasticity

Pick any polynomial degree p ≥ 1. For the

displacement in L2(Ω, R2) we simply use

discontinuous p.w. polynomials of degree ≤ p.
p = 1

On each triangle the polynomial space for the stress is

ΣT = { τ ∈ Pp+2(T, S) | div τ ∈ Pp(T, R2)}.
For p = 1, the 24 unisolvent degrees of freedom are:

the values of three components at each vertex (9)

the values of the moments of degree 0 and 1 of the normal

components on each edge (12)

the value of the moment of degree 0 on the triangle (3)
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The discrete plane elasticity complex

P1(Ω) ↪→ C∞(Ω) J−→ C∞(Ω, S) div−−→ C∞(Ω, R2) −→ 0y y y
P1(Ω) ↪→ Qh

J−→ Σh
div−−→ Vh −→ 0

P1(Ω) ↪→ J−→ div−−→ −→ 0

↑
Hermite quintic Jφ =

 ∂2φ

∂y2 − ∂2φ
∂x∂y

− ∂2φ
∂x∂y

∂2φ

∂x2
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Convergence

‖σ − σh‖L2 ≤ Ch3‖σ‖H3

‖div σ − div σh‖L2 ≤ Ch2‖div σ‖H3

‖u− uh‖L2 ≤ Ch2‖u‖H3
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Discretizations of the plane elasticity complex

P1(Ω) ↪→ J−→ div−−→ −→ 0

P1(Ω) ↪→ J−→ div−−→ −→ 0

P1(Ω) ↪→ J−→ div−−→ −→ 0

non-conforming:

P1(Ω) ↪→ J−→ div−−→ −→ 0
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A grand challenge: gravitational wave simulation

A subtle but ineluctable consequence of Einstein’s theory of

general relativity is that relatively accelerating masses emit

gravitational waves. These waves are slight perturbations in

the metric of spacetime which propagate at the speed of

light: ripples in the rigid fabric of spacetime.

One of the largest scientific endeavors of our time is the

construction of a network of massive interferometers to

measure the tiny dynamic changes in distances caused by a

passing gravity wave. The Laser Interferometer Gravitational-wave

Observatory (LIGO) is

designed to pick up changes

in distance of a hundred

millionth of a hydrogen atom

diameter across its four

kilometer length.
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Numerical relativity

If gravitational wave observatories are to succeed numerical

computation must be used to infer from detected waveforms

the massive cosmological events that gave birth to them

(e.g., black hole or neutron star collisions).

The first step is numerical solution of Einstein’s equations,

but it is currently beyond our abilities: good algorithms not

available, not just because the problem is huge and

complicated, but also because the basic structure of the

equations and the consequences for discretization are not

sufficiently understood.

Despite tremendous efforts, no one has succeeded in

developing a stable numerical scheme for simulating black

hole collisions. Simulating blackhole collisions may be harder

than detecting them!

33



34

Einstein’s equations

In the 3+1 formulation, the Einstein equations determine a

time-dependent spatial metric (3× 3 positive definite matrix)

on a 3-dimensional domain according to an evolution

equation

γ̈ = F (γ)

subject to constraints

H(γ) = 0,M(γ, γ̇) = 0.

F , H, and M are nonlinear partial differential operators in

the 3 space variables. The leading term of F (γ) is the Ricci

curvature of the metric γ.

The computation proceeds by finding Cauchy data satisfying

the constraints and then evolving it.
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Arnold–Mukherjee ’96

Brandt, Correll, Gomez, Huq, Laguna, Lehner, Marronetti, Matzner, Neilsen, Pullin,
Schnetter, Shoemaker, Winicour ’2000
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Structure and discretization

Linearizing Einstein’s equations about flat space and making

a simple coordinate choice we get

γ̈ = ∆γ +∇∇ tr γ − 2ε div γ,

div div γ −∆ tr γ = 0, div γ̇ − grad tr γ̇ = 0.

Introducing the extrinsic curvature κ = γ̇, and combining the

constraints with evolution equation it turns out that

κ̈ = −Jκ

T ↪→C∞(Ω, R3) ε−→ C∞(Ω, S) J−→ C∞(Ω, S) div−−→ C∞(Ω, R3) −→ 0

This suggests that appropriate discretizations for the

extrinsic curvature must be related to the (as yet unknown)

stable mixed elasticity elements in 3D.
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Conclusions

Stability of numerical methods for PDE is a subtle matter.

Often depends on geometric/homological props. of

discretization reflecting similar props. at PDE level.

Discrete complexes commutatively related to differential

complexes are a succint and useful tool.

This viewpoint has succeeded in unifying, clarifying, and

advancing many techniques developed over the preceding few

decades, e.g. in electromagnetism.

Recently lead to first stable mixed finite elements for

elasticity in 2D; seems poised to do so in 3D.

Hopefully will be an important weapon in the of attack on

the massive challenge presented by numerical relativity.
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