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Variational problems

For many PDE problems, the solution is characterized as a

stationary point of and appropriate energy functional L over

an appropriate function space S.

Poisson’s equation:

minimize L(u) =
1
2

∫
Ω

|∇u|2 dx−
∫

Ω

fu dx over H̊1(Ω)

Stokes equations: (u, p) is a saddle-point of:

L(u, p) =
1
2

∫
Ω

|∇u|2 dx+
∫

Ω

pdivu dx−
∫

Ω

f · u dx

over H̊1(Ω,Rn)× L2(Ω).
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Finite element methods

Given a subspace Sh of S we obtain an approximation to the

solution u by seeking a critical point uh of L over Sh.

When the space Sh is constructed piecewise with respect to

some triangulation of the domain Ω, this is a finite element

method .
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Finite element meshes in 2D

In 2D meshes are usually made of triangles and/or

quadrilaterals (sometimes allowing curvilinear elements along

boundaries and interfaces).
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Finite element meshes in 3D

In 3D, tetrahedra, bricks, and prisms are most common.
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Reference elements

All the elements are images of simple reference elements

(unit simplex, unit cube, . . . ) under low degree polynomial

mappings.

K̂

K

K̂

K

FK

FK
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Construction of finite elements spaces

1. Fix a function space Ŝ on the reference element K̂,

usually consisting of polynomials.

2. Specify degrees of freedom: a set of linear functionals

C∞(K̂)→ R which are unisolvent on Ŝ.

3. Fix a map FK from the reference element to the actual

element and use it to transfer the reference element

functions to the actual element:

S(K) = { û ◦ F−1
K | û ∈ Ŝ }

4. Define the global finite element space Sh as functions

which restrict to S(K) on each K, and for which

corresponding degrees of freedoms agree.
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The canonical projection operator

In view of the unisolvence of the degrees of freedom, we can

define a projection operator Π̂ : C∞(K̂)→ Ŝ on the

reference element, and then transfer it to the actual element

ΠK : C∞(K)→ S:

(ΠKu) ◦ FK = Π̂(u ◦ FK),

and finally piece these maps together to get

Πh : C∞(Ω)→ Sh.
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Example: Lagrange elements of degree 1 and 2

P1

Reference maps are affine.
Assembled finite element
spaces consist of all cont.
p.w. linear functions.

P2

Reference maps again affine.
Assembled finite element
spaces consist of all cont.
p.w. quadratics.

With P2 we may also use quadratic maps from the
reference element to match curved boundaries. In this
case the function space on the curved element contains
non-polynomial (rational) functions.
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Common finite elements on the reference square

Q1 Q2 Q3

Q′2 Q′3 Q′4

Q0 Q1 P1
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Serendipity spaces

The serendipity space Q′p is the span of Pp together with the

two additional monomials xpy and xyp. It is a strict

subspace of Qp for all p > 1.

1
x y

x2 xy y2

x2y xy2

1
x y

x2 xy y2

x3 x2y xy2 y3

x3y xy3

1
x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

x4y xy4

Serendipity elements spaces have been popular for thirty years.
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Popular quadrilateral mixed finite elements

For the Stokes equations:

Q2 P1

For the mixed Laplacian:

RT1 Q1 BDM2 P1 BDFM2 P1
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Shape regularity

The condition number of the Jacobian of FK gives a

measure of the shape regularity of the element K: how far it

deviates from a dilation of K̂. Almost all finite element

approximation theorems require a uniform bound on the

shape regularity of elements.
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Approximation by affine finite elements

In the case when the FK are affine, the basic approximation

theory, based on the Bramble–Hilbert lemma, is a pillar of

finite element analysis.

Theorem. Suppose that S ⊃ Pr(K̂) and that Π̂ is

bounded on Hr+1(K̂). Then

‖u−Πhu‖L2(Ω) ≤ Chr+1|u|Hr+1(Ω),

where C only depends on the shape regularity of the

elements in the mesh.

Similarly |u−Πhu|H1(Ω) ≤ Chr|u|Hr+1(Ω); also Lp and W 1
p
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Necessity

Q. Is it necessary that Ŝ ⊃ Pr(K̂)?

A. Obviously yes, for a bound in terms of |u|Hr+1.

Q. What if we just ask that ‖u−Πhu‖ = O(hr+1) for

smooth u?

Theorem. Suppose

inf
χ∈Sh
‖u− χ‖ = o(hr) ∀u ∈ Pr(Ω).

Then Ŝ ⊃ Pr(K̂).

There are analogous results for H1, Lp, W 1
p .
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The quadrilateral case

The above theory applies for any reference element: triangle,

square, whatever. But when we apply it with K̂ square, the

restriction to affine reference mappings restricts us to K

parallelogram. In order to allow arbitrary convex

quadrilaterals, we must allow bilinear mappings. In this case,

the spaces S(K) will almost always contain non-polynomials.

There is a positive result for quadrilaterals involving Qr in

place of Pr.

Theorem. Suppose that S ⊃ Qr(K̂) and that Π̂ is

bounded on Hr+1(K̂). Then

‖u−Πhu‖L2(Ω) ≤ Chr+1|u|Hr+1(Ω),

where C only depends on the shape regularity of the elements.
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Necessity?

Note that this theorem does not imply O(hr+1)
approximation for Q′r on quadrilateral meshes—although we

know it holds for parallelogram meshes.

Q. Is it really necessary that Ŝ contain all of
Qr(K̂) for optimal approximation?

A. Yes indeed!
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Theorem. Suppose that

inf
χ∈Sh
‖u− χ‖ = o(hr) ∀u ∈ Pr(Ω)

and for (e.g.) the following sequence of meshes.

Then Ŝ ⊃ Qr(K̂).
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Consequences: serendipity elements

As a consequence, serendipity elements are suboptimal on

quadrilateral meshes. On the unit square Q′2 contains Q1 but

not Q2. Thus it only gives O(h2) approximation in L2

Serendipity cubics don’t achieve a better rate, since they

don’t contain Q2 either. In general Q′k only contains Qbk/2c.

1
x y

x2 xy y2

x2y xy2

1
x y

x2 xy y2

x3 x2y xy2 y3

x3y xy3

1
x y

x2 xy y2

x3 x2y xy2 y3

x4 x3y x2y2 xy3 y4

x4y xy4
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Errors on trapezoidal meshes

Errors in |∇u|L∞ for Poisson’s problem when

u(x, y) = 5y2 + x3 − 10y3 + y4

Q2 on trapezoidal meshes Q′2 on trapezoidal meshes

n error %err. rate

2 5.9E-01 48.58

4 1.5E-01 12.08 2.0

8 3.7E-02 3.02 2.0

16 9.2E-03 0.75 2.0

32 2.3E-03 0.19 2.0

64 5.7E-04 0.05 2.0

n error %err. rate

2 6.2E-01 51.21

4 1.8E-01 14.72 1.8

8 5.9E-02 4.84 1.6

16 2.3E-02 1.89 1.4

32 1.0E-03 0.84 1.2

64 4.9E-03 0.40 1.1
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The Q2–P1 Stokes element

Q2 P1

For the Q2–P1 Stokes element, we must map the velocity

space to the reference element. But the pressures are

discontinuous, so we can take pressures which are linear on

the reference element (i.e., in the local coordinate system) or

linear in global coordinates.

Q. Which is right?

A. If we want to have good approximation on quadrilaterals,

we must not map the pressure space. Fortunately, the most

natural proof of stability holds in that case as well.
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Other consequences

Mixed finite elements for scalar elliptic problems.

L(u, p) =
1
2

∫
Ω

|u|2 dx+
∫

Ω

pdivu dx−
∫

Ω

f · u dx

The Raviart–Thomas elements give optimal order

approximation on quadrilateral meshes, but BDM and BDFM

must be suboptimal because of bad approximation of the

scalar variable.

Reissner–Mindlin plate elements. Most of the locking free

quadrilateral elements proposed for give suboptimal

approximation on general quadrilaterals.



25

Asymptotically parallelogram meshes

The deviation of a quadrilateral K from being a parallelogram may be
quantified by the maximum of the angles between opposite sides. We call a
sequence of meshes asymptotically parallelogram if this quantity is bounded
on each element by a multiple of the element diameter.

Theorem. For an asymptotically affine sequence of shape

regular quadrilateral meshes, Ŝ ⊃ Pr(K̂) is a necessary and

sufficient condition for optimal order approximation.

This theorem
applies, in particular,
to any sequence of
meshes coming from
regular refinement of
an initial
quadrilateral mesh.
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Conclusions

The condition that Ŝ ⊃ Qr(K̂) is necessary and sufficient

for optimal order approximation on general quadrilateral

meshes.

On affine (parallelogram) meshes, or, more generally,

asymptotically affine meshes, the weaker condition

Ŝ ⊃ Pr(K̂) is necessary and sufficient.

As a result, lots of standard elements do not attain the

same optimal rate on general quadrilateral meshes as they

do on affine meshes (contrary to folklore).

This result applies to serendipity elements and lots of

mixed finite element methods.


