					$\int -\Delta \mathcal{U} = f (o, I)^{2}$ $\mathcal{U} = O \partial (o, I)^{2}$
		-	X _(V-1) ²		$\mathcal{U} = \mathcal{O} = \partial(\mathcal{O}, \mathcal{I})^{2}$
	. –				$h = \frac{1}{N}$
			,		
XA	Xarti		X201-1)		
Х	ή Χι		• • • •	X _{N-1}	
L	<u>َ</u> ۲		•		

1. We label the nodes Yow by Yow, namely

$$U_{ij} = (N-1)(i-1) + j \qquad 1 \le i, j \le N$$
Then the five-point finite difference method gives a matrix
equation

$$A X = b \qquad (X)$$
Where

$$A = -\frac{1}{A^2} \begin{pmatrix} B & I \\ I & B & I \\ I & B & J \\ \vdots & \vdots & J \\ W^{-1} \\ X \\$$

Notice that the chargonal entries of A are the same.
Then
$$D = \frac{4}{4^2} Id$$
, where Id is the identity matrix of $(N-1)^2 \times (N-1)^2$.
Let -L and - U be the lower and upper triangular part of A.
 D Jacobi method
 $\chi^{k+1} = (Id - D'A) \chi^k + D'b$

(2) Gauss - Seidel method $X^{k+1} = (D-L)^{-1} U X^{k} + (D-L)^{-1} 6$

(3) SOR nethod $\chi^{k+1} = (D - wL)^{-1} ((I - w)D + wU)\chi^{k} + wCD - wL)^{-1}$ where $w = w_{opt} = \frac{2}{1 + \sin(\pi h)}$ For each method, we want to find the smallest k such that $\|\chi - \chi^{\star}\| \leq \int_{0}^{-6} \|\chi - \chi^{\circ}\|$ where X is the exact solution of (*), which we compute Using MATLAB.

The numerical results are as follows.

Ν	Jacobi	Gauss-Seidel	SOR
2	1	1	1
4	40	21	11
8	175	88	22
16	712	357	45
32	2862	1432	90

2. Using the results we got in class, we know the steps we we need are

> (4.34) $k \approx \frac{|\ln \tau|}{\mathcal{R}(J)} \approx \frac{2|\ln \tau|}{\pi^2 h^2} \approx \frac{4|\ln h|}{\pi^2 h^2}$ $k \approx \frac{|\ln \tau|}{\mathcal{R}(H_1)} \approx \frac{|\ln \tau|}{\pi^2 h^2} \approx \frac{2|\ln h|}{\pi^2 h^2}$ for the Gauss-Seidel method, $k \approx \frac{|\ln \tau|}{\mathcal{R}(H_{\omega_{\text{opt}}})} \approx \frac{|\ln \tau|}{2\pi h} \approx \frac{|\ln h|}{\pi h}$ for the SOR method with optimal $\omega = \omega_{\text{opt}}$,

for the Jacobi method,

where t is the tolerance.

For our numerical results, we can clearly see that the steps needed for Jacobi is twice of Gauss-Seidel. And both Jacobi and G-S method are increasing with order N2, which is 1/2. This is because when N=2N, the stops are quadrupled.

For the same reason, we know SOR is increasing with order N. Next let's see the theorical results:

N	Jacobi	Gauss-Seidel	SOR
2	12	6	5
4	45	23	9
8	180	90	18
16	717	359	36
32	2867	1434	71

If we compare the theorical results with our numerical results. We can see that they are very close two. So our numerical results match with the theory.

3.
$$\chi^{k+1} = (1-w)\chi^{k} + wD'(D-A)\chi^{k} + wD'b$$

= $((1-w)Id + wId - wD'A)\chi^{k} + wD'3$

 $M_{\rm m} = Id - \omega D^{-}A$ Sa

and Id-D'A is the Iteration matrix of Jacobi method Notice that Mw=(I-w)Id+w(Id-DA) Therefore, if λ is an eigenvalue of Id-D'A, then $\tilde{\lambda} = (1 - w) + w\lambda$ is an eigenvalue of M_w .

To make this method converges, we need

$$-1 < 1 - w + w\lambda < 1$$

$$\Rightarrow -2 < w(\lambda - 1) < 0$$

$$0 < w(1 - \lambda) < 2$$
For our model problem, the eigenvalues of $Id - D^{T}A$ are

$$1 - (Sin^{2} \frac{m\pi d}{2} + Sin^{2} \frac{n\pi d}{2}) \qquad [Sm, n \leq N - 1]$$
Hence $1 - \lambda = Sin^{2} \frac{m\pi d}{2} + Sin^{2} \frac{n\pi d}{2}$
Then $0 < w < \frac{2}{Sin^{2} \frac{m\pi d}{2} + Sin^{2} \frac{n\pi d}{2}}$

$$\Rightarrow 0 < W < \frac{2}{2Sin^{2} \frac{(W +)\pi d}{2}} = \frac{2}{1 - Cos((W - 1)\pi d)} = \frac{2}{1 + Cos(\pi - \pi d)} = \frac{2}{1 + Cos(\pi - \pi d)}$$
So $0 < w < \frac{2}{1 + Cos(\pi - \pi d)}$

4. From question 3, we know $\mathcal{M} = \prod_{i=1}^{\ell} \mathcal{M}_{w_i}$ $= \frac{l}{\sqrt{1-w_i+w_i(1d-DA)}}$ So if λ is an eigenvalue of \overline{DA} , then $\frac{l}{\Pi(l-w; +w;(l-\lambda))} = \frac{l}{\Pi(l-w;\lambda)}$ is an eigenvalue of M. For D'A, we know the eigenvalues are $\lambda^{mn} = Sih^2 \frac{m\pi h}{2} + sin^2 \frac{n\pi h}{2}$ where $|\leq m, n \leq N - |$. Therefore, $\begin{bmatrix} l \\ TT(1-w_i) \\ i=1 \end{bmatrix}^{N-1}$ are the eigenvalues of M, Now in order to make our method converge fast than the original Jacobi method, we need to choose [Wi]i=1 such that

 $\int (\frac{\ell}{\Pi} M_{w_i}) < \int (\frac{\ell}{\Pi} M_1) - \cdots (*)$ To make (*) hold, we can require that $\left|\frac{l}{T(l-w_i)}\right| < \left|\frac{l}{T(l-\lambda^{mn})}\right| - \cdots (*)(*)$ for any l≤m,n<N-1.

Obviously if (+*) holds, (+) is true. Notice that $|-\cos \pi h \leq \lambda^{mn} \leq |+\cos \pi h|$ Let a=1-costh >0, 6=1+costh. Now let $f(x) = \overline{T}(1 - w; x)$ in (a, b) Then f(0) = 1. From what we saw in the error estimate of conjugate gradient method, we know Chebysher polynomial $T_{L}(\frac{x-\frac{\alpha+\delta}{2}}{(\delta-\alpha)/2})$ is the minimizer $\overline{Tl}\left(-\frac{a+b}{b-a}\right)$ of the following problem Min max / p(x)/ deg p=1 ×6(0,6) P(0)=1 So if we take $\frac{1}{1}(1-w; \chi) = \frac{1}{1}\left(\frac{\chi-\frac{\alpha+b}{2}}{(b-\alpha)/2}\right)$ $\frac{1}{1}(1-w; \chi) = \frac{1}{1}\left(\frac{-\frac{\alpha+b}{2}}{(b-\alpha)/2}\right)$ $\frac{\mathcal{U}(-\frac{urs}{6-a})}{Tden} = \frac{max}{1-1} \left(\frac{l}{1-w;\lambda}\right) \leq \frac{max}{4 \le \lambda \le b} \left|\frac{l}{1-y}\right|$ $a < \lambda \leq b$ This means (X*) holds. To be more precise, if $\frac{1}{11}(1-w;X) = \frac{T_{\ell}(\frac{X-\frac{a+b}{2}}{(6-a/2})}{T_{\ell}(-\frac{a+b}{1-a})}$ then the should be the zeros of Chebysher polynomial Te (X- ats/2)

Hence $\frac{1}{W_i} = \frac{a+b}{2} + \frac{b-a}{2} \cos(\frac{2i-1}{2\sqrt{h}})$ $\implies (11) = \left(\frac{a+b}{2} + \frac{b-4}{2}\cos\left(\frac{2i-1}{2l}z\right)\right)^{-1} \quad (l \le i \le l)$ where a=1-costh and b=1+costh. Next let us show some numerical results to compare Jacobi method (w;=1) with our weighted Jacobi method Using zeros of Chebysher polynimial. 1=3 Jacobi Weighted_Jacobi Ns 4 1=5 Weighted_Jacobi Ns Jacobi Jacobi Weighted_Jacobi Ns 1=10