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1 Introduction

1.1 The purpose of these notes

In these notes, we study the Runge Kutta Discontinuous Galerkin method
for numerically solving nonlinear hyperbolic systems and its extension for
convection-dominated problems, the so-called Local Discontinuous Galerkin
method. Examples of problems to which these methods can be applied are
the Euler equations of gas dynamics, the shallow water equations, the equa-
tions of magneto-hydrodynamics, the compressible Navier-Stokes equations
with high Reynolds numbers, and the equations of the hydrodynamic model
for semiconductor device simulation; applications to Hamilton-Jacobi equa-
tions is another important example. The main features that make the meth-
ods under consideration attractive are their formal high-order accuracy, their
nonlinear stability, their high parallelizability, their ability to handle compli-
cated geometries, and their ability to capture the discontinuities or strong
gradients of the exact solution without producing spurious oscillations. The
purpose of these notes is to provide a short introduction to the devising and
analysis of these discontinuous Galerkin methods. Most of the material of
these notes has been presented in [17].
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1.2 A historical overview

The original Discontinuous Galerkin method The original discontinu-
ous Galerkin (DG) finite element method was introduced by Reed and Hill
[76] for solving the neutron transport equation

ou+div(au) = f,

where ¢ is a real number and @ a constant vector. A remarkable advantage
of this method is that, because of the linear nature of the equation, the
approximate solution can be computed element by element when the elements
are suitably ordered according to the characteristic direction.

LeSaint and Raviart [58] made the first analysis of this method and proved
a rate of convergence of (Az)* for general triangulations and of (Az)**+! for



Cartesian grids. Later, Johnson and Pitkarinta [52] proved a rate of conver-
gence of (Az)¥+1/2 for general triangulations and Peterson [75] numerically
confirmed this rate to be optimal. Richter [77] obtained the optimal rate of
convergence of (Axz)¥*+! for some structured two-dimensional non-Cartesian
grids. In all the above papers, the exact solution is assumed to be very smooth.
The case in which the solution admits discontinuities was treated by Lin and
Zhou [60] who proved the convergence of the method. The issue of the in-
terrelation between the mesh and the order of convergence of the method
was explored by Zhou and Lin [93], case k = 1, and later by Lin, Yan, and
Zhou [59], case k = 0, and optimal error estimates were proven under suitable
assumptions on the mesh. Recently, several new results have been obtained.
Thus, Falk and Richter [39] obtained a rate of convergence of (Az)**+1/2 for
general triangulations for Friedrich systems; Houston, Schwab and Siili [42]
analyzed the hp version of the discontinuous Galerkin method and showed its
exponential convergence when the solution is piecewise analytic; and, finally,
Cockburn, Luskin, Shu, and Siili [22] showed how to exploit the translation
invariance of a grid to double the order of convergence of the method by a
simple, local postprocessing of the approximate solution.

Nonlinear hyperbolic systems: The RKDG method The success of
this method for linear equations, prompted several authors to try to extend
the method to nonlinear hyperbolic conservation laws

d
ut + Z(fl(u))wz =0,

equipped with suitable initial or initial boundary conditions. However, the
introduction of the nonlinearity prevents the element-by-element computa-
tion of the solution. The scheme defines a nonlinear system of equations that
must be solved all at once and this renders it computationally very inefficient
for hyperbolic problems.

e The one-dimensional scalar conservation law.

To avoid this difficulty, Chavent and Salzano [13] constructed an explicit
version of the DG method in the one-dimensional scalar conservation law.
To do that, they discretized in space by using the DG method with piece-
wise linear elements and then discretized in time by using the simple Euler
forward method. Although the resulting scheme is explicit, the classical von
Neumann analysis shows that it is unconditionally unstable when the ra-
tio % is held constant; it is stable if % is of order v/ Az, which is a very
restrictive condition for hyperbolic problems.

To improve the stability of the scheme, Chavent and Cockburn [12] mod-
ified the scheme by introducing a suitably defined ‘slope limiter’ following
the ideas introduced by van Leer in [88]. They thus obtained a scheme that
was proven to be total variation diminishing in the means (TVDM) and to-
tal variation bounded (TVB) under a fixed CFL number, f’ 4L, that can be



chosen to be less than or equal to 1/2. Convergence of a subsequence is thus
guaranteed, and the numerical results given in [12] indicate convergence to
the correct entropy solutions. However, the scheme is only first order accu-
rate in time and the ‘slope limiter’ has to balance the spurious oscillations
in smooth regions caused by linear instability, hence adversely affecting the
quality of the approximation in these regions.

These difficulties were overcome by Cockburn and Shu in [26], where
the first Runge Kutta Discontinuous Galerkin (RKDG) method was intro-
duced. This method was constructed (i) by retaining the piecewise linear DG
method for the space discretization, (ii) by using a special explicit TVD sec-
ond order Runge-Kutta type discretization introduced by Shu and Osher in
a finite difference framework [80], [81], and (iii) by modifying the ‘slope lim-
iter’ to maintain the formal accuracy of the scheme extrema. The resulting
explicit scheme was then proven linearly stable for CFL numbers less than
1/3, formally uniformly second order accurate in space and time including
at extrema, and TVBM. Numerical results in [26] indicate good convergence
behavior: Second order in smooth regions including extrema, sharp shock
transitions (usually in one or two elements) without oscillations, and conver-
gence to entropy solutions even for non convex fluxes.

In [24], Cockburn and Shu extended this approach to construct (formally)
high-order accurate RKDG methods for the scalar conservation law. To device
RKDG methods of order k + 1, they used (i) the DG method with polyno-
mials of degree k for the space discretization, (ii) a TVD (k + 1)-th order
accurate explicit time discretization, and (iii) a generalized ‘slope limiter.’
The generalized ‘slope limiter’ was carefully devised with the purpose of en-
forcing the TVDM property without destroying the accuracy of the scheme.
The numerical results in [24], for k£ = 1,2, indicate (k + 1)-th order order in
smooth regions away from discontinuities as well as sharp shock transitions
with no oscillations; convergence to the entropy solutions was observed in all
the tests. These RKDG schemes were extended to one-dimensional systems
in [21].

e The multidimensional case.

The extension of the RKDG method to the multidimensional case was
done in [20] for the scalar conservation law. In the multidimensional case,
the complicated geometry the spatial domain might have in practical ap-
plications can be easily handled by the DG space discretization. The TVD
time discretizations remain the same, of course. Only the construction of the
generalized ‘slope limiter’ represents a serious challenge. This is so, not only
because of the more complicated form of the elements but also because of
inherent accuracy barriers imposed by the stability properties.

Indeed, since the main purpose of the ‘slope limiter’ is to enforce the
nonlinear stability of the scheme, it is essential to realize that in the multi-
dimensional case, the constraints imposed by the stability of a scheme on its
accuracy are even greater than in the one dimensional case. Although in the
one dimensional case it is possible to devise high-order accurate schemes with



the TVD property, this is not so in several space dimensions since Goodman
and LeVeque [41] proved that any TVD scheme is at most first order accu-
rate. Thus, any generalized ‘slope limiter’ that enforces the TVD property, or
the TVDM property for that matter, would unavoidably reduce the accuracy
of the scheme to first-order accuracy. This is why in [20], Cockburn, Hou and
Shu devised a generalized ‘slope limiter’ that enforced a local maximum prin-
ciple only since they are not incompatible with high-order accuracy. No other
class of schemes has a proven maximum principle for general nonlinearities £
and arbitrary triangulations.

The extension of the RKDG methods to general multidimensional systems
was started by Cockburn and Shu in [25] and has been recently completed in
[28]. Bey and Oden [10], Bassi and Rebay [4], and more recently Baumann
[6] and Baumann and Oden [9] have studied applications of the method to
the Euler equations of gas dynamics. Recently, Kershaw et al. [56], from the
Lawrence Livermore National Laboratory, extended the method to arbitrary
Lagrangian-Eulerian fluid flows where the computational mesh can move to
track the interface between the different material species.

e The main advantages of the RKDG method.

The resulting RKDG schemes have several important advantages. First,
like finite element methods such as the SUPG-method of Hughes and Brook
[44], [49], [45], [46], [47], [48] (which has been analyzed by Johnson et al. in
[53], [54], [55]), the RKDG methods are better suited than finite difference
methods to handle complicated geometries. Moreover, the particular finite
elements of the DG space discretization allow an extremely simple treatment
of the boundary conditions; no special numerical treatment of them is re-
quired in order to achieve uniform high order accuracy, as is the case for the
finite difference schemes.

Second, the method can easily handle adaptivity strategies since the re-
fining or unrefining of the grid can be done without taking into account the
continuity restrictions typical of conforming finite element methods. Also,
the degree of the approximating polynomial can be easily changed from one
element to the other. Adaptivity is of particular importance in hyperbolic
problems given the complexity of the structure of the discontinuities. In the
one dimensional case the Riemann problem can be solved in closed form
and discontinuity curves in the (z,t) plane are simple straight lines passing
through the origin. However, in two dimensions their solutions display a very
rich structure; see the works of Wagner [90], Lindquist [62], [61], Tong and
Zheng [86], and Tong and Chen [85]. Thus, methods which allow triangula-
tions that can be easily adapted to resolve this structure, have an important
advantage.

Third, the method is highly parallelizable. Since the elements are discon-
tinuous, the mass matrix is block diagonal and since the order of the blocks is
equal to the number of degrees of freedom inside the corresponding elements,
the blocks can be inverted by hand once and for all. Thus, at each Runge-
Kutta inner step, to update the degrees of freedom inside a given element,



only the degrees of freedom of the elements sharing a face are involved; com-
munication between processors is thus kept to a minimum. Extensive studies
of adaptivity and parallelizability issues of the RKDG method have been
performed by Biswas, Devine, and Flaherty [11], Devine, Flaherty, Loy, and
Wheat [32], Devine and Flaherty [31], and more recently by Flaherty et al.
[40]. Studies of load balancing related to conservation laws but not restricted
to them can be found in the works by Devine, Flaherty, Wheat, and Maccabe
[33], by deCougny et al. [30], and by Ozturan et al. [74].

3

Convection-diffusion systems: The LDG method The first extensions
of the RKDG method to nonlinear, convection-diffusion systems of the form

Ou+ V- -F(u,Du) =0, in (0,T) x {2,

were proposed by Chen et al. [15], [14] in the framework of hydrodynamic
models for semiconductor device simulation. In these extensions, approxima-
tions of second and third-order derivatives of the discontinuous approximate
solution were obtained by using simple projections into suitable finite ele-
ments spaces. This projection requires the inversion of global mass matrices,
which in [15] and [14] were ‘lumped’ in order to maintain the high paralleliz-
ability of the method. Since in [15] and [14] polynomials of degree one are
used, the ‘mass lumping’ is justified; however, if polynomials of higher degree
were used, the ‘mass lumping’ needed to enforce the full parallelizability of
the method could cause a degradation of the formal order of accuracy.

Fortunately, this is not an issue with the methods proposed by Bassi and
Rebay [3] (see also Bassi et al [4]) for the compressible Navier-Stokes equa-
tions. In these methods, the original idea of the RKDG method is applied to
both v and D u which are now considered as independent unknowns. Like the
RKDG methods, the resulting methods are highly parallelizable methods of
high-order accuracy which are very efficient for time-dependent, convection-
dominated flows. The LDG methods considered by Cockburn and Shu [27]
are a generalization of these methods.

The basic idea to construct the LDG methods is to suitably rewrite the
original system as a larger, degenerate, first-order system and then discretize
it by the RKDG method. By a careful choice of this rewriting, nonlinear
stability can be achieved even without slope limiters, just as the RKDG
method in the purely hyperbolic case; see Jiang and Shu [51]. Moreover, error
estimates (in the linear case) have been obtained in [27]. A recent analysis of
this method is currently being carried out by Cockburn and Schwab [23] in
the one dimensional case by taking into account the characterization of the
viscous boundary layer of the exact solution.

The LDG methods [27] are very different from the so-called Discontinuous
Galerkin (DG) method for parabolic problems introduced by Jamet [50] and
studied by Eriksson, Johnson, and Thomée [38], Eriksson and Johnson [34],

3

[35], [36], [37], and more recently by Makridakis and Babuska [68]. In the



DG method, the approximate solution is discontinuous only in time, not in
space; in fact, the space discretization is the standard Galerkin discretization
with continuous finite elements. This is in strong contrast with the space
discretizations of the LDG methods which use discontinuous finite elements.
To emphasize this difference, those methods are called Local Discontinuous
Galerkin methods. The large amount of degrees of freedom and the restric-
tive conditions of the size of the time step for explicit time-discretizations,
render the LDG methods inefficient for diffusion-dominated problems; in this
situation, the use of methods with continuous-in-space approximate solutions
is recommended. However, as for the successful RKDG methods for purely
hyperbolic problems, the extremely local domain of dependency of the LDG
methods allows a very efficient parallelization that by far compensates for
the extra amount of degrees of freedom in the case of convection-dominated
flows. Karniadakis et al. have implemented and tested these methods for the
compressible Navier Stokes equations in two and three space dimensions with
impressive results; see [64], [65], [63], [66], and [91].

Another technique to discretize the diffusion terms have been proposed
by Baumann [6]. The one-dimensional case was studied by Babugka, Bau-
mann, and J.T. Oden [2] and the multidimensional case has been considered
by Oden, Babuska, and Baumann [70]. The case of convection-diffusion in
multidimensions was treated by Baumann and Oden in [7]. In [8], Baumann
and Oden consider applications to the Navier-Stokes equations.

Finally, let us point bring the attention of the reader to the non-conforming
staggered-grid Chebyshev spectral multidomain numerical method for the so-
lution of the compressible Navier-Stokes equations proposed and studied by
Kopriva [57]; this method is strongly related to discontinuous Galerkin meth-
ods.

1.3 The content of these notes

In these notes, we study the RKDG and LDG methods. Our exposition will
be based on the papers by Cockburn and Shu [26], [24], [21], [20], and [28] in
which the RKDG method was developed and on the paper by Cockburn and
Shu [27] which is devoted to the LDG methods. We also include numerical
results from the papers by Bassi and Rebay [4] and by Warburton, Lomtev,
Kirby and Karniadakis [91] on the Euler equations of gas dynamics and from
the papers by Bassi and Rebay [3] and by Lomtev and Karniadakis [63] on
the compressible Navier-Stokes equations. Finally, we also use the material
contained in the paper by Hu and Shu [43] in which the application of the
RKDG method is extended to Hamilton-Jacobi equations.

The emphasis in these notes is on how the above mentioned schemes were
devised. As a consequence, the chapters that follow reflect that development.
Thus, Chapter 2, in which the RKDG schemes for the one-dimensional scalar
conservation law are constructed, constitutes the core of the notes because it



contains all the important ideas for the devising of the RKDG methods; chap-
ter 3 contains its extension to one-dimensional Hamilton-Jacobi equations.
In chapter 4, we extend the RKDG method to multidimensional systems
and in Chapter 5, to multidimensional Hamilton-Jacobi equations. Finally,
in chapter 6 we study the extension to convection-diffusion problems.

We would like to emphasize that the guiding principle in the devising of
the RKDG methods for scalar conservation laws is to consider them as per-
turbations of the so-called monotone schemes. As it is well-known, monotone
schemes for scalar conservation laws are stable and converge to the entropy
solution but are only first-order accurate. Following a widespread approach
in the field of numerical schemes for nonlinear conservation laws, the RKDG
are constructed in such a way that they are high-order accurate schemes that
‘become’ a monotone scheme when a piecewise-constant approximation is
used. Thus, to obtain high-order accurate RKDG schemes, we ‘perturb’ the
piecewise-constant approximation and allow it to be piecewise a polynomial
of arbitrary degree. Then, the conditions under which the stability properties
of the monotone schemes are still valid are sought and enforced by means of
the generalized ‘slope limiter.” The fact that it is possible to do so without
destroying the accuracy of the RKDG method is the crucial point that makes
this method both robust and accurate.

The issues of parallelization and adaptivity developed by Biswas, Devine,
and Flaherty [11], Devine, Flaherty, Loy, and Wheat [32], Devine and Fla-
herty [31], and by Flaherty et al. [40] (see also the works by Devine, Flaherty,
Whea, and Maccabe [33], by deCougny et al. [30], and by Ozturan et al. [74])
are certainly very important. Another issue of importance is how to render
the method computationally more efficient, like the quadrature rule-free ver-
sions of the RKDG method recently studied by Atkins and Shu [1]. However,
these topics fall beyond the scope of these notes whose main intention is to
provide a simple introduction to the topic of discontinuous Galerkin methods
for convection-dominated problems.



2 The scalar conservation law in one space dimension

2.1 Introduction

In this section, we introduce and study the RKDG method for the following
simple model problem:
u + f(u)s =0, in (0,1) x (0,7),
U(ZE70) = u0($)7 Vze (0 1)7

—~ o~
N N
N =
— —

and periodic boundary conditions. This section has material drawn from [26]
and [24].

2.2 The discontinuous Galerkin-space discretization

The weak formulation To discretize in space, we proceed as follows. For
each partition of the interval (0, 1), { 7,412 }9;07 weset Ij = (2j_1/2,%j41/2),
Aj =xzjp12—xj_12forj =1,..., N, and denote the quantity max;<j<n 4;
by Az .

We seek an approximation uy, to u such that for each time ¢ € [0, T, up(t)
belongs to the finite dimensional space

Vi =VF={veL'0,1): o|, € P, j=1,...,N}, (2.3)

where P*(I) denotes the space of polynomials in I of degree at most k. In
order to determine the approximate solution uj, we use a weak formulation
that we obtain as follows. First, we multiply the equations (2.1) and (2.2) by
arbitrary, smooth functions v and integrate over I, and get, after a simple
formal integration by parts,

/I Oru(z,t)v(x)de — /1 fu(z,t)) 0y v(x) dx
+f(u($j+1/2= t)) U(ZIZ;+1/2) - f(u(wjfl/% t)) 'U(wjll/z) = 0: (24)

/ u(z,0)v(z)de = / uo(z) v(x) d. (2.5)

JI; JI;

Next, we replace the smooth functions v by test functions v, belonging to the
finite element space V},, and the exact solution u by the approximate solution
up. Since the function wuy, is discontinuous at the points ., />, we must also
replace the nonlinear ‘flux’ f(u(x;41/2,t)) by a numerical ‘flux’ that depends
on the two values of uj at the point (z;44/2,t), that is, by the function

h‘(u)j+1/2(t) = h(u(m;_;_l/z: t), u(m;"—+1/2 1), (2.6)

that will be suitably chosen later. Note that we always use the same numerical
flux regardless of the form of the finite element space. Thus, the approximate



solution given by the DG-space discretization is defined as the solution of the
following weak formulation:

Vij=1,...,N, Y v, € PH(I;) -
/14 Orup(z,t) vp(z) do — /I flup(z,t)) Op vp(z) dz
+h(un)jir o) vn(e; ) — hun)j 1O on(e] ) =0, (27)

/ up(x,0) vy (x) de :/ uo(z) vp(z) de. (2.8)

1; 1;

Incorporating the monotone numerical fluxes To complete the defini-
tion of the approximate solution up, it only remains to choose the numerical
flux h. To do that, we invoke our main point of view, namely, that we want to
construct schemes that are perturbations of the so-called monotone schemes.
The idea is that by perturbing the monotone schemes, we would achieve high-
order accuracy while keeping their stability and convergence properties. Thus,
we want that in the case £ = 0, that is, when the approximate solution up
is a piecewise-constant function, our DG-space discretization gives rise to a
monotone scheme.

Since in this case, for € I; we can write

up(x,t) = u?,

we can rewrite our weak formulation (2.7), (2.8) as follows:

OO+ {h (0,151 (1) = h(uf 1 (0,052 } /4, = .

1
“9(0) = A—]/I] ug(z) dz,

and it is well-known that this defines a monotone scheme if h(a,b) is a Lips-
chitz, consistent, monotone flux, that is, if it is,

(i) locally Lipschitz and consistent with the flux f(u), i.e., h(u,u) = f(u),
(ii) a nondecreasing function of its first argument, and
(iii) a nonincreasing function of its second argument.

The best-known examples of numerical fluxes satisfying the above properties
are the following:

(i) The Godunov flux:

hG( b) mina<u<b f(u) if a S b
1 (a,b) = == ]
maxp<y<a f(u), otherwise.



(ii) The Engquist-Osher flux:

b a
EO = min(f'(s), max(f'(s), ;
W) = [ min(f().0) ds+ [ max((5).0) ds + F(0):
(iii) The Lax-Friedrichs flux:

W 0,0) = 5 (@) + ) = C (b - a)]

C = "(s)];
WX o )|f (s);

inf u%(z)<s<sup ul(z

(iv) The local Lax—Friedrichs flux:

W (a,8) = 3 [f(a) + F(0) ~ O~ )],
C= max : If'(s)];

min(a,b)<s<max(a,b

(v) The Roe flux with ‘entropy fix”:

3

f(a) if f'(u) >0 for wu € [min(a,b), max(a,b)]
hf(a,b) = < f(b) if f'(u) <0 for wu € [min(a,b),max(a,b)],
hULF (a,b)  otherwise.

For the flux h, we can use the Godunov flux hY since it is well-known
that this is the numerical flux that produces the smallest amount of artificial
viscosity. The local Lax-Friedrichs flux produces more artificial viscosity than
the Godunov flux, but their performances are remarkably similar. Of course,
if f is too complicated, we can always use the Lax-Friedrichs flux. However,
numerical experience suggests that as the degree k of the approximate so-
lution increases, the choice of the numerical flux does not have a significant
impact on the quality of the approximations.

Diagonalizing the mass matrix If we choose the Legendre polynomials
P, as local basis functions, we can exploit their L2-orthogonality, namely,

! 2
[1 Py(s) Py (s)ds = (—%_'_ 1) deers

to obtain a diagonal mass matrix. Indeed, if, for x € I;, we express our
approximate solution uy as follows:

k
un(z,1) =) uf pe(a),
=0

where

wi(x) = Po(2(z — 25)/4;),



the weak formulation (2.7), (2.8) takes the following simple form:
Vi=1,...,Nand £=0,...,k:
1 1
(357) 20~ 5 [ SunGo) 2uputo)d
it

20+1

+Ai]{ h(un(2j412)) (1) — (—1)° h(uh(mjlﬂ))(t)} -0

20+ 1
¢

u;(0) =

() Aj 1

J
i

o () e () d,

where we have use the following properties of the Legendre polynomials:

This shows that after discretizing in space the problem (2.1), (2.2) by the
DG method, we obtain a system of ODEs for the degrees of freedom that we
can rewrite as follows:

d .
o Uk = Ly (up), in (0,7), (2.9)
uh(t = 0) = UQh- (2.10)

The element, Ly (uy) of V4, is, of course, the approximation to — f (u), provided
by the DG-space discretization.

Note that if we choose a different local basis, the local mass matrix could
be a full matrix but it will always be a matrix of order (k + 1). By inverting
it by means of a symbolic manipulator, we can always write the equations
for the degrees of freedom of up as an ODE system of the form above.

Convergence analysis of the linear case In the linear case f(u) = cu, the
L>(0,T; L?(0, 1))-accuracy of the method (2.7), (2.8) can be established by
using the L°°(0,T; L?(0,1))-stability of the method and the approximation
properties of the finite element space V},.

Note that in this case, all the fluxes displayed in the examples above
coincide and are equal to

a+b |c
5 T(bf a). (2.11)

h(a,b) =¢
The following results are thus for this numerical flux.
We state the L2-stability result in terms of the jumps of u;, across Tjt1/2

which we denote by

[unljr1/2 = uh(az;jrlp) - Uh(33;+1/2)-



Proposition 1. (L2-stability) We have,

Ul an(T) ooy + Or(un) < SllualZae)-

where
c T p
Or(un) =S [ 3 jan lun() 2y, 5 dt.

Note how the jumps of up are controlled by the L2-norm of the initial
condition. This control reflects the subtle built-in dissipation mechanism of
the DG-methods and is what allows the DG-methods to be more accurate
than the standard Galerkin methods. Indeed, the standard Galerkin method
has an order of accuracy equal to k whereas the DG-methods have an order
of accuracy equal to k+ 1/2 for the same smoothness of the initial condition.

Theorem 2. (First L2-error estimate) Suppose that the initial condition ug
belongs to H**1(0,1). Let e be the approzimation error u—uy. Then we have,

le(T) [|z20.1) £ C'luo ‘Hk'+1(0,1)(A33)k+1/27
where C depends solely on k, |c|, and T

It is also possible to prove the following result if we assume that the initial
condition is more regular. Indeed, we have the following result.

Theorem 3. (Second L2-error estimate) Suppose that the initial condition
ug belongs to H**2(0,1). Let e be the approzimation error u — u,. Then we
have,

le(T) lL200) < Clug | erz(on) (Az)EH,

where C depends solely on k, |c¢|, and T.
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Theorem 2 is a simplified version of a more general result proven in 1986
by Johnson and Pitkdranta [52] and Theorem 3 is a simplified version of a
more general result proven in 1974 by LeSaint and Raviart [58]. To provide
a simple introduction to the techniques used in these general results, we give
new proofs of Theorems 2 and 3 in an appendix to this chapter.

The above theorems show that the DG-space discretization results in a
(k+1)th-order accurate scheme, at least in the linear case. This gives a strong
indication that the same order of accuracy should hold in the nonlinear case
when the exact solution is smooth enough, of course.

Now that we know that the DG-space discretization produces a high-order
accurate scheme for smooth exact solutions, we consider the question of how
does it behave when the flux is a nonlinear function.



Convergence analysis in the nonlinear case To study the convergence
properties of the DG-method, we first study the convergence properties of
the solution w of the following problem:

w4 fw), = (v(w) w,).s, (2.12)
w(-,0) = uo ("), (2.13)

and periodic boundary conditions. We then mimic the procedure to study the
convergence of the DG-method for the piecewise-constant case. The general
DG-method will be considered later after having introduced the Runge-Kutta
time-discretization.

The continuous case as a model. In order to compare u and w, it
is enough to have (i) an entropy inequality and (ii) uniform boundedness of
| we ||L1(0,1)- Next, we show how to obtain these properties in a formal way.

We start with the entropy inequality. To obtain such an inequality, the
basic idea is to multiply the equation (2.12) by U’(w — ¢), where U(-) denotes
the absolute value function and ¢ denotes an arbitrary real number. Since

Ulw—c)ws = U(w — ¢)g,
U'(w = c) f(w), = (U'(w = ¢) (f(w) = f(c)))

= F(w,c),,
and since
Ut -0 ww ). = ( [ Ue-avipds) -0 c)viw) @)’
= d(w,c)px — U"(w—c¢) v(w) (w,)?,
we obtain

Ulw —¢)t + F(w,¢)y — ®(w,¢), <0,

which is nothing but the entropy inequality we wanted.
To obtain the uniform boundedness of || w; [|1(0,1), the idea is to multiply
the equation (2.12) by —(U'(w,)), and integrate on x from 0 to 1. Since

/01 — (U (w))e we = /01 U’ (w,) (wx)t%nwm L1015
'/01 —(U'(w)z f(w)s = /01 U" (w,) wea f'(w) wy =0,

and since

A 7<U,(ﬂ)z))z (V(U)) wz)z — _



we immediately get that

d
EH wy [|21(0,1) <0,

and so,

lwa llro.0) < 1 (wo)e 10y, VE€(0,T).

When the function ug has discontinuities, the same result holds with the total
variation of ug ,| uo |7y (0,1), replacing the quantity || (uo)z [|£1(0,1); these two
quantities coincide when ug € W1(0,1).

With the two above ingredients, the following error estimate, obtained in
1976 by Kuznetsov, can be proved:

Theorem 4. (L'-error estimate) We have
| u(T) —w(T) [|L10,1) < [uo lrv01) V8T v,

where v = SUDselinf ug ,sup uo] V(S)'

The piecewise-constant case. Let consider the simple case of the DG-
method that uses a piecewise-constant approximate solution:
Vji=1,...,N:
Oy uj + {h(uj, ujr) = h(uj—1,u;) }/A; =0,
1
u;(0) = —/ uo(x) dz,
A; 1,

where we have dropped the superindex ‘0.” We pick the numerical flux h to
be the Engquist-Osher flux.

According to the model provided by the continuous case, we must ob-
tain (i) an entropy inequality and (ii) the uniform boundedness of the total
variation of up.

To obtain the entropy inequality, we multiply our equation by U'(u; — ¢):

O U(uj — )+ U'(uj — ){h(uj, ujp1) — h(uj_1,u;) }/A; = 0.

The second term in the above equation needs to be carefully treated. First,
we rewrite the Engquist-Osher flux in the following form:

h(a,b) = f*(a) + f~(b),
and, accordingly, rewrite the second term of the equality above as follows:

STy = U'(uj — ){ f"(uj) = F(uj)}
+U" (uj — )L f~ (wjr) = f(uj)}-



Using the simple identity

b
U'(a —¢)(g(a) — g(b)) = G(a,c) — G(b,c) + / (9(b) = g(p)) U"(p — c) dp.

where G(a,c) = fca U'(p—c)g'(p)dp, we get
ST; = Ft(uj,c) — Ft(uj_1,c)

+/1‘”*‘ (f+(uj71) — f+(p)) U”(p —2)dp

+F " (ujp1,¢) = F (uj,c)

7/%j+1 (f (wjp1) — (P U"(p — x)dp

= Fluj,ujpr;c) = Fuj1,uj;¢) + Ouiss

where
Fla,bie) = F*(a,¢) + F~ (b,c),
Ouies =+ [ (1) = 170 U"p ) dp
_/_] (f~ (wjrr) = () U"(p — x) dp.
We thus get

0 U(u; —c¢) + {F(uj, ujt1;c) — F(uj—1,uj; c)}/Aj + Ouiss,j/A; = 0.
Since, f* and —f~ are nondecreasing functions, we easily see that
Ogiss,j > 0,
and we obtain our entropy inequality:
O U(uj —¢) + {F(uj,ujr1;¢) — Fuj_1,u5;¢)}/A; <0.

Next, we obtain the uniform boundedness on the total variation. To do
that, we follow our model and multiply our equation by a discrete version of
7(UI(U)I))I7 nameIY7

1 { Uir] — Uj Wi — Ui
g (o) ()
! 4; Ajy1y2 VAVERYD:

where A; /5 = (4; + Aj11)/2, multiply it by A; and sum over j from 1 to
N. We easily obtain

d
E‘ up |7v0,1) + Z of {h(uj,wjpn) — h(uj1,uy)} =0,
1<j<N



where

| un lTv0,1) = Z | ujsr — uj |-
1<j<N

According to our continuous model, the second term in the above equality
should be positive. This is indeed the case since the expression

v? {h(u]’,uﬁl) — h(uj,l,uj)}
is equal to the quantity
O L (ug) = FH (i) b+ 05 {F () = F ()},

which is nonnegative by the definition of v?, fT, and f~. This implies that

lun(t) |rvio,1) < [un(0) [7v0,1) < [uolTv(0,1)- (2.14)

With the two above ingredients, the following error estimate, obtained in
1976 by Kuznetsov, can be proved:

Theorem 5. (L!-error estimate) We have

lu(T) — un(T) ||L1(0,1) < |l ug — un(0) ||L1(0,1) +Clug ‘TV(O,I) VT Az.

The general case. Error estimates for the case of arbitrary k£ have not
been obtained, yet. However, Jiang and Shu [51] found a very interesting
result in the case in which the nonlinear flux f is strictly convex or concave.
In such a situation, the existence of a discrete, local entropy inequality for
the scheme for only a single entropy is enough to guarantee that the limit
of the scheme, if it exists, is the entropy solution. Jiang and Shu [51] found
such a discrete, local entropy inequality for the DG-method.

To describe the main idea of their result, let us first consider the model
equation

ur+ fw)e = Vug)s.

If we multiply the equation by uw we obtain, after very simple manipulations,

1 9 v 9 _
S @3+ (F() = 2 (). + 0 =0,
where
P = ug)— [ ) s,
and

0 = v (u,)?.



Since © > 0, we immediately obtain the following entropy inequality:

Now, we only need to mimic the above procedure using the numerical
scheme (2.7) instead of the above parabolic equation and obtain a discrete
version of the above entropy inequality. To do that, we simply take v, = uy, in
(2.7) and rearrange terms in a suitable way. If we use the following notation:

— _ + —
Ujt1/2 = (Uj+1/2 + uj+1/2)/27
— (7t -
[ulj+1/2 = (“j+1/2 - “j+1/2)7
the result can be expressed as follows.

Proposition 6. We have, for j =1,..., N

3 3 7

1d N ~
Yy de 4 By — By oy 6 =0,
2t Ji,
where
. Wjt1/2
Fiji19 = UWjg172 h(un)jq1/2 — / f(s)ds,
and
- +
Ujt1/2 Ui _1/2
0= [ )~ btunp)ds+ [T (f6) = b))
LOTRPA Uj—1/2

Since the quantity ©); is nonnegative (because the numerical flux in non-
decreasing in its first argument and nonincreasing in its second argument),
we immediately obtain the following discrete, local entropy inequality:

1d

2dt J,, up (2, ) d + Fipypn — Fj_1 5 <0.

As a consequence, we have the following result.

Theorem 7. Let f be a strictly convexr or concave function. Then, for any
k > 0, if the numerical solution given by the DG method converges, it con-
verges to the entropy solution.

There is no other formally high-order accurate numerical scheme that has
the above property. See Jiang and Shu [51] for further developments of the
above result.

2.3 The TVD-Runge-Kutta time discretization

To discretize our ODE system in time, we use the TVD Runge Kutta time
discretization introduced in [83]; see also [80] and [81].



The discretization Thus, if {t"}_, is a partition of [0,7] and At" =
tntl —t" n=0,...,N — 1, our time-marching algorithm reads as follows:

— Set uf = ugp;
— Forn =0,..., N — 1 compute uZ“ from wuj as follows:
(0)

1. set uy,’ = uy;
2. fori =1,...,k + 1 compute the intermediate functions:

i—1
up) = {Z aaul) + ﬂuAt”Lh(uﬁf)>} s

=0

n+1 _  (k+1)
3. set uy " =u, .

Note that this method is very easy to code since only a single subroutine
defining Ly (up,) is needed. Some Runge-Kutta time discretization parameters
are displayed on the table below.

Table 1
Runge-Kutta discretization parameters
order Q1 ﬂil max{,@il/ail }
2 1 1 1
11 1
33 03
1 1
3 31 01 1
102 2
303 003

The stability property Note that all the values of the parameters «y
displayed in the table below are nonnegative; this is not an accident. Indeed,
this is a condition on the parameters a;; that ensures the stability property

Jup T < g
provided that the ‘local’ stability property
|w| < v, (2.15)
where w is obtained from v by the following ‘Euler forward’ step,

w=1v+0 Ly(v), (2.16)



holds for values of | § | smaller than a given number dy.
For example, the second-order Runke-Kutta method displayed in the table
above can be rewritten as follows:

ult = up + At Ly(ud),
wp, = ug) + At Lh(ugll)),

1
uptt = 5(112 + wp).

Now, assuming that the stability property (2.15), (2.16) is satisfied for
50 = ‘ At max{ﬂil/ail} | = At,

we have
1 1
lulV | < g ], Jwn] <l

)
and so,

1
lup ™ < g |+ Jwn ) < Jug |

Note that we can obtain this result because the coefficients a;; are positive!
Runge-Kutta methods of this type of order up to order 5 can be found in
[81].

The above example shows how to prove the following more general result.

Theorem 8. (Stability of the Runge-Kutta discretization) Assume that the
stability property for the single ‘Euler forward’ step (2.15), (2.16) is satisfied
for

— n . .
do = Oénnzsz | At"™ max{Bi/an}|-

Assume also that all the coefficients a; are nonnegative and satisfy the fol-
lowing condition:

i—1
d =1, i=1,...k+1.
=0

Then
lup | < ul |, Yn>0.

This stability property of the TVD-Runge-Kutta methods is crucial since
it allows us to obtain the stability of the method from the stability of a single
‘Euler forward’ step.

Proof of Theorem 8. We start by rewriting our time discretization as
follows:

— Set u?l = Ugp;
— Forn =0,..., N — 1 compute uZ“ from uy as follows:

1. set uglo) = uy;



2. fori =1,...,k + 1 compute the intermediate functions:

i—1
) ”
ugf) = E i wELZ ),
1=0

where 5
w;:l) = ug) + a—” At Lh(ug));
il
n _(k+1)
3. set uh+1 =uy .

We then have

i—1
|u§f) | < Z Qi \wﬁfl) |, since a; >0,
1=0

i—1
S Zail ‘u;ll) ‘7
1=0

by the stability property (2.15), (2.16), and finally,

() ()
< m
< Oglgz?il‘uh |

)

since
i—1
E ;] = 1.
1=0

It is clear now that that Theorem 8 follows from the above inequality by a
simple induction argument. This concludes the proof.

Remarks about the stability in the linear case For the linear case
f(u) = cu, Chavent and Cockburn [12] proved that for the case k = 1, i.e.,
for piecewise-linear approximate solutions, the single ‘Euler forward’ step is
unconditionally L>(0,T; L?(0,1))-unstable for any fixed ratio At/Az. On
the other hand, in [26] it was shown that if a Runge-Kutta method of second
order is used, the scheme is L>(0, T; L?(0, 1))-stable provided that

At
c—

1
Az — 3

This means that we cannot deduce the stability of the complete Runge-Kutta
method from the stability of the single ‘Euler forward’ step. As a consequence,
we cannot apply Theorem 8 and we must consider the complete method at
once.



When polynomial of degree k are used, a Runge-Kutta of order (k + 1)
must be used. If this is the case, for k = 2, the L°>(0,T’; L?(0, 1))-stability
condition can be proven to be the following:

At
c— <

1
Az — 5

The stability condition for a general value of k is still not known.

At a first glance, this stability condition, also called the Courant-Friedrichs-
Levy (CFL) condition, seems to compare unfavorably with that of the well-
known finite difference schemes. However, we must remember that in the
DG-methods there are (k + 1) degrees of freedom in each element of size Az
whereas for finite difference schemes there is a single degree of freedom of
each cell of size Az. Also, if a finite difference scheme is of order (k + 1) its
so-called stencil must be of at least (2k + 1) points, whereas the DG-scheme
has a stencil of (k + 1) elements only.

Convergence analysis in the nonlinear case Now, we explore what is
the impact of the explicit Runge-Kutta time-discretization on the convergence
properties of the methods under consideration. We start by considering the
piecewise-constant case.

The piecewise-constant case. Let us begin by considering the simplest
case, namely,

Vi=1,...,N:
(u}”’1 — u?)/At + {h(u;ﬂuﬁ_l) — h(u?ﬁl,u?)}/ﬂj =0,

u;(0) = Ai/ o () da,

where we pick the numerical flux h to be the Engquist-Osher flux.

According to the model provided by the continuous case, we must ob-
tain (i) an entropy inequality and (ii) the uniform boundedness of the total
variation of wup,.

To obtain the entropy inequality, we proceed as in the semidiscrete case
and obtain the following result; see [18] for details.

Theorem 9. (Discrete entropy inequality) We have

{U(u?Jrl —c) = U(u] — o)} /At + {F(u},u}, ;¢) — F(u}_,,uf;c)}/A;
+ QrTiliss,j/At = 07



where

and

pi(w) = w - j—f(ﬁ( w) — £~ (w)).

Moreover, if the following CFL condition is satisfied

At
max —|f | <1,
1<j<N A

then ©7 > 0, and the following entropy inequality holds:

diss,j
{U@I* =) = U] — o)} /At + {F(u}, uj1;¢) — Fuj1,u55¢)}/A; 0.

Note that @, ; > 0 because f*, —f, are nondecreasing and because p; is
also nondecreasing under the above CFL condition.
Next, we obtain the uniform boundedness on the total variation. Proceed-

ing as before, we easily obtain the following result.

Theorem 10. (TVD property) We have

|t v o) = lup lrvion) + Oy =0,

where
Ory = Z (UIJ+1/2 Ulj+1/2>(pj+1/2(u?+1)pj+1/2(u?)
1<j<N
At U’”+1 +(,n +/,n
+ Z A_ Ui v = Ulifaye | (F7 () — M (ujy))
1<j<N
A m m+1 _ n o n
= > UG- U ) () - @)
1<j<n T
where

ult ;o —ul
UI _ UI ( i+1 i > ,
/2 Ai+1/2



and

At At
pjy1/2(w) = s — Y [ (w) + 4, f(w).

Moreover, if the following CFL condition is satisfied

At
max —

<1
1§j§NAj|f <1,

then O, > 0, and we have

up lrvion) < U lTvio,)-

With the two above ingredients, the following error estimate, obtained in
1976 by Kuznetsov, can be proved:

Theorem 11. (L!-error estimate for monotone schemes) We have
|| U(T) - uh(T) ||L1(0,1) S || ug — Up (0) ||L1(0,1) + C | Uug ‘TV(OJ) Vv T A’E

The general case. The study of the general case is much more difficult
than the study of the monotone schemes. In these notes, we restrict ourselves
to the study of the stability of the RKDG schemes. Hence, we restrict our-
selves to the task of studying under what conditions the total variation of
the local means is uniformly bounded.

If we denote by %; the mean of uj, on the interval I;, by setting v, = 1
in the equation (2.7), we obtain,

Vji=1,...,N:
@5)e 4 {Bu o Ui o) = U0 12) 145 = 0,

where u;+1/2 denotes the limit from the left and u;'+1/2 the limit from the

right. We pick the numerical flux A to be the Engquist-Osher flux.
This shows that if we set wy, equal to the Euler forward step up+9 Ly, (up),
we obtain

Vji=1,...,N:
(w; —w;)/0+ {h(u;+1/27u;'+1/2) - h(u;l/Q,u;.'Ll/2)}/Aj =0.

Proceeding exactly as in the piecewise-constant case, we obtain the following
result for the total variation of the averages,

Tn lrveny = Y. T — 5
1<j<N



Theorem 12. (The TVDM property) We have

\Wh | rv0,1) — [Tk |7V (0,1) + OTver =0,

where
Oryvm = (Ul(u)j+1/2 - Ul(w)j+1/2> (Pjr1/2(Unlr;n) = Pjg1y2(unlry)
1<j<N
0 _ _
YT (0010 = U W) ) (1) = 5020
1<j<N
0 _ _
- A_j (U’(“)]’+1/2 - U,(w)j1/2> (f (u;_+1/2) - f (“;—71/2)):
1<j<N
where
U'(v). = (M)
( )l+1/2 VAYNRYE
and

5 5 N

pj+1/2(uh|lm) =Up — Aj+1 +(U;~L_|-1/2) + A_J f*(um71/2),

From the above result, we see that the total variation of the means of
the Euler forward step is nonincreasing if the following sign conditions are
satisfied:

sgn(Ujpr — ;) = sgn(pjp1/2(Unlryyn) = jyry2(unlr)),  (2.17)

sgn(Wj —Uj1) = 59”(”?_1_71/2 - U?Lz/z ), (2.18)

Sgn(ﬂj+1 _ﬂj) = Sgn(u;l_]j/g _u;lji/g) (219)

Note that if the sign conditions (2.17) and (2.18) are satisfied, then the sign
condition (2.19) can always be satisfied for a small enough values of |4 ].

Of course, the numerical method under consideration does not provide

an approximate solution automatically satisfying the above conditions. It is

thus necessary to emforce them by means of a suitably defined generalized
slope limiter, AIT},.

2.4 The generalized slope limiter

High-order accuracy versus the TVDM property: Heuristics The
ideal generalized slope limiter AIT,

— Maintains the conservation of mass element by element,



— Satisfies the sign properties (2.17), (2.18), and (2.19),

3

— Does not degrade the accuracy of the method.

The first requirement simply states that the slope limiting must not
change the total mass contained in each interval, that is, if up = AIT, (vy),

ﬁj:’l}j, ]ZI,IN

This is, of course a very sensible requirement because after all we are dealing
with conservation laws. It is also a requirement very easy to satisfy.

The second requirement, states that if u, = Al (vy) and wy = up +
oLy (uh) then

Wh | rvi0,1) < Tk Tv(0,1)s

for small enough values of | §].

The third requirement deserves a more delicate discussion. Note that if
up, is a very good approximation of a smooth solution u in a neighborhood
of the point x, it behaves (asymptotically as Az goes to zero) as a straight
line if w,(zg) # 0. If z( is an isolated extrema of w, then it behaves like
a parabola provided wu,,(xg) # 0. Now, if uy is a straight line, it trivially
satisfies conditions (2.17) and (2.18). However, if uy, is a parabola, conditions
(2.17) and (2.18) are not always satisfied. This shows that it is impossible to
construct the above ideal generalized ‘slope limiter,” or, in other words, that
in order to enforce the TVDM property, we must loose high-order accuracy
at the local extrema. This is a very well-known phenomenon for TVD finite
difference schemes!

Fortunately, it is still possible to construct generalized slope limiters that
do preserve high-order accuracy even at local extrema. The resulting scheme
will then not be TVDM but total variation bounded in the means (TVBM)
as we will show.

In what follows we first consider generalized slope limiters that render the
RKDG schemes TVDM. Then we suitably modify them in order to obtain
TVBM schemes.

Constructing TVDM generalized slope limiters Next, we look for sim-
ple, sufficient conditions on the function wu, that imply the sign properties
(2.17), (2.18), and (2.19). These conditions will be stated in terms of the

minmod function m defined as follows:

( ) s minj<,<, |a,| if s =sign(a1) =--- = sign(a,),
m(ay,...,a,) = - .
' Y 0 otherwise.



Proposition 13. Sufficient conditions for the sign properties Suppose the
the following CFL condition is satisfied:

Forallj=1,...,N:

+. . — 1,
5] (fop y ey < (2:20)
7 J

Then, conditions (2.17), (2.18), and (2.19) are satisfied if, for allj =1,...,N,

we have that
u;+1/2 =u;+ m(u;+1/2 — Ty, Wy — Wy, Wiy — 1) (2:21)
+ _= - + = e -
Wiy = g m (U gy gy, Wy Wy Wi — ).

Proof. Let us start by showing that the property (2.18) is satisfied. We
have:

Ujprje = Yoz = Wipnyp =) + (@ =) + (@i —uj )
=0 (u; —uj—1),
where
Y LoV Sl =V Bk i [0,2],
Uj — Uj—1 Uj — Uj—1 Y

by conditions (2.21) and (2.22). This implies that the property (2.18) is satis-
fied. Properties (2.19) and (2.17) are proven in a similar way. This completes
the proof.

Examples of TVDM generalized slope limiters
a. The MUSCL limiter. In the case of piecewise linear approximate
solutions, that is,

oplr; =05 + (& — 5) v, j=1,...,N,

the following generalized slope limiter does satisfy the conditions (2.21) and
(2.22):
Vjy1 —UV; U5 — ’Ujfl)

4; T4
This is the well-known slope limiter of the MUSCL schemes of van Leer
[88,89].

b. The less restrictive limiter AII}. The following less restrictive slope
limiter also satisfies the conditions (2.21) and (2.22):

uply; =05 + (. — ;) m (vg,j,

Vj+1 —V; Uy ’Ujfl)

Ajj2 7 A2

uply; =05 + (. — ;) m (vg,j,



Moreover, it can be rewritten as follows:

<

Ujiy) it m(v;+1/2 —0j, Uj —Vj-1, Vj41 — Uj) (2.22)

<

U;;l/Q =v; —m (Ej - ’U;;l/Q, Ej - 53',1, 5]'4_1 - 53').
We denote this limiter by AII}.
Note that we have that

Ax
| T — AIT} (vp) |11 (0,1) < 5 | Th [ 7v (0,1

See Theorem 16 below.
c. The limiter AH,’:. In the case in which the approximate solution is
piecewise a polynomial of degree k, that is, when

k
vp(z,t) = Z vf (),
=0

where
we(z) = Pr(2(z — x5)/A;),

and Py are the Legendre polynomials, we can define a generalized slope limiter
in a very simple way. To do that, we need the define what could be called
the P'-part of vy:

1

op (2,) = Z Uf wi(z),

£=0
We define up = AIlL(vp) as follows:

— For j =1,..., N compute u|z; as follows:
by using (2.22) and (2.23),

- and ul

1. Compute u i—1/2

- — + — o
2. If Ujiy/o = Vit and U s =V

3. If not, take uyls, equal to AIT} (vy).

j+1/2
set up|r, = vali;,

d. The limiter AH,’L“’Q. When instead of (2.22) and (2.23), we use

11;+1/2 = Ej + m(’l};+1/2 — Ej, 5]‘ — 53',1, 5]'4_1 — 53', C (A’E)a) (223)
u;'tl/Z =7, —m(7; — 'U;—71/2= Uj = Uj-1, Uj+1 — 0;, C (Az)?),

for some fixed constant C and « € (0, 1), we obtain a generalized slope limiter
we denote by AITf .

This generalized slope limiter is never used in practice, but we consider
it here because it is used for theoretical purposes; see Theorem 16 below.



Fig. 2.1. Example of slope limiters: The MUSCL limiter (top) and the less restric-
tive AIT} limiter (bottom). Displayed are the local means of u, (thick line), the
linear function wuy in the element of the middle before limiting (dotted line) and
the resulting function after limiting (solid line).



The complete RKDG method Now that we have our generalized slope
limiters, we can display the complete RKDG method. It is contained in the
following algorithm:

— Set uy) = All, Py, (uo);

— Forn =0,..., N — 1 compute u
1. set uglo) = uy;
2. fori =1,...,k + 1 compute the intermediate functions:

Z“ as follows:

i1
u;li) = A, {Za“ u;ll) + ﬂilAt”Lh(uEll))} :

1=0

n+l _  (k+1)
3. set uy " =u, .

This algorithm describes the complete RKDG method. Note how the gener-
alized slope limiter has to be applied at each intermediate computation of the
Runge-Kutta method. This way of applying the generalized slope limiter in
the time-marching algorithm ensures that the scheme is TVDM, as we next
show.

The TVDM property of the RKDG method To do that, we start by
noting that if we set
’U,h:/lﬂh(vh), wh:uh-l-(sLh(uh),

then we have that

|Tn l7v0,1) < 1 0h |Tvi00)s (2.24)
| Wh | 7v0,1) < Uk |7v(0,1), V6] < do, (2.25)
where
+ |, . |,
(Salzmax(Q‘f |sz+|f |sz) =1,...,N,

j Aj Aj

by Proposition 13. By using the above two properties of the generalized slope
limiter,’ it is possible to show that the RKDG method is TVDM.

Theorem 14. (Stability induced by the generalized slope limiter) Assume
that the generalized slope limiter AII}, satisfies the properties (2.24) and
(2.25). Assume also that all the coefficients a; are nonnegative and satisfy
the following condition:

i—1
ap=1, i=1,..k+1
=0

Then
g vy < o lrvio), Vn >0.



Proof. The proof of this result is very similar to that of Theorem 8. Thus,
we start by rewriting our time discretization as follows:

— Set, u?l = Uqgp;
— Forn =0,..., N — 1 compute uZ“ from u} as follows:

1. set uglo) = uy;

2. fori =1,...,k + 1 compute the intermediate functions:

i1
uﬁf) = AIT, { Qi w,(l”)} ,

1=0
where
) =l + 2 a1 ),
(&%)
3. set uZ+1 = UEL’“U_
Then have,
, i1 '
|E§LZ) |TV(0,1) <| Zail WE:U |Tv(o,1), by (2.24),
1=0
i1 '
<> i 1w I7v(0,1), since ay >0,
1=0
i1
_qa
< Zail “51) lTv(0,1), by (2.25),
1=0
< | Inax |H§Ll) l7v (0,1

0<i<i—1

since
i—1
Z Qg = 1.
1=0

It is clear now that that the inequality

1T} |7v 0.0y <18 lTvi04), Vn>0.

follows from the above inequality by a simple induction argument. To obtain
the result of the theorem, it is enough to note that we have

[ v 0,) < luo lrvion),

by the definition of the initial condition wj. This completes the proof.



TVBM generalized slope limiters As was pointed out before, it is possi-
ble to modify the generalized slope limiters displayed in the examples above in
such a way that the degradation of the accuracy at local extrema is avoided.
To achieve this, we follow Shu [82] and modify the definition of the general-
ized slope limiters by simply replacing the minmod function m by the TVB
corrected minmod function m defined as follows:

i {a1 if a1 < M(Ax)?,

2.26
m(a,...,a,) otherwise, ( )

where M is a given constant. We call the generalized slope limiters thus
constructed, TVBM slope limiters.

The constant M is, of course, an upper bound of the absolute value of
the second-order derivative of the solution at local extrema. In the case of
the nonlinear conservation laws under consideration, it is easy to see that, if
the initial data is piecewise C?, we can take

M = sup{ | (Uo)rr(y) ‘;y . (UO)z(y) = 0}

See [24] for other choices of M.

Thus, if the constant M is is taken as above, there is no degeneracy of
accuracy at the extrema and the resulting RKDG scheme retains its optimal
accuracy. Moreover, we have the following stability result.

Theorem 15. (The TVBM property) Assume that the generalized slope lim-
iter AIly, is a TVBM slope limiter. Assume also that all the coefficients oy
are nonnegative and satisfy the following condition:

i—1
ap=1, i=1,..k+1
=0

Then
|, |Tv0,1) < |To |Tv0a) + C M, Vn >0,

where C depends on k only.

Convergence in the nonlinear case By using the stability above sta-
bility results, we can use the Ascoli-Arzelda theorem to prove the following
convergence result.

Theorem 16. (Convergence to the entropy solution) Assume that the gen-
eralized slope limiter ALl is a TVDM or a TVBM slope limiter. Assume also
that all the coefficients a;; are nonnegative and satisfy the following condition:

i—1
ap=1, i=1,..k+1
=0



Then there is a subsequence { Ty }pr>o of the sequence {up}p>o generate by
the RKDG scheme that converges in L>(0,T; L'(0,1)) to a weak solution of
the problem (2.1), (2.2).
Moreover, if the TVBM version of the slope limiter AH,’;Q is used, the
weak solution is the entropy solution and the whole sequence converges.
Finally, if the generalized slope limiter ALl is such that

|0n — Allp(ve) L1 (0,1) < C Az |Th [7v (0,1,

then the above results hold not only to the sequence of the means {Up}n>o
but to the sequence of the functions { up}ns>o-

Error estimates for an implicit version of the discontinuous Galerkin method
(with the so-called shock-capturing terms) have been obtained by Cockburn
and Gremaud [19].

2.5 Computational results

In this section, we display the performance of the RKDG schemes in two sim-
ple but typical test problems. We use piecewise linear (k = 1) and piecewise
quadratic (k = 2) elements; the AII} generalized slope limiter is used.

The first test problem. We consider the simple transport equation with
periodic boundary conditions:

uy + u, =0,

(2,0) 1 A<z <6,
u(z,0) =
) 0 otherwise.

We use this test problem to show that the use of high-order polynomial
approximation does improve the approximation of the discontinuities (or, in
this case, ‘contacts’). To amplify the effect of the dissipation of the method, we
take T' = 100, that is, we let the solution travel 100 times across the domain.
We run the scheme with CFL = 0.9%x1 =0.9for k =0, CFL = 0.9x1/3=0.3
fork=1,and CFL = 0.9x1/5 = 0.18 for k = 2. In Figure 2.2, we can see that
the dissipation effect decreases as the degree of the polynomial &k increases; we
also see that the dissipation effect for a given k decreases as the Az decreases,
as expected. Other experiments in this direction have been performed by
Atkins and Shu [1]. For example, they show that when polynomials of degree
k = 11 are used, there is no detectable decay of the approximate solution.

To assess if the use of high degree polynomials is advantageous, we must
compare the efficiencies of the schemes; we only compare the efficiencies of
the method for £ = 1 and k£ = 2. We define the inverse of the efficiency of
the method as the product of the error times the number of operations. Since
the RKDG method that uses quadratic elements has 0.3/0.2 times more time
steps, 3/2 times more inner iterations per time step, and 3 x 3/2 x 2 times
more operations per element, its number of operations is 81/16 times bigger



than the one of the RKDG method using linear elements. Hence, the ratio of
the efficiency of the RKDG method with quadratic elements to that of the
RKDG method with linear elements is

16 error(RKDG(k = 1)

ratio = — .
¢ff.ratio 81 error(RKDG(k = 2)

In Table 2, we see that the use of a higher degree does result in a more
efficient resolution of the contact discontinuities. This fact remains true for
systems as we can see from the numerical experiments for the double Mach
reflection problem in the next chapter.

The second test problem. We consider the standard Burgers equation
with periodic boundary conditions:

2
u
up + (? )a =0,

u(z,0) = ug(z) = % + % sin(m(2z — 1)).

Our purpose is to show that (i) when the constant M is properly chosen,
the RKDG method using polynomials of degree k is is order £+ 1 in the uni-
form norm away from the discontinuities, that (ii) it is computationally more
efficient to use high-degree polynomial approximations, and that (iii) shocks
are captured in a few elements without production of spurious oscillations

The exact solution is smooth at 7' = .05 and has a well developed shock
at T = 0.4; notice that there is a sonic point. In Tables 3,4, and 5, the his-
tory of convergence of the RKDG method using piecewise linear elements is
displayed and in Tables 6,7, and 8, the history of convergence of the RKDG
method using piecewise quadratic elements. It can be seen that when the
TVDM generalized slope limiter is used, i.e., when we take M = 0, there is
degradation of the accuracy of the scheme, whereas when the TVBM gen-
eralized slope limiter is used with a properly chosen constant M, i.e., when
M = 20 > 272, the scheme is uniformly high order in regions of smoothness
that include critical and sonic points.

Next, we compare the efficiency of the RKDG schemes for £k = 1 and £ = 2
for the case M = 20 and 7' = 0.05. The results are displayed in Table 9. We
can see that the efficiency of the RKDG scheme with quadratic polynomials is
several times that of the RKDG scheme with linear polynomials even for very
small values of Az. We can also see that the efficiency ratio is proportional
to (Az)~!, which is expected for smooth solutions. This indicates that it
is indeed more efficient to work with RKDG methods using polynomials of
higher degree.

That this is also true when the solution displays shocks can be seen in
Figures 2.3, 2.4, and 2.5. In the Figure 2.3, it can be seen that the shock
is captured in essentially two elements. Details of these figures are shown in
Figures 2.4 and 2.5, where the approximations right in front of the shock are
shown. It is clear that the approximation using quadratic elements is superior



to the approximation using linear elements. Finally, we illustrate in Figure
2.6 how the schemes follow a shock when it goes through a single element.

2.6 Concluding remarks

In this section, which is the core of these notes, we have devised the general
RKDG method for nonlinear scalar conservation laws with periodic boundary
conditions.

We have seen that the RKDG are constructed in three steps. First, the
Discontinuous Galerkin method is used to discretize in space the conserva-
tion law. Then, an explicit TVB-Runge-Kutta time discretization is used to
discretize the resulting ODE system. Finally, a generalized slope limiter is
introduced that enforces nonlinear stability without degrading the accuracy
of the scheme.

We have seen that the numerical results show that the RKDG methods
using polynomials of degree k, k = 1,2 are uniformly (k+1)-th order accurate
away from discontinuities and that the use of high degree polynomials render
the RKDG method more efficient, even close to discontinuities.

All these results can be extended to the initial boundary value problem in
a very simple way, see [24]. In what follows, we extend the RKDG methods
to multidimensional systems.

Table 2
Comparison of the efficiencies of RKDG schemes for £k = 1 and k£ = 2
Transport equation with M = 0,and T = 100.

L!'-norm
Azx ef f.ratio order
1/10 0.88 -
1/20 0.93 -0.08
1/40 1.81 -0.96
1/80 2.57 -0.50
1/160 3.24 -0.33




Table 3
P'. M =0, CFL=0.3, T =0.05.

L'(0,1) — error L>(0,1) — error

Az 10° - error order 10° - error order
1/10 1286.23 - 3491.79 -
1/20 334.93 1.85 1129.21 1.63
1/40 85.32 1.97 449.29 1.33
1/80 21.64 1.98 137.30 1.71
1/160 5.49 1.98 45.10 1.61
1/320 1.37 2.00 14.79 1.61
1/640 0.34 2.01 4.85 1.60
1/1280 0.08 2.02 1.60 1.61

Table 4
P!, M =20, CFL=0.3, T =0.05.
L'(0,1) — error L*>(0,1) — error

Az 10° - error order 10° - error order
1/10 1073.58 - 2406.38 -
1/20 277.38 1.95 628.12 1.94
1/40 71.92 1.95 161.65 1.96
1/80 18.77 1.94 42.30 1.93
1/160 4.79 1.97 10.71 1.98
1/320 1.21 1.99 2.82 1.93
1/640 0.30 2.00 0.78 1.86
1/1280 0.08 2.00 0.21 1.90
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Fig. 2.2. Comparison of the exact and the approximate solutions for the linear case
f(u) = u. Top: Az = 1/40, middle: Az = 1/80, bottom: Az = 1/160. Exact so-
lution (solid line), piecewise-constant elements (dash/dotted line), piecewise-linear
elements (dotted line) and piecewise-quadratic elements (dashed line).



Table 5

Errors in smooth region 2 = {z : |z — shock| > 0.1}.
P', M =20, CFL=0.3, T = 0.4.

L'(02) —error L*>(02) — error
Az 105 - error order 10° - error order
1/10 1477.16 - 17027.32 -
1/20 155.67 3.25 1088.55 3.97
1/40 38.35 2.02 247.35 2.14
1/80 9.70 1.98 65.30 1.92
1/160 2.44 1.99 17.35 1.91
1/320 0.61 1.99 4.48 1.95
1/640 0.15 2.00 1.14 1.98
1/1280 0.04 2.00 0.29 1.99
Table 6
P2, M =0, CFL=02, T =0.05.
LY(0,1) — error L>(0,1) — error
Az 105 - error order 105 - error order
1/10 2066.13 - 16910.05 -
1/20 251.79 3.03 3014.64 2.49
1/40 42.52 2.57 1032.53 1.55
1/80 7.56 2.49 336.62 1.61




P2,

Table 7

M =20, CFL=0.2,

T =0.05.

L'(0,1) — error

L>(0,1) — error

Az 105 - error order 105 - error order

1/10 37.31 - 101.44 -

1/20 4.58 3.02 13.50 291

1/40 0.55 3.05 1.52 3.15

1/80 0.07 3.08 0.19 3.01
Table 8

Errors in smooth region 2 = {z : |z — shock| > 0.1}.
P?, M =20, CFL=0.2, T = 0.4.

L'(92) — error

L>(02) — error

Az 105 - error order 105 - error order
1/10 786.36 - 16413.79 -

1/20 5.52 7.16 86.01 7.58
1/40 0.36 3.94 15.49 2.47
1/80 0.06 2.48 0.54 4.84




Table 9
Comparison of the efficiencies of RKDG schemes for £ =1 and k& = 2
Burgers equation with M = 20,and T = 0.05.

L'-norm L*-norm
Azx ef f.ratio order ef f.ratio order
1/10 5.68 - 4.69 -
1/20 11.96 -1.07 31.02 -2.73
1/40 25.83 -1.11 70.90 -1.19
1/80 52.97 -1.04 148.42 -1.07

2.7 Appendix: Proof of the L2-error estimates

Proof of the L2-stability In this section, we prove the the stability result
of Proposition 1. To do that, we first show how to obtain the corresponding
stability result for the exact solution and then mimic the argument to obtain
Proposition 1.

The continuous case as a model. We start by rewriting the equations
(2.4) in compact form. If in the equations (2.4) we replace v(z) by v(z,t),
sum on j from 1 to N, and integrate in time from 0 to 7', we obtain

YV v : w(t)is smooth Ve (0,T):
B(u,v) =0, (2.27)

where
T 1
B(u,v) = / / {ow(z,t)v(z,t) — cu(z,t) Oy v(w,t) } do dt.
Jo Jo
Taking v = u, we easily see that we see that
1 2 1 2
B(u,u) = §||U(T) ||LQ(07]) - §||U0 ||L2(071)7

and since

B(u,u) =0,



by (2.27), we immediately obtain the following L2-stability result:

1 1
§||U(T) ||%2(071) = 5” Uo ||i2(071)'

This is the argument we have to mimic in order to prove Proposition 1.

The discrete case. Thus, we start by finding the discrete version of the
form B(:,-). If we replace v(z) by v (z,t) in the equation (2.7), sum on j
from 1 to N, and integrate in time from 0 to T', we obtain

Youp: vp(t) €eVE Ve (0,T):

B (un,vp) =0, (2.28)
where
T M
B (up,vp) = / / Orup(x,t) vp(x,t) dx dt (2.29)
Jo Jo
T
—/ Z / cup(z,t) Op vp(z,t) dx di
0 1<i<n L
T
- Z h(un)ji1/2(t) [Vn(t) ]jt1/2 di.
0 1<<N

Following the model provided by the continuous case, we next obtain an
expression for By (wp,wy). It is contained in the following result which will
proved later.

Lemma 17. We have
1 1
By (wn,wn) = 5l wn(T) 172(0.1) + Or(wn) — 5 lwn(0) 172(0,1)>
where

c T P
Or(wp ) = % Jo Xicjen [wn(t) ]j+1/2 dt.
Taking wp, = uy, in the above result and noting that by (2.28),
B (up,upn) =0,
we get the equality
sl un(T) 117 +0r(un) = 5l un(0) II7
211 %h L2(0,1) T\%h 211 %h L2(0,1)°
from which Proposition 1 easily follows, since
1 . 1 .
§|| un(T) 72001y < §||U0 1Z2(0,1)

by (2.8). It only remains to prove Lemma 17.



Proof of Lemma 17. After setting u, = v, = wy in the definition of
By, (2.29), we get

1 r 1
By (wn, wn) = 5llwa(T) 17200,1) +/0 Ouiss (t) dt — 51| wn(0) 1720,1):
where

Ouiss(t) = — Z { h(wn)jq12(t) [wa(t) Ljz1/2 + /1 cwp(x,t) Op wp(z,t) dx }

1<j<N i
We only have to show that fOT Ouiss(t) dt = Or(wy). To do that, we proceed
as follows. Dropping the dependence on the variable ¢ and setting

1

Wn(@j1/2) = S(wa(w 5y ) +wn(E] ),

we have, by the definition of the flux h, (2.11),

_ Z -/1]- h(wn)j1/2 [wh]jp172 = — Z {th[wh]*gﬂ[whﬁ}jﬂp,

1<j<N 1<G<N
and
¢ ‘
- Z /cwh(m)azwh(m)dm:§ Z [w,zl]jH/Q
1<i<n 7 1<j<N
=c Z {wn [wn ]}jt1/2
1<j<N
Hence
O - M 2
diss(t) = B [Uh(t)]j+1/27
1<G<N

and the result follows. This completes the proof of Lemma 17.
This completes the proof of Proposition 1.

Proof of Theorem 2 In this section, we prove the error estimate of The-
orem 2 which holds for the linear case f(u) = cu. To do that, we first show
how to estimate the error between the solutions w, = (u,,q,)!, v = 1,2, of

Oruy + 0y f(u,) =0 in (0,7T) x (0, 1),
uy(t=0) =ug,, on(0,1).

Then, we mimic the argument in order to prove Theorem 2.



The continuous case as a model. By the definition of the form B(,-),
(2.7), we have, for v = 1,2,

B(w,,v) =0, Y v: o(t)is smooth Vite (0,7T).

Since the form B(-,-) is bilinear, from the above equation we obtain the
so-called error equation:

YV v: o(t) is smooth Vit¢e (0,T):
B(e,v) =0, (2.30)

where e = w; — ws. Now, since

1 . 1 .
Ble,e) = 5” e(T) ||2L2(0,1) - 5” e(0) ||i2(0,1)7
and
B(e,e) =0,

by the error equation (2.30), we immediately obtain the error estimate we
sought:

1 2 1 2

5” e(T) ||L2(071) = 5” U1 — Uo,2 ||L2(071)'

To prove Theorem 2, we only need to obtain a discrete version of this argu-
ment.
The discrete case. Since,

Bh(uh,vh) =0, Y oy ’U(t) eV, Vte (O,T),
Bh(u,vh):07 Y vy : ’Uh(t) eV, Vte (O,T),
by (2.7) and by equations (2.4), respectively, we easily obtain our error equa-
tion:
Y vy : ’Uh(t) eV, Vte (O,T) :
Bh(e,vh) = 0, (231)
where e = w — wy,.

Now, according to the continuous case argument, we should consider next
the quantity By (e, e); however, since e(t) is not in the finite element space
Vh, it is more convenient to consider By, (Pp(e), Pr(e)), where Py (e(t)) is the
L2-projection of the error e(t) into the finite element space V.

The L2-projection of the function p € 1.2(0,1) into V}, Py(p), is defined
as the only element of the finite element space V} such that

Vv, € V!

/0 (Pu(p)(@) = p(@)) va(z) dz = 0. (2.32)



Note that in fact up(t = 0) = Pr(ug), by (2.8).
Thus, by Lemma 17, we have

By(Pu(e), Pr(e)) = %H Py(e(D)) [72(0,1) + O (Pule)) — %H Pr(e(0) [122(0,1)5
and since
Py(e(0)) = Pu(uo — un(0)) = Pa(uo) — un(0) =0,
and
Bu(Pu(e), Pu(e)) = Bn(Pr(e) — e, Pu(e)) = Bn(Pn(u) — u, Pu(e)),

by the error equation (2.31), we get

1
S Pa(e(M) |[20,1) + O1(Pale)) = Ba(Pu(u) = u, Pa(e)). (2.33)
It only remains to estimate the right-hand side
B(Ph(u) = u, Pp(e)),

which, according to our continuous model, should be small.

Estimating the right-hand side. To show that this is so, we must
suitably treat the term B(Pp(w) — w, Pr(e)). We start with the following
remarkable result.

Lemma 18. We have
T

B (Pp(u) —u, Pp(e)) = — / Z h(Ph(u) = u)jr12(t) [ Pr(e)(t) ]j41/2 dt.
70 1<i<N

Proof Setting p = Py(u) —u and vy = Py(e) and recalling the definition
of By(+,"), (2.29), we have

T /1
Bh(p,vn) = / / Op(z,t) vp (x,t) do dt
o Jo

T
— Z / cep(z,t) Op vp(z,t) de di
O agjen /i
T
D2 b () [on(t) Lz dt
701N
T
=- > b)) [on(t)]j41/2 dt,
701N

by the definition of the L2-projection (2.32). This completes the proof.

Now, we can see that a simple application of Young’s inequality and a
standard approximation result should give us the estimate we were looking
for. The approximation result we need is the following.



Lemma 19. Ifw € H*"Y(I; U 1;41), then

C
| A(Pa(w) = w)(zj172) | < e (32072 L s ),

where the constant ¢, depends solely on k.

Proof. Dropping the argument x;,,/, we have, by the definition (2.11)
of the flux h,

| h(P(w) —w)| = | g(Ph(w)+ + Pp(w)”) — %‘ Py(w)t = Py(w)™) — cw|

| 372 L Pu(w)™ —w) + C+2 L (Pu(w)” —w)|

< |e| max{ | Py(w)* —w|,| Py(w)” —w]|}

and the result follows from the properties of P, after a simple application of
the Bramble-Hilbert lemma; see [16]. This completes the proof.
An immediate consequence of this result is the estimate we wanted.

Lemma 20. We have
Bu(Pa(w) . Pa(e)) < & (A LT g s o)+ 2 0r(Rae),

where the constant ci, depends solely on k.

Proof. After using Young’s inequality in the right-hand side of Lemma
18, we get

Bn(Pr(u) —u, Pp(e)) < /0 Tel \h(Ph( ) = w)j1y2(t) |

1<]<N
/ Ll By e) 1)1,
0 1<j<nN
By Lemma 19 and the definition of the form @1, we get
c 1
Bu(Pau) 0, (@) < & (a1 LTS a4 Lene)
0 1<j<nN

< ¢ (Ary ‘2' T g o 0,115 O (Fu(€)).

This completes the proof.
Conclusion. Finally, inserting in the equation (2.33) the estimate of its
right hand side obtained in Lemma 20, we get

I Pa(e(T)) 7201y + Or(Pale)) < e (A2)* [ e| T |uo Fusr o1y



Theorem 2 now follows from the above estimate and from the following in-
equality:

1e(T) lz20.1) < 1wlT) = Pr(u(T)) [[L2(0.1) + [ Pr(e(T)) [ L2(0.1)

<
< ¢ (D) Jug | s 0.1y + || Pr(e(T)) [ L2(0.1)-

Proof of Theorem 3 To prove Theorem 3, we only have to suitably mod-
ify the proof of Theorem 2. The modification consists in replacing the L2-
projection of the error, Py(e), by another projection that we denote by Ry, (e).
Given a function p € L*°(0,1) that is continuous on each element I;, we
define Ry (p) as the only element of the finite element space V}, such that

Vi=1,...,N:
Rh(p)(wjl) _p(wj,f) = 0: (= 0: E '7k: (234)

where the points z; ¢ are the Gauss-Radau quadrature points of the interval
I;. We take

Tias  ife>0,
ik = {T]“/Z ne (2.35)

The special nature of the Gauss-Radau quadrature points is captured in the
following property:

Vpe PYI;), ¢<k, VpeP* Y1)
/ (Bu(p)(@) — p(a)) () di = 0. (2.36)

I;

Compare this equality with (2.32).
The quantity Bp(Rn(e), Ru(e)). To prove our error estimate, we start
by considering the quantity By (Rp(e), Rr(e)). By Lemma 17, we have

Ba(RA(e). Ru(€)) = 3| Ra(e(T)) 20,1y + O (Ba(e)) = 3| Ra(e(0)) 30,1

and since
Bu(Rn(e), Bn(e)) = Bn(Rn(e) —e, Ru(e)) = Bn(Rn(u) —u, Ry(e)),

by the error equation (2.31), we get

SN BT 0.1y + Or(Ba(e)) = 1l Bale(O) (0.1 + Bu(Ra(w) = u, Ra(e).
Next, we estimate the term B(Rp(u) — u, Rp(e)).

Estimating B(Rp(u) — u, Rp(e)). The following result corresponds to
Lemma 18.



Lemma 21. We have
T

B (Rp(u) —u,vp) = / / (Rp(Oru)(z,t) — Opu(x,t)) vp(x, t) dr dt
0 Jo

T
—/0 > /c(Rh(u)(Lt)—u(:v,t))azvh(a:,t)d:ndt.

1<j<N 7L

Proof Setting p = Rp(u) —u and v, = Rp(e) and recalling the definition
of By(+,"), (2.29), we have

T r1
Ba(p.vn) = / / D, £) vn () e dt
0 0

T
*/ Z / ep(x,t) Oy vp (o, t) da dt
70 <N
T
- Z h(p)js1/2(t) [0n(t) i1/ dt.
70 1<i<N

But, from the definition (2.11) of the flux h, we have

_ el
2
c—|c] c+|c

= (Rh(u)+7u)+T(Rh(U)7*“)

h(R(u) - u) = g(Rh(U)+ + Ru(u)”) (Rp(u)* = Ra(u)™) — cu

=0,

by (2.35) and the result follows.
Next, we need some approximation results.

Lemma 22. If w € H*"*(1;), and vy, € P*(1;), then

‘ /zj (Ba(w) — w)(z) vn(x) dz

< ek (Az)* T w e (1) Nlon L2y

and

< ek (A)" T w |z ry) lon L2,

‘ /zj (Bn(w) — w)(z) Oy vn(z) dx

where the constant ¢, depends solely on k.

Proof. The first inequality follows from the property (2.36) with £ = k
and from standard approximation results. The second follows in a similar way
from the property (2.36) with £ = k£ — 1 and a standard scaling argument.
This completes the proof.

An immediate consequence of this result is the estimate we wanted.



Lemma 23. We have
T
Bh(Rh(u) —u, Rh(e)) < cg (Am)k-H ‘ Ug ‘ch+2(071) / || Rh(e(t)) ||L2(0,1) dt,
J0

where the constant ¢y, depends solely on k and | c]|.

Conclusion. Finally, inserting in the equation (2.33) the estimate of its
right hand side obtained in Lemma 23, we get

I B (e(T) 20,1yt Or(Ba(e)) < || Ba(e(0)) 17201

T
+ou (A0 o nssoony [ Rulel) o .
0
After applying a simple variation of the Gronwall lemma, we obtain

I Bu(e(T)) 2201y < 1 BA(e(0))(@) [|22(0,1) + cx (Az) T [ug | rasz(o,1)

< A (Ax) ! g | prsao,1)-

Theorem 3 now follows from the above estimate and from the following in-
equality:

le(T) [I201) < [[w(T) — Bu(u(T)) | 22(0,1) + || Br(e(T)) 1201
< (AD) " Jug [ gasa(o.1) + || Bu(e(T)) [ L2(0.1)-



0.751

0.54

0.25+

-0.251

0.75-'/\

0.51

0.25+

-0.25¢

(e
o
N
[&)]
o
)]
o
T
[é)]
—ad

Fig. 2.3. Comparison of the exact and the approximate solutions obtained with
M =20, Az =1/40 at T = 1/x (top) and at T = 0.40 (bottom): Exact solution
(solid line), piecewise linear solution (dotted line), and piecewise quadratic solution
(dashed line).
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solution (solid line), piecewise linear solution (dotted line), and piecewise quadratic
solution (dashed line).
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solution (solid line), piecewise linear solution (dotted line), and piecewise quadratic
solution (dashed line).
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3 The Hamilton-Jacobi equations in one space
dimension

3.1 Introduction

In this chapter, we extend the RKDG method to the following simple problem
for the Hamilton-Jacobi equation

ot + H(pz) =0, in (0,1) x (0,T), (3.1
(p(.’L‘,O) = (po(.’ﬁ), Ve (07 1):

where we take periodic boundary conditions. The material in this section is
based in the work of Hu and Shu [43].
3.2 The RKDG method

The main idea to extend the RKDG method to this case, is to realize that
u = @, satisfies the following problem:

uy + H(u), =0, in (0,1) x (0,7), (3.3)
u(z,0) = (o) (), vV x e (0,1), (3.4)

and that ¢ can be computed from u by solving the following problem:

o1 = —H(u), in (0,1) x (0,7)
o(z,0) = po(z), Ve (0,1).

(3.5)

3

A straightforward application of the RKDG method to the equations (3.3),
(3.4) produces a piecewise polynomial approximation up to u = @,. If the
approximating polynomials are taken to be of degree (k — 1), it is reasonable
to seek an approximation ¢y to ¢ that is piecewise a polynomial of degree k.
To obtain it, we can discretize (3.5), (3.6) in one of the following ways:

(i) Take @p(-,t) in V¥ such that
Vi=1,...,N, w, € P*1;):

/ Oron(x,t) vp(x)de = — / H(up(z,t)) vp(x) de,
I; J1;
/ o(x,0) vp(z) de = / o (z) vp(z) du.

I; I;
(ii) Take ¢y (-,t) in V;¥ such that

Vi=1,...,N: Oypn(x,t) =u(z,t) Vx € 1.



This determines ¢, up to a constant. To find this constant, we impose the
following condition:

Vj=1,...,N
d

& [ en@nar = [ Hunt.v)a
dt 1 1

[ otw0yis = [ ool

J1; I;

(iii) Pick one element, say I;, and determine the values of ¢, on it by
requiring the following conditions:

Oron(z,t) = u(z,t) Vo e 1y,
d

— en(x,t)de = — H(up(z,t)) dz,
dt Iy Iy

/1, o(x,0) de = /I oo(2) .

Then, compute ¢, as follows:

T

on(z,t) = pn(rs,t) + / u(s,t)ds.

Jxg

Note that, unlike the previous approaches, the approximate solution ¢y, is
now continuous.

The advantage of the first two approaches is that they can be carried out
in parallel. On the other hand, in the third approach, only a single ODE has
to be solved; moreover, the integration in space takes place just at the very
end of the whole computation. This approach is much more efficient.

It could be argued that in the third approach, the recovered values of ¢
depend upon the choice of the starting point ;. However, this difference is
on the level of truncation errors and does not affect the order of accuracy.
Hu and Shu [43] used both the second and third approaches; they report
that their numerical experience is that, when there are singularities in the
derivatives, the second approach will often produce dents and bumps when
the integral path in time passes through the singularities. This can be avoided
in the third approach. Indeed, the main idea of using the third approach is to
choose the element I; so that the time integral paths do not cross derivative
singularities. This cannot be always be done with a single element [y, but it
is always possible to switch to another element before the singularity in the
derivative hits the current element I;. If the number of discontinuities in the
derivative is finite, this needs to be done only a finite number of times. This
maintains the efficiency of the method.

Note that all the properties fo the RKDG method obtained in the previous
section apply to the approximate solution uy. In particular, a consequence of



the work of Jiang and Shu [51], is the following result for the approximation
to the derivative y,, up; see also Proposition 6 and Theorem 7.

Theorem 24. For any of the above methods and any polynomial degree k >
0, we have

d ',

— up(z,t)dz <0. (3.7)
Moreover, if the Hamiltonian H is a strictly convex or concave function, for
any k > 0, if the numerical solution given by the DG method converges, it
converges to the viscosity solution.

Note that the above result trivially implies the TVB (total variation
bounded) property for the numerical solution ;. Indeed

b
TV (on(t)) = / un(a,t) | de < VE=a |l b lliegas)-

This is a rather strong stability result, considering that it holds independently
of the degree of the polynomial approximation even when the derivative of
the solution ¢, develops discontinuities and without the application of the
generalized slope limiter!

3.3 Computational results

In this section, we present the numerical experiments of Hu and Shu [43]
showing the performance of the RKDG method. Our main purpose is to asses
the accuracy of the method and see if the generalized slope limiter needs to
be used. We display the results obtained with the third approach to compute

Ph-
The first test problem. One dimensional Burgers’ equation:

o +1)?
ptr + % =0, in (_171) X (07T)7

p(z,0) = — cos(mz), Vze(-1,1),

with periodic boundary conditions.

The local Lax-Friedrichs flux is used. At 7' = 0.5/72, the solution is still
smooth. We list the errors and the numerical orders of accuracy in Table 3.1.
We observe that, except for the P! case which seems to be only first order,
P* for k > 1 seems to provide close to (k+ 1)-th order accuracy. The meshes
used are all uniform, and errors are computed at the middle point of each
interval.

To investigate the accuracy problem further, we use non-uniform meshes
obtained by randomly shifting the cell boundaries in a uniform mesh in the



Table 3.1. Accuracy for 1D Burgers equation (uniform mesh), T = 0.5/7°.

P]

Pz

Pd

P4

L' error

order

L' error

order

L' error

order

L' error

order

10

0.17E4-00

0.14E-02

0.21E-03

0.57E-05

20

0.78E-01

1.12

0.18E-03

2.92

0.13E-04

3.94

0.73E-06

2.97

40

0.35E-01

1.16

0.24E-04

2.97

0.75E-06

4.17

0.32E-07

4.52

80

0.16E-01

1.12

0.28E-05

3.08

0.43E-07

4.12

0.12E-08

4.79

160

0.76E-02

1.02

0.31E-06

3.19

0.25E-08

4.10

0.48E-10

4.59

P]

Pz

Pd

P4

L*° error

order

L°° error

order

L°° error

order

L error

order

10

0.29E4-00

0.24E-02

0.69E-03

0.13E-04

20

0.13E4-00

1.13

0.33E-03

2.88

0.61E-04

3.51

0.16E-05

2.99

40

0.58E-01

1.15

0.37E-04

3.15

0.58E-05

3.39

0.13E-06

3.64

80

0.27E-01

1.11

0.48E-05

2.97

0.38E-06

3.93

0.59E-08

4.44

160

0.13E-01

1.07

0.59E-06

3.00

0.23E-07

4.07

0.25E-09

4.57

Table 3.2. Accuracy for 1D Burgers equation (non-uniform mesh), T = 0.5/72.

Pl

P2

P3

P4

L? error

order

L? error

order

L? error

order

L? error

order

10

0.74E400

0.34E-02

0.32E-03

0.53E-04

20

0.34E4-00

1.11

0.51E-03

2.76

0.24E-04

3.72

0.20E-05

4.71

40

0.15E4-00

1.19

0.65E-04

2.96

0.17E-05

3.82

0.71E-07

4.84

80

0.67E-01

1.17

0.90E-05

2.86

0.13E-06

3.72

0.20E-08

5.15

160

0.31E-01

1.13

0.11E-05

3.02

0.81E-08

4.02

0.74E-10

4.76

Pl

P2

P3

P4

L' error

order

L' error

order

L' error

order

L' error

order

10

0.53E4-00

0.17E-02

0.23E-03

0.30E-05

20

0.24E400

1.13

0.21E-03

3.05

0.14E-04

4.01

0.40E-06

2.89

40

0.11E4-00

1.19

0.26E-04

2.99

0.78E-06

4.20

0.16E-07

4.65

80

0.47E-01

1.17

0.37E-05

2.82

0.47E-07

4.05

0.61E-09

4.70

160

0.21E-01

1.13

0.41E-06

3.16

0.27E-08

4.15

0.26E-10

4.56

P]

Pz

Pd

P4

L*° error

order

L°° error

order

L°° error

order

L*° error

order

10

0.62E4-00

0.36E-02

0.69E-03

0.11E-04

20

0.29E4-00

1.11

0.47E-03

2.94

0.61E-04

3.52

0.16E-05

2.81

40

0.13E4-00

1.16

0.67E-04

2.80

0.47E-05

3.70

0.13E-06

3.64

80

0.58E-01

1.14

0.17E-04

2.01

0.62E-06

291

0.59E-08

4.45

160

0.27E-01

1.11

0.19E-05

3.11

0.31E-07

4.32

0.33E-09

4.17




range [—0.1h,0.1h]. In order to avoid possible superconvergence at cell cen-
ters, we also give the “real” L? error (computed by a 6-point Gaussian quadra-
ture in each cell). The results are shown in Table 3.2.

At T = 3.5/72, the solution has developed a discontinuous derivative. In
Fig. 3.1, we show the sharp corner-like numerical solution with 41 elements
obtained with P* for k = 1, 2, 3,4 with a uniform mesh. Here and below, the
solid line is the exact solution, the circles are numerical solutions (only one
point per element is drawn).

o
o
o

e LR

Fig. 3.1. One-dimensional Burgers’ equation, T = 3.5/7>.

The second test problem. One dimensional equation with a non-convex
flux:

"2 COS(@@' + 1) = 0: in (_1: 1) X (O:T):

o(x,0) = — cos(nx), Ve (-1,1),



with periodic boundary conditions.

The local Lax-Friedrichs flux and uniform meshes are used. At T =
0.5/72, the solution is still smooth. The accuracy of the numerical solution is
listed in Table 3.3. We observe similar accuracy as in the previous example.

Table 3.3. Accuracy for 1D non-convex, H(u) = —cos(u + 1), T = 0.5/7°.

P’ P? pP3 P?
N| L error|order| L' errorforder| LT error[order| LT error|order
10(0.84E-01 0.10E-02 0.34E-03 0.24E-04

2010.36E-01| 1.23|0.15E-03| 2.75|0.30E-04| 3.49|0.13E-05| 4.28
40/0.15E-01| 1.26(0.21E-04| 2.84|0.15E-05| 4.33(0.59E-07| 4.42
80|0.68E-02| 1.14(0.27E-05| 2.97|0.94E-07| 4.00{0.21E-08| 4.78

Pl P2 Po P
N| L error|order|L* error|order|L® error|order|L°° error|order
10(0.18E4+00{ —|0.15E-02| —|0.11E-02 0.99E-04| —

20| 0.73E-01| 1.31|0.27E-03| 2.43|0.22E-03| 2.35| 0.13E-04| 2.95
40| 0.31E-01| 1.24|0.47E-04| 2.54| 0.18E-04| 3.63| 0.59E-06| 4.44
80| 0.14E-01| 1.16| 0.85E-05| 2.47| 0.14E-05| 3.75| 0.26E-07| 4.49

At T = 1.5/72, the solution has developed corner-like discontinuity in the
derivative. The numerical result with 41 elements is shown in Fig. 3.2.

The third test problem. Riemann problem for the one dimensional equa-
tion with a non-convex flux:

1
oot 5(0r - Der ~4) =0,  in(-1,1)x(0,7),
@(T/O):72|T|/ V.T,'E(*].,].),

For this test problem, the use of the generalized slope limiter proved to
be essential since otherwise the approximate solution does not converge to
the viscosity solution; this is the only example in which we use the nonlinear
limiting. We remark that for the finite difference schemes, such nonlinear
limiting or the adaptive stencil in ENO is needed in most cases in order to
enforce stability and to obtain non-oscillatory results.

Numerical results at 7' = 1 with 81 elements, using the local Lax-Friedrichs
flux, is shown in Fig. 3.3. The results of using the Godunov flux is shown in
Fig. 3.4. We can see that while for P!, the results of using two different mono-
tone fluxes are significantly different in resolution, this difference is greatly
reduced for higher order of accuracy. In most of the high order cases, the
simple local Lax-Friedrichs flux is a very good choice.
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Fig. 3.2. One dimension non-convex, H(u) = —cos(u + 1), T = 1.5/x>.

3.4 Concluding Remarks.

In this section, we have extended the RKDG method, originally devised for
nonlinear conservation laws, to the Hamilton-Jacobi equations. The extension
was carried out by exploiting the fact that the derivative of the solution of
the Hamilton-Jacobi equation satisfies a nonlinear conservation law.

The numerical experiments show that when polynomials of degree k are
used, the method is of order (k+1) in L2, except when k = 1; this phenomenon
remains to be explained. Also, we have seen that the use of slope limiters
was only needed in the third test problem- otherwise the convergence to the
viscosity solution did not take place.

The scheme can be extended to the case of a bounded domain in a very
simple way. The extension of the scheme to the multidimensional case is not
quite straightforward and will be carried out after we study how to define
the RKDG method for multidimensional conservation laws.



Fig. 3.3. One dimension Riemann problem, local Lax-Friedrichs flux, H(u) =
1w’ —1)(w’—4),T=1

Fig. 3.4. One dimension Riemann problem, Godunov flux, H(u) = % (v* — 1)(u® —

4),T =1.
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4 The RKDG method for multi-dimensional systems

4.1 Introduction
In this section, we extend the RKDG methods to multidimensional systems:

us + Vf(u) =0, in 2 x (0,7, (4.1)
u(z,0) = ug(x), Vel

and periodic boundary conditions. For simplicity, we assume that (2 is the
unit cube.

This section is essentially devoted to the description of the algorithms and
their implementation details. The practitioner should be able to find here all
the necessary information to completely code the RKDG methods.

This section also contains two sets of numerical results for the Euler equa-
tions of gas dynamics in two space dimensions. The first set is devoted to
transient computations and domains that have corners; the effect of using
triangles or rectangles and the effect of using polynomials of degree one or
two are explored. The main conclusions from these computations are that (i)
the RKDG method works as well with triangles as it does with rectangles
and that (ii) the use of high-order polynomials does not deteriorate the ap-
proximation of strong shocks and is advantageous in the approximation of
contact discontinuities.

The second set concerns steady state computations with smooth solu-
tions. For these computations, no generalized slope limiter is needed. The
effect of (i) the quality of the approximation of curved boundaries and of
(ii) the degree of the polynomials on the quality of the approximate solution
is explored. The main conclusions from these computations are that (i) a
high-order approximation of the curve boundaries introduces a dramatic im-
provement on the quality of the solution and that (ii) the use of high-degree
polynomials is advantageous when smooth solutions are sought.

This section contains material from the papers [21], [20], and [28]. It also
contains numerical results from the paper by Bassi and Rebay [4] in two di-
mensions and from the paper by Warburton, Lomtev, Kirby and Karniadakis
[91] in three dimensions.

4.2 The general RKDG method

The RKDG method for multidimensional systems has the same structure it
has for one-dimensional scalar conservation laws, that is,

— Set u) = All, Py, (uo);
— Forn =0,..., N — 1 compute u

1. set uglo) = uy;

Z“ as follows:



2. fori =1,...,k + 1 compute the intermediate functions:

i—1
= Aﬂh {Z ailug) + ﬂilAtnLh(u;ll))} ;

=0

3. set u”+1 = uELkH).

In what follows, we describe the operator L; that results form the DG-
space discretization, and the generalized slope limiter AIl}.

The Discontinuous Galerkin space discretization To show how to dis-
cretize in space by the DG method, it is enough to consider the case in which
u is a scalar quantity since to deal with the general case in which u, we apply
the same procedure component by component.

Once a triangulation 7, of {2 has been obtained, we determine L(-) as
follows. First, we multiply (4.1) by vy, in the finite element space V},, integrate
over the element K of the triangulation 75, and replace the exact solution u
by its approximation uy € Vj:

up(t, z) vy (z) de +/ div f(up(t, x)) vp(z) de = 0, Yu, € V. (4.3)
K

dt K

Integrating by parts formally we obtain

up(t, ) vp(z) do + Z flun(t, ) - ne g vp(x)dl
ecOK "€

—/ flup(t,z)) - Vop(z)dz =0, Yo, € Vy,
K

dt Ji

where ne g is the outward unit normal to the edge e. Notice that f(up(t,x))-

ne ik does not have a precise meaning, for u, is discontinuous at z € e €

OK. Thus, as in the one dimensional case, we replace f(up(t,z)) - ne,x by

the function h, g (up (t, 2wy (¢, 2671 ). The function h, g (-, -) is any

consistent two point monotone Lipschitz flux, consistent with f(u) - n. k.
In this way we obtain

d
— uh(tazvh da:—}-Z/eKta: vp(z)d Il

dt
e€cOK
—/ flup(t,x)) - Vop(z) dz = 0, YV oy € V.
K

Finally, we replace the integrals by quadrature rules that we shall choose as
follows:

/heK(t z)op(z)dl ~ Zw, e e (t, o) v(xe) €], (4.4)

Ve =1

M
| fut.) - Vo) do x Yo flun(ton)) - Vonlar K (4)



Thus, we finally obtain, for each element K € T}, the weak formulation:

d
dt Jx

L
wp(t, x)vp (x)dx + Z Zwl he ik (t, Ter) v(zer)le]

ecOK I=1
M

> wj flun(t, 7x;)) - Vou(k;)| K| =0, Yoy € Vi
j=1

These equations can be rewritten in ODE form as %uh = Lp(un,yn). This

defines the operator Ly, (uy), which is a discrete approximation of —div f(u).
The following result gives an indication of the quality of this approximation.

Proposition 25. Let f(u) € W*+2:°°(0), and set v = trace(u). Let the
quadrature rule over the edges be exact for polynomials of degree (2k + 1),
and let the one over the element be exact for polynomials of degree (2k).
Assume that the family of triangulations F = {Tp}n>o0 is regular, i.e., that
there is a constant o such that:

g—gza, VK €T, VT,€F, (4.6)

where hy is the diameter of K, and pk is the diameter of the biggest ball
included in K. Then, if V(K) D P¥(K), VY K € Ty:

[Ln(u, ) + div f(u)|=() < C B () wirzo () -

For a proof, see [20].

The form of the generalized slope limiter AII;,. The construction of
generalized slope limiters Al for several space dimensions is not a trivial
matter and will not be discussed in these notes; we refer the interested reader
to the paper by Cockburn, Hou, and Shu [20].

In these notes, we restrict ourselves to displaying very simple, practical,
and effective generalized slope limiters AIl;, which are closely related to the
generalized slope limiters /1H,’Lc of the previous section.

To compute AIl,uy, we rely on the assumption that spurious oscillations
are present in uy only if they are present in its P' part uj, which is its L*-
projection into the space of piecewise linear functions V;!. Thus, if they are
not present in u}, i.e., if

uy, = AITj, up,,

then we assume that they are not present in u; and hence do not do any
limiting:

AHh Up = Up -
On the other hand, if spurious oscillations are present in the P! part of the

solution u},, i.e., if
1 1
Up 7é AHh Uy,



then we chop off the higher order part of the numerical solution, and limit
the remaining P! part:
AHh Uup = AHh ’U,}L

In this way, in order to define AIl, for arbitrary space V},, we only need to
actually define it for piecewise linear functions V. The exact way to do that,
both for the triangular elements and for the rectangular elements, will be
discussed in the next section.

4.3 Algorithm and implementation details

In this section we give the algorithm and implementation details, including
numerical fluxes, quadrature rules, degrees of freedom, fluxes, and limiters
of the RKDG method for both piecewise-linear and piecewise-quadratic ap-
proximations in both triangular and rectangular elements.

Fluxes The numerical flux we use is the simple Lax-Friedrichs flux:

hek(a,b) = = [f(a) nex +£(b) -nex —aex (b—a)].

N | =

The numerical viscosity constant a. x should be an estimate of the biggest
eigenvalue of the Jacobian %f(uh(:n, t)) - e,k for (z,t) in a neighborhood of
the edge e.

For the triangular elements, we use the local Lax-Friedrichs recipe:

— Take ae i to be the larger one of the largest eigenvalue (in absolute value)
of %f(ﬂx) -ne i and that of %f(ﬂ;«) “Ne, Kk, Where Ug and ug are the
means of the numerical solution in the elements K and K' sharing the
edge e.

For the rectangular elements, we use the local Lax-Friedrichs recipe :

— Take a x to be the largest of the largest eigenvalue (in absolute value) of
%f(ﬁKu) “Me i, where G is the mean of the numerical solution in the
element K", which runs over all elements on the same line (horizontally
or vertically, depending on the direction of n, ) with K and K’ sharing
the edge e.

Quadrature rules According to the analysis done in [20], the quadrature
rules for the edges of the elements, (4.4), must be exact for polynomials of
degree 2k + 1, and the quadrature rules for the interior of the elements, (4.5),
must be exact for polynomials of degree 2k, if P* methods are used. Here
we discuss the quadrature points used for P! and P? in the triangular and
rectangular element cases.



The rectangular elements For the edge integral, we use the following two
point Gaussian rule

for the P! case, and the following three point Gaussian rule

/1lg(w)dw ~ g {g <—§) +9 @H + 29(0), (4.2)

for the P? case, suitably scaled to the relevant intervals.

For the interior of the elements, we could use a tensor product of (4.1),
with four quadrature points, for the P! case. But to save cost, we “recycle”
the values of the fluxes at the element boundaries, and only add one new
quadrature point in the middle of the element. Thus, to approximate the
integral fil fil g(x,y)dxdy, we use the following quadrature rule:

(o) o)

+2(0,0). (4.3)

For the P? case, we use a tensor product of (4.2), with 9 quadrature points.

The triangular elements For the edge integral, we use the same two point
or three point Gaussian quadratures as in the rectangular case, (4.1) and
(4.2), for the P! and P? cases, respectively.

For the interior integrals (4.5), we use the three mid-point rule

K] §
[ atedody ~ FLS gl
7K i=1

where m; are the mid-points of the edges, for the P! case. For the P? case,
we use a seven-point quadrature rule which is exact for polynomials of degree
5 over triangles.



Basis and degrees of freedom We emphasize that the choice of basis
and degrees of freedom does not affect the algorithm, as it is completely de-
termined by the choice of function space V(h) , the numerical fluxes, the
quadrature rules, the slope limiting, and the time discretization. However, a
suitable choice of basis and degrees of freedom may simplify the implemen-
tation and calculation.

The rectangular elements For the P! case, we use the following expres-
sion for the approximate solution wuy(z,y,t) inside the rectangular element

[miféami-%%] x [yjfé:yj-k%]:

un(,y, t) = w(t) + g (£)i () + ()35 (y) (4.4)
where
() = T () = LY
and
Ami:$i+%—azi7%, ij:yj-i-%_yjf%'

The degrees of freedoms, to be evolved in time, are then

u(t), ux(t), uy(t).

Here we have omitted the subscripts ij these degrees of freedom should
have, to indicate that they belong to the element 75 which is [.rif%,mH_%] X
[yj—%zyj+%]'

Notice that the basis functions

1, (;51(33)7 ’l/}j (y)

are orthogonal, hence the local mass matrix is diagonal:
A A ) 11
M = Az;Ay; diag 175,5 .
For the P? case, the expression for the approximate solution wuy(z,y,t)

inside the rectangular element [z;_1,2; 1] X [y;_1,y; 1] is:

un(@,y,t) = u(t) + ua (t)di(z) + uy ()5 (y)
Fuuay ()i ()15 (y)

+uualt) (20) - 3)

ity (1 (w§<y> - %) | (46)



where ¢;(z) and v;(y) are defined by (4.5). The degrees of freedoms, to be

evolved in time, are

a(t), ux(t), uy(t), uay(t), uza(t), wyy(t).
Again the basis functions

1

Lgia), Yi) Gi@i), B -5 20 - 5

are orthogonal, hence the local mass matrix is diagonal:

111 4 4
M = Az; Ay; diag <1 - =, =, — )

The triangular elements For the P! case, we use the following expression
for the approximate solution up(z,y,t) inside the triangle K:

3

un(,y,t) = ui(t)pi(w,y)

i=1

where the degrees of freedom wu;(t) are values of the numerical solution at
the midpoints of edges, and the basis function ¢;(z,y) is the linear function
which takes the value 1 at the mid-point m; of the i-th edge, and the value
0 at the mid-points of the two other edges. The mass matrix is diagonal

111
M = |K|diag | =, =, = | .
3°3°3

For the P? case, we use the following expression for the approximate
solution up(z,y,t) inside the triangle K:

up(z,y,t) = Zui(t)fi(l“:y)

i=1

where the degrees of freedom, u;(t), are values of the numerical solution at the
three midpoints of edges and the three vertices. The basis function &;(z,y), is
the quadratic function which takes the value 1 at the point i of the six points
mentioned above (the three midpoints of edges and the three vertices), and
the value 0 at the remaining five points. The mass matrix this time is not
diagonal.

Limiting We construct slope limiting operators AIl;, on piecewise linear
functions uy, in such a way that the following properties are satisfied:

1. Accuracy: if uy, is linear then AT, up = up,.



2. Conservation of mass: for every element K of the triangulation 75, we

have:
/ AHhuh:/ Up-
K K

3. Slope limiting: on each element K of T, the gradient of AIlj, up is not
bigger than that of wp,.

The actual form of the slope limiting operators is closely related to that
of the slope limiting operators studied in [24] and [20].

The rectangular elements The limiting is performed on u, and u, in
(4.4), using the differences of the means. For a scalar equation, u, would be
limited (replaced) by

m (g, Uit1,j — Uij, Uij — Wi-1,5) (4.7)

where the function m is the TVB corrected minmod function defined in the
previous section.

The TVB correction is needed to avoid unnecessary limiting near smooth
extrema, where the quantity u, or u, is on the order of O(Az?) or O(Ay?).
For an estimate of the TVB constant M in terms of the second derivatives of
the function, see [24]. Usually, the numerical results are not sensitive to the
choice of M in a large range. In all the calculations in this paper we take M
to be 50.

Similarly, u, is limited (replaced) by

Uy, Wi jp1 = Uij, Uij = i j1)-

with a change of Az to Ay in (4.7).
For systems, we perform the limiting in the local characteristic variables.
To limit the vector u, in the element ij, we proceed as follows:

— Find the matrix R and its inverse R~!, which diagonalize the Jacobian
evaluated at the mean in the element 75 in the z-direction:
0 Wis
R71 fl( Z])R:A7
Ou

where A is a diagonal matrix containing the eigenvalues of the Jacobian.
Notice that the columns of R are the right eigenvectors of w
the rows of R~! are the left eigenvectors.

— Transform all quantities needed for limiting, i.e., the three vectors wu,;;,
Ujt1,j — Ui; and u;; — U;—1,5, to the characteristic fields. This is achieved
by left multiplying these three vectors by R~1.

— Apply the scalar limiter (4.7) to each of the components of the trans-
formed vectors.

— The result is transformed back to the original space by left multiplying
R on the left.

and



The triangular elements To construct the slope limiting operators for
triangular elements, we proceed as follows. We start by making a simple
observation. Consider the triangles in Figure 4.1, where m; is the mid-point
of the edge on the boundary of Ky and b; denotes the barycenter of the
triangle K; for i = 0,1,2, 3.

Ka

Fig. 4.1. llustration of limiting.

Since we have that
my — by = aq (b1 — bo) + a2 (b2 — bo),

for some nonnegative coefficients a1, @y which depend only on m; and the
geometry, we can write, for any linear function up,

up(my) —up(bo) = a1 (up(br) — up(bo)) + az (un(bz) — un(bo)),

and since .
UK, = up = up(b;), i=0,1,2,3,
K ./m

we have that
ap(my, Ko) = up(my) — ak,
= Qg (ﬂKl - ﬂKo) + ay (’EI’KQ - ’H’Ko)
= Aﬂ(m],Ko).



Now, we are ready to describe the slope limiting. Let us consider a piecewise
linear function wp, and let m;,7 = 1,2, 3 be the three mid-points of the edges
of the triangle Ky. We then can write, for (z,y) € Ky,

up(z,y) = Zuh(mi)%(m:y)

3
= ticy + Y i (mi, Ko)gi(@, y).

i=1
To compute Al up, we first compute the quantities
Ay = m(ﬂh(mi7 KO), v A’lj(’ln27 KO)),
where m is the TVB modified minmod function and v > 1. We take v = 1.5
in our numerical runs. Then, if Z?Zl A; =0, we simply set
3
Anhuh(w7 y) = Uk, + Z Al @Z(m y)
i=1
If Z?Zl A; # 0, we compute

3 3
pos = max(0,4,),  neg=> max(0,~A4,),

i=1 i=1

6" = min (1, @> , f#~ = min (1, @> .
pos neg

Then, we define

and set

3
Allpup(z,y) = Uk, + ZAz wi(z,y),

i=1

where

A; = 01 max(0, A;) — #~ max(0, —A;).

It is very easy to see that this slope limiting operator satisfies the three
properties listed above.

For systems, we perform the limiting in the local characteristic variables.
To limit A;, we proceed as in the rectangular case, the only difference being
that we work with the following Jacobian

0 i—Db
%f(ﬂKo) ’ u



4.4 Computational results: Transient, nonsmooth solutions

In this section we present several numerical results obtained with the P! and
P? (second and third order accurate) RKDG methods with either rectangles
or triangles in the triangulation. These are standard test problems for Euler
equations of compressible gas dynamics.

The double-Mach reflection problem Double Mach reflection of a strong
shock. This problem was studied extensively in Woodward and Colella [92]
and later by many others. We use exactly the same setup as in [92], namely a
Mach 10 shock initially makes a 60° angle with a reflecting wall. The undis-
turbed air ahead of the shock has a density of 1.4 and a pressure of 1.

For the rectangle based triangulation, we use a rectangular computational
domain [0, 4] x [0,1], as in [92]. The reflecting wall lies at the bottom of the
computational domain for z < z < 4. Initially a right-moving Mach 10
shock is positioned at x = 5,y = 0 and makes a 60° angle with the z-axis.
For the bottom boundary, the exact post-shock condition is imposed for the
part from z = 0 to = = %, to mimic an angled wedge. Reflective boundary
condition is used for the rest. At the top boundary of our computational
domain, the flow values are set to describe the exact motion of the Mach
10 shock. Inflow/outflow boundary conditions are used for the left and right
boundaries. As in [92], only the results in [0, 3] x [0, 1] are displayed.

For the triangle based triangulation, we have the freedom to treat irreg-
ular domains and thus use a true wedged computational domain. Reflective
boundary conditions are then used for all the bottom boundary, including the
sloped portion. Other boundary conditions are the same as in the rectangle
case.

Uniform rectangles are used in the rectangle based triangulations. Four
different meshes are used: 240 x 60 rectangles (Az = Ay = &); 480 x 120
rectangles (Az = Ay = 15); 960 x 240 rectangles (Az = Ay = 515); and
1920 x 480 rectangles (Ax = Ay = ﬁ). The density is plotted in Figure 4.2
for the P! case and in 4.3 for the P? case.

To better appreciate the difference between the P! and P? results in these
pictures, we show a “blowed up” portion around the double Mach region in
Figure 4.4 and show one-dimensional cuts along the line y = 0.4 in Figures
4.5 and 4.6. In Figure 4.4, w can see that P? with Az = Ay = - has

240

. . . 1 . _ 1
qualitatively the same resolution as P* with Az = Ay = =, for the ﬁrlle

details of the complicated structure in this region. P2 with Az = Ay = 180
gives a much better resolution for these structures than P! with the same
number of rectangles.

Moreover, from Figure 4.5, we clearly see that the difference between the
results obtained by using P! and P?, on the same mesh, increases dramati-
cally as the mesh size decreases. This indicates that the use of polynomials of
high degree might be beneficial for capturing the above mentioned structures.

From Figure 4.6, we see that the results obtained with P! are qualitatively

|Hc>|>—l



similar to those obtained with P? in a coarser mesh; the similarity increases
as the meshsize decreases. The conclusion here is that, if one is interested in
the above mentioned fine structures, then one can use the third order scheme
P? with only half of the mesh points in each direction as in P'. This trans-
lates into a reduction of a factor of 8 in space-time grid points for 2D time
dependent problems, and will more than off-set the increase of cost per mesh
point and the smaller CFL number by using the higher order P? method.
This saving will be even more significant for 3D.

The optimal strategy, of course, is to use adaptivity and concentrate tri-
angles around the interesting region, and/or change the order of the scheme
in different regions.

The forward-facing step problem Flow past a forward facing step. This
problem was again studied extensively in Woodward and Colella [92] and
later by many others. The set up of the problem is the following: A right
going Mach 3 uniform flow enters a wind tunnel of 1 unit wide and 3 units
long. The step is 0.2 units high and is located 0.6 units from the left-hand
end of the tunnel. The problem is initialized by a uniform, right-going Mach 3
flow. Reflective boundary conditions are applied along the walls of the tunnel
and in-flow and out-flow boundary conditions are applied at the entrance
(left-hand end) and the exit (right-hand end), respectively.

The corner of the step is a singularity, which we study carefully in our nu-
merical experiments. Unlike in [92] and many other papers, we do not modify
our scheme near the corner in any way. It is well known that this leads to an
errorneous entropy layer at the downstream bottom wall, as well as a spuri-
ous Mach stem at the bottom wall. However, these artifacts decrease when
the mesh is refined. In Figure 4.7, second order P! results using rectangle

triangulations are shown, for a grid refinement study using Az = Ay = -

Az = Ay = &5, Az = Ay = 1, and Az = Ay = o= as mesh sizes. é?\ge
can clearly see the improved resolution (especially at the upper slip line from
the triple point) and decreased artifacts caused by the corner, with increased
mesh points. In Figure 4.8, third order P? results using the same meshes are
shown.

To have a better idea of the nature of the singularity at the corner, we
display the values of the density and the entropy along the line y = 0.2;
note that the corner is located on this line at = 0.6. In Figure 4.9, we
show the results obtained with P! and in Figure 4.10, the results obtained
with P2. At the corner (z = 0.6), we can see that there is a jump both in
the entropy and in the density. As the meshsize decreases, the jump in the
entropy does not vary significantly; however, the jump in the density does.
The sharp decrease in the density right after the corner can be interpreted
as a cavitation effect that the scheme seems to be able to better approximate
as the meshsize decreases.

In order to verify that the erroneous entropy layer at the downstream
bottom wall and the spurious Mach stem at the bottom wall are both artifacts



caused by the corner singularity, we use our triangle code to locally refine near
the corner progressively; we use the meshes displayed in Figure 4.11. In Figure
4.12, we plot the density obtained by the P! triangle code, with triangles
(roughly the resolution of Ax = Ay = %, except around the corner). In
Figure 4.13, we plot the entropy around the corner for the same runs. We
can see that, with more triangles concentrated near the corner, the artifacts
gradually decrease. Results with P? codes in Figures 4.14 and 4.15 show a

similar trend.

4.5 Computational results: Steady state, smooth solutions

In this section, we present some of the numerical results of Bassi and Rebay
[4] in two dimensions and Warburton, Lomtev, Kirby and Karniadakis [91]
in three dimensions.

The purpose of the numerical results of Bassi and Rebay [4] we are pre-
senting is to assess (i) the effect of the quality of the approximation of curved
boundaries and of (ii) the effect of the degree of the polynomials on the qual-
ity of the approximate solution. The test problem we consider here is the
two-dimensional steady-state, subsonic flow around a disk at Mach number
M, = 0.38. Since the solution is smooth and can be computed analytically,
the quality of the approximation can be easily assessed.

In the figures 4.16, 4.17, 4.18, and 4.19, details of the meshes around the
disk are shown together with the approximate solution given by the RKDG
method using piecewise linear elements. These meshes approximate the circle
with a polygonal. It can be seen that the approximate solution are of very
low quality even for the most refined grid. This is an effect caused by the
kinks of the polygonal approximating the circle.

This statement can be easily verified by taking a look to the figures 4.20,
4.21, 4.22, and 4.23. In these pictures the approximate solutions with piece-
wise linear, quadratic, and cubic elements are shown; the meshes have been
modified to render ezactly the circle. It is clear that the improvement in the
quality of the approximation is enormous. Thus, a high-quality approxima-
tion of the boundaries has a dramatic improvement on the quality of the
approximations.

Also, it can be seen that the higher the degree of the polynomials, the
better the quality of the approximations, in particular from figures 4.20 and
4.21. In [4], Bassi and Rebay show that the RKDG method using polynomilas
of degree k are (k + 1)-th order accurate for k = 1,2,3. As a consequence, a
RKDG method using polynomials of a higher degree is more efficient than a
RKDG method using polynomials of lower degree.

In [91], Warburton, Lomtev, Kirby and Karniadakis present the same test
problem in a three dimensional setting. In Figure 4.24, we can see the three-
dimensional mesh and the density isosurfaces. We can also see how, while
the mesh is being kept fixed and the degree of the polynomials k is increased



from 1 to 9, the maximum error on the entropy goes exponentialy to zero.
(In the picture, a so-called ‘mode’ is equal to k + 1).

4.6 Concluding remarks

In this section, we have extended the RKDG methods to multidimensional
systems. We have described in full detail the algorithms and displayed numer-
ical results showing the performance of the methods for the Euler equations
of gas dynamics.

The flexibility of the RKDG method to handle nontrivial geometries and
to work with different elements has been displayed. Moreover, it has been
shown that the use of polynomials of high degree not only does not degrade
the resolution of strong shocks, but enhances the resolution of the contact
discontinuities and renders the scheme more efficient on smooth regions.

Next, we extend the RKDG methods to convection-dominated problems.



Rectangles P1,Ax=Ay=1/60

0.0 05 10 15 20 25 3.0

Fig. 4.2. Double Mach reflection problem. Second order P! results. Density p. 30
equally spaced contour lines from p = 1.3965 to p = 22.682. Mesh refinement study.

From top to bottom: Az = Ay = %, ﬁ ﬁ., and 451;—0.



Rectangles P2, Ax=Ay =1/60

0.0 05 10 15 20 25 3.0

Fig. 4.3. Double Mach reflection problem. Third order P? results. Density p. 30
equally spaced contour lines from p = 1.3965 to p = 22.682. Mesh refinement study.

From top to bottom: Az = Ay = %, ﬁ ﬁ., and 451;—0.



Rectangles P2, Ax =Ay =1/240
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Fig. 4.4. Double Mach reflection problem. Blowed-up region around the double

Mach stems. Density p. Third order P* with Az = Ay = 5= (top); second order

P! with Az = Ay = 41% (middle); and third order P? with Az = Ay =

1
480
(bottom).
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Fig. 4.5. Double Mach reflection problem. Cut at y = 0.04 of the blowed-up region.
Density p. Comparison of second order P! with third order P? on the same mesh
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P2 onmesh Ax=Ay=1/60
P1onmesh Ax=Ay=1/120
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Fig. 4.6. Double Mach reflection problem. Cut at y = 0.04 of the blowed-up region.
Density p. Comparison of second order P! with third order P? on a coarser mesh



Rectangles P1,Ax=Ay=1/40
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Rectangles P1, Ax=Ay=1/320
e

Fig. 4.7. Forward facing step problem. Second order P! results. Density p. 30
equally spaced contour lines from p = 0. 090338 to p = 6 2365. Mesh refinement
study. From top to bottom: Az = Ay = = %, %, and 5



Rectangles P2, Ax=Ay =1/80
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Rectangles P2, Ax=Ay=1/320

Fig. 4.8. Forward facing step problem. Third order P? results. Density p. 30 equally
spaced contour lines from p = 0.090338 to p = 6.2365. Mesh refinement study. From
top to bottom: Az = Ay = %, %, ﬁ, and 3;—0
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Fig. 4.9. Forward facing step problem. Second order P! results. Values of the den-
sity and entropy along the line y = .2. Mesh refinement study. From top to bottom:
Ar = Ay =+, &, L and

1
407 80’ 160" 320"
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Fig. 4.10. Forward facing step problem. Third order P? results. Values of the den-
sity and entropy along the line y = .2. Mesh refinement study. From top to bottom:
Ar = Ay =+, &, L and

1
407 80’ 160" 320"
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Fig. 4.11. Forward facing step problem. Detail of the triangulations associated with
the different values of o. The parameter o is the ratio between the typical size of
the triangles near the corner and that elsewhere.



Triangles P1,0=1/1

Fig. 4.12. Forward facing step problem. Second order P! results. Density p. 30
equally spaced contour lines from p = 0.090338 to p = 6.2365. Triangle code.
Progressive refinement near the corner



Fig. 4.13. Forward facing step problem. Second order P' results. Entropy level
curves around the corner. Triangle code. Progressive refinement near the corner



Triangles P2, 6 =1/8

Fig. 4.14. Forward facing step problem. Third order P? results. Density p. 30
equally spaced contour lines from p = 0.090338 to p = 6.2365. Triangle code.
Progressive refinement near the corner
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Triangles P2, o = 1/1

Fig. 4.15. Forward facing step problem. Third order P' results. Entropy level
curves around the corner. Triangle code. Progressive refinement near the corner



Fig. 4.16. Grid “16 x 8” with a piecewise linear approximation of the circle (top)
and the corresponding solution (Mach isolines) using P' elements (bottom).
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Fig. 4.17. Grid “32 x 8” with a piecewise linear approximation of the circle (top)
and the corresponding solution (Mach isolines) using P' elements (bottom).
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Fig. 4.18. Grid “64 x 16” with a piecewise linear approximation of the circle (top)
and the corresponding solution (Mach isolines) using P' elements (bottom).
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Fig. 4.19. Grid “128 x 32” a piecewise linear approximation of the circle (top) and
the corresponding solution (Mach isolines) using P! elements (bottom).



Fig. 4.20. Grid “16 x 4” with exact rendering of the circle and the corresponding
P! (top), P?(middle), and P? (bottom) approximations (Mach isolines).



Fig. 4.21. Grid “32 x 8 with exact rendering of the circle and the corresponding
P! (top), P?(middle), and P? (bottom) approximations (Mach isolines).
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Fig. 4.22. Grid “64 x 16” with exact rendering of the circle and the corresponding
P! (top), P?(middle), and P? (bottom) approximations (Mach isolines).



Fig. 4.23. Grid “128 x 32” with exact rendering of the circle and the corresponding
P! (top), P?(middle), and P? (bottom) approximations (Mach isolines).
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Fig. 4.24. Three-dimensional flow over a semicircular bump. Mesh and density
isosurfaces (top) and history of convergence with p-refinement of the maximum
entropy generated (bottom). The degree of the polynomial plus one is plotted on
the ‘modes’ axis.



5 The Hamilton-Jacobi equations in several space
dimensions
5.1 Introduction

In this chapter, we consider the RKDG method for multidimensional Hamilton-
Jacobi equations. The model problem we consider is the following;:

o1 + H(pz,py) =0, in (0,1)2 x (0,7), (5.1)
o(z,y,0) = po(z,y), V (z,y) € (0,1)% (5.2)

where we take periodic boundary conditions. The material in this section is
based in the work of Hu and Shu [43].

5.2 The RKDG method

As in the one-dimensional case, the main idea to extend the RKDG method to
this case, is to realize that u = ¢, and v = ¢, satisfy the following problem:

ug + H(u,v), =0, in (0,1)% x (0,7), (5.3)

vt + H(u,v), =0, in (0,1)? x (0,7T), (5.4)

u(z,y,0) = (po)e(z,y), ¥ (z,y) € (0,1)? (5.5)

v(@,y,0) = (po)y(z,y),  V (z,y) € (0,1)% (5.6)

and that ¢ can be computed from u and v by solving the following problem:
o1 = —H(u,v), in (0,1) x (0,7, (5.7)

o(z,0) = po(z), Yz e (0,1). (5.8)

Again, a straightforward application of the RKDG method to (5.3), (5.5),
produces an approximation uy to u = ¢,; and a straightforward application
of the RKDG method to (5.4), (5.6), produces an approximation v, to v = ¢,.

Both uy, and vy, are taken to be piecewise polynomials of degree (k—1). Then,
p is computed in one of the following ways:
(i) Take @p(-,t) in V¥ such that
VK € Tp, wpy € PHK):

/ Drpn (2, y, t) wn(z) de dy = — / H(un(z, £), vn(2,9)) wi (. y) do dy
K K

/ (2,9, 0) wn (. y) da dy — / o, y) wn (2, y) da dy.

K K

(ii) Take ¢y (+,t) in V;¥ such that, VK € Tj:

| Von — (un,vn) llL2(x) = min ||V — (un,vn) l|L2(k) -
YePR(K)



This determines ¢, up to a constant. To find this constant, we impose the
following condition:

VK € Ty :
d

d_ ()Oh(maz-ht) d’Ide = 7/ H(Uh(.’l/',y7t),’l}h(.’lf,y7t))d.’Ide,
tJk K

/w(m,y,U)dmdyZ/ wo(,y) dv dy.
JK K

(iii) Pick the element K; and determine the values of ¢ on it in such a
way that

Von — (up, sy = min || Vb — (up, S(K-
I Von — (un,vn) |22k ) we‘gi?K) IV — (un,vn) |2k ))
and that
d
dt Ky JK;
(5.9)
| eap0ydzdy= [ ooy oy
K_] KJ
Then, compute ¢, as follows:
B
PB = o4+ [ (eada iy di). (5.10)

to determine the missing constant. The path should be taken to avoid crossing
a derivative discontinuity, if possible.

We remark again that, in the third approach, the recovered values of ¢,
depend on the choice of the starting point A as well as the integration path.
However this difference is on the level of truncation errors and does not affect
the order of accuracy as is shown in the computational results we show next.

5.3 Computational results

The purpose of the numerical experiments we report in this section is to asses
the accuracy of the method, to see if the generalized slope limiter is actually
needed, and to evaluate the effect of changing the integration path. The third
approach is used.

First test problem. Two dimensional Burgers’ equation:

(¢ + Py + 1)2

o+ 5 =0, in (—2,2)? x (0,7),
p(z,y,0) = —cos <W) , Y (z,y) € (—2,2)%



with periodic boundary conditions.

We first use uniform rectangular meshes and the local Lax-Friedrichs flux.
At T = 0.5/7?%, the solution is still smooth. The errors (computed at the cen-
ter of the cells) and orders of accuracy are listed in Table 5.1. It seems that
only k-th order of accuracy is achieved when ¢ is a piecewise polynomial of
degree k. Next, as in the one dimensional case, we use non-uniform rectangu-
lar meshes obtained from the tensor product of one dimensional nonuniform
meshes (the meshes in two directions are independent). Again, we give the
“real” L?-errors computed by a 6 x 6 point Gaussian quadrature as well. The
results are shown in Table 5.2.

The results in Tables 5.1 and 5.1 are obtained by updating the element at
the left-lower corner with time, and then taking an integration path consisting
of line segments starting from the corner and parallel to the z-axis first, then
vertically to the point. To further address the issue of the dependency of the
computed values of the solution ¢ on the integration path and starting point,
we use another path which starts vertically, then parallelly with the x-axis to
reach the point. In Table 5.3, we list the difference of two recovered solutions
 from these two different integration paths, for the non-uniform mesh cases.
We can see that these differences are at the levels of local truncation errors
and decay in the same order as the errors. Thus the choice of integration path
in recovering ¢ does not affect accuracy.

At T = 1.5/72, the solution has discontinuous derivatives. Fig. 5.1 is the
graph of the numerical solution with 40 x 40 elements (uniform mesh).

Finally we use triangle based triangulation, the mesh with h = % is shown
in Fig. 5.2. The accuracy at T = 0.5/ is shown in Table 5.4. Similar accu-
racy pattern is observed as in the rectangular case. The result at T = 1.5/72,
when the derivative is discontinuous, is shown in Fig. 5.3.

Second test problem. We consider the following problem:

Pt — COS(QOJE + <py + 1) = 07 in (_2: 2)2 X (07T)7

@(m,y,O) = —cos (@) ) v (m,y) € (7272)27

with periodic boundary conditions.

For this example we use uniform rectangular meshes. The local Lax-
Friedrichs flux is used. The solution is smooth at T' = 0.5/7?. The accuracy
of the numerical solution is shown in Table 5.5.

The solution has developed a discontinuous derivative at T = 1.5/72.
Results with 40 x 40 elements are shown in Fig. 5.4.

Third test problem. The level set equation in a domain with a hole:

et + sign(po)(y/ ¥z +¢; —1) =0, in 2x(0,7T),

¢(x,y,0) = —cos (@) ; V(z,y) € 2,



Table 5.1. Accuracy for 2D Burgers equation, uniform rectangular mesh, T =
0.5/m.

P P2 pP3
N x N| L' error[order| L' error|order| L error|order
10 x 10|8.09E-02 8.62E-03 3.19E-03

20 x 20{3.36E-02(1.268|1.72E-03|2.325|3.49E-04|3.192
40 x 40|1.48E-02{1.183|3.93E-04|2.130(6.64E-05|2.394
80 x 80{6.88E-03(1.105|9.74E-05{2.013|1.14E-05|2.542
160 x 160|3.31E-03|1.056{2.45E-05/1.991|1.68E-06|2.763

P’ P2 P3
N x N|L* error|order|L* error|order|L* error|order
10 x 10| 2.62E-01 3.56E-02 8.65E-03

20 x 20| 1.14E-01|1.201| 8.40E-03|2.083| 1.16E-03|2.899
40 x 40| 5.00E-02(1.189| 2.02E-03|2.056| 1.98E-04|2.551
80 x 80| 2.39E-02(1.065| 4.92E-04|2.038| 3.13E-05|2.661
160 x 160| 1.16E-02|1.043| 1.21E-04|2.024| 4.41E-06|2.827

Table 5.2. Accuracy for 2D Burgers equation, non-uniform rectangular mesh, T' =
0.5/m*.

Pl P2 P3
N x N| L? error|order| L? error|order| L? error|order
10 x 10|4.47E-01 —16.28 E-02 —|1.61E-02 —

20 x 20{1.83E-01{1.288|1.50E-02|2.066|2.06E-03|2.966
40 x 40|8.01E-02{1.192(3.63E-03|2.047|3.48E-04|2.565
80 x 80(3.82E-02(1.068|9.17E-04|1.985|6.03E-05|2.529
160 x 160|1.87E-02|1.031|2.34E-04|1.970|8.58E-06|2.813

P P2 pP3
N x N| L' error|order| LT error|order| L' error|order
10 x 10|8.16E-02 9.16E-03 3.39E-03

20 x 20{3.41E-02(1.259|2.09E-03(2.132|4.12E-04|3.041
40 x 40{1.50E-02{1.185|5.21E-04|2.004(7.03E-05|2.551
80 x 80{7.16E-03(1.067|1.42E-04|1.875|1.24E-05|2.503
160 x 160|3.50E-03{1.033(3.85E-05|1.883|1.76E-06|2.817

P] PZ Pd
N x N|L* error|order|L* error|order|L* error|order
10 x 10| 2.83E-01 4.68E-02 1.00E-02

20 x 20| 1.25E-01|1.179( 1.23E-02{1.928| 1.39E-03|2.847
40 x 40| 5.74E-02(1.123] 3.54E-03|1.797| 2.29E-04|2.602
80 x 80| 2.78E-02(1.046| 1.15E-03{1.622| 5.11E-05|2.164
160 x 160| 1.42E-02]|0.969| 2.72E-04(2.080| 7.16E-06|2.835




Table 5.3. Differences of the solution ¢ recovered by two different integration
paths, non-uniform mesh, Burgers equation.

P P2 pP3
N x N| L' error|order| LT error|order| L' error|order
10 x 10|8.61E-03 2.90E-03 1.15E-03

20 x 20|4.64E-03(0.892|1.28E-03|1.180|2.44E-04|2.237
40 x 40|2.54E-03|0.869(4.12E-04|1.635|3.76 E-05|2.698
80 x 80|1.81E-03(0.489|1.39E-04|1.568|6.71E-06|2.486
160 x 160]|1.09E-03|0.732(3.66E-05|1.925|8.79E-07|2.932

Table 5.4. Accuracy for 2D Burgers equation, triangular mesh, T = 0.5/72.

P? P3
h| L' error|order|L® error|order| LT error|order|L® error|order
1|5.48E-02 1.52E-01 1.17E-02 2.25E-02

1/2|1.35E-02| 2.02|6.26E-02| 1.28|1.35E-03| 3.12|4.12E-03| 2.45
1/4|2.94E-03| 2.20(1.55E-02| 2.01|1.45E-04| 3.22|4.31E-04| 3.26
1/8|6.68E-04| 2.14|3.44E-03| 2.17|1.71E-05| 3.08| 7.53E-05| 2.52

Table 5.5. Accuracy, 2D, H(u,v) = —cos(u+ v+ 1),T = 0.5/7°.

Pl PZ Pd
N x N| L' error[order| L' error|order| L error|order
10 x 10|6.47E-02 8.31E-03 1.35E-02

20 x 20(2.54E-02(1.349|1.93E-03|2.106|1.57E-03|3.104
40 x 40|1.05E-02{1.274|4.58E-04|2.075(2.39E-04|2.716
80 x 80{4.74E-03(1.147|1.13E-04/2.019|2.89E-05|3.048
160 x 160|2.23E-03|1.088(2.83E-05|1.997|4.38E-06|2.722

P! p? p3
N x N|L* error|order|L* error|order|L* error|order
10 x 10| 1.47E-01 1.88E-02 2.36E-02

20 x 20| 6.75E-02|1.123| 7.34E-03|1.357| 3.44E-03|2.778
40 x 40| 2.65E-02(1.349| 1.83E-03|2.004| 4.59E-04|2.906
80 x 80| 1.18E-02(1.167| 4.55E-04|2.008| 5.78E-05|2.989
160 x 160| 2.23E-03|1.088( 1.13E-04/2.010| 8.54E-06|2.759




where 2 = {(z,y) : 1/2 < /2% + y% < 1}.

This problem was introduced in [84]. Its exact solution ¢ has the same
zero level set as g, and the steady state solution is the distance function to
that zero level curve. We use this problem to test the effect on the accuracy
of the approximation of using various integration paths (5.10) when there
is a hole in the region. Notice that the exact steady state solution is the
distance function to the inner boundary of domain when boundary condition
is adequately prescribed. We compute the time dependent problem to reach a
steady state solution, using the exact solution for the boundary conditions of
¢, and @, . Four symmetric elements near the outer boundary are updated by
(5.9), all other elements are recovered from (5.10) by the shortest path to the
nearest one of above four elements. The results are shown in Table 5.6. Also
shown in Table 5.6 is the error (difference) between the numerical solution ¢
thus recovered, and the value of ¢ after another integration along a circular
path (starting and ending at the same point in (5.10)). We can see that the
difference is small with the correct order of accuracy, further indicating that
the dependency of the recovered solution ¢ on the integration path is on the
order of the truncation errors even for such problems with holes. Finally, the
mesh with 1432 triangles and the solution with 5608 triangles are shown in
Fig. 5.5.

Table 5.6. Errors for the level set equation, triangular mesh with P2,

Errors for the Solution Errors by Integration Path

N| L' error|order|L> error|order| LT error|order[L*° error|order
403|1.02E-03 —1.32E-03 —|1.61E-04 —1 5.71E-04 —
1432(1.23E-04| 3.05|2.73E-04| 2.27|5.84E-05| 1.46| 1.68E-04| 1.78
5608(1.71E-05| 2.85|3.18E-05| 3.10|9.32E-06| 2.65| 4.36E-05| 1.95
22238|2.09E-06| 3.03|5.01E-06| 2.67|1.43E-06| 2.70| 6.63E-06| 2.72

Fourth test problem. Two dimensional Riemann problem:

Pt + Sin((pz + pr) = 07 in (717 1)1 X (OIT),
o(@,y,0) =a(jyl —[z), ¥ (z,y) € (-1,1)%

For this example we use a uniform rectangular mesh with 40 x40 elements.
The local Lax-Friedrichs flux is used. As was mentioned in Example 4.3, we
have found out that a nonlinear limiting is needed, for convergence towards
an viscosity solution. We show the numerical solution at 7' =1 in Fig. 5.6.



Fifth test problem. A problem from optimal control [73]:

1
o1+ (siny)g, + (sina +sign(p,))p, = 5 siny + (1 - cosa),

o(z,y,0) =0,

where the space domain is (—, 7)2 and the boundary conditions are periodic.
We use a uniform rectangular mesh of 40 x 40 elements and the local Lax-
Friedrichs flux. The solution at 7' = 1 is shown in Fig. 5.7, while the optimal
control w = sign(yp,) is shown in Fig. 5.8.

Notice that our method computes V¢ as an independent variable. It is
very desirable for those problems in which the most interesting features are
contained in the first derivatives of ¢, as in this optimal control problem.

Sixth test problem. A problem from computer vision [78]:

(pt+1(rly)\/1+(p%+(py2;71:0/ iIl(*]_,].)ZX(O,T),
p(z,y,0) =0, vV (z,y) € (-1,1)%

with ¢ = 0 as the boundary condition. The steady state solution of this
problem is the shape lighted by a source located at infinity with vertical
direction. The solution is not unique if there are points at which I(z,y) = 1.
Conditions must be prescribed at those points where I(z,y) = 1. Since our
method is a finite element method, we need to prescribe suitable conditions
at the correspondent elements. We take

I(z,y) =1/V/1+ 1~ [2])? + (1 |y])? (5.1)

The exact steady solution is ¢(z,y, 00) = (1 —|z|)(1 — |y|). We use a uniform
rectangular mesh of 40 x 40 elements and the local Lax-Friedrichs flux. We
impose the exact boundary conditions for v = ¢,,v = ¢, from the above
exact steady solution, and take the exact value at one point (the lower left
corner) to recover ¢. The results for P2 and P? are presented in Fig. 5.3,
while Fig. 5.9 contains the history of iterations to the steady state.

Next we take

I(z,y) = 1/3/1 + 4y2(1 — 22)2 + 422(1 — y2)2 (5.2)

The exact steady solution is ¢(z,y,00) = (1 — 2?)(1 — y?). We again use a
uniform rectangular mesh of 40 x 40 elements, the local Lax-Friedrichs flux,
impose the exact boundary conditions for v = ¢,,v = ¢, from the above
exact steady solution, and take the exact value at one point (the lower left
corner) to recover . A continuation method is used, with the steady solution
using

L(z,y) = 1//1+4y2(1 — 22)2 + 422(1 — y2)2 + ¢ (5.3)

for bigger € as the initial condition for smaller €. The sequence of € used are
e = 0.2,0.05,0. The results for P2 and P? are presented in Fig. 5.10.
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6 Convection diffusion: The LDG method

6.1 Introduction

In this chapter, which follows the work by Cockburn and Shu [27], we restrict
ourselves to the semidiscrete LDG methods for convection-diffusion problems
with periodic boundary conditions. Our aim is to clearly display the most
distinctive features of the LDG methods in a setting as simple as possible;
the extension of the method to the fully discrete case is straightforward. In
§2, we introduce the LDG methods for the simple one-dimensional case d = 1
in which

F(u,Du) = f(u) — a(u) Oy u,

u is a scalar and a(u) > 0 and show, in §3, some preliminary numerical
results displaying the performance of the method. In this simple setting,
the main ideas of how to device the method and how to analyze it can be
clearly displayed in a simple way. Thus, the L2-stability of the method is
proven in the general nonlinear case and the rate of convergence of (Az)* in
the 1.°°(0, T;L2)-norm for polynomials of degree k& > 0 in the linear case is
obtained; this estimate is sharp. In §4, we extend these results to the case in
which u is a scalar and

FZ(’U,DU) = fZ(u) - Z aij(u) 896]"”7

1<j<d

where a;; defines a positive semidefinite matrix. Again, the L?-stability of the
method is proven for the general nonlinear case and the rate of convergence of
(Az)* in the 1.°°(0, T';1.2)-norm for polynomials of degree k£ > 0 and arbitrary
triangulations is proven in the linear case. In this case, the multidimensional-
ity of the problem and the arbitrariness of the grids increase the technicality
of the analysis of the method which, nevertheless, uses the same ideas of the
one-dimensional case. In §5, the extension of the LDG method to multidi-
mensional systems is briefly described and in §6, some numerical results for
the compressible Navier-Stokes equations from the paper by Bassi and Rebay
[3] and from the paper by Lomtev and Karniadakis [63] are presented.

6.2 The LDG methods for the one-dimensional case

In this section, we present and analyze the LDG methods for the following
simple model problem:

Oru+ 0, (f(u) —a(u)d,u) =0 in Q, (6.1)
u(t =0) = ug on (0,1)

where @ = (0,T) x (0,1), with periodic boundary conditions.



General formulation and main properties To define the LDG method,
we introduce the new variable ¢ = \/ a(u) 9, u and rewrite the problem (6.1),
(6.2) as follows:

Oru+ 0y (f(u) —Va(u)g) =0 in@Q, (6.3)
q—0;9(u) =0 inQ, (6.4)
u(t =0) = ug, on (0,1), (6.5)

where g(u) = [“\/a(s) ds. The LDG method for (6.1), (6.2) is now obtained
by 51mp1y dlscret171ng the above system with the Discontinuous Galerkin

method.
To do that, we follow [24] and [21]. We define the flux h = (hy, hy )" as
follows:

h(u, q) —a(u)q, (6.6)

For each partition of the interval (0, 1), { z;41/2 };,\/:07 weset, forj=1,..., N:
Ij = (fﬁj71/27-’ﬂj+1/2)7 A-’L‘j =Tjy1/2 — Lj-1)2; (6-7)
and
Az = max Az;. (6.8)
1<j<N

We seek an approximation wy = (up, qn)? to w = (u,q)? such that for each
time ¢ € [0,T], both up(t) and g (t) belong to the finite dimensional space

Vi =VF ={veL'0,1) 0|5, € P*(I;), j=1,...,N}, (6.9)

where P¥(I) denotes the space of polynomials in I of degree at most k.
In order to determine the approximate solution (up,qp), we first note that
by multiplying (6.3), (6.4), and (6.5) by arbitrary, smooth functions v,, vq,
and v;, respectively, and integrating over I;, we get, after a simple formal
integration by parts in (6.3) and (6.4),

fI O u(x, t) vy (x defI (W (2, 1)) Oy vy () da
+hu( ('Tj+1/27 ))UU( ]+1/2) hu( (mjfl/ZJt))Uu( 71/2) =0, (610)

flj q(azt) f] q t)) O, Uq( ) dx
(Wl 12,0) v q<. jm)th( (xj,1/2,t>>vq< ) =0, (6.11)

fI u(z,0) v;(z) dz = ij ug () v;(z) dz. (6.12)



Next, we replace the smooth functions v, v, and v; by test functions vy, ,,
Uh,q, and vy ;, respectively, in the finite element space V}, and the exact
solution w = (u,q)! by the approximate solution w; = (up,qs)t. Since
this function is discontinuous in each of its components, we must also re-
place the nonlinear flux h(w(z;41/2,t)) by a numerical flux f](w)j+1/2 (t) =

(hu(Wh)j41/2(t), hq(Wh)j11/2(t)) that will be suitably chosen later. Thus, the
approximate solution given by the LDG method is defined as the solution of
the following weak formulation:

Y up. € PH(I;)

/14 O up(x,t) vp o (x) dz — / hy (Wi (2, 1)) Oy vp,u(x) do

I

i

ha(Wn) j1 72 (8) On (5 ) — hu(Wa) 12 (8) on (e} ) = 0(6.13)

Yup,, € PH(I;)
/ qn(z,t) vy q(x) dz —/ hg(wp(z,t)) 0y vp () dz

1 I;

+hg (W) 172 (D) Vhg (07 0) = hg(Wh)j1ya(8) o (2] 1) = 0,(6.14)

V’l)h’z’ € Pk(Ij) :
/ (up(z,0) —ug(z) ) vpi(x)dz =0 (6.15)

I;

It only remains to choose the numerical flux fl(wh)j+1/2(t). We use the no-
tation:

-1 - + +

[Pl=p"=p", D=5+ ), Piap =P )

To be consistent with the type of numerical fluxes used in the RKDG meth-
ods, we consider numerical fluxes of the form

1Al(vvh)j+1/2 (t) = f](wh(w;+1/2 ) t)7 Wh(ﬂf;!_+1/27 t)):
that:

(i) Are locally Lipschitz and consistent with the flux h,
(ii) Allow for a local resolution of g in terms of up,
(iii) Reduce to an E-flux (see Osher [71]) when a(-) = 0, and that (iv) enforce
the L2-stability of the method.

To reflect the convection-diffusion nature of the problem under consid-
eration, we write our numerical flux as the sum of a convective flux and a
diffusive flux:

h(w ,wh) = hepp(w™, wh) + fldiff(w*,wJ“). (6.16)



The convective flux is given by

heopo (W™, wh) = (f(u*,u+)70)t, (6.17)

where f(u’,u*‘) is any locally Lipschitz E-flux consistent with the nonlin-
earity f, and the diffusive flux is given by

~ _ w) ] — — ¢
hyipp(w,wh) = (=BG, —g(u))" = Caips [w], (6.18)
where
o 0 ci2
Cdsz = (Cl2 0 > , (6.19)
c12 = ci2(w,wT) is locally Lipschitz, (6.20)
¢12 =0  when a(-) = 0. (6.21)

We claim that this flux satisfies the properties (i) to (iv).

Let us prove our claim. That the flux h is consistent with the flux h easily
follows from their definitions. That h is locally Lipschitz follows from the fact
that f(-,-) is locally Lipschitz and from (6.19); we assume that f(-) and a(-)
are locally Lipschitz functions, of course. Property (i) is hence satisfied.

That the approximate solution g5 can be resolved element by element in
terms of uy by using (6.14) follows from the fact that, by (6.18), the flux

hy = —g(u) — 12 [u]

is independent of g,. Property (ii) is hence satisfied.
Property (iii) is also satisfied by (6.21) and by the construction of the
convective flux.
To see that the property (iv) is satisfied, let us first rewrite the flux h in
the following way:
ﬁ(w77w+) = (% - %qa 7@))& *C[W],

u u

where

C= < “il C“’) . cn = [71]<[¢(“)] —f(u,u+)). (6.22)

—c12 0 [u]

with ¢(u) defined by ¢(u) = [* f(s)ds. Since f(-,-) is an E-flux,

+ ~

c1 = ﬁ f;, (f(s) — f(u’,u*’))ds >0,

and so, by (6.19), the matrix C is semipositive definite. The property (iv)
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follows from this fact and from the following result.



Proposition 26. (Stability) We have,

1 /1 T 1 /1
— / ui(:ﬂ,T) dx + / / q,zl(:n,t) de dt + Orc([wy]) < = / ué(:ﬂ) dx,
2 /o 0 Jo 2 /o

where Op c([wy] is the following expression:

/oT 2 {[wh(t)]tc [Wh(t)]} dt.

1<j<N j+1/2

For a proof, see the appendix. Thus, this shows that the flux h under
consideration does satisfy the properties (i) to (iv)- as claimed.

Now, we turn to the question of the quality of the approximate solution
defined by the LDG method. In the linear case f' = ¢ and a(-) = a, from the
above stability result and from the the approximation properties of the finite
element space Vj, we can prove the following error estimate. We denote the
L2(0,1)-norm of the ¢-th derivative of u by |u |,.

Theorem 27. (Error estimate) Let e be the approxzimation error w — wy,.
Then we have,

1/2

{ /01 |e“(az’T)|2d“/oT/01 e"(:”’t”Qd”fd”@rc([e])} < C(Ax)k,

where C = C(k,|u |g+1,|®]|k+2). In the purely hyperbolic case a = 0, the
constant C is of order (Aa:)l/2. In the purely parabolic case c = 0, the constant
C is of order Az for even values of k for uniform grids and for C identically
Z€T0.

For a proof, see the appendix. The above error estimate gives a suboptimal
order of convergence, but it is sharp for the LDG methods. Indeed, Bassi et
al [5] report an order of convergence of order k + 1 for even values of k and
of order k for odd values of k for a steady state, purely elliptic problem for
uniform grids and for C identically zero. The numerical results for a purely
parabolic problem that will be displayed later lead to the same conclusions;
see Table 5 in the section §2.b.

The error estimate is also sharp in that the optimal order of conver-
gence of k + 1/2 is recovered in the purely hyperbolic case, as expected. This
improvement of the order of convergence is a reflection of the semipositive
definiteness of the matrix C, which enhances the stability properties of the
LDG method. Indeed, in the purely hyperbolic case, the quantity

/OT > {[uh(t)]tcn[uh(t)]} dt,

1<j<N jH1/2



is uniformly bounded. This additional control on the jumps of the variable uy
is reflected in the improvement of the order of accuracy from £ in the general
case to k + 1/2 in the purely hyperbolic case.

However, this can only happen in the purely hyperbolic case for the LDG
methods. Indeed, since ¢;; = 0 for ¢ = 0, the control of the jumps of uy, is not
enforced in the purely parabolic case. As indicated by the numerical experi-
ments of Bassi et al. [5] and those of section §2.b below, this can result in the
effective degradation of the order of convergence. To remedy this situation,
the control of the jumps of uy in the purely parabolic case can be easily en-
forced by letting ¢11 be strictly positive if |¢| + |a| > 0. Unfortunately, this
is not enough to guarantee an improvement of the accuracy: an additional
control on the jumps of gy, is required! This can be easily achieved by allowing
the matrix C to be symmetric and positive definite when a > 0. In this case,
the order of convergence of k + 1/2 can be easily obtained for the general
convection-diffusion case. However, this would force the matrix entry coy to
be nonzero and the property (ii) of local resolvability of g, in terms of up
would not be satisfied anymore. As a consequence, the high parallelizability
of the LDG would be lost.

The above result shows how strongly the order of convergence of the LDG
methods depend on the choice of the matrix C. In fact, the numerical results
of section §2.b in uniform grids indicate that with yet another choice of the
matrix C, see (6.23), the LDG method converges with the optimal order of
k + 1 in the general case. The analysis of this phenomenon constitutes the
subject of ongoing work.

6.3 Numerical results in the one-dimensional case

In this section we present some numerical results for the schemes discussed
in this paper. We will only provide results for the following one dimensional,
linear convection diffusion equation

Oru+cdpu— ad?u=0 in (0,T)x (0,27),
u(t =0,z) =sin(x), on (0,27),

where ¢ and a > 0 are both constants; periodic boundary conditions are used.
The exact solution is u(t,z) = e~ sin(z — ct). We compute the solution up
to T' = 2, and use the LDG method with C defined by

_a
- ( ; ) | (623)

le

o=

0



We notice that, for this choice of fluxes, the approximation to the convective
term cu, is the standard upwinding, and that the approximation to the diffu-
sion term a 92 u is the standard three point central difference, for the P° case.
On the other hand, if one uses a central flux corresponding to ¢19 = —c91 = 0,
one gets a spread-out five point central difference approximation to the dif-
fusion term a 92 u.

The LDG methods based on P*, with k = 1,2, 3,4 are tested. Elements
with equal size are used. Time discretization is by the third-order accurate
TVD Runge-Kutta method [81], with a sufficiently small time step so that
error in time is negligible comparing with spatial errors. We list the L, errors
and numerical orders of accuracy, for uy, as well as for its derivatives suitably
scaled Az™9" uy, for 1 < m < k, at the center of of each element. This gives
the complete description of the error for u, over the whole domain, as up
in each element is a polynomial of degree k. We also list the L., errors and
numerical orders of accuracy for g, at the element center.

In all the convection-diffusion runs with a > 0, accuracy of at least (k +
1)-th order is obtained, for both wu, and g, when P* elements are used.
See Tables 1 to 3. The P* case for the purely convection equation a = 0
seemns to be not in the asymptotic regime yet with N = 40 elements (further
refinement with N = 80 suffers from round-off effects due to our choice of
non-orthogonal basis functions), Table 4. However, the absolute values of the
errors are comparable with the convection dominated case in Table 3.

Finally, to show that the order of accuracy could really degenerate to
k for P*, as was already observed in [5], we rerun the heat equation case
a =1,c =0 with the central flux

00
c= <0 0) |
This time we can see that the global order of accuracy in L., is only k
when P* is used with an odd value of k.



Table 1
The heat equation a = 1, ¢ = 0. Lo errors and numerical order of accuracy,
measured at the center of each element, for Az™09;" up for 0 < m < k, and for gy

k variable N =10 N =20 N =40
error error order error order

u 4.55E-4 5.79E-5 2.97 7.27E-6 2.99

1 Az dyu 9.01E-3 2.22E-3 2.02 5.56E-4 2.00
q 4.17E-5 2.48E-6 4.07 1.53E-7 4.02

u 1.43E-4 1.76E-5 3.02 2.19E-6 3.01

2 Az dyu 7.87E-4 1.03E-4 2.93 1.31E-5 2.98
(Az)? O2u 1.64E-3 2.09E-4 2.98 2.62E-5 2.99

q 1.42E-4 1.76E-5 3.01 2.19E-6 3.01

u 1.54E-5 9.66E-7 4.00 6.11E-8 3.98

Az Opu 3.77E-5 2.36E-6 3.99 L47E-7 4.00

3 (Az)? 02u 1.90E-4 1.17E-5 4.02 7.34E-7 3.99
(Az)? O3u 2.51E-4 1.56E-5 4.00 9.80E-7 4.00

q 1.48E-5 9.66E-7 3.93 6.11E-8 3.98

u 2.02E-7 5.51E-9 5.20 1.63E-10 5.07

Az dyu 1.65E-6 5.14E-8 5.00 1.61E-9 5.00

4 (Az)? 0%u 6.34E-6 2.04E-7 4.96 6.40E-9 4.99
(Az)? O3u 2.92E-5 9.47E-7 4.95 2.99E-8 4.99

(Az)* 9tu 3.03E-5 9.55E-7 4.98 2.99E-8 5.00

q 2.10E-7 5.51E-9 5.25 1.63E-10 5.07




Table 2
The convection diffusion equation a = 1, ¢ = 1. L errors and numerical order of accuracy,
measured at the center of each element, for Az™0," up, for 0 < m < k, and for gy,

k variable N =10 N =20 N =40
error error order error order
u 6.47E-4 1.25E-4 2.37 1.59E-5 2.97
1 Az dyu 9.61E-3 2.24E-3 2.10 5.56E-4 2.01
q 2.96E-3 1.20E-4 4.63 1.47E-5 3.02
u 1.42E-4 1.76E-5 3.02 2.18E-6 3.01
2 Az dyu 7.93E-4 1.04E-4 2.93 1.31E-5 2.99
(Az)? O2u 1.61E-3 2.09E-4 2.94 2.62E-5 3.00
q 1.26E-4 1.63E-5 2.94 2.12E-6 2.95
u 1.53E-5 9.75E-7 3.98 6.12E-8 3.99
Az Oyu 3.84E-5 2.34E-6 4.04 1.47E-7 3.99
3 (Az)?02u 1.89E-4 1.18E-5 4.00 7.36E-7 4.00
(Az)? O3u 2.52E-4 1.56E-5 4.01 9.81E-7 3.99
q 1.57E-5 9.93E-7 3.98 6.17E-8 4.01
u 2.04E-7 5.50E-9 5.22 1.64E-10 5.07
Az dyu 1.68E-6 5.19E-8 5.01 1.61E-9 5.01
4 (Az)? 02u 6.36E-6 2.05E-7 4.96 6.42E-8 5.00
(Az)? O3u 2.99E-5 9.57E-7 4.97 2.99E-8 5.00
(Az)* 9tu 2.94E-5 9.55E-7 4.95 3.00E-8 4.99
q 1.96E-7 5.35E-9 5.19 1.61E-10 5.06




Table 3
The convection dominated convection diffusion equation a = 0.01, ¢ = 1. Ly errors and numerical order of accuracy,
measured at the center of each element, for Az™09;" up for 0 < m < k, and for gy

k variable N =10 N =20 N =40
error error order error order
u 7.14E-3 9.30E-4 2.94 1.17E-4 2.98
1 Az dyu 6.04E-2 1.58E-2 1.93 4.02E-3 1.98
q 8.68E-4 1.09E-4 3.00 1.31E-5 3.05
u 9.59E-4 1.25E-4 2.94 1.58E-5 2.99
2 Az dyu 5.88E-3 7.55E-4 2.96 9.47E-5 3.00
(Az)? O2u 1.20E-2 1.50E-3 3.00 1.90E-4 2.98
q 8.99E-5 1.11E-5 3.01 1.10E-6 3.34
u 1.11E-4 7.07E-6 3.97 4.43E-7 4.00
Az Oyu 2.52E-4 1.71E-5 3.88 1.07E-6 4.00
3 (Az)?02u 1.37E-3 8.54E-5 4.00 5.33E-6 4.00
(Az)? O3u 1.75E-3 1.13E-4 3.95 7.11E-6 3.99
q 1.18E-5 7.28E-7 4.02 4.75E-8 3.94
u 1.85E-6 4.02E-8 5.53 1.19E-9 5.08
Az O,u 1.29E-5 3.76E-7 5.10 1.16E-8 5.01
4 (Az)? 0%u 5.19E-5 1.48E-6 5.13 4.65E-8 4.99
(Az)? O3u 2.21E-4 6.93E-6 4.99 2.17E-7 5.00
(Az)* 9tu 2.25E-4 6.89E-6 5.03 2.17E-7 4.99
q 3.58E-7 3.06E-9 6.87 5.05E-11 5.92




Table 4
The convection equation a = 0, ¢ = 1. Lo errors and numerical order of accuracy,
measured at the center of each element, for Az™0," up, for 0 < m < k.

k variable N =10 N =20 N =40
error error order error order
1 u 7.24E-3 9.46E-4 2.94 1.20E-4 2.98
Az Oru 6.09E-2 1.60E-2 1.92 4.09E-3 1.97
u 9.96E-4 1.28E-4 2.96 1.61E-5 2.99
2 Az O,u 6.00E-3 7.71E-4 2.96 9.67E-5 3.00
(Az)? 02u 1.23E-2 1.54E-3 3.00 1.94E-4 2.99
u 1.26E-4 7.50E-6 4.07 4.54E-7 4.05
3 Az d,u 1.63E-4 2.00E-5 3.03 1.07E-6 4.21
(Az)? 0Zu 1.52E-3 9.03E-5 4.07 5.45E-6 4.05
(Az)? O2u 1.35E-3 1.24E-4 3.45 7.19E-6 4.10
u 3.55E-6 8.59E-8 5.37 3.28E-10 8.03
Az Oru 1.89E-5 1.27E-7 7.22 1.54E-8 3.05
4 (Az)? 0Zu 8.49E-5 2.28E-6 5.22 2.33E-8 6.61
(Az)® d3u 2.36E-4 5.77E-6 5.36 2.34E-7 4.62
(Az)* 9tu 2.80E-4 8.93E-6 4.97 1.70E-7 5.72




Table 5
The heat equation a = 1, ¢ = 0. Lo errors and numerical order of accuracy,
measured at the center of each element, for Az™ 9" up, for 0 < m < k, and for g, using the central flux.

k variable N =10 N =20 N =40
error error order error order
u 3.59E-3 8.92E-4 2.01 2.25E-4 1.98
1 Az Oyu 2.10E-2 1.06E-2 0.98 5.31E-3 1.00
q 2.39E-3 6.19E-4 1.95 1.56E-4 1.99
u 6.91E-5 4.12E-6 4.07 2.57E-7 4.00
2 Az dyu 7.66E-4 1.03E-4 2.90 1.30E-5 2.98
(Az)? O2u 2.98E-4 1.68E-5 4.15 1.03E-6 4.02
q 6.52E-5 4.11E-6 3.99 2.57E-7 4.00
u 1.62E-5 1.01E-6 4.00 6.41E-8 3.98
Az Oyu 1.06E-4 1.32E-5 3.01 1.64E-6 3.00
3 (Az)? 02u 1.99E-4 1.22E-5 4.03 7.70E-7 3.99
(Az)? O3u 6.81E-4 8.68E-5 2.97 1.09E-5 2.99
q 1.54E-5 1.01E-6 3.93 6.41E-8 3.98
u 8.25E-8 1.31E-9 5.97 2.11E-11 5.96
Az dyu 1.62E-6 5.12E-8 4.98 1.60E-9 5.00
4 (Az)? 0%u 1.61E-6 2.41E-8 6.06 3.78E-10 6.00
(Az)? O3u 2.90E-5 9.46E-7 4.94 2.99E-8 4.99
(Az)* 9tu 5.23E-6 7.59E-8 6.11 1.18E-9 6.01
q 7.85E-8 1.31E-9 5.90 2.11E-11 5.96




6.4 The LDG methods for the multidimensional case

In this section, we consider the LDG methods for the following convection-
diffusion model problem

Oru+t D Oa, (filw) = D ai(u)de;u) =0 inQ, (6.24)
1<i<d 1<j<d
u(t = 0) = ug on (0,1)%, (6.25)

where Q = (0,T) x(0,1)4, with periodic boundary conditions. Essentially, the
one-dimensional case and the multidimensional case can be studied in exactly
the same way. However, there are two important differences that deserve
explicit discussion. The first is the treatment of the matrix of entries a;;(u),
which is assumed to be symmetric, semipositive definite and the introduction
of the variables gy, and the second is the treatment of arbitrary meshes.

To define the LDG method, we first notice that, since the matrix a;;(u) is
assumed to be symmetric and semipositive definite, there exists a symmetric
matrix b;;(u) such that

aij(u) = Y21 <p<q bie(u) bej(u). (6.26)

Then we define the new scalar variables ¢ = 3, ;4 bej(u) O, u and rewrite
the problem (6.24), (6.25) as follows: o
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Oru+ Y Oa, (filw) = D bi(u)ge) =0 in@Q, (6.27)

1<i<d 1<(<d
Q= Y Ouyge;(w)=0 L=1,.. .4, in Q, (6.28)
1<j<d
u(t =0) = ug on (0,1)%, (6.29)

where g j(u) = [ by j(s) ds. The LDG method is now obtained by discretiz-
ing the above equations by the Discontinuous Galerkin method.

We follow what was done in §2. So, we set w = (u,q)! = (u,q1, -, qq)’
and, for each i = 1,--- ,d, introduce the flux
t
hz(w) = (fz(u) - Zlgggd bil(u) qe, _glz‘(u)7 sy _gdi(u) ) - (6-30)

We consider triangulations of (0,1)?, Ta, = { K }, made of non-overlapping
polyhedra. We require that for any two elements K and K, KNK is either
a face e of both K and K’ with nonzero (d — 1)-Lebesgue measure | e |, or has
Hausdorff dimension less than d — 1. We denote by £a, the set of all faces e
of the border of K for all K € Ta,;. The diameter of K is denoted by Axg
and the maximum Axzg, for K € Ta, is denoted by Az. We require, for the
sake of simplicity, that the triangulations T, be regular, that is, there is a
constant independent of Az such that

A."EK
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where pg denotes the diameter of the maximum ball included in K.

We seek an approximation w, = (up, qpn)t = (un, gn1, -+ ,qna)’ to w such
that for each time ¢ € [0, T, each of the components of w;, belong to the finite
element space

Vi =VE={vel'((0,1)%): v|x € PH(K)VK € Ta,}, (6.31)

where P¥(K) denotes the space of polynomials of total degree at most k. In
order to determine the approximate solution wy, we proceed exactly as in
the one-dimensional case. This time, however, the integrals are made on each
element K of the triangulation 7a,. We obtain the following weak formulation
on each element K of the triangulation Ta,:

Y up € PHK) :
./K Ot up(x,t) v u(x) do — Z /K hiw(Wh(z,t)) O, vhu(x) dz

1<i<d

+/ B (WhymgKc) (2, 8) vp o (2) d T(z) = 0, (6.32)
OK

fort=1,---,d:
Y up. € PHK) :

/K Gne( 1) v g, (2 dz — 3 /K hj a0 (Wi (@, 2)) B, 01 g, () dt

1<j<d
+ /BK hy, (Wh,mox)(z, 1) vp.q, (x) d () = 0, (6.33)
Y vp, € PHK) :
/K up(z,0) vy i(z) de = /K uo(x) vp,i(z) de, (6.34)

where ngr denotes the outward unit Anorznal to tl{e elemeI}t KAat r € OK. It
remains to choose the numerical flux (hy, hg,, -+ , by, )t = h = h(wy, nor) (2, t).
As in the one-dimensional case, we require that the fluxes h be of the
form
fl(wha IlaK)(.’IJ) = fl(wh(mintK ’ t): wh(meth ; t)a l’laK),
where wy, ("% ) is the limit at = taken from the interior of K and wy, (z¢7x)
the limit at = from the exterior of K, and consider fluxes that:

(i) Are locally Lipschitz, conservative, that is,

fl(Wh(.’EintK) Wh(mEZtK);naK)fl(Wh(.’Eeth) Wh(fﬁth); *HBK) —

and consistent with the flux

> hingr,

1<i<d



(ii) Allow for a local resolution of each component of qj in terms of uy, only,
(iii) Reduce to an E-flux when a(-) = 0,
(iv) Enforce the L?-stability of the method.

Again, we write our numerical flux as the sum of a convective flux and a
diffusive flux:

B = lAlconv + 1Aldz'ff:
where the convective flux is given by
Beonu(w™, win) = (f(u™,ut;n),0),

where f(7f,u+; n) is any locally Lipschitz E-flux which is conservative and
consistent with the nonlinearity

Z fi(u) ni,

1<i<d
and the diffusive flux fldiff(w’,wﬂ n) is given by

(- > %Q_ﬂh = galwmni,-, = Y gia()ni )" — Caip [w),

1<i 6<d 1<i<d 1<i<d

where
0 ci2ciz--- cia

—¢12 0 0 -+ 0

Cdiff: —C13 O O O

¢4 0 0 --- 0
)

c1j =c(W,w is locally Lipschitz for j =1,--- ,d,

c1; =0 whena()=0 forj=1,---,d
We claim that this flux satisfies the properties (i) to (iv).
To prove that properties (i) to (iii) are satisfied is now a simple exercise.

To see that the property (iv) is satisfied, we first rewrite the flux h in the
following way:

(* Z %q_/m Z mni,“',* Z gid(“)ni)t*C[W]:

1<i,4<d 1<i<d 1<i<d
where
C11 Ci12 C13 " Cid
—C12 0 0 --- 0
C — —C13 O O e O
—ciqg 0 0 --- 0

c1r = [17](21§i§d w{#nz - f(u,uﬂn)),



where ¢;(u) = [* fi(s)ds. Since f(-,-;n) is an E-flux,

C11 = u1]2 / ( Z fz’(S)”i—f(Ui“Jr?n))ds
uT o <i<d

[
>0

)

and so the matrix C is semipositive definite. The property (iv) follows from
this fact and from the following result.

Proposition 28. (Stability) We have,

1 T
3 / uj (v, T)dx + / / |an(z,t) 2 dzdt + Orc([wh))
J(0.1)4 Jo J(o,1)4

<5 [ ubad
(0,1)4

where the quantity Or c([wpy]) is given by

T
/0 ) /[Wh(ﬂ%t)]tc (W (z,t)]d I (x)dt.

e€€ns ” €

We can also prove the following error estimate. We denote the integral over
(0,1)? of the sum of the squares of all the derivatives of order (k + 1) of u by

|U‘%+1-

Theorem 29. (Error estimate) Let e be the approxzimation error w — wy,.
Then we have, for arbitrary, regular grids,

T 1/2
{/ o) e+ [ |eq<w,t>|2dxdt+9m<[e]>}
(071)d 0 (071)d

< C(Ax)F,

where C = C(k,| u|k+1,|u|r42). In the purely hyperbolic case a;; = 0, the
constant C is of order (Am)1/2. In the purely parabolic case ¢ = 0, the constant
C is of order Ax for even values of k and of order 1 otherwise for Cartesian
products of uniform grids and for C identically zero provided that the local
spaces Q% are used instead of the spaces P*, where Q* is the space of tensor
products of one dimensional polynomials of degree k.

6.5 Extension to multidimensional systems

In this chapter, we have considered the so-called LDG methods for convection-
diffusion problems. For scalar problems in multidimensions, we have shown
that they are L2-stable and that in the linear case, they are of order k if



polynomials of order k& are used. We have also shown that this estimate is
sharp and have displayed the strong dependence of the order of convergence
of the LDG methods on the choice of the numerical fluxes.

The main advantage of these methods is their extremely high paralleliz-
ability and their high-order accuracy which render them suitable for computa-
tions of convection-dominated flows. Indeed, although the LDG method have
a large amount of degrees of freedom per element, and hence more compu-
tations per element are necessary, its extremely local domain of dependency
allows a very efficient parallelization that by far compensates for the extra
amount of local computations.

The LDG methods for multidimensional systems, like for example the
compressible Navier-Stokes equations and the equations of the hydrodynamic
model for semiconductor device simulation, can be easily defined by simply
applying the procedure described for the multidimensional scalar case to each
component of u. In practice, especially for viscous terms which are not sym-
metric but still semipositive definite, such as for the compressible Navier-
Stokes equations, we can use q = (0, u, ..., 0, u) as the auxiliary variables.
Although with this choice, the L2-stability result will not be available theo-
retically, this would not cause any problem in practical implementations.

6.6 Some numerical results

Next, we present some numerical results from the papers by Bassi and Rebay
[3] and Lomtev and Karniadakis [63].

e Smooth, steady state solutions. We start by displaying the conver-
gence of the method for a p-refinement done by Lomtev and Karniadakis [63].
In Figure 6.1, we can see how the maximum errors in density, momentum,
and energy decrease exponentially to zero as the degree k of the approximat-
ing polynomials increases while the grid is kept fixed; details about the exact
solution can be found in [63].

Now, let us consider the laminar, transonic flow around the NACA0012
airfoil at an angle of attack of ten degrees, free stream Mach number M =
0.8, and Reynolds number (based on the free stream velocity and the airfoil
chord) equal to 73; the wall temperature is set equal to the free stream
total temperature. Bassy and Rebay [3] have computed the solution of this
problem with polynomials of degree 1,2, and 3 and Lomtev and Karniadakis
[63] have tried the same test problem with polynomials of degree 2,4, and 6
in a mesh of 592 elements which is about four times less elements than the
mesh used by Bassi and Rebay [3]. In Figure 6.3, taken from [63], we display
the pressure and drag coefficient distributions computed by Bassi and Rebay
[3] with polynomials on degree 3 and the ones computed by Lomtev and
Karniadakis [63] computed with polynomials of degree 6. We can see good
agreement of both computations. In Figure 6.2, taken from [63], we see the
mesh and the Mach isolines obtained with polynomials of degree two and
four; note the improvement of the solution.



Next, we show a result from the paper by Bassi and Rebay [3]. We con-
sider the laminar, subsonic flow around the NACAQ0012 airfoil at an angle
of attack of zero degrees, free stream Mach number M = 0.5, and Reynolds
number equal to 5000. In figure 6.4, we can see the Mach isolines correspond-
ing to linear, quadratic, and cubic elements. In the figures 6.5, 6.6, and 6.7
details of the results with cubic elements are shown. Note how the boundary
layer is captured within a few layers of elements and how its separation at
the trailing edge of the airfoil has been clearly resolved. Bassi and Rebay [3]
report that these results are comparable to common structured and unstruc-
tured finite volume methods on much finer grids- a result consistent with the
computational results we have displayed in these notes.

Finally, we present a not-yet-published result kindly provided by Lomtev
and Karniadakis about the simulation of an expansion pipe flow. The smaller
cylinder has a diameter of 1 and the larger cylinder has a diameter of 2. In
Figure 6.8, we display the velocity profile and some streamlines for a Reynolds
number equal to 50 and Mach number 0.2. The computation was made with
polynomials of degree 5 and a mesh of 600 tetrahedra; of course the tetrahe-
dra have curved faces to accommodate the exact boundaries. In Figure 6.9,
we display a comparison between computational and experimental results. As
a function of the Reynolds number, two quantities are plotted. The first is the
distance between the step and the center of the vertex (lower branch) and the
second is the distance from the step to the separation point (upper branch).
The computational results are obtained by the method under consideration
with polynomials of degree 5 for the compressible Navier Stokes equations,
and by a standard Galerkin formulation in terms of velocity-pressure (NEK-
TAR), by Sherwin and Karniadakis [79], or in terms of velocity-vorticity
(IVVA), by Trujillo [87], for the incompressible Navier Stokes equations; re-
sults produced by the code called PRISM are also included, see Newmann
[69]. The experimental data was taken from Macagno and Hung [67]. The
agreement between computations and experiments is remarkable.

e Unsteady solutions. To end this chapter, we present the computation
of an unsteady solution by Lomtev and Karniadakis [63]. The test problem
is the classical problem of a flow around a cylinder in two space dimensions.
The Reynolds number is 10,000 and the Mach number 0.2.

In Figure 6.10, the streamlines are shown for a computation made on a
grid of 680 triangles (with curved sides fitting the cylinder) and polynomials
whose degree could vary from element to element; the maximum degree was
5. In Figure 6.11, details of the mesh and the density around the cylinder are
shown. Note how the method is able to capture the shear layer instability
observed experimentally. For more details, see [63].
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one (called “number of modes” in the picture).
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Fig. 6.4. Mach isolines around the NACA0012 airfoil, (Re = 5000, M = 0.5, zero
angle of attack) for the linear (top), quadratic (middle), and cubic (bottom) ele-
ments.
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Fig. 6.5. Pressure isolines around the NACAQ012 airfoil, (Re = 5000, M = 0.5,
zero angle of attack) for the for cubic elements without (top) and with (bottom)
the corresponding grid.



Fig. 6.6. Mach isolines around the leading edge of the NACAQ012 airfoil, (Re =
5000, M = 0.5, zero angle of attack) for the for cubic elements without (top) and
with (bottom) the corresponding grid.



Fig. 6.7. Mach isolines around the trailing edge of the NACA0012 airfoil, (Re =
5000, M = 0.5, zero angle of attack) for the for cubic elements without (top) and
with (bottom) the corresponding grid.



Fig. 6.8. Expansion pipe flow at Reynolds number 50 and Mach number 0.2. Veloc-
ity profile and streamlines computed with a mesh of 600 elements and polynomials
of degree 5.
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Fig. 6.10. Flow around a cylinder with Reynolds number 10, 000 and Mach number
0.2. Streamlines. A mesh of 680 elements was used with polynomials that could
change degree from element to element; the maximum degree was 5.



Fig. 6.11. Flow around a cylinder with Reynolds number 10, 000 and Mach number
0.2. Detail of the mesh (top) and density (bottom) around the cylinder.



6.7 Appendix: Proof of the L2-error estimates

Proof of Proposition 26 In this section, we prove the the nonlinear
stability result of Proposition 26. To do that, we first show how to obtain
the corresponding stability result for the exact solution and then mimic the
argument to obtain Proposition 26.

The continuous case as a model. We start by rewriting the equations
(6.10) and (6.11), in compact form. If in equations (6.10) and (6.11) we re-
place v, (x) and vy(z) by vy (z,t) and vy(z,t), respectively, add the resulting
equations, sum on j from 1 to N, and integrate in time from 0 to 7', we
obtain that

B(w,v) =0, V smooth v, (6.35)

where

B(w,v) = // Byu(w, t) vy (z,t) do dt (6.36)

// (2, 1) vy (2, 1) dz dt
// ) 0, v(a, 1) d d.

Note that if we use the fact that
h(w(z,t))" 9, w(z,t) = 0.((u) — g(u)q)

is a complete derivative, we see that

B(w,w):%/ err+// (z,t) dx dt
Jo

1

—5/0 ud () d, (6.37)

and that B(w,w) = 0, by (6.35). As a consequence, we immediately obtain
the following L.2-stability result:

1
5/0 ’I‘Td’I‘-I-// (z,t)dx dt = zfol ud(x) dx

This is the argument we have to mimic in order to prove Proposition 26.

The discrete case. Thus, we start by finding a compact form of equations
(6.13) and (6.14). If we replace Uh,u(z) and vp 4(2) by v (2, t) and vy 4(z, 1)
in the equations (6.13) and (6.14), add them up, sum on j from 1 to N and
integrate in time from 0 to T', we obtain

Bp(wp, vy) =0, (6.38)
Vvi(t) e VExVE Ve (0,T).



where

Bp(wp,vp) = / / Orup(z,t) vp (2, t) de dt

/ / qn(z,t) vp g (z,t) da dt

/0 wh ]+1/2( )[Vh(t)]]+1/2dt

1<j<N
/0

Next, we obtain an expression for By (wy, wy). It is contained in the following
result.

(6.39)

/ h(wy(z,t))! 8, vi(z,t) dz dt.

1<i<n i

Lemma 30. We have

1
By (wp,wp) = B

/1 up (z,T) dx
/ / 02 (2,1) de dt + Or.0([wa))

—5/0 uj (z,0) dz,

where O7 ¢ ([wp]) is defined in Proposition 26.
Next, since Bp(wp, wp) = 0, by (6.38), we get the equality

1 /1 T 1
—/ ui(rT) d.r+/ / q,zl(m,t) dz dt + Op ¢ ([wh]) = —/ 7ti(m,0) dx
2 Jo Jo Jo ' 2 /o

from which Proposition 26 easily follows since
%fol u? (2,0) dr < %fol ud () du,

by (6.12). It remains to prove Lemma 30.
Proof of Lemma (30). After setting v, = wy, in (6.39), we get

1/t Tl
B(wp,wp) = 5/ up (z,T) dx +/ / ¢ (z,t) dr dt
0 0o Jo
T 1
+ / @diss (t) dt — 5 /(; U?L ('T7 O) d.’I,‘,
J0 o
where ©@4;45(t) is given by

B O T o+ [ OG0 00w, |

1<<N I



It only remains to show that

T
| ety dt = G0
0
To do that, we proceed as follows. Since

h(wh (2, 1) 0 wa(w,t)b = (f(un) = v/a(un) qn ) O un — g(un) Oz qn

= 8, (/ f(s)ds — g(un) qn)
= 0, (p(un) — g(un) qn)
= Oy H(wa(z, ))

we get

Buins() = {[H(whu))]jm—B(wh>;+1/2(t>[Wh<t>]j+1/2}

1<G<N

= % {tHea) - b 1)1}

1<j<N j+1/2
Since, by the definition of H,

[H(wa(t))] = [ ¢(un(®))] = [g(un(t) an(t)]
= [o(un(t))] = [9(un(t)) 195 () — [an(t) ] g(un(?)),
and since (hy, hy)! = h, we get

Odzss()
-2 { ()] - [aun )10 - [ ()] s}

j+1/2

. {[qh<t>]g<uh><t>[qh<t>]ﬁq} |
<N Jt1/2

1<

This is the crucial step to obtain the L?-stability of the LDG methods, since
the above expression gives us key information about the form that the flux
h should have in order to make Ouiss(t) a nonnegative quantity and hence
enforce the L2-stability of the LDG methods. Thus, by taking h as in (6.16),
we get

Ouin(t) = Ty { ' (0]} R
J+1/2

and the result follows. This completes the proof.
This completes the proof of Proposition 26.



Proof of Theorem 27 In this section, we prove the error estimate of The-
orem 27 which holds for the linear case f'(-) = ¢ and a(-) = a. To do that,
we first show how to estimate the error between the solutions w, = (u,, g, )?,
v=1,2 of

Ot uy + 0z (f(uy) — Va(u,)g,) =0 in (0,T) x (0,1)
ql/_awg(uu) :0 in (07T) X (0:1)7
uy(t =0) =ug,, on(0,1).

3

Then, we mimic the argument in order to prove Theorem 27.
The continuous case as a model. By the definition of the form B(,-),
(6.36), we have, for v = 1,2,

B(w,,v) =0, V smooth v(t), Vte (0,T).

Since in this case, the form B(-,-) is bilinear, from the above equation we
obtain the so-called error equation:

B(e,v) =0, V smooth v(t), Vte (0,T),

where e = w; — wy. Now, from (6.37), we get that

I e 1.
B(e,e) = 5/ e2(z,T) d.?:-l—/ / ex(x,t)dudt — 5/ e2(x,0)dx,
Jo 0 Jo Jo

and since e, (z,0) = ug1(x) —up2(z) and B(e,e) = 0, by the error equation,
we immediately obtain the error estimate we sought:

%/01 e2(z,T) da:—}-/OT/Ol ei(azt) drdt = %/01 (g, () —U0,2(33))2 {:40)

To prove Theorem 27, we only need to obtain a discrete version of this argu-
ment.
The discrete case. Since,

Bh(w,“vh) =0, VVh(t) eV, xV,, Vte (O,T),
By (w,vy) =0, Vvip(t) € Vi x Vi, Vte(0,7T),

by (6.38) and by equations (6.10) and (6.11), respectively, we immediately
obtain our error equation:

By(e,vy) =0, Vvip(t) € Vi, x Vi, Vie (0,T),

where e = w — wy. Now, according to the continuous case argument, we
should consider next the quantity By (e, e); however, since e is not in the finite
element space, it is more convenient to consider By, (P (e), Py (e)), where

Pu(e(t)) = (Pr(eu(t)), Paleq(t)))



is the so-called L2-projection of e(t) into the finite element space V¥ x V}F.
The L2-projection of the function p into Vi, Py(p), is defined as the only
element of the finite element space V}, such that

Vop €Vp: /0 (Pu(p)(z) — p(z)) vp(z) dz = 0. (6.41)

Note that, in fact up(t = 0) = Py(ug), by (6.15).
Thus, by Lemma 30, we have

Bu(Pa(e).Pafe)) = 5 [ PhleT) @) P o

+/T/ | Paleq(®) (@) P dirdi

+Or.c([Pre)])

and since
Pr(eu(0)) = Pr(uo — un(0)) = Pr(uo) — un(0) =0,
by (6.15) and (6.41), and
By (Pu(e), Pr(e)) = Bi(Pu(e) — e, Pu(e)) = Bp(Pu(w) — w, Py(e)),

by the error equation, we get

/O\Ph(eu( \2d’13+// | Pr(eq(t )\2dmdt+9T7(;([Ph(e)])
By (Pn(w) —w, Ppy(e) (6.42)

N =

Note that since in our continuous model, the right-hand side is zero, we expect

the term B(Py(w) — w, Py(e)) to be small.
Estimating the right-hand side. To show that this is so, we must

suitably treat the term B(P,(w) — w, Py(e)).

Lemma 31. For p = P,(w) — w, we have

Bh(p7Ph(e)):_9TO // | Py(eq(t))(z) |* da dt

(Ax) 2k/ Cy(t
+ (Az)t /Oz {/ Ph(euu)(w)ﬁdx}l/zdu

[\DI»—A



where

+ 2
Ci(t) = QCi{(Mm«Hclﬁdz) lu(t) 2.,

C11

+ady (Ax)* P a2 }

Co(t) = VB e du{ Valen [ ult) s

+a (A2) 9 Ju(t) |y }

where the constants cx and dy, depend solely on k, and k=k except when the
grids are uniform and k is even, in which case k =k + 1.

Note how c¢;; appears in the denominator of C (t). However, Ci (t) remains
bounded as ¢y; goes to zero since the convective numerical flux is an E-flux.

To prove this result, we will need the following auxiliary lemmas. We
denote by |u \fi(kﬂ)u) the integral over J of the square of the (k + 1)-the
derivative of u.

Lemma 32. For p = P,(w) — w, we have

‘p_uj+1/2 | < ek (A'T)k+l/2 |u ‘H(Hl)(
k+1/2

Jit1/2)?

|[Puljsrj2| < ex (Az) || et (1,4 0)

‘Ej+1/2 | < e \/E(A'T)k+l/2 |u ‘H(E+2)(Jj+1/2)>

[[palirye | < e va(A) 2 ulgosn g, )

where Jj 1/ = I; U ljt1, the constant ¢y depends solely on k, and k=k
except when the grids are uniform and k is even, in which case k=k+1.

Proof. The two last inequalities follow from the first two and from the
fact that ¢ = \/a 0,u. The two first inequalities with k = k follow from the
definitions of P, and [p, ] and from the following estimate:

k4+1/2

1
\Ph(“)(-’ﬁﬁl/g) —Ujyip2| < 9k (Az) |u \H(k+1>(.1j+1/2)7

where the constant ¢; depends solely on k. This inequality follows from the
fact that

Ph(u)(mj'i+1/2) —Ujp1)2 = 0

when w is a polynomial of degree k£ and from a simple application of the
Bramble-Hilbert lemma.



To prove the inequalities in the case in which k=k+ 1, we only need to
show that if u is a polynomial of degree k + 1 for k even, then p, = 0. It is
clear that it is enough to show this equality for the particular choice

u(z) = ((z = j4172)/(Az/2))

To prove this, we recall that if P; denotes the Legendre polynomials of order

L:

D) [, Pu(s) Pa(s) ds = 52 Ot m,
(ii) Pp(£1) = (£1)%, and
(iii) Py(s) is a linear combination of odd (even) powers of s for odd (even)
values of /.

Since we are assuming that the grid is uniform, Az; = Az, = Az, we can
write, by (i), that

nwe = ¥ 2 / P ulay + g A0 s) ds | PUE),

Az /2
0<e<k

for z € I;. Hence, for our particular choice of u, we have that the value of
Dujt1/2 i8 given by

= Z 2ﬁ+1 P[(S) -{(S—l)k_H Py(1) + (s + )k+1 Py(— }dS
0<I<k

> 26;1k+1(>¢[1 Pu(s) s {(=1)17 P 4+ Po(=1)} ds

0<£,i<k

0<(,i<k 1

by (ii). When the factor {(—1)**17% 4+ (—~1)*} is different from zero, [k +1 —
i+ £| is even and since k is also even, |z — ¢] is odd. In this case, by (iii),

fil Py(s)stds =0,
and so Pujp1/2 = 0. This completes the proof.

We will also need the following result that follows from a simple scaling
argument.

Lemma 33. We have

[ Pa(P)]js1/2 | < di (Az) 2 || Pa(D) L2141 ,0)

where Jj1/2 = I; U Ij1 and the constant dy depends solely on k.



We are now ready to prove Lemma 31.

Proof of Lemma 31. To simplify the notation, let us set v, = Ppe. By
the definition of By(,-), we have

Br(p, vp) / / Otpu(z,t) vy (x, t) de dt

// ez, t) vp o(x,t) dx dt

/0 J+1/2(t) [Vh (t) ]j+1/2 dt

1<j<N
/0

/‘ h(p(z,t))! 8, vi(z,t) d dt

1<j<N

/0 J+1/2(t) [Vh(t)]j+1/2 dt,

1<j<N

by the definition of the L2-projection (6.41).
Now, recalling that p = (pu,p,)! and that v, = (vy,v,)t, we have

h(p)! [va(t)] = (cPa — c11 [pu]) [Vu]
+(—vap; — c12[pg]) [vu]
+(—vaPu + cia[pul) [vg]

=0, + 6, + 05.
By Lemmas 32 and 33, and writing J instead J; /5, we get

1611 < e (A2)* 2 Ju | g ) (| €

1051 < exdi (A2)* (a || isa ) (A)E "
+Valew | ulgren)) v llzz o

1651 < ex di (Az)* (Va]u yig ) (Az)F

+le|lu |Hk+1(.1))) lvg llL2()

) [oull,

This is the crucial step for obtaining our error estimates. Note that the treat-
ment of #; is very different than the treatment of 5 and #3. The reason for
this difference is that the upper bound for #; can be controlled by the form
Or1.c([vn])- we recall that v, = Pp(e). This is not the case for the upper
bound for 6, because O [vy] = 0 if ¢ = 0 nor it is the case for the upper
bound for 85 because O ¢ [vy] does not involve the jumps [vg]!



Thus, after a suitable application of Young’s inequality and simple alge-
braic manipulations, we get

1 . 1 .
B(p)! [va(0)] < 5 e [u ] + 7110y 32

1 .
+ Ch,s(t) (Az)** 4+ Cy 5 (1) (A2)* [|vu Nl 22(),

where
e+ e11)?
Cl’(](t) = Ci ( (|(167611) A’Ij + 4 ‘ (312 |2 di ) |’U,(t) ‘%‘I""*’l(.])
11
+4a CI2€ dlzc (AT)2 (k=k) ‘ U(t) |i]’5+1(.])’
and

Cos(t) = i dk{ Ve [u() e gy + a(A2) 0 Ju(t) [ yara) }
Since

Br(p,vi) < fy Sician | DD o (8 [VA() Ljsry2 | dt,

and since Jj /9 = I; U Ij11, the result follows after simple applications of
the Cauchy-Schwartz inequality. This completes the proof.

Conclusion. Combining the equation (6.42) with the estimate of Lemma
31, we easily obtain, after a simple application of Gronwall’s lemma,

1/2
{ Jo | Pulea(D) () 1> dx + [ [} | Paley(8))(@) | da dt + O, ([Pu(e)]) }

< (Az)* {«/ ety + [y Ca(t) dt}.

Theorem 27 follows easily from this inequality, Lemma 33, and from the
following simple approximation result:

2= Pu(p) [lL2(01) < gk (Az)" | plyoen o)

where g, depends solely on k.



7 The LDG method for other nonlinear parabolic
problems: Propagating surfaces

7.1 Introduction

In this chapter, we briefly show how to extend the LDG method to nonlinear
second-order parabolic equations. We consider the following model problem:

@1 + F(Dp,D*p) =0, in (0,1)? x (0,7)
p(,0) = po(z), V (z) € (0,1)%,

where we take periodic boundary conditions and assume that F'is nonincreas-
ing in the second variable. For the definition and properties of the wviscosity
solution of this and more general problems of this type, see the work by
Crandall, Ishii, and Lions [29].

For simplicity, we only consider the two-dimensional case, d = 2:

1 + F (2, Py Pazs Pays Pyy) = 0, in (0,1)% x (0,7, (7.1)
¢(x,0) = po(z), vV (z) € (0,1)%, (7.2)

with periodic boundary conditions. The material presented in this section is
based in the work of Hu and Shu [43].

3

7.2 The method

To idea to extend the LDG method to this case, is to rewrite the problem
(7.1), (7.2) for ¢ as follows:

pr = —F(u,v,p,q,r), in (0,1) x (0,7, (7.3)
p(z,0) = @o(x), Vze((0,1). (7.4)

where (u,v,p, gp,r) solves the following problem:

us + F(u,v,p,q,7)z =0, in (0,1)? x (0,7T), (7.5)
v+ H(u,v,p,q,7)y =0, in (0,1)2 x (0,7), (7.6)
p—u, =0, in (0,1)? x (0,7T), (7.7)
q—uy =0, in (0,1)% x (0,7), (7.8)
r—uv, =0, in (0,1)% x (0,7), (7.9)
u(,9,0) = (g0l (,y), ¥ (5,y) € (0,1)%, (7.10)
0.0 = (g)y(my), ¥ (5,y) € (0,1)2 (7.11)

Again, a straightforward application of the LDG method to the above prob-
lem produces an approximation (up,Vp, Pr,qn,"r) to (u,v,p,qp,r). We can
take each of the approximate solutions to be piecewise a polynomial of degree
k — 1. Then, we define the approximation ¢, to ¢ by solving the problem
(7.3), (7.4) in the manner described in the chapter on RKDG methods for
multidimensional Hamilton-Jacobi equations.



7.3 Computational results

We present a couple of numerical results that display the good performance
of the method. Our main purpose is to show that the method works well if
both quadrangles and triangles are used.

First test problem. We consider the problem of a propagating surface:

or —(1—eK) /1 +¢2 +¢2 =0, 0<z<1l,0<y<1 (7.12)
¢(z,y,0) =1 — X(cos(2mz — 1)) (cos(2my — 1))
where K is the mean curvature defined by
T 1+ 2 -2 T T + 1+ i
oo ¥ (1+ 03) — 202y 2y + Pyy( 90,): (713)

3
(1492 +¢2)>

and ¢ is a small constant. Periodic boundary condition is used.

This problem was studied in [72] by using the finite difference ENO
schemes.

We first use a uniform rectangular mesh of 50 x 50 elements and the local
Lax-Friedrichs flux. The results of ¢ = 0 (pure convection) and € = 0.1 are
presented in Fig. 7.1 and Fig. 7.2, respectively. Notice that the surface at
T = 0 is shifted downward by 0.35 in order to show the detail of the solution
at T'=0.3.

Next we use a triangulation shown in Fig. 7.3. We refine the mesh around
the center of domain where the solution develops discontinuous derivatives
(for the € = 0 case). There are 2146 triangles and 1128 nodes in this triangu-
lation. The solutions are displayed in Fig. 7.4 and Fig. 7.5, respectively, for
e = 0 (pure convection) and £ = 0.1. Notice that we again shift the solution
at T = 0.0 downward by 0.35 to show the detail of the solutions at later time.

Second test problem. The problem of a propagating surface on a unit
disk. The equation is the same as (7.12) in the previous example, but it is
solved on a unit disk 22 4+ y? < 1 with an initial condition

(2 +y2)>

¢(z,y,0) =sin ( 5

and a Neumann type boundary condition V¢ = 0.

It is difficult to use rectangular meshes for this problem. Instead we use
the triangulation shown in Fig. 7.6. Notice that we have again refined the
mesh near the center of the domain where the solution develops discontinuous
derivatives. There are 1792 triangles and 922 nodes in this triangulation. The
solutions with e = 0 are displayed in Fig. 7.7. Notice that the solution at t = 0
is shifted downward by 0.2 to show the detail of the solution at later time.

The solution with € = 0.1 are displayed in Fig. 7.8. Notice that the so-
lution at ¢ = 0 is again shifted downward by 0.2 to show the detail of the
solution at later time.
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Fig. 7.1. Propagating surfaces, rectangular mesh, ¢ = 0.

7.4 Concluding remarks

We have shown, briefly, how to extend the LDG method originally devised
for nonlinear convection-diffusion equations to second-order parabolic equa-
tions that have a viscosity solution. We have shown that the method works
well without slope limiting and that it works well in both quadrangles and

triangles.
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Fig. 7.3. Triangulation used for the propagating surfaces.
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