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ABSTRACT

The discontinuous Galerkin methods are locally conservative, high-order accurate, and robust methods
that can easily handle elements of arbitrary shapes, irregular triangulations with hanging nodes, and
polynomial approximations of different degrees in different elements. These properties, which render
them ideal for hp-adaptivity in domains of complex geometry, have brought them to the main stream of
computational fluid dynamics. In this paper, we study the properties of the DG methods as applied to
a wide variety of problems including linear, symmetric hyperbolic systems, the Euler equations of gas
dynamics, purely elliptic problems and the incompressible and compressible Navier-Stokes equations.
In each instance, we discuss the main properties of the methods, display the mechanisms that make
them work so well, and present numerical experiments showing their performance.

key words: computational fluid dynamics, discontinuous finite elements

1. Introduction

This paper is a short essay on discontinuous Galerkin (DG) methods for fluid dynamics.
The DG methods provide discontinuous approximations defined by using a Galerkin
method element by element, the connection between the values of the approximation in
different elements being established by the so-called numerical traces. Since the methods use
discontinuous approximations, they can easily handle elements of arbitrary shapes, irregular
triangulations with hanging nodes, and polynomial approximations of different degrees in
different elements. The methods are thus ideally suited for hp-adaptivity in domains of complex
geometry. Moreover, since they use a Galerkin method on each element, they can easily achieve
high-order accuracy when the exact solution is smooth and high-resolution when it is not.
Finally, when their numerical traces are properly chosen, they achieve a high degree of locality
(and hence a high degree of parallelizability for time-dependent hyperbolic problems), they
become locally conservative (a highly valued property in computational fluid dynamics), easy
to solve and, last but not least, very stable even in the presence of discontinuities or strong
gradients.
The first DG method was introduced by Reed and Hill (1973) for numerically solving the

neutron transport equation, a linear hyperbolic equation for a scalar variable. Lesaint and
Raviart (1974) recognized the relevance of the method and carried out its first theoretical
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2 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

analysis. Since then, the method has been slowly evolving as it was applied to different
problems. In the 90’s, the method was successfully extended to non-linear time-dependent
hyperbolic systems by Cockburn and Shu, see the review by Cockburn and Shu (2001), and
since then the method has known a remarkably vigorous development. The purpose of this
paper is to describe the method, discuss its main properties, uncover the mechanisms that
make it work so well, and show its performance in a variety of problems in fluid dynamics.
The paper is organized as follows. In Section 2, we consider the original DG method for

the neutron transport equation and its extension to linear, symmetric hyperbolic systems. In
Section 3, we consider DG methods for non-linear hyperbolic conservation laws. In section
4, DG methods for second-order elliptic problems and, finally, in Section 5, DG methods for
convection-dominated flows. Finally, we end in section 6 with some concluding remarks and
bibliographical notes.

2. Linear hyperbolic problems

In this section, we begin by considering the DG method for numerically solving the neutron
transport equation. It is in this framework that the idea of combining a Galerkin method on
each element together with a numerical trace linking the different elements was introduced. We
discuss the properties of local conservativity and local solvability of the method and show that
the jumps of the approximate solution across inter-element boundaries enhance the stability of
the method provided the numerical traces are properly defined. Moreover, we also show that
these jumps are related to the local residuals in a linear fashion. This establishes a strong link
between the DG method and the so-called stabilized methods. Finally, we extend the method
to linear symmetric hyperbolic systems.

2.1. The original DG method

We begin by considering the original DG method of Reed and Hill (1973) which was devised
to numerically solve the neutron transport equation,

σ u+∇ · (au) = f in Ω,

u = uD on ∂Ω−,

where σ is a positive number, a a constant vector and ∂Ω− the inflow boundary of Ω, that is,

∂Ω− = {x ∈ ∂Ω : a · n(x) < 0}.

Here n(x) is the outward unit normal at x.
To define the method, we proceed as follows. First, we find the weak formulation the Galerkin

procedure will be based upon. For each element K of the triangulation Th of the domain Ω,
we multiply the neutron transport equation by a test function v and integrate over K to get

σ (u, v)K − (u,a ·∇v)K + ⟨a · nK u, v⟩∂K = (f, v)K (1)

where nK is the outward unit normal to K,

(u, v)K =

∫

K
u v dx, and ⟨w, v⟩∂K =

∫

∂K
w v ds.
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DISCONTINUOUS GALERKIN METHODS 3

This is the weak formulation with which we define the approximation to u, uh. Thus, for each
element K ∈ Th, we take uh|K in the space of polynomials of degree k, Pk(K), and define it
by requiring that

σ (uh, v)K − (uh,a ·∇v)K + ⟨a · nK ûh, v⟩∂K = (f, v)K , (2)

for all v ∈ Pk(K). Here, the numerical trace ûh is given by

ûh(x) =

{
uD(x) for x ∈ ∂Ω−,

limϵ↓0 uh(x− ϵa) otherwise.
(3)

Note that if the vector a is perpendicular to the normal nK , the above numerical trace is not
well defined. However, the numerical trace of the flux a · nK ûh, usually called the numerical
flux , is actually well defined and is called the upwinding numerical flux. This completes the
definition of the DG method.
Now, let us discuss some of the properties of this method. First, note that the fact that

the numerical trace is well defined immediately implies that the DG method is a locally
conservative method. This means that for any set S which is the union of elements K ∈ Th,
we have

σ

∫

S
uh dx+

∫

∂S
a · nS ûh ds =

∫

S
f dx.

This equation is obtained by simply taking v = 1 in the weak formulation (2) for each K in S
and then adding the equations.
Next, note that the approximate solution can be efficiently computed in an element-by-

element fashion. Indeed, from the weak formulation (2) and the definition of the numerical
trace (3) , we have

(σ uh, v)K − (uh,a ·∇v)K + ⟨a · nK uh, v⟩∂K+
= (f, v)K − ⟨a · nK ûh, v⟩∂K−

,

where ∂K+ = ∂K \ ∂K−. Note that we have used the fact that, on ∂K+, ûh = uh|K . Since
the values of ûh on ∂K− do not involve values of uh|K , once uh is known on the neighboring
elements with edges on ∂K−, we can easily compute uh in K. An example is given in Fig. 1,
where we can see that the approximate solution uh on the elements of number i can only be
computed after the approximate solution on the neighboring elements of number j < i were
obtained. Note that the approximate solution uh on the elements with equal number can be
computed simultaneously.
Let us now address the more delicate issue of the relation of the numerical trace with the

stability of the method. First, let us establish a stability result for the exact solution of the
neutron transport equation; we then use the procedure as a guide for dealing with the stability
of the DG method. So, we take v = u in the weak formulation of the exact solution (1) and
obtain

σ (u, u)K +
1

2

〈
1,a · nK u2

〉
∂K

= (f, u)K .

Then, adding on the elements K, we get the equality

σ (u, u)Ω +
1

2

〈
1,a · nu2

〉
∂Ω+

= (f, u)Ω − 1

2

〈
1,a · nK u2

D

〉
∂Ω−

,
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Figure 1. Solving the neutron transport equation with the DG method.

from which we immediately obtain

|||u |||2Ω := σ (u, u)Ω +
〈
1, |a · n |u2

〉
∂Ω+

≤ 1

σ
(f, f)Ω +

〈
1, |a · nK |u2

D

〉
∂Ω−

. (4)

Now, let us mimic this procedure to obtain a stability result for the DG method. We take
v = uh in the weak formulation (2) and get

σ (uh, uh)K +
1

2

〈
1,a · nK û2

h

〉
∂K

+ΘK(uh) = (f, uh)K ,

where

ΘK(uh) = −1

2

〈
1,a · nK (ûh − uh)

2
〉
∂K

.

If we add on the triangles K, we get the equality

σ (uh, uh)Ω +
1

2

〈
1, |a · n | û2

h

〉
∂Ω+

+Θh(uh) = (f, uh)Ω +
1

2

〈
1, |a · n |u2

D

〉
∂Ω−

,

where
Θh(uh) =

∑

K∈Th

ΘK(uh),

from which we get

|||uh |||2Ω + 2Θh(uh) ≤
1

σ
(f, f)Ω +

〈
1, |a · nK |u2

D

〉
∂Ω−

. (5)

The stability of the DG scheme would follow from the above inequality if Θh(uh) ≥ 0. But
this is indeed the case since

Θh(uh) =
1

2

∑

K∈Th

〈
1, |a · nK | (ûh − uh)

2
〉
∂K−

≥ 0,

by the definition of the numerical trace (3).
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DISCONTINUOUS GALERKIN METHODS 5

Let us further elaborate on this effect. If we compare the stability results (4) and (5), we
immediately see that the stability of the DG method is enhanced by the presence of the term
2Θh(uh) containing the information about the size of the jumps of uh across inter-element
boundaries. This shows that the method exerts an automatic control on the size of the jumps.
Moreover, it turns out that the size of the jumps is related to the ability of the method to solve
the partial differential equation inside the element. To see this, note that the local residual ,

R = σ uh +∇ · (a uh)− f,

on the element K ∈ Th is strongly related to the jumps of the approximate solution on ∂K.
Indeed, a simple integration by parts in the weak formulation (2), reveals that

(R, v)K = ⟨a · nK (uh − ûh), v⟩∂K−
,

that is, that the local residual on K is an extension of the jumps of uh on ∂K−, uh − ûh, into
the element K. This means, roughly speaking, that if the quality of the approximation in the
element K is very low, as we expect it would be in the presence of discontinuities, then the
local residual, and hence the jumps across the inflow boundary of K, would be huge. This faux
pas of the method, however, is automatically compensated by an increase in the dissipation
of the scheme which results in the effective damping of the typical spurious oscillations that
appear around the discontinuities. If, on the other hand, the quality of the approximation in
the element is high, as we expect it to be for very smooth solutions, the damping mechanism
does not degrade the accuracy of the method since the jumps are properly related to the local
residuals. This can be actually rigorously justified, as we see in the next result by Johnson and
Pitkäranta (1986).

Theorem 2.1 (Error estimates for the original DG method) Consider the DG method
for the neutron transport equation. Suppose that the approximate solution is a polynomial of
degree k on each element K of a locally quasi-uniform grid Th. Then we have

|||u − uh |||Ω +Θ1/2
h (uh) +

(
∑

K∈Th

hK ∥a ·∇(u− uh) ∥2L2(K)

)1/2

≤ C |u |Hk+1(Ω) h
k+1/2,

where C is independent of u and h is the maximum of the diameters of the elements K, hK .

This rate of convergence was shown to be sharp by Peterson (1991). However, in some
instances, the order of convergence of k+1 can be obtained. This happens for Cartesian grids
and tensor-product polynomials of degree k, see Lesaint and Raviart (1974), and for some
structured meshes of triangles and polynomials of degree k, see Richter (1988). For a more
detailed discussion on the analysis of the method, see the review by Cockburn et al. (2000).

2.2. Linear, symmetric hyperbolic systems

The original DG method can be readily extended to linear, symmetric hyperbolic systems like
the wave equation or the Maxwell equations. To show how to do that, consider the model
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6 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

problem

ut +
N∑

i=1

Ai uxi +Bu = f , in Ω× (0, T ),

(An −M) (u− uD) = 0 on ∂Ω× [0, T ],

u(t = 0) = u0 on Ω,

where u is an Rm-valued function and Ai is a symmetric matrix for i = 1, . . . , N . Here An
denotes the matrix

∑N
i=1 ni Ai where n = (n1, . . . , nN ) is the unit outward normal at the

boundary of Ω. Friedrichs (1958) has shown that this problem has a unique solution under
some smoothness conditions on the data, under the positivity property

B +B∗ −
N∑

i=1

Ai
xi

≥ βI, β > 0,

and under the following properties on the boundary condition matrix M :

M +M∗ ≥ 0,

ker(An −M) + ker(An +M) = Rm on ∂Ω× [0, T ].

It is very easy to verify that the neutron transport equation is a particular case of the above
problem. Indeed, in that case we have that m = 1 and so the matrices Ai are real numbers;
moreover, we have that a = (A1, · · · , AN ) and that An = a · n. The boundary condition
matrix M is simply |a · n |, so that the boundary condition reads

(a · n− |a · n |)(u− uD) = 0 on ∂Ω× [0, T ],

that is,
u = uD on ∂Ω− × [0, T ].

To define a DG method, we proceed as follows. First, we obtain a mesh Th of the space-time
domain Ω×(0, T ). Then, for each elementK ∈ Th, we take uh|K to be in the finite dimensional
space V (K) and define it by requiring that

−(uh,vt)K −
N∑

i=1

(Ai uh,vxi)K +
〈
ÂnK uh,v

〉

∂K
+ ((B −

N∑

i=1

Ai
xi
)uh,v)K = (f ,v)K , (6)

for all v ∈ V (K). Here we have taken AnK = An + nt Id, where nK = (n, nt). Next, let us

define the numerical flux ÂnK u.
On the border of the space-time domain, we take

ÂnK uh =

⎧
⎪⎨

⎪⎩

u0 on Ω× {t = 0},
uh on Ω× {t = T },
1
2 An(uh + uD) + 1

2 M(uh − uD) on ∂Ω× (0, T ),

and on the inter-element boundaries,

ÂnK uh = AnK{uh}+
1

2
M [[uh]]nK ,
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DISCONTINUOUS GALERKIN METHODS 7

where

{uh} =
1

2
(u−

h + u+
h ), and [[uh]]nK = u−

h − u+
h where u±

h (x) = lim
ϵ↓0

uh(x± ϵnK).

It only remains to define the matrices M. The two main choices are M = |AnK |, which gives
rise to the so-called upwinding numerical flux, and M = ρ(AnK ) Id, where ρ(E) is the spectral
radius of the matrix E, which gives rise to the so-called Lax-Friedrichs numerical flux. This
completes the definition of the DG method.
Note how the numerical flux has three key properties: (i) it only depends on the traces of the

approximation on the boundary of the elements, (ii) it is consistent and, (iii) it is conservative.
Let us discuss these properties. The first renders the numerical fluxes easy to evaluate and
ensures a high degree of locality of the method.
The property of consistency ensures that we are approximating the correct exact solution.

It is satisfied if

ÂnK u = AnKu,

where u is the exact solution. Since [[u]]nK = 0, we do have that the numerical flux is consistent
in the inter-element boundaries. It is trivial to see it is consistent on Ω × {t = 0} and on
Ω× {t = T }. It remains to see what happens on ∂Ω× (0, T ). But we have

ÂnK u =
1

2
An(u+ uD) +

1

2
M(u− uD) = Anu+

1

2
(M −An)(u − uD) = Anu,

since the exact solution satisfies the boundary condition (M−An)(u−uD) = 0. The numerical
flux is thus consistent.
Conservativity is a property of the numerical flux in the inter-element boundaries that

ensures that the convective properties of the exact solution are properly captured. It is satisfied
if

̂AnK1
uh + ̂AnK2

uh = 0,

on the intersection of the boundaries of the elements K1 and K2. A glance to the definition of
the numerical fluxes will convince the reader that the numerical fluxes are indeed conservative.
As a consequence, for any set S which is the union of elements K ∈ Th, we have

∫

S
(B −

N∑

i=1

Ai
xi
)uh dx+

∫

∂S
ÂnS uh ds =

∫

S
f dx.

Next, let us address the issue of how to actually solve for the approximate solution. For
general numerical fluxes and general meshes, the above DG method gives rise to a matrix
equation involving all the degrees of freedom of the approximate solution. However, if the
upwinding flux is used on Ω × {tn} and on Ω × {tn+1}, it is possible to solve only on the
time slab Ω × [tn, tn+1], as proposed by Johnson et al. (1984). Unfortunately, this gives rise
to globally implicit method; see Fig. 2 (left). This difficulty can be avoided if suitably defined
meshes are used together with the upwinding numerical flux as shown by Lowrie et al. (1995),
Lowrie (1996), Lowrie et al. (1998) in the frame of non-linear hyperbolic systems, and later by
Yin et al. (2000) in the framework of elastodynamics, and by Falk and Richter (1999) in the
framework of linear symmetric hyperbolic systems. See Fig. 2 (right).
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Figure 2. Space-time meshes for the DG method. On each time slab Ω× (tm, tm+1), the resolution can
be globally implicit (left) or implicit only on each element (right).

Concerning the stability of the DG method, we can say that, just as for the original DG
method, the stability of the DG method for linear, symmetric systems is enhanced by the
jumps of the approximate solution. Indeed, a simple computation gives

J(u) = L(u),

where u is the exact solution and

J(u) = (σ u,u)Ω×(0,T ) +
1

2

〈
1,u2

〉
Ω×{t=0} +

1

2

〈
1,u2

〉
Ω×{t=T} +

1

2
⟨Mu,u⟩∂Ω×[0,T ] ,

and

L(u) = (f ,u)Ω×(0,T ) + ⟨u,u0⟩Ω×{t=0} +
1

2
⟨(M −An)uD,u⟩∂Ω×[0,T ] .

From the above equality, we can obtain an a priori estimate on the exact solution. A similar
computation for the DG method gives

J(uh) +Θh(uh) = L(uh),

where

Θh(uh) =
1

2

∑

e∈Ei
h

⟨ M [[uh]]ne , [[uh]]ne⟩e .

Here E i
h is the set of inter-element boundaries and ne any of the two normals to e. We thus see,

once more, that the stability of the method is enhanced through the jumps of the approximate
solution. We also see that the role of the matrix M is to control the amount and type of
dissipation of the scheme. Indeed, if M = 0, the DG method would not have dissipation at all.
Moreover, if we take the Lax-Friedrichs numerical scheme, the dissipation is isotropic whereas
if we take the upwinding scheme, anisotropic.
Let us end our discussion of the extension of the original DG method to linear, symmetric

systems by briefly stating that there is also a linear relationship between the local residual
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DISCONTINUOUS GALERKIN METHODS 9

and the jumps of the approximate solution. Moreover, the error estimate for the original DG
method can be proven to be of order k+1/2 for suitably defined grids and for smooth solutions
when polynomials of degree k are used. For details, see the work of Johnson et al. (1984) and
that of Falk and Richter (1999).
The method of lines for these systems has been studied by Cockburn et al. (2003) where it

was shown that, if uniform grids are used, a local post-processing of the approximate solution
of the DG method is of order 2 k+1 when polynomials of degree k are used. These results can
be easily extended to the DG methods under consideration. Let us illustrate this phenomenon
on the model problem,

ut + ux = 0, in (0, 2π)× (0, T ) u(x, 0) = sin(x) x ∈ (0, 2π), (7)

with periodic boundary conditions. In Table 2.2, we see that the order of convergence of both
the L2 and L∞ errors for P k elements is of (k + 1) before post-processing and of at least
(2k + 1) after post-processing, for k = 1, 2, 3, 4. In Fig. 3, we see the absolute errors before
and after post-processing for P 2. The post-processing of the approximate solution is obtained
by convolution with a kernel whose support is the union of a number of elements which only
depends on k; for details, see Cockburn et al. (2003).

1 2 3 4 5 6
x

10-12

10-10

10-8

10-6

10-4

10-2

|e
rro

r|

N=10

N=20

N=40

N=80

N=160

P2, before post-processing

1 2 3 4 5 6
x

10-12

10-10

10-8

10-6

10-4

10-2

|e
rro

r|

N=10

N=20

N=40

N=80

N=160

P2, after post-processing

Figure 3. The absolute value of the errors for P 2 with N=10, 20, 40, 40, 80 and 160 elements. Before
post-processing (left) and after post-processing (right). From Cockburn et al. (2003).

3. Non-linear hyperbolic problems

In this section, we consider DG methods for non-linear hyperbolic problems. We begin by
showing that to ensure convergence towards the physically relevant solution, usually called
the entropy solution, the DG methods need to use a numerical flux based on a suitable
approximate Riemann solver and that they must use either a shock-capturing term or a slope
limiter . We show that the shock-capturing DG methods are strongly related to stabilized
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Table I. The effect of post-processing the approximate solution. From Cockburn et al. (2003).

Before postprocessing After postprocessing
mesh L2 error order L∞ error order L2 error order L∞ error order

P 1

10 3.29E-02 — 5.81E-02 — 3.01E-02 — 4.22E-02 —
20 5.63E-03 2.55 1.06E-02 2.45 3.84E-03 2.97 5.44E-03 2.96
40 1.16E-03 2.28 2.89E-03 1.88 4.79E-04 3.00 6.78E-04 3.01
80 2.72E-04 2.09 8.08E-04 1.84 5.97E-05 3.00 8.45E-05 3.00
160 6.68E-05 2.03 2.13E-04 1.93 7.45E-06 3.00 1.05E-05 3.00
320 1.66E-05 2.01 5.45E-05 1.96 9.30E-07 3.00 1.32E-06 3.00

P 2

10 8.63E-04 — 2.86E-03 — 2.52E-04 — 3.57E-04 —
20 1.07E-04 3.01 3.69E-04 2.95 5.96E-06 5.40 8.41E-06 5.41
40 1.34E-05 3.00 4.63E-05 3.00 1.53E-07 5.29 2.16E-07 5.28
80 1.67E-06 3.00 5.78E-06 3.00 4.22E-09 5.18 5.97E-09 5.18
160 2.09E-07 3.00 7.23E-07 3.00 1.27E-10 5.06 1.80E-10 5.06

P 3

10 3.30E-05 — 9.59E-05 — 1.64E-05 — 2.31E-05 —
20 2.06E-06 4.00 6.07E-06 3.98 7.07E-08 7.85 1.00E-07 7.85
40 1.29E-07 4.00 3.80E-07 4.00 2.91E-10 7.92 4.15E-10 7.91
50 5.29E-08 4.00 1.56E-07 4.00 5.03E-11 7.87 7.24E-11 7.83

P 4

10 1.02E-06 — 2.30E-06 — 1.98E-06 — 2.81E-06 —
20 3.21E-08 5.00 7.30E-08 4.98 2.20E-09 9.82 3.11E-09 9.82
30 4.23E-09 5.00 9.66E-09 4.99 4.34E-11 9.68 6.66E-11 9.48

methods like the streamline diffusion method, and that slope-limiter DG methods can be
considered to be an extension of finite volume methods. We then show computational results
for some shock-capturing DG methods and describe and analyze the so-called Runge-Kutta
DG (RKDG) method, a slope-limiter DG method. We show how the different ingredients of the
method, namely, the DG space discretization, a special Runge-Kutta time discretization, and
a generalized slope limiter, are put together to ensure its stability. Finally, several numerical
experiments showing the performance of the RKDG methods are given. Particular attention
is devoted to the Euler equations of gas dynamics.

3.1. The main difficultly: The loss of well-posedness

Devising numerical methods for non-linear hyperbolic problems is dramatically different from
devising methods for linear symmetric hyperbolic problems. This is due to the fact that whereas
linear, symmetric hyperbolic problems are well posed, non-linear hyperbolic problems are not.
This difficulty was uncovered first in the framework of the Euler equations of gas dynamics;

indeed, this equation has several non-physical weak solutions. This happens because the
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Euler equations of gas dynamics are obtained from the compressible Navier-Stokes by simply
dropping from the equations the terms modeling viscosity and heat transfer effects. As a
consequence, the information concerning the second law of thermodynamics is completely lost
and discontinuous solutions which violate a such law suddenly appear. To devise numerical
schemes that are guaranteed to converge to the entropy solution and not to any other weak
solution constitutes the main difficulty of devising numerical methods for non-linear hyperbolic
problems.
This difficulty is present even in the simplest hyperbolic problem, namely, the scalar

hyperbolic conservation law

ut + (f(u))x = 0 in (0, 1)× (0, T ),

u(t = 0) = u0 on (0, 1),

with periodic boundary conditions. To illustrate this phenomenon, consider the well known
Engquist-Osher and Lax-Wendroff schemes and let us apply them to the above equation for
f(u) = u2/2 and u0(x) = 1 on (.4, .6) and u0(x) = 0 otherwise. In the Fig. 4, we see that the
approximation given by the Engquist-Osher scheme converges to the entropy solution whereas
that given by the Lax-Wendroff scheme does not. The Lax-Wendroff scheme lacks a mechanism
that ensures its convergence towards the entropy solution and, as a consequence, can converge
to a weak solution which is not the entropy solution.

0 0.25 0.5 0.75 1-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
u

uh

x
0 0.25 0.5 0.75 1-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u

uh

x

Figure 4. The entropy solution, u, and its approximation uh at time T = 1/2: Engquist–Osher
scheme (left) and Lax–Wendroff scheme (right). From Cockburn (2003a).

3.2. Tools for capturing the entropy solution: Heuristics

The DG methods try to ensure convergence towards the entropy solution by using the so-
called Riemann solvers and either a shock-capturing term or a slope limiter . To describe the
heuristics behind their construction, we consider the parabolic problem

ut + (f(u))x = ν uxx in (0, 1)× (0, T ),

u(t = 0) = u0 on (0, 1),

since it is known that as the viscosity coefficient ν goes to zero, the solution of the above
problem converges to the entropy solution of our scalar hyperbolic conservation law.
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12 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

Given this property, our strategy is to use the weak formulation of the parabolic problem to
see what are the tools that should be used to devise DG methods that converge to the entropy
solution. Thus, multiplying the parabolic equation by a test function ϕ, and integrating over
the space-time element K, we get

∫

∂K
(f(u)− ν ux, u) · (nx, nt)ϕ ds−

∫

K
(f(u)− ν ux, u) · (ϕx,ϕt) dx dt = 0.

Now, if we set FnK (u) = (f(u)− ν ux, u) · (nx, nt), on ∂K, we end up with
∫

∂K
FnK (u)ϕ ds−

∫

K
(f(u), u) · (ϕx,ϕt) +

∫

K
ν ux ϕx dx dt = 0.

Finally, noting that we have

ν ux(x, t) =

∫ x

x(t)
R(u)(y, t) dy.

where R(u) = ut + (f(u))x and x(t) is such that ux(x(t), t) = 0 (such a point always exists
because we have periodic boundary conditions), this suggests the so-called shock-capturing
DG methods:

∫

∂K
F̂nK (uh)ϕ ds−

∫

K
(f(uh), uh) · (ϕx,ϕt) +

∫

K
ν̂ (uh)xϕx dx dt = 0,

where F̂nK (uh) is the approximate Riemann solver and the last term is the shock-capturing
term.
The approximate Riemann solver is nothing but a numerical trace for the function FnK (u);

it only depends on the two traces of the function u, that is, F̂nK (uh) = ĝ(u−
h , u

+
h ). The main

examples are the following:

(i) The Godunov flux:

ĝG(a, b) =

{
mina≤u≤b g(u), if a ≤ b,

maxb≤u≤a g(u), otherwise.

(ii) The Engquist-Osher flux:

ĝEO(a, b) =

∫ b

0
min(g′(s), 0) ds+

∫ a

0
max(g′(s), 0) ds+ g(0);

(iii) The Lax-Friedrichs flux:

ĝLF (a, b) =
1

2
[g(a) + g(b)− C (b− a)], C = max

inf u0(x)≤s≤supu0(x)
|g′(s)|.

The shock-capturing term has the same structure than the corresponding term for the
parabolic equation and typically has a viscosity coefficient ν̂ that depends on the residual as
follows:

ν̂ = δα
|R(uh) |

| (uh)x |+ ϵ
,
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DISCONTINUOUS GALERKIN METHODS 13

where the auxiliary parameter δ is usually taken to be of the order of the diameter of K and α
is a parameter usually bigger than one and smaller than 2. The purpose of the small number ϵ is
to prevent a division by zero when (uh)x = 0. The shock-capturing DG methods considered by
Jaffré et al. (1995) and by Cockburn and Gremaud (1996) for the scalar hyperbolic conservation
law in several space dimensions are of this form.
The DG methods that do not have a shock-capturing term must have a slope limiter in order

to ensure that the information about the entropy solution is incorporated into the scheme. In
fact, as we argue next, the slope limiters and the shock-capturing terms have exactly the same
origin. The DG methods with a slope limiter are obtained as follows. Instead of keeping the
shock-capturing term in a single equation, that term is split-off in a way typical of operator
splitting techniques. Take K = I× (tn, tn+1). To march from time tn to tn+1, we first compute

un+1/2
h from un

h by using the scheme
∫

∂K
(f̂h, ûh) · (nx, nt)ϕ ds−

∫

K
(f(uh), uh) · (ϕx,ϕt) dx dt = 0,

for some numerical flux (f̂h, ûh) · (nx, nt), and then, compute un+1
h from un+1/2

h by using
∫

I
(un+1

h − un+1/2
h )ϕ dx− (tn+1 − tn)

∫

I
ν (un+1/2

h )x ϕx dx = 0.

We thus see that the function un+1
h captures the information contained in the shock-capturing

term. The link between this second step and the so-called slope limiters can be easily
established if we realize that, if we write,

un+1
h = ΛΠhu

n+1/2
h ,

then, the operator ΛΠh is actually a (generalized) slope limiter.
Let us illustrate this fact on a simple case. Consider the piecewise linear function vh and set

uh = ΛΠ(vh), that is, uh is the piecewise linear function defined by
∫

I
uh ϕ dx =

∫

I
vh ϕ dx−

∫

I
slc (vh)x ϕx dx,

where slc := (tn+1 − tn) ν, for all linear functions ϕ. If we write

vh(x) = vj + (x− xj) vx,j ,

on each interval Ij , and take

slc =

{
0 if vx,j = 0,
h2
j

12

(
1−m (1, 2

hj

vj−vj−1

vx,j
, 2
hj

vj+1−vj

vx,j
)
)

otherwise,

where the minmod function m is defined by

m (a1, a2, a3) =

{
s min1≤n≤3 | an | if s = sign(a1) = sign(a2) = sign(a3),

0 otherwise,

we obtain that
uj = vj , and ux,j = m(vx,j , vj − vj−1, vj+1 − vj)
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14 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

We thus see that the mean of uh coincides with that of vh. Moreover, since, by definition of
the function m, we have

|ux,j | ≤ | vx,j |,

it is reasonable to call the operator ΛΠ a slope limiter. This slope limiter is due to Osher
(1984); see Fig. 5. It is less restrictive than the limiters originally considered by van Leer
(1974) and by van Leer (1979).

Figure 5. The ΛΠO
h limiter: An example. Displayed are the local means of uh (thick line), the linear

function uh in the element of the middle before limiting (dotted line) and the resulting function after
limiting (solid line).

Next, we show computational results for some shock-capturing DG methods and then study
the main example of DG methods using slope limiters, namely, the Runge-Kutta discontinuous
Galerkin (RKDG) methods.

3.3. Shock-capturing DG methods

There are only two theoretical results concerning shock-capturing methods, and those concern
the scalar hyperbolic conservation law. The first is by Jaffré et al. (1995), who proved
convergence to the entropy solution. The second is by Cockburn and Gremaud (1996), who
showed that this convergence takes place at rate of at least h1/4 in the L∞(0, T ;L1(RN ))-norm;
a posteriori error estimates were also proven which have not yet been exploited for adaptivity
purposes.
Space-time DG methods for non-linear hyperbolic conservation laws were considered by

Lowrie et al. (1995), Lowrie (1996) and Lowrie et al. (1998). More recently, DG shock-capturing
methods have been considered by Hartmann and Houston (2002a) and Hartmann and Houston
(2002b) for adaptively solving for values of linear functionals of solutions of steady state non-
linear hyperbolic conservation laws with remarkable success; see also Süli and Houston (2002).
To give an example, let us consider the Burger’s equation

ut +
1

2

(
u2
)
x
= 0, in Ω× (0, T ),
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DISCONTINUOUS GALERKIN METHODS 15

where Ω = (0, 3) and T = 2, subject to the initial condition

u(x, 0) =

⎧
⎨

⎩

2 sin2(πx) , 0 ≤ x ≤ 1 ,
sin2(πx) , 1 ≤ x ≤ 2 ,
0 , 2 ≤ x ≤ 3 ,

and boundary condition u(0, t) = 0, for t ∈ [0, T ]; see Fig. 6. The exact solution develops
two shocks which eventually merge. The functional of interest J(·) is the value of the solution
before these two shocks collapse into each other. We thus take,

J(u) = u(2.3, 1.5) = 0.664442403975254670;

see Fig. 6.
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x1
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interest

Figure 6. Burgers’ problem: Initial condition (left) and isolines for the exact solution (right). From
Süli and Houston (2002)

In Fig. 7, we compare the performance of the h– and hp–mesh refinement algorithms for this
problem. Again, we observe exponential convergence of the error in the computed functional
using hp–refinement; on the linear–log scale, the convergence line is straight. On the final mesh
the true error between J(u) and J(uDG) using hp–refinement is almost 5 orders of magnitude
smaller than the corresponding quantity when h–refinement is employed alone. Furthermore,
in Fig. 7, we observe that the hp–refinement algorithm also outperforms the h–refinement
strategy, when comparing the error in the computed target functional with respect to the
computational cost. Indeed, Fig. 8 clearly shows that for the hp–DGFEM the cost per degree
of freedom when hp–refinement is employed is comparable to that of using h–refinement.
Finally, in Fig. 9 we show the primal mesh after 11 adaptive hp–mesh refinements. Here,

we see that the h–mesh has been refined in the region upstream of the point of interest,
thereby isolating the smooth region of u from the two interacting shock waves; this renders
the subsequent p–refinement in this region much more effective.
Now, let us consider the problem of computing the drag coefficient, J(u), of the NACA0012

airfoil for two flows. The first is sub-sonic and is obtained by imposing on the outer boundary
a Mach 0.5 flow at a zero angle of attack, and a far-field density ρ = 1 and pressure p = 1. In
this case, no shock-capturing term is used since the solution is very smooth. The second flow is
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Figure 7. Burgers’ equation. Comparison between h– and hp–adaptive mesh refinement: |J(u) −
J(uDG)| versus number of degrees of freedom (left); |J(u)−J(uDG)| versus computational time (right).

From Süli and Houston (2002)
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Figure 8. Burgers’ equation. Computational time versus number of degrees of freedom

obtained by imposing this time a Mach 0.8 flow and an angle of attack α = 1.25o. Since in this
case, the solution presents a shock, the shock-capturing term is turned on. In Fig. 10, we see
how easily the DG method handles meshes with hanging nodes and with different polynomials
degrees in different elements. In Fig. 11, we also see that hp-adaptivity is more efficient than
h-adaptivity even in the presence of shocks.

Also recently, van der Vegt and van der Ven (2002b) (see also the paper by van der
Ven and van der Vegt (2002)) have considered shock-capturing DG methods for the time-
dependent compressible Euler equations of gas dynamics. Accordingly, they have used space-
time elements, which allow them to easily deal with moving bodies. Their shock-capturing
term uses both the local residuals as well as the jumps which, as we have seen, are also related
to the local residuals; for details, see van der Vegt and van der Ven (2002b). They have shown
that this method can be efficiently used with mesh adaptation. As an example, we show in
Fig. 12, the approximation of the method with mesh adaptation on a time-dependent Mach
0.8 flow around an oscillating NACA 0012 airfoil. The pitching angle is between −0.5o and
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Figure 9. Burgers’ equation. h– and hp–meshes after 11 refinements, with 999 elements and 26020
degrees of freedom; here, |J(u)− J(uDG)| = 1.010 × 10−7. From Süli and Houston (2002)
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Figure 10. Flow around a NACA0012 airfoil: Sub-sonic (left) and supersonic (right). The actual hp–
meshes after 10 refinements. For the sub-sonic flow, the hp–mesh has 325 elements, 45008 degrees of
freedom, and produces an error |J(u) − J(uh)| = 3.756 × 10−7. For the transonic flow, it has 783
elements, 69956 degrees of freedom, and produces an error of |J(u)− J(uDG)| = 1.311 × 10−4. From

Süli and Houston (2002).

4.5o, and the circular frequency is ω = π/10. A more spectacular example is shown in Figs.
13, 14 and 15, where their DG method is applied to helicopter flight.

3.4. The RKDG methods

There are two main differences between the RKDG methods and the shock-capturing DG
methods. The first is that the RKDG methods use an explicit Runge-Kutta scheme to evolve
the approximate solution in time; this renders them very easy to implement and much more
parallelizable. The second is that whereas the shock-capturing DG methods converge to the
entropy solution thanks to the inclusion in their weak formulation of the shock-capturing
terms, the RKDG achieve this by using a slope limiters. Although these two techniques have
the very same origin, as we showed in the previous subsection, the use of the slope limiters
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Figure 11. Flow around a NACA0012 airfoil: Sub-sonic (left) and supersonic (right). Comparison
between h– and hp–adaptive mesh refinement. From Süli and Houston (2002).

results in sharper approximations to the shocks and contact discontinuities.
In this subsection, we consider the Runge-Kutta discontinuous Galerkin (RKDG) methods

for non-linear hyperbolic systems in divergence form,

ut +
N∑

i=1

(f i(u))xi = 0.

To define the RKDG methods, we proceed in three steps. In the first, the conservation law is
discretized in space by using a discontinuous Galerkin (DG) method. After discretization, the
system of ordinary differential equations d

dtuh = L(uh) is obtained. Since the approximation
is discontinuous, the so-called mass matrix is block diagonal and hence, easily invertible. In
the second step, an explicit strong stability preserving (SSP) Runge-Kutta method is used to
march in time. The distinctive feature of the SSP-RK methods is that their stability follows
from the stability of the forward Euler step. Finally, in the third step, a generalized slope
limiter ΛΠh, is introduced in order to enforce the above mentioned stability property of the
Euler forward step.
In what follows, we give a detailed construction of the RKDG method for the model problem

of the scalar conservation law in one space dimension. Then, we briefly discuss the extension
of the method to hyperbolic systems in several space dimensions and present numerical results
showing the performance of the method.

3.5. RKDG methods for scalar hyperbolic non-linear conservation laws

Let us define the RKDG method for the Cauchy problem for the scalar hyperbolic non-linear
conservation law

ut + f(u)x = 0, in (0, 1)× (0, T ), u(x, 0) = u0(x), ∀ x ∈ (0, 1), (8)

with periodic boundary conditions.

3.5.1. The DG space discretization Let us triangulate the domain [0, 1) with the partition
Th = { Ij }Ni=1 where Ij = (xj−1/2, xj+1/2). The initial data uh(·, 0)|Ij is simply the L2-
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DISCONTINUOUS GALERKIN METHODS 19

Figure 12. Adapted mesh around oscillating NACA 0012 airfoil, contours of density, and pressure
coefficient Cp on the airfoil surface for α = 0.23◦ (pitching upward) and α = 4.0◦ (pitching downward)

(M∞ = 0.8, ω = π/10, α = 2o ± 2.5o). From van der Vegt and van der Ven (2002b).
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Figure 13. Four-dimensional simulation of the Operational Loads Survey rotor in forward flight. Grid
cross-section at z = 0 (top) and vorticity levels (bottom) on adapted grid at azimuth ψ = 140o. The
tip vortex of the blade in the upper corner lies above the z = 0 plane. (Mtip = 0.664, advance ratio

0.164, and thrust 0.0054, flow is coming from the left). From van der Ven and Boelens (2003).
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DISCONTINUOUS GALERKIN METHODS 21

Figure 14. Adapted Caradonna-Tung rotor grid (135.280 elements) with periodic plane at z = 0 and
horizontal plane at x = −3.6, showing the refined regions at the vortex locations (top). Vorticity
contours (|ω| = 0.175) for the Caradonna-Tung rotor in hover, collective pitch 12o, and Mtip = 0.61

(bottom). From Boelens et al. (2002)
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Figure 15. Four-dimensional simulation of the Operational Loads Survey rotor in forward flight. Full
space grid of adapted grid in intermediate time level at azimuth ψ = 151.25o . This intermediate time
level has completely been generated by local grid refinement in time. (Mtip = 0.664, advance ratio

0.164, and thrust 0.0054). From van der Ven and Boelens (2003).

projection of u0|Ij on the space Pk(Ij), that is, it is the only element of Pk(Ij) such that

(uh(·, 0), v)Ij = (u0, v)Ij (9)

for all v ∈ Pk(Ij). For t > 0, we take the approximate solution uh(·, t)Ij to be the element of
Pk(Ij) such that

(uh(·, t))t, v)Ij − (f(uh(·, t)), vx)Ij +
〈
f̂(uh(·, t))nIj , v

〉

∂Ij
= 0, (10)

for all v ∈ Pk(Ij), where f̂(uh) is the numerical flux which can be taken as indicated in the
previous subsection. This completes the definition of the DG space discretization.
Note that, thanks to the fact that the approximations are discontinuous, the mass matrix

is block diagonal, each block being of order (k + 1). Moreover, this matrix can be rendered
diagonal if we use (properly mapped) Legendre polynomials. Indeed, if, for x ∈ Ij , we write

uh(x, t) =
k∑

ℓ=0

uℓ
j ϕ

j
ℓ(x), ϕj

ℓ(x) = Pℓ(2 (x− xj)/∆j), ∆j = xj+1/2 − xj−1/2,

then, the initial condition (9) becomes

uℓ
j(0) =

(2ℓ+ 1)

∆j

∫

Ij

u0(x)ϕ
j
ℓ(x) dx, ℓ = 0, . . . , k,
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and the weak formulation (10) takes the following simple form:

d

dt
uℓ
j(t) +

(2ℓ+ 1)

∆j

(
−(f(uh(·, t)) (ϕj

ℓ)x)Ij +
〈
f̂(uh(·, t)),ϕj

ℓ

〉

∂Ij

)
= 0,

for ℓ = 0, . . . , k.
Note that when f(u) = u, the system of equations for the degrees of freedom are:

d

dt
uℓ
j(t) +

(2ℓ+ 1)

∆j

(
ℓ−1∑

m=0

(−1)ℓ+mum
j +

k∑

m=ℓ

um
j −

k∑

m=0

(−1)ℓum
j−1

)
= 0,

for ℓ = 0, . . . , k.
Let us verify that the approximate solution remains bounded in the L2-norm. It is easy to

see that the exact solution satisfies

d

dt
∥ u(·, t) ∥2L2(0,1) = 0.

The approximate solution satisfies, instead

d

dt
∥ uh(·, t) ∥2L2(0,1) +Θh(uh(·, t)) = 0,

where

Θh(v) =
N∑

i=1

(∫ u+
h

u−
h

(f(s)− f̂(u−
h , u

+
h )) ds

)
(xi+1/2) ≥ 0.

For details, see Jiang and Shu (1994); see also Cockburn and Gremaud (1996).

3.5.2. The SSP-RK time discretization We discretize in time by using the following K-stage
SSP-RK method:

1. Set u(0)
h = un

h;
2. For i = 1, ...,K compute the intermediate functions:

u(i)
h =

i−1∑

l=0

αil w
il
h , wil

h = u(l)
h +

βil

αil
∆tnLh(u

(l)
h );

3. Set un+1
h = uK

h .

The method is called SSP if

(i) If βil ̸= 0 then αil ̸= 0,
(ii) αil ≥ 0,
(iii)

∑i−1
l=0 αil = 1.

These methods were originally called TVD-RK methods as they preserved the TVD property
of numerical schemes for non-linear conservation laws. They were introduced by Shu (1988)
and by Shu and Osher (1988) . Examples are displayed in Table II; more can be found in the
paper by Gottlieb and Shu (1998). See also the recent review by Gottlieb et al. (2000).
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Table II. TVD-RK time discretization parameters.

order αil βil max{βil/αil}

2 1 1 1
1
2

1
2 0 1

2

1 1

3 3
4

1
4 0 1

4 1

1
3 0 2

3 0 0 2
3

The main property of these methods is that their stability follows from the stability of the

forward Euler steps wil
h = u(l)

h + βil

αil
∆tn. Indeed, assume that each of the Euler steps satisfy

the following stability property ∣∣wil
h

∣∣ ≤
∣∣∣ u(l)

h

∣∣∣ ,

for some semi-norm | · |. Then
∣∣∣u(i)

h

∣∣∣ =

∣∣∣∣∣

i−1∑

l=0

αil w
il
h

∣∣∣∣∣ ,

≤
i−1∑

l=0

αil

∣∣wil
h

∣∣ , by the positivity property (ii),

≤
i−1∑

l=0

αil

∣∣∣u(l)
h

∣∣∣ , by the stability assumption,

≤ max
0≤l≤i−1

∣∣∣u(l)
h

∣∣∣ , by the consistency property (iii).

It is clear now that that the inequality |un
h | ≤ |Phu0 |, ∀n ≥ 0, follows from the above

inequality by a simple induction argument.
It is well known that the L2-stability of the method (in the linear case) is necessary in order

to prevent the growth of the round-off errors. Such a stability property is usually achieved
under a condition of the form

| c |∆t

∆x
≤ CFLL2 .

In Table III, we display the numbers CFLL2 for a wide variety of time and space discretizations;
they have been obtained by numerically. The symbol ‘⋆’ indicates that the method is unstable
when the ratio ∆t/∆x is held constant. For DG discretizations using polynomials of degree k
and a k + 1 stage RK method of order k + 1 (which give rise to an (k + 1)-th order accurate
method), we can take

CFLL2 =
1

2k + 1
.
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Table III. The CFLL2 numbers for polynomials of degree k and RK methods of order ν.

k 0 1 2 3 4 5 6 7 8

ν = 1 1.000 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
ν = 2 1.000 0.333 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
ν = 3 1.256 0.409 0.209 0.130 0.089 0.066 0.051 0.040 0.033
ν = 4 1.392 0.464 0.235 0.145 0.100 0.073 0.056 0.045 0.037
ν = 5 1.608 0.534 0.271 0.167 0.115 0.085 0.065 0.052 0.042
ν = 6 1.776 0.592 0.300 0.185 0.127 0.093 0.072 0.057 0.047
ν = 7 1.977 0.659 0.333 0.206 0.142 0.104 0.080 0.064 0.052
ν = 8 2.156 0.718 0.364 0.225 0.154 0.114 0.087 0.070 0.057
ν = 9 2.350 0.783 0.396 0.245 0.168 0.124 0.095 0.076 0.062
ν = 10 2.534 0.844 0.428 0.264 0.182 0.134 0.103 0.082 0.067
ν = 11 2.725 0.908 0.460 0.284 0.195 0.144 0.111 0.088 0.072
ν = 12 2.911 0.970 0.491 0.303 0.209 0.153 0.118 0.094 0.077

The issue of the stability of the Euler forward step wh = uh + δ∆tn L(uh), where δ
is a positive parameter, is by far more delicate. Indeed, from Table III, we see that this
step is always unstable in L2. On the other hand, when the method uses piecewise-constant
approximations, then the forward Euler step is nothing but a monotone scheme which are total
variation diminishing (TVD), that is,

|wh |TV (0,1) ≤ |uh |TV (0,1),

where
|uh |TV (0,1) ≡

∑

1≤j≤N

|uj+1 − uj |,

is the total variation of uh. Hence, if we use piecewise polynomial approximations, it is
reasonable to try to see if the Euler forward step under consideration is stable for the following
seminorm

|uh |TV M(0,1) ≡
∑

1≤j≤N

|uj+1 − uj |,

where uj is the mean of uh in the interval Ij . Thus, this semi-norm is the total variation of
the local means of uh. The following result give the conditions for the Euler forward step to
be non-expansive with respect to this semi-norm.

Proposition 3.1 (The sign conditions) We have

|wh |TV M(0,1) ≤ |uh |TVM(0,1),

provided that

sign (u+
j+1/2 − u+

j−1/2) = sign (u0
j+1 − u0

j),

sign (u−
j+1/2 − u−

j−1/2) = sign (u0
j − u0

j−1),
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and provided that

| δ |
(
| f̂(a, ·) |Lip

∆j+1
+

| f̂(·, b) |Lip

∆j

)
≤ 1.

This result states that a discretization in space by the DG method and an SSP-RK time
discretization of the resulting system of ordinary differential equations does not guarantee
a non-expansive total variation in the local means. Fortunately, the sign conditions can be
enforced by a generalized slope limiter, ΛΠh.

3.5.3. The generalized slope limiter Next, we construct the operator ΛΠh; set uh = ΛΠhvh.
To do that, let us denote by v1h the L2-projection of vh into the space of piecewise-linear
functions. We then define uh = ΛΠh(vh) on the interval Ij , as follows:

(i) Compute

u−
j+1/2 = vj +m ( v−j+1/2 − vj , vj − vj−1, vj+1 − vj)

u+
j−1/2 = vj −m ( vj − v+j−1/2, vj − vj−1, vj+1 − vj).

(ii) If u−
j+1/2 = v−j+1/2 and u+

j−1/2 = v+j−1/2, set uh|Ij = vh|Ij ,
(iii) If not, take uh|Ij equal to ΛΠO

h (v
1
h).

This generalized slope limiter does not degrade the accuracy of the scheme, except at critical
points. In order to avoid that, we replace the minmod function m by the corrected minmod
function mj defined by

mj (a1, a2, a3) =

{
a1 if |a1| ≤ M∆2

j ,

m (a1, a2, a3) otherwise,

where M is an upper bound of the absolute value of the second-order derivative of the solution
at local extrema.
We have the following result.

Proposition 3.2 (The TVBM property) Suppose that for j = 1, . . . , N

| δ |
(
| f̂(a, ·) |Lip

∆j+1
+

| f̂(·, b) |Lip

∆j

)
≤ 1/2.

Then, if uh = ΛΠh,Mvh, then

|wh |TV M(0,1) ≤ |uh |TV M(0,1) + CM ∆x.

Note that the condition on δ is independent of the form that the approximate solution has in
space.

3.5.4. The non-linear stability of the RKDG method For this method, we have the following
stability result.
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Theorem 3.3 (TVBM-stability of the RKDG method) Let each time step ∆tn satisfy
the following CFL condition:

max
il

∣∣∣∣
βil

αil

∣∣∣∣∆tn
(
| f̂(a, ·) |Lip

∆j+1
+

| f̂(·, b) |Lip

∆j

)
≤ 1/2. (11)

Then we have

|un
h |TV M(0,1) ≤ |u0 |TV (0,1) + CM Q ∀ n = 0, . . . , L,

where L∆x ≤ Q.

Let us emphasize that, as we have seen, the DG space discretization, the RK time
discretization and the generalized slope limiter are inter-twined just in the right way to achieve
the above non-linear stability result. Thus, although the DG space discretization of this method
is an essential distinctive feature, the other two ingredients are of no less relevance.
Note that the above result holds for any polynomial degree and for any order of accuracy in

time. This shows that this stability result does not impose an accuracy barrier to the method,
as happens with many other methods. The RKDG method can actually achieve high-order
accuracy when the exact solution is smooth because the generalized slope limiter does not
degrade the high-order accuracy of the space and time discretizations. Although there are
no theoretical error estimates that justify this above statement, it is actually supported by
overwhelming practical evidence.
Note also that for the linear case f(u) = c u, the CFL condition (11) becomes

| c |∆t

∆x
≤ CFLTV ≡ 1

2max βil

αil

.

In general, the restriction of the time step imposed by the TVBM property ismuch weaker than
that required to achieve L2-stability. However, it is the condition for L2 stability that needs to
be respected; otherwise, the round-off errors would get amplified and the high-order accuracy
of the method would degenerate even though the RKDG method remains TVBM-stable.
It is not difficult to use Theorem 3.3 to conclude, by using a discrete version of the Ascoli-

Arzelá theorem, that from the sequence { uh }∆x>0, it is possible to extract a subsequence
strongly converging in L∞(0, T ; L1(0, 1)) to a limit u⋆. That this limit is a weak solution of the
non-linear conservation law can be easily shown. However, while there is ample numerical
evidence that suggests that u⋆ is actually the entropy solution, this fact remains a very
challenging theoretical open problem.

3.6. RKDG methods for multi-dimensional hyperbolic systems

The extension of the RKDG methods to the model multi-dimensional hyperbolic system

ut +
N∑

i=1

(f i(u))xi = 0,

deserves comments on a few key points.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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3.6.1. The basis functions Just like in the one dimensional case, the mass matrix is block-
diagonal; the block associated with the element K is a square matrix of order equal to the
dimension of the local space and hence can be easily inverted. Moreover, for a variety of
elements and spaces, a basis can be found which is orthonormal in L2. This is the case, for
example, of rectangles and tensor product polynomials, in which case the orthonormal basis
is a properly scaled tensor product of Legendre polynomials. For simplices and polynomials of
a given total degree, there is also an orthonormal basis; see the work by Dubiner (1991), by
Karniadakis and Sherwin (1999) and Warburton (1998), and the recent implementations by
Aizinger et al. (2000) and Hesthaven and Warburton (2002).

3.6.2. Quadrature rules In practice, the integrals appearing in the weak formulation need to
be approximated by quadrature rules. It was proven by Cockburn et al. (1990) that

∥Lh(u) +∇ · f(u)∥L∞(K) ≤ C hk+1|f(u)|Wk+2,∞(K),

if the quadrature rules over each of the faces of the border of the element K are exact for
polynomials of degree 2k+1, and if the one over the element is exact for polynomials of degree
2k. The fact that these requirements are also necessary, can be easily numerically verified;
moreover, the method is more sensitive to the quality of the quadrature rules used on the
boundary of the elements than to that used in their interior.
Finally, let us point out that a quadrature-free version of the method was devised by

Atkins and Shu (1998) which results in a very efficient method for linear problems and certain
nonlinear problems such as Euler equations of gas dynamics. A very efficient quadrature rule
was obtained by van der Ven and van der Vegt (2002) for the Euler equations of gas dynamics
by suitably exploiting the structure of the equations.

3.6.3. Numerical fluxes When dealing with multi-dimensional hyperbolic systems, the so-
called local Lax-Friedrichs numerical flux is a particularly convenient choice of numerical
flux. Indeed, it can be easily applied to any non-linear hyperbolic system, it is simple
to compute, and yields good results. This numerical flux is defined as follows. If we set
fnK

=
∑N

i=1 ni f i(u), we define the local Lax-Friedrichs numerical flux as

f̂
LLF

nK
(uh) = {fnK

(uh)} −
C

2
[[uh]]nK ,

where C = C(K±) is the larger one of the largest eigenvalue (in absolute value) of
∂

∂u± fnK± (u±), or, in practice, of ∂
∂u±fnK± (uK± , where uK± are the means of the

approximate solution uh in the elements K±.
For symmetric hyperbolic systems, it is possible to devise numerical fluxes that render the

method of lines (or the space-time methods) L2-stable; see Barth (2000).

3.6.4. The slope limiter ΛΠh When we dealt with the scalar one dimensional conservation
law, the role of the generalized slope limiter ΛΠh was to enforce the TVBM property of a
typical Euler forward time step. In the case of multi-dimensional scalar conservation laws, we
cannot rely anymore on the TVBM property of the Euler forward step because such a property
does not hold for monotone schemes on general meshes; it has been proven only for monotone
schemes in non-uniform Cartesian grids by Sanders (1983). We can, instead, rely on a local
maximum principle; see the paper by Cockburn et al. (1990).
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A practical and effective generalized slope limiter ΛΠh,M was later developed by Cockburn
and Shu (1998b). To apply it to the function vh, we proceed on the element K as follows:

(i) Compute the L2-projection of vh into the linear functions on K, v1h|K ,
(ii) Compute rh|K = ΛΠ1

h,Mv1h|K ,

(iii) If rh|K = v1h|K , set uh|K = vh|K ,
(iv) If not, set uh|K = rh|K .

Note that in order to use this generalized slope limiter, one only needs to know how to slope
limit piecewise linear functions; for the details of the definition of ΛΠ1

h,M , we refer the reader
to the paper by Cockburn and Shu (1998b).
An interesting limiter has been proposed by Wierse (1997). Kershaw et al. (1998)introduced

a limiter based on quadratic programming. Biswas et al. (1994) devised a limiter based on local
moments, rather than on slopes, and used it for adaptivity purposes. More recently, Burbeau
et al. (2001) proposed what they call a problem-independent slope limiter.

3.6.5. Characteristic variables For systems, limiting in the local characteristic variables gives
remarkably superior results than doing it component-by-component.

K

K

K

K

.

.

.

. .
3

2

1

0

3

0

2

1

b

b
b

b

m1

Figure 16. Illustration of limiting.

To limit the vector ṽh(mi,K0) in the element K0, see Fig. 16, we proceed as follows:

• Find the matrix R and its inverse R−1, which diagonalizes the Jacobian

J =
∂

∂u
f(vK0) · mi − b0

|mi − b0|
,

that is, R−1 J R = Λ, where Λ is a diagonal matrix containing the eigenvalues of J .
Notice that the columns of R are the right eigenvectors of J and the rows of R−1 are
the left eigenvectors.

• Transform ṽh(mi,K0) and ∆v(mi,K0) to the characteristic fields. This is achieved by
left multiplying these vectors by R−1.
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• Apply the scalar limiter to each of the components of the transformed vectors.
• Multiply by R on the left to transform the result back to the original space.

3.7. Computational results

In this subsection, we display computational results that show that the RKDG method can
achieve exponential convergence when the solution is very smooth and that it can perform as
well as the high-resolution methods when discontinuities are present. We also show results
showing its excellent handling of boundary conditions and its remarkable parallelization
properties. Finally, we also show that the use of higher degree polynomials results in a more
efficient method, even in the presence of discontinuities.

3.7.1. Exponential convergence To show that exponential convergence can be achieved and
that it is always more efficient to use higher degree polynomials when the exact solution is
very smooth, we consider

ut +∇ · (v u) = 0

where v = 2π (−y, x) and the initial condition is a Gaussian hill. In Fig. 17, we see the L2-error
at time T = 1 versus the CPU time for the four different successively refined meshes described
below and for polynomials of degree up to six. The refinement of the mesh is obtained by
dividing the triangles in four congruent triangles. Each line corresponds to a different mesh,
with the symbols on each line representing the error for the six different approximating spaces.
We easily observe that exponential convergence is achieved and that it is always more efficient
to use a coarser mesh with a higher order polynomial approximation.
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Figure 17. Spectral convergence and comparison of L2-error versus CPU time for 4 successively refined
meshes and polynomials of degree 1 to 6. From Aizinger et al. (2000)
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3.8. Treatment of the boundary conditions

To show the ease with which the method deals with the boundary conditions, we consider a
variation of the above problem

ut +∇ · (v u) = 0.

where v = (−y + 1/2, x− 3/4) and the initial data is

u(x, t = 0) =

{
exp

(
8− 8

1−8 |x−(3/4,1) |2

)
, if 8 |x− (3/4, 1) |2 < 1,

0, otherwise.

An RKDG method using quadratic polynomial approximations and a SSP-RK method of order
three is used. Note that, unlike the previous example, only part of the initial data is in the
computational domain. The boundary conditions are taken by using the Lax-Friedrichs flux
and by giving the exact solution as the exterior trace. In Table 3.8, we see that the full order
three has been achieved, as expected. In Fig. 18, we also see that the boundary conditions
have been captured very well by the RKDG method.

Table IV. Errors at T = 3
4π

mesh ∥ eu(T ) ∥L∞(Ω) order ∥ eu(T ) ∥L1(Ω) order
16× 16 0.21E-01 2.01 0.42E-03 3.32
32× 32 0.25E-02 3.07 0.42E-04 3.31
64× 64 0.32E-03 2.96 0.49E-05 3.11
128× 128 0.52E-04 2.64 0.60E-06 3.01

3.8.1. Approximation of contact discontinuities Let us now show how the contact
discontinuities are approximates by the RKDG methods. To do that, we consider the problem

ut + ux = 0, in [0, 1)× (0, T ),

with periodic boundary conditions and initial condition

u(x, 0) =

{
1, if x ∈ (.25, .75),

0, otherwise.

In Figs. 19 and 20, we show the results given by RKDG methods using polynomials of degree k
and a (k+1)-stage, (k+1)th-order accurate SSP-RK method. We see that as the polynomials
degree increases, so does the quality of the approximation of the contact discontinuity, except,
perhaps for the unwanted oscillations near them.

3.8.2. Approximation of shocks First, let us show in a simple example that the RKDG
methods can capture shocks as well as any high-resolution finite difference or finite volume
scheme. Consider the approximation of the entropy solution of the inviscid Burgers equation

ut + (u2/2)x = 0,
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Figure 18. Approximate solution at T = 0.0 (top left), T = 3
8π (top right) and T = 3

4π (bottom). The
mesh is a uniform 64× 64 of triangles.

on the domain (0, 1)×(0, T ) with initial condition 1/4+sin(π(2 x−1))/2 and periodic boundary
conditions. In Fig. 21, we display the RKDG solution using piecewise linear and piecewise
quadratic approximations; note how, in both cases, the shock has been captured within three
elements as would be expected of any high-resolution scheme.

3.8.3. Parallelizability Let us address the parallelizability of the RKDG method. In Table V
below, we display the results obtained by Biswas et al. (1994); we see the solution time and
total execution time for the two-dimensional problem

ut + ux + uy = 0,

on the domain (−π,π)2× (0, T ) with initial condition u(x, y, 0) = sin(πx) sin(πy) and periodic
boundary conditions. Biswas et al. (1994) used 256 elements per processor and ran the RKDG
method with polynomials of degree two and 8 time steps; the work per processor was kept
constant. Note how the solution time increases only slightly with the number of processors
and the remarkable parallel efficiency of the method.
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Figure 19. Effect of the order of the RKDG method on the approximation of discontinuities. The exact
solution at time T = 100, u (dashed line), is contrasted against the approximate solution uh (solid
line) obtained with the RKDG method of order k + 1 on a mesh of 40 elements for the values k = 0
(left top), k = 1 (middle top), k = 2 (right top), k = 3 (left middle), k = 4 (middle middle), and k = 5

(right middle). No limiter was used. From Cockburn and Shu (2001).
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(right bottom). Two dimensional results with 40 × 40 squares. No limiter was used. From Cockburn

and Shu (2001).

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Figure 21. Burgers equation: Comparison of the exact and the RKDG solutions obtained with
∆x = 1/40 at T = 0.40. Full domain (left) and zoom on three elements (right) the first of which
contains the exact shock. Exact solution (solid line), piecewise linear approximation (dotted line), and

piecewise quadratic approximation (dashed line). From Cockburn (1999).

Table V. Scaled parallel efficiency. Solution times (without I/O) and total execution times measured
on the nCUBE/2. From Biswas et al. (1994).

Number of Work (W ) Solution Solution Total Total
processors time parallel time parallel

(secs.) efficiency (secs.) efficiency

1 18,432 926.92 - 927.16 -
2 36,864 927.06 99.98% 927.31 99.98%
4 73,728 927.13 99.97% 927.45 99.96%
8 147,456 927.17 99.97% 927.58 99.95%
16 294,912 927.38 99.95% 928.13 99.89%
32 589,824 927.89 99.89% 929.90 99.70%
64 1,179,648 928.63 99.81% 931.28 99.55%
128 2,359,296 930.14 99.65% 937.67 98.88%
256 4,718,592 933.97 99.24% 950.25 97.57%

3.8.4. Approximation of complex solutions Let us show that the RKDG method can handle
solutions with very complicated structure. Consider the classical double-Mach reflection
problem for the Euler equations of gas dynamics. In Fig. 22, details of the approximation
of the density are shown. Note that the strong shocks are very well resolved by the RKDG
solution using piecewise linear and piecewise quadratic polynomials defined on squares. Also,
note that there is a remarkable improvement in the approximation of the density near the
contacts when going from linear to quadratic polynomials.
A similar conclusion can be drawn in the case of the flow of a gas past a forward facing step;

see, for example, the study by Woodward and Colella (1984).

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Figure 22. Euler equations of gas dynamics: Double Mach reflection problem. Isolines of the density
around the double Mach stems. Quadratic polynomials on squares ∆x = ∆y = 1

240 (top); linear
polynomials on squares ∆x = ∆y = 1

480 (middle); and quadratic polynomials on squares ∆x = ∆y =
1

480 (bottom). From Cockburn and Shu (1998b).
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Figure 23. Forward facing step problem. Approximation of the density ρ. 30 equally spaced contour
lines from ρ = 0.090338 to ρ = 6.2365. From Cockburn and Shu (1998b).

3.8.5. Problems with curved boundaries Bassi and Rebay (1997b) showed the importance
of approximating as accurately as possible the boundaries of the physical domain and the
ease with which this is achieved by using the RKDG methods. Indeed, for the classical two-
dimensional isentropic flow around a circle, they showed that approximating the circle by a
polygon results in non-physical entropy production at each of the kinks which is then carried
downstream and accumulates into a non-physical wake which does not disappear by further
refining the grid. However, by simply taking into account the exact shape of the boundary, a
remarkably improved approximation is obtained; see Fig. 24.
On the other hand, van der Vegt and van der Ven (2002a) have recently shown that the

high-order accurate representation of the curved boundary can be avoided by using local grid
refinement.

3.8.6. Adaptivity for the Euler equations of gas dynamics Next, we give examples of
adaptivity using the RKDG method with anisotropic mesh refinement. The first two examples
illustrate the use of conforming mesh refinement. For the first example, two Sedov-type
explosions in an open square domain develop and interact while bouncing on square obstacles
and interacting with each other; see Fig. 25. In the second example, the blast of a cannon is
simulated in order to understand the shape of the blast waves around the muzzle break; see
Fig. 26.
Finally, we present an example of a steady-state computation on an ONERA M6 wing for
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Figure 24. Mach isolines of the DG approximation with P1 elements: The circle is approximated by a
polygonal (top) and rendered exactly (bottom). From Bassi and Rebay (1997b).

which non-conforming refinement has been employed; see Fig. 27.

3.8.7. Simulation of inertial confinement fusion Our final example is the simulation of the
implosion of a NIF capsule which consists of a nearly vacuous inner region enclosed by two
spherical shells. For details, see Shestakov et al. (2001). This is a complicated and very difficult
problem which involves the simulation of hydrodynamics, heat conduction and radiation
transport phenomena. Only the hydrodynamics part of the problem is simulated by using
a one-step ALE, RKDG method proposed by Kershaw et al. (1998) and implemented in the
ICF3D code by Shestakov et al. (2000). In Fig. 28, we see the mesh and several physical
quantities after 8 nano-seconds of having deposited energy on the outer surface of the capsule.
Note the near spherical symmetry of the implosion.

4. DG methods for second-order elliptic problems

In this section, we consider DG methods for elliptic problems. We do this not only because this
also has applications to fluid flow (in porous media, for example) but mainly as a much needed
transition towards dealing with DG methods for convection-dominated flows. The emphasis
here is on the fact that the numerical fluxes used in the framework of hyperbolic conservation
laws do not need to be associated to approximate Riemann solvers. Instead, they are better
understood if they are considered to be numerical traces that must be chosen in order to render
the DG method both stable and accurate. We discuss how the various choices of numerical
traces give rise to the main DG methods for these problems and discuss their corresponding
properties. Finally, we show that, also in this context, the stability of the DG methods is
enhanced by the jumps of the approximate solution and that this property establishes a link
between them and the so-called stabilized mixed methods.
We present these ideas for the second-order elliptic model problem:

−∆u = f in Ω, u = 0 on ∂ΩD,
∂u

∂n
= gN · n on ∂ΩN ,

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Figure 25. Two explosions in a square domain with obstacle: density (top), and the corresponding
mesh (bottom) after 1 second. From Remacle et al. (2003).
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Figure 26. Cannon-Blast simulation: Density and the corresponding mesh. Close up on the muzzle
break at an early stage (top), and after the main blast wave left the muzzle (bottom). From Remacle

et al. (2003)
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Figure 27. Final adapted grid on ONERA M6 wing, clearly showing the lambda shock (flow conditions
M∞ = 0.84, α = 3.06o). From van der Vegt and van der Ven (1998).

Figure 28. ICF capsule implosion: Mesh (top, left) with colours indicating to which processor the
element belongs. Density (top, right), matter temperature (bottom, left), and radiation temperature

(bottom, right) at 8 nano-seconds. From Shestakov et al. (2001).
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where Ω is a bounded domain of RN , ∂Ω = ∂ΩD ∪ ∂ΩN , and n is the outward unit normal to
its boundary.

4.1. DG methods for the model problem

A way to define a DG method consists in rewriting the elliptic model problem as a system of
first-order equations, namely,

q = ∇u, −∇ · q = f in Ω, u = 0 on ∂ΩD, q · n = gN · n on ∂ΩN ,

and then applying to it a DG discretization. Thus, the approximate solution (qh, uh) on the
element K is taken in the space Q(K) × U(K) and is determined by imposing that for all
(r, v) ∈ Q(K)× U(K),

∫

K
qh · r dx = −

∫

K
uh∇ · r dx+

∫

∂K
ûhnK · r ds,

∫

K
qh ·∇v dx =

∫

K
fv dx+

∫

∂K
v ̂qh · nK ds,

where ûhnK and ̂qh · nK are the numerical fluxes.
Just as for DG methods for hyperbolic problems, the definition of the numerical fluxes

determines the properties of the corresponding DG method. In this context, we also require
that the numerical fluxes (i) depend only the traces of the approximation on the boundary
of the elements, (ii) be consistent and, (iii) be conservative. As discussed previously, the first
property renders the numerical traces easy to evaluate and ensures a high degree of locality of
the method. The second, ensures the convergence of the method to the correct solution. The
third property, which is highly valued in computational fluid dynamics, is also very important
in this context. If violated, the method produces a stiffness matrix for the primal variable
which is not symmetric; see the paper by Arnold et al. (2001) for a complete discussion.
More importantly, it exhibits a loss in the rate of convergence in uh as well as a significant
degradation in the quality of the approximation of linear functionals as was recently shown by
Harriman et al. (2003).
In order to fix ideas, let us consider the numerical fluxes of the local discontinuous Galerkin

(LDG) introduced by Cockburn and Shu (1998a). First, we note that in this context, it is
possible to rewrite the numerical fluxes as

ûh nK = ûh,K nK , ̂qh · nK = q̂h,K · nK ,

where ûh,K and q̂h,K are the numerical traces. If we now introduce the notation

[[uh]] = u+
h n++u−

h n−, and [[qh]] = q+
h ·n++q−

h ·n+, where ω±
h (x) = lim

ϵ↓0
ωh(x− ϵn±),

the numerical traces of the LDG method are defined as follows. Inside the domain Ω, we take

q̂h,K={qh}+ Cqu [[uh]] + Cqq [[qh]],

ûh,K={uh}− Cqq · [[uh]],

and on its boundary, we take

q̂h,K :=

{
q+
h − Cqu(u

+
h − 0)n on ∂ΩD,

gN on ∂ΩN ,
ûh,K :=

{
0 on ∂ΩD,

u+
h on ∂ΩN .
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Note that the fact that the numerical trace ûh,K does not depend on qh allows for an element-
by-element elimination of the variable qh from the equations. This property justifies the name
given to the LDG method.
Next, we show that LDG method is in fact a stabilized mixed finite element method. To see

this, let us begin by noting that the DG approximate solution (qh, uh) can also be characterized
as the solution of

a(qh,v) + b(uh,v) = 0,

−b(w, qw) + c(uh, w) = F (w),

for all (v, w) ∈ Qh × Uh where

Qh = {v : v ∈ Q(K) ∀ K ∈ Th}, Uh = {w : w ∈ U(K) ∀ K ∈ Th},

and

a(q, r) :=

∫

Ω
q · r dx,

b(u, r) :=
∑

K∈T

∫

K
u∇ · r dx−

∫

Ei

({u}+ Cqq · [[u]]) [[r]] ds,

c(u, v) :=

∫

Eih

Cqu [[u]] · [[v]] ds+
∫

∂Ω
Cqu uv ds,

F (r) :=

∫

Ω
fv dx.

It is well known that for the exact solution (q = ∇u, u), we have the identity,

a(q, q) = F (u),

from which an H1-a priori estimate can be easily obtained. For the approximate solution of
the DG method, we have instead,

a(qh, qh) + c(uh, uh) = F (uh).

This shows that the stability of the DG method is enhanced by the jumps across inter-element
boundaries since

c(u, v) :=

∫

Eih

Cqu | [[uh]] |2 ds+
∫

∂Ω
Cqu u

2
h ds.

This also shows that the role of the coefficient Cqu is to control the amount of dissipation in
the method. As we can see, this coefficient can also be considered to be a penalty coefficient
for the jumps. The role of the other coefficient Cqq is to maximize the sparsity of the matrices
and to improve the accuracy of the method; see Cockburn et al. (2001).
Also in this framework, the jumps across inter-element boundaries are related to the local

residual in a linear way; this shows that these methods are stabilized mixed methods. To see
this, consider the local residuals

R1 = qh −∇uh, and R2 = −∇ · qh − f,

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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and use the weak formulation of the DG method and the definition of its numerical trace to
get

∫

K
R1 · v dx =

∫

∂K

(
(−1

2
n− Cqq) · [[uh]]

)
v · n ds,

∫

K
R2w dx =

∫

∂K

(
(−1

2
n+ Cqq) [[qh]] + Cqu[[uh]]

)
· nw ds,

for all (v, w) ∈ Q(K)× U(K).
Finally, let us show that to guarantee the existence and uniqueness of the approximate

solution of the DG methods, the parameter Cqu has to be greater than zero and the local
spaces U(K) and Q(K) must satisfy the following compatibility condition:

uh ∈ U(K) :

∫

K
∇uh · v dx = 0 ∀ v ∈ Q(K) then ∇uh = 0.

This very simple, local condition implies a global inf-sup condition for the DG methods which,
in fact, is extremely easy to prove due to the stability-enhancing effect of the inter-element
jumps.
The approximate solution is well defined if and only if, the only approximate solution to the

problem with f = 0 is the trivial solution. In that case, our stability identity gives

a(qh, qh) + c(uh, uh) = 0,

which implies that qh = 0, [[uh]] = 0 on Eih and uh = 0 on ∂Ω, provided that Cqu > 0. We can
now rewrite the first equation defining the method as follows:

∫

K
∇uh · v dx = 0, ∀ v ∈ Qh,

which, by the compatibility condition, implies that ∇uh = 0. Hence uh = 0, as required.
Other examples of DG methods are obtained by choosing their numerical traces as we can

see in Table VI. There, the symbol αr([uh]) is used to denote a stabilization introduced by
Bassi et al. (1997) and later studied by Brezzi et al. (2000). Its effect on the DG method
is equivalent to the one produced by Cqu [[uh]]; however, it produces a more sparse stiffness
matrix. Not all DG methods were originally proposed in the mixed form we have used. Many
of them were proposed directly in the primal form

Bh(uh, v) =

∫

Ω
f v.

The two main examples are the interior penalty (IP) method, proposed by Douglas, Jr. and
Dupont (1976), for which we have

Bh(uh, v) =
∑

K

∫

K
∇uh ·∇v dx−

∑

e

∫

e
([[uh]] · {∇hv}+[[uh]] · {∇hv}) ds+

∑

e

∫

e

η0
h
[[uh]] · [[v]] ds,

and the method proposed by Baumann and Oden (1999), for which we have

Bh(w, v) =
∑

K

∫

K
∇uh ·∇v dx−

∑

e

∫

e
([[uh]] · {∇hv}− [[uh]] · {∇hv}) ds.
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A theoretical study of the DG methods for the elliptic model problem is carried out in a
single, unified approach by Arnold et al. (2001). There, the mixed formulation is not used to
carry out the analysis. Instead, the variable qh is eliminated from the equations. A primal
formulation is thus obtained which is used to analyze the method. In Table VII we have
summarized the properties of various DG methods. We display the properties of consistency
and conservativity of the numerical fluxes, of stability of the method, of the type of stability
(the symbol αj is used to denote the stabilization associated with the terms Cqu [[uh]]2), the
condition on Cqu for achieving stability, and the corresponding rates of convergence.
Castillo (2002) made a study of the condition number of various DG methods and compared

them numerically. He found, in particular, that qh is a much better approximation to q than
∇uh; that the penalization parameter Cqu must be taken as η0/h, where h is a measure of the
diameters of the elements, to obtain a condition number of the matrix for uh of order h−2;
and that when η0 is taken to be too big, all the DG methods give similar approximations.
How to couple DG methods with the classical conforming methods was shown by Alotto et al.

(2001) and Perugia and Schötzau (2001). Moreover, Perugia and Schötzau (2001) combined
the theoretical framework developed by Arnold et al. (2001) with the techniques of analysis of
non-conforming methods to obtain optimal error estimates for the resulting coupling. How to
couple DG methods with mixed methods was shown by Cockburn and Dawson (2002).

Table VI. Some DG methods and their numerical fluxes. Taken from Arnold et al. (2001) and slightly
modified.

Method q̂e,K ûh,K

Bassi and Rebay (1997a) {qh} {uh}
Cockburn and Shu (1998a) {qh}+ Cqu [[uh]]− Cqq[[qh]] {uh}+ Cqq · [[uh]]

Castillo et al. (2000) {qh}+ Cqu [[uh]]− Cqq[[qh]] {uh}+ Cqq · [[uh]] + Cuq[[qh]]

Brezzi et al. (2000) {qh}− αr([[uh]]) {uh}
Douglas, Jr. and Dupont (1976) {∇uh}+ Cqu [[uh]] {uh}
Bassi et al. (1997) {∇uh}− αr([[uh]]) {uh}
Baumann and Oden (1999) {∇uh} {uh}− nK · [[uh]]

Rivière et al. (1999) {∇uh}+Cqu[[uh]] {uh}− nK · [[uh]]

Babuška and Zlámal (1973) Cqu[[uh]] uh|K
Brezzi et al. (2000) −αr([[uh]]) uh|K

4.2. Solvers

Solvers specifically designed for the linear system of equations given by DG methods have
started to be developed. For the time-dependent compressible Navier-Stokes, Bassi and
Rebay (2000) experimented with the preconditioned GMRES and found that the simple
block-Jacobi pre-conditioning was the most efficient. Feng and Karakashian (2001) studied
a domain decomposition preconditioner for DG approximations for purely elliptic problems.
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Table VII. Properties of the DG methods. Taken from Arnold et al. (2001) and slightly modified.

Method consis. conserv. stab. type η0 = hCqu H1 L2

Brezzi et al. (1999) ! ! ! αr η0 > 0 hp hp+1

Cockburn and Shu (1998a) ! ! ! αj η0 > 0 hp hp+1

Castillo et al. (2000) ! ! ! αj η0 > 0 hp hp+1

Douglas, Jr. and Dupont (1976) ! ! ! αj η0 > η∗ hp hp+1

Bassi et al. (1997) ! ! ! αr η0 > 3 hp hp+1

Rivière et al. (1999) ! × ! αj η0 > 0 hp hp

Babuška and Zlámal (1973) × × ! αj η0 ≈ h−2p hp hp+1

Brezzi et al. (2000) × × ! αr η0 ≈ h−2p hp hp+1

Baumann and Oden (1999) (p = 1) ! × × - - × ×

Baumann and Oden (1999) (p ≥ 2) ! × × - - hp hp

Bassi and Rebay (1997a) ! ! × - - [hp] [hp+1]

The condition number of their non-overlapping preconditioner grows linearly with the number
of degrees of freedom in each sub-domain. Later, Lasser and Toselli (2000) found an overlapping
domain decomposition method for DG methods for linear advection-diffusion problems whose
condition number is independent of the number of degrees of freedom and the number of
subdomains. Another significant result has been obtained by Gopalakrishnan and Kanschat
(2003b) who devised a multigrid method for solving the matrix equation of the Interior
Penalty method for elliptic problems. They proved that it convergences in a fixed number of
iterations; they have also devised a method for the steady-state convection-diffusion problem
which converges with a fixed number of iterations independently of the size of the convection
coefficients. These solvers were generalized to the LDG method in primal form, the method
by Bassi and Rebay (1997a) and the method by Brezzi et al. (1999) by Gopalakrishnan and
Kanschat (2003a). Based on these solvers, preconditioners for the LDG saddle point systems
arising from the mixed discretization of Poisson and Stokes equations were introduced by
Kanschat (2003).
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5. DG methods for convection-dominated problems

In this section, we consider the application of the DG method to various problems in fluid
dynamics in which convection plays a dominant role. They include the shallow water equations
and the equations of incompressible and compressible fluid flow.

5.1. Convection-diffusion problems

In this subsection, we consider the LDG methods for the following convection-diffusion model
problem

ut +∇ · ( f(u)− a(u)∇u) = 0 in Ω× (0, T ), u(x, 0) = u0(x) ∀x ∈ Ω.

To define a DG method, we first notice that, since the matrix a(u) is assumed to be symmetric
and semi-positive definite, there exists a symmetric matrix b(u) such that a = b2. This allows
us to introduce the auxiliary variable q = b∇u, and rewrite the model problem as follows:

ut +∇ · f(u)−∇ · (b(u)q) = 0 in Ω× (0, T ),

qi = ∇ · gi(u) in Ω× (0, T ), 1 ≤ i ≤ N,

u(x, 0) = u0(x) ∀ x ∈ Ω,

where qi is the i-th component of the vector q, and gi(u) is the vector whose j-th component
is
∫ u

bji(s) ds. A DG method is now obtained in a most straightforward way. For details, see
Cockburn and Shu (1998a) and Cockburn and Dawson (2000).
Let us give a computational result of the application of the LDG method to the two-

dimensional flow and transport in shallow water from the paper by Aizinger and Dawson
(2003). The system of shallow water equations can be written as

ct +∇ · (A+ (D∇)c) = h(c),

where ct = (ξ, u, v); here, ξ is the deflection of the air-water interface from the mean sea level,
and (u, v) is the depth-averaged horizontal velocity. For details about the remaining terms,
see Aizinger and Dawson (2003). What is relevant for our purposes is that the above is a
non-linear convection-diffusion-reaction equation which can be easily discretized by the LDG
method. In Fig. 29, we see a mesh (top) of 14, 269 triangles, highly graded towards the coast,
and the function ξ (bottom) computed for a high inflow of 35, 000m3/s for the Mississippi
River; an open sea boundary condition is assumed. In comparison with the no-inflow situation
(not shown here), the elevation increases about half a foot near the lower Louisiana coast.

5.1.1. Incompressible flow Next, let us consider the Oseen equations of incompressible fluid
flow, namely,

−ν∆u+ (β ·∇)u + γ u+∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on Γ,

where u is the velocity, p the pressure, f ∈ L2(Ω)2 a prescribed external body force, ν > 0
the kinematic viscosity, β a convective velocity field and γ a given scalar function. As usual,
we take Ω to be a bounded domain of R2 with boundary Γ = ∂Ω, and the Dirichlet datum
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Figure 29. Gulf of Mexico mesh (top) and surface elevation for high inflow of the Mississippi river
(bottom). From Aizinger and Dawson (2003).

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Figure 30. Scaled L2-errors in u and p with bilinear approximations for different Reynolds numbers.
From Cockburn et al. (2002).

g ∈ H1/2(Γ)2 to satisfy the compatibility condition
∫
Γ g · n ds = 0, where n denotes the unit

outward normal vector to Γ. We also assume that

γ(x)− 1

2
∇ · β(x) =: γ0(x) ≥ 0, x ∈ Ω. (12)

This condition guarantees the existence and uniqueness of a solution (u, p) ∈ H1
g (Ω)

2 ×L2
0(Ω)

where H1
g (Ω)

2 := {u ∈ H1(Ω)2 : u|Γ = g} and L2
0(Ω) := {p ∈ L2(Ω) :

∫
Ω p dx = 0}.

In Fig. 30, we display the norms of the error in the velocity and the pressure for the
LDG method as a function of the mesh size for several Reynolds numbers for the so-called
Kovasznay flow. Bi-quadratic approximations on squares are used. The norms are scaled with
the appropriate powers of ν so as the make all the quantities dimensionally equivalent - see
Cockburn et al. (2002) for details. We can see that the convergence of the above errors is not
altered as the Reynolds number varies from 1 to 1, 000 which confirms the expected robustness
of the LDG method with respect to an increase in the strength of the convection.

5.1.2. Compressible fluid flow Finally, we present some numerical results for the compressible
Navier-Stokes equations,

ρt + (ρ vj),j = 0,

(ρ vi)t + (ρ vi vj − σij),j = fi,

(ρ e)t + (ρ e vj − σij vi + qi),j = fi vi,

where ρ is the density, v the velocity, e the internal energy, and f the external body forces.
The viscous stress σ and the heat flux q are given by

σij = (−p+ λ vi,i) δij + µ (vi,j + vj,i),

qi = −κT,i,

where p is the pressure and T the temperature.
In Fig. 31, we show a steady-state calculation of the laminar Mach 0.8 flow around a NACA

0012 airfoil with Reynolds number 73. No limiter was applied.
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Our last example is a time-dependent computation of the flow around a cylinder in two space
dimensions. The Reynolds number is 10, 000 and the Mach number 0.2. In Fig. 32, we see the
detail of a mesh of 680 triangles (with curved sides fitting the cylinder) and polynomials whose
degree could vary from element to element; the maximum degree was 5. Note how the method
is able to capture the shear layer instability observed experimentally. For more details, see
Lomtev and Karniadakis (1999).

Figure 31. Pressure (left) and drag (right) coefficient distributions. The squares were obtained by with
cubics by Bassi and Rebay (1997a) and the crosses by with polynomials of degree 6 by Lomtev and

Karniadakis (1999).

6. Concluding remarks and bibliographical notes

In this paper, we have studied the DG method for computational fluid dynamics. Most of the
material in this article has been taken from the short, introductory monograph by Cockburn
(1999), from the review by Cockburn and Shu (2001), and from the recent paper (written
for a very wide audience) by Cockburn (2003b). The reader interested in a history of the
development of DG methods and in the state of the art up to 1999 is referred Cockburn et al.
(2000).
The set of references in this paper was not meant to be exhaustive, and several important

topics were left without being properly considered or emphasized for considerations of space.
One such topic is the very important issue of adaptivity for DG methods. For adaptivity on

linear, steady-state hyperbolic problems, the reader is referred to the papers by Bey (1994),
Bey and Oden (1996), and then to the papers Houston et al. (2000), Houston et al. (2001),
Houston and Süli (2001), Houston et al. (2002), and Süli and Houston (2002). For adaptivity
for non-linear problems (and a different approach), see the papers by Biswas et al. (1994),
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Figure 32. Flow around a cylinder with Reynolds number 10, 000 and Mach number 0.2. Detail of the
mesh (top) and density (bottom) around the cylinder. From Lomtev and Karniadakis (1999).

Devine et al. (1995), Devine and Flaherty (1996), Flaherty et al. (1997), Flaherty et al. (1998),
Flaherty et al. (1999), Flaherty et al. (2000). For a posteriori error estimation for second-order
elliptic problems, see the papers by Becker et al. (2003) and by Karakashian and Pascal (2003)
for estimates of the energy norm; see the paper by Rivière and Wheeler (2002) for an estimate
of the L2-norm.
Another topic is the issue of coupling DG methods with other methods. Besides the papers

already mentioned in the section on DG methods for elliptic equations, we must add the papers
by Dawson and Proft (2002) and Dawson and Proft (2003), devoted to the discontinuous and
coupled continuous/discontinuous Galerkin methods for the shallow water equations. This
effort is very important, as it is based on the idea of using different schemes in different parts
of the computational domain in order to fully exploit their individual virtues. This will not
only produce more efficient codes, but will also facilitate the handling of multi-physics models.
Yet another is the issue of dealing with constraints like the divergence-free condition for

incompressible fluid flow. This condition has been imposed inside each element by Baker et al.
(1990), Karakashian and Jureidini (1998), and Karakashian and Katsaounis (2000). However,
the issue has not been addressed in the many papers on DG methods for incompressible fluid
flow.
To end, let us point out that these days, the field is rapidly evolving and that several new

developments are already taking place. This is particularly true for super-convergence results
(see, for example, the papers by Adjerid and Massey (2002) and by Krivodonova and Flaherty
(2001)) slope limiters, space-time DG methods, and local time-stepping methods for explicit
DG methods (see the paper by Remacle et al. (2001)).
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J.E. Flaherty, R.M. Loy, C. Özturan, M.S. Shephard, B.K. Szymanski, J.D. Teresco and L.H.
Ziantz (1998). Parallel Structures and Dynamic Load Balancing for Adaptive Finite Element
Computation. Appl. Numer. Math., 26:241–265.

J.E. Flaherty, R.M. Loy, M.S. Shephard, M.L. Simone, B.K. Szymanski , J.D. Teresco and L.H. Ziantz
(1999). Distributed Octree Data Structures and Local Refinement Method for the Parallel
Solution of Three-Dimensional Conservation Laws. In Bern, M., Flaherty, J., and Luskin,
M., editors, Grid Generation and Adaptive Algorithms, volume 113 of The IMA Volumes in
Mathematics and its Applications, pages 113–134, Minneapolis. Institute for Mathematics and
its Applications, Springer.

J.E. Flaherty, R.M. Loy, M.S. Shephard, B.K. Szymanski, J.D. Teresco and L.H. Ziantz (1997).
Adaptive local refinement with octree load-balancing for the parallel solution of three-dimensional
conservation laws. J. Parallel and Dist. Comput., 47:139–152.

J. Flaherty, R. Loy, M.S. Shephard and J. Teresco (2000). Software for the parallel adaptive solution
of conservation laws by a discontinuous Galerkin method. In Cockburn, B., Karniadakis, G., and
Shu, C.-W., editors, Discontinuous Galerkin Methods. Theory, Computation and Applications,
volume 11 of Lecture Notes in Computational Science and Engineering, pages 113–123, Berlin.
Springer Verlag.

K.O. Friedrichs (1958). Symmetric positive linear differential equations. Comm. Pure and Appl.
Math., 11:333–418.

J. Gopalakrishnan and G. Kanschat (2003a). Application of unified DG analysis to preconditioning
DG methods. In Proceedings of the Second M.I.T. Conference on Computational Fluid and Solid
Mechanics, June 17 - 20,(K. Bathe, editor) , pages 1943–1945. Elsevier.

J. Gopalakrishnan and G. Kanschat (2003b). A multilevel discontinuous Galerkin method. Numer.
Math., 95. to appear.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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C. Johnson, U. Nävert and J. Pitkäranta (1984). Finite element methods for linear hyperbolic
problems. Comput. Methods Appl. Mech. Engrg., 45:285–312.
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