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Abstract. In this paper, we present and discuss the so-called hybridizable discontinuous
Galerkin (HDG) methods. The discontinuous Galerkin (DG) methods were originally
devised for numerically solving linear and then nonlinear hyperbolic problems. Their
success prompted their extension to the compressible Navier-Stokes equations – and hence
to second-order elliptic equations. The clash between the DG methods and decades-old,
well-established finite element methods resulted in the introduction of the HDG methods.
The HDG methods can be implemented more e�ciently and are more accurate than
all previously known DG methods; they represent a competitive alternative to the well
established finite element methods. Here we show how to devise and implement the HDG
methods, argue why they work so well and prove optimal convergence properties in the
framework of di↵usion and incompressible flow problems. We end by briefly describing
extensions to other continuum mechanics and fluid dynamics problems.
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1. Introduction

In this paper, we study a recently introduced family of methods for numerically
solving partial di↵erential equations called the hybridizable discontinuous Galerkin
(HDG) method. To motivate the advent of these methods, let us place them into
a historical context.

DG methods for hyperbolic problems. The original discontinuous Galerkin
(DG) method was introduced in [47] back in 1973 for numerically solving the
neutron transport equation, a linear hyperbolic equation for a scalar variable. The
importance of the method was soon recognized and its first theoretical analysis
was carried out in 1974 in [35]. The method lay dormant until the 90’s, where
it was successfully extended to non-linear time-dependent hyperbolic systems of
conservation laws in a series of papers [27, 26, 25, 23, 28].
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DG methods for convection-dominated problems. In 1997, prompted by
the success of the RKDG methods for purely convective problems, the method
was successfully extended [2] to the compressible Navier-Stokes equations. Soon
after, many DG methods appeared for discretizing second-order symmetric elliptic
problems and in 2002 a unifying framework for all of them was proposed in [1].

The new DG methods for second-order symmetric elliptic problems were then
compared with the well established finite element methods, namely, the mixed
methods of Raviart-Thomas (RT) [46] and Brezzi-Douglas-Marini (BDM [4], and
the continuous Galerkin (CG) method. A definite advantage of the DG methods
was their ability to handle adaptive algorithms, as they are able to easily work
with meshes with hanging nodes and approximations of varying polynomial de-
grees. However, when compared with the CG method, the new DG methods were
criticized for having too many degrees of freedom and for not being as easy to im-
plement. And when compared with the mixed methods, for providing less accurate
approximations and also for not being as e�ciently implementable.

The HDG methods. As a response to these criticisms, the HDG methods were
introduced in [16] in the framework of di↵usion problems. Therein, it was shown
that the RT and BDM mixed methods could be obtained as particular cases of
these new HDG methods. This suggested that HDG methods close to the RT
and BDM methods could be implemented as e�ciently and could even share their
superior convergence properties while retaining the advantages typical of the DG
methods. It was soon proven that this was the case in [11, 22, 18].

This breakthrough opened the possibility of a new systematic approach to devis-
ing HDG methods geared towards e�cient implementation and towards achieving
optimal order of convergence for all the unknowns as well as superconvergence of
some of them.

Organization of the paper. In this paper, we show how this approach is being
developed. Thus, in Section 2, we begin by revisiting the original DG method
for transport in order to display the features that will also be those of the HDG
methods for di↵usion and incompressible flow problems. In Section 3, we consider
in detail the HDG methods for di↵usion problems. Then in Section 4, we consider
the HDG methods for the Stokes equations of incompressible flow. We end in
Section 5 by briefly describing on the ongoing work on HDG methods for problems
arising in continuum mechanics and fluid flow.

A short bibliographical note. The reader interested in a detailed history of the
development of the DG methods up to 1999 is referred to [24]. More information
about the DG methods can be found in the 2001 review [29], the 2003 short essay
[7] and the 2004 article [8]. The subsequent work on DG methods is impossible
to cover in a few references. However, the reader might want to see the paper on
stabilization mechanisms of the DG methods [3], as well as the special issues on
DG methods in [30] and [31]. Finally, a short overview of the HDG methods can
be found in [40].



4 B. Cockburn

2. The original DG method for transport

In this section, we revisit the original DG method [47] which was devised to nu-
merically solve the neutron transport equation,

� u+r · (au) = f in ⌦, (2.1a)

u = uD on @⌦�, (2.1b)

where � is a positive number, a a constant vector and @⌦� the inflow boundary
of ⌦ ⇢ Rd, that is, @⌦� = {x 2 @⌦ : a ·n(x) < 0}. Here n(x) is the outward unit
normal at x. For simplicity, we assume that ⌦ is a bounded polyhedral domain.

Our intention is to present the features of the method which are also going to
be present in the HDG methods we consider in the following sections.

2.1. The method.

Discretization of the domain. We begin by discretizing the domain ⌦. We
consider disjoint open sets K called elements such that ⌦ = [K2⌦hK. Their
outward unit normal will be denoted by n. We denote by ⌦h the collection of all
these elements and set @⌦h := {@K : K 2 ⌦h}. We say that F is an interior
face of the triangulation ⌦h if there are two elements K+ and K� in ⌦h such that
F = @K+ \ @K�. In this case, we denote by n± the outward unit normal of K±

at F . The collection of all interior faces is denoted by Eo
h. We say that F is a

boundary face of the triangulation ⌦h if there is an element K in ⌦h such that
F = @K \ @⌦. The collection of all boundary faces is denoted by E@

h . The set
Eh = Eo

h [ E@
h is called the set of the faces of the triangulation ⌦h.

Rewriting the equations. For each K 2 ⌦h, the DG method is devised to
provide an approximation uh to the restriction to K of the exact solution u as well
as an approximation a · n buh to the trace on @K of the normal component of the
flux a · n bu. Thus, to define these approximations, we need to rewrite the original
problem (2.1) in terms of those functions.

We do this as follows. On each element K 2 ⌦h, we obtain u in terms of bu on
@K� by solving

� u+r · (au) = f in K, (2.2a)

u = bu on @K�. (2.2b)

In turn, the function bu on @K is expressed in terms of u and uD as follows:

bu(x) :=
(
uD(x) for x 2 @K \ @⌦�,

lim✏#0 u(x� ✏a) otherwise.
(2.2c)

Here @K� := {x 2 @K : a · n(x) < 0}.
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The Galerkin formulation and the numerical trace. Now we discretize the
above equations by combining a Galerkin method with a suitable definition of the
numerical trace of the flux. So, on the element K, we take the approximation uh

in the finite dimensional space W (K) and determine it by requiring that it satisfy
a formulation we describe next. If we multiply the equation (2.2a) by a smooth
function w, integrate over K, integrate by parts and use equation (2.2b), we get
that

� (u,w)K � (u,a ·rw)K + ha · nbu,wi@K = (f, w)K .

Here (u,w)K is the integral of uw over K and hw, vi@K the integral of w v over
@K. Thus, we require that

� (uh, w)K � (uh,a ·rw)K + ha · nbuh, wi@K = (f, w)K , (2.3a)

for all w 2 W (K). On @K, buh is expressed in terms of uh and uD by

buh(x) :=

(
uD(x) for x 2 @K \ @⌦�,

lim✏#0 uh(x� ✏a) otherwise.
(2.3b)

This completes the definition of the original DG method [47].

The discrete energy identity and the existence and uniqueness of the
approximation. Let us show that the method is well defined. To do that, we use
the following energy argument. We begin by noting that if we multiply the equation
(2.1a) by u, integrate over ⌦ and carry out some simple algebraic manipulations,
we obtain the following energy identity:

�ku� f/2�k2L2(⌦) +
1

2
h|a · n|u, ui@⌦\@⌦� =  (f, ud),

where  (f, ud) := 1
4�kfk2L2(⌦) +

1
2 h|a · n|uD, uDi@⌦� . A discrete version of this

identity can be obtained by taking w := uh in the equation (2.3a), adding over all
the elements K 2 ⌦h and performing similar manipulations to get

�kuh � f/2�k2L2(⌦) +
1

2
h|a · n|uh, uhi@⌦\@⌦� +⇥h(uh � buh) =  (f, uD), (2.4)

where ⇥h(uh � buh) =
1
2

P
K2⌦h

h|a · n|(uh � buh), uh � buhi@K� � 0.
Now, to prove that the DG method is well defined, we only have to show that

if we set f = 0 and uD = 0, we obtain the trivial solution. But, by the energy
identity we immediately get that uh = 0 since � is a positive number. This proves
that the approximate solution exists and is unique.

Implementation. Note that, by construction, we have that

(� uh, w)K � (uh,a ·rw)K + ha · nuh, wi@K\@K�
= (f, w)K � ha · n buh, wi@K�

.

Thus we see that if buh on @K� is known, then uh on K can be computed. This is
a remarkable property as it allows for an e�cient implementation of the method.
One cannot praise enough the importance of a property like this in a numerical
method.
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2.2. The stabilization mechanism.

The relation between the residuals. Note that the DG method is actually
defined by imposing a linear relation between the residual in the interior of the
element K, RK := � uh + r · (auh) � f , and the residual on its boundary @K,
R@K := a · n (uh � buh).

Indeed, in terms of these residuals, the first equation defining the DG method
(2.3a) reads

(RK , w)K = hR@K , wi@K 8 w 2 W (K).

Since this implies that kPW (K)RKkL2(K)  C h
�1/2
K kR@KkL2(@K), where PW (K) is

the L2-projection into W (K), and since

kRKkL2(K)  kPW (K)RKkL2(K) + k(Id� PW (K))RKkL2(K),

we see that the size of the residual in the interior RK is controlled by the residual
on the boundary R@K and by the approximation properties of the L2�projection
into W (K). This means that the size of the residuals, and hence the quality of the
approximation, depend only on the size of the jumps |a · n|1/2(uh � buh) and on
the approximation properties of the space W (K).

Stabilization by the jumps. The discrete energy identity (2.4) suggests that,
since ⇥(uh � buh) � 0, the size of the jumps |a · n|1/2(uh � buh) remains bounded.

In fact,the quantity ⇥h(uh�buh) is a dissipative term that enhances the stability
properties of the method. Indeed, note that there is more dissipation if the size of
the jump uh�buh is big. This happens, for example, whenever the exact solution is
discontinuous and consequently the interior residual is big. Thus, the DG method
has a built-in mechanism that transforms its potential inability to obtain a good
approximation into numerical dissipation and into improved stability properties.

The counterpart of this mechanism in finite di↵erence and finite volume meth-
ods for scalar hyperbolic conservation laws is the one induced by the so-called
artificial viscosity term. One of the main problems for those methods is to de-
fine it in such a way that high-order accuracy can be attained. The stabilization
mechanism of the DG method has such highly valued property. Indeed, next we
show that optimal accuracy can be reached whenever the exact solution is smooth
enough.

2.3. Convergence properties. We end our review of the original DG
method by showing that optimal convergence properties of uh can be proven when
⌦ is a polyhedral domain and the triangulations ⌦h are made of shape-regular
simplexes K satisfying two conditions: (i) Each simplex K has a unique a-outflow
face, F+

K , and (ii) each interior face is the a-inflow face of another simplex. We
say that the face F is an a-outflow (inflow) face when a · n > (<) 0, where n is
the outward unit normal at F .
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The auxiliary projection. Indeed, in this case, and when W (K) is the space of
polynomials of degree k on K, Pk(K), for each K 2 ⌦h, we can find an auxiliary
projection ⇧ with which the error analysis is greatly simplified. It is defined as
follows. On the element K, the projection of the function u 2 H1(K), ⇧u, is
defined as the element of Pk(K) satisfying

(⇧u� u,w)K = 0 8 w 2 Pk�1(K),

h⇧u� u,wiF+
K
= 0 8 w 2 Pk(F

+
K ).

This projection is well defined and, for smooth functions u, it provides optimal
approximation properties, that is,

k⇧u� ukL2(K)  C |u |Hk+1(K) h
k+1.

Estimate of the projection of the error. The main reason for considering the
projection of the error, "u := ⇧(u� uh), is that the projection ⇧ is tailored to the
structure of the numerical trace of the method. Indeed, for x 2 Eh \@⌦�, we have,
by construction, that

a · n PMhu(x) = a · n lim
✏#0
⇧u(x� ✏a)

a · n buh(x) = a · n lim
✏#0

uh(x� ✏a),

and we see that a · n (PMhu � buh)(x) = a · n b"u(x). As a consequence, "u is the
solution of

� ("u, w)K � ("u,a ·rw)K + ha · n b"u, wi@K = � (⇧u� u,w)K 8 w 2 W (K),

where b"u = 0 on @⌦�. We immediately see that the projection of the error must
depend only on ⇧u� u. In particular, by following the process used to obtain the
discrete energy identity, we get

�k"u � 1

2
(⇧u� u)k2L2(⌦) +⇥h("u � b"u) =

�

4
k⇧u� uk2L2(⌦),

and we can deduce that,

ku� uhkL2(⌦) + ��1/2⇥1/2
h ("u � b"u)  C |u |Hk+1(⌦h) h

k+1.

This result is optimal in both regularity and order of convergence; see more general
results in [10, 9]. For arbitrary meshes, there is a loss in the order of convergence of
1/2; see [33]. Although in practice this loss is hard to observe, it has been proven
to actually occur in [45] and [48].

Postprocessing. Finally, we show how to postprocess the approximate solution
in order to get an optimally convergent approximation of @au := a · ru. We



8 B. Cockburn

2.0 2.2 2.4 2.6 2.8

0.0

0.1

0.2

0.3

0.4

Rectangles P1, ∆ x = ∆ y = 1/480

2.0 2.2 2.4 2.6 2.8

0.0

0.1

0.2

0.3

0.4

Rectangles P2, ∆ x = ∆ y = 1/480Rectangles P2, ∆ x = ∆ y = 1/480

Figure 1. Euler equations of gas dynamics: Double Mach reflection problem. Isolines of
the density around the double Mach stems. Linear polynomials on squares �x = �y =
1

480 (top); and quadratic polynomials on squares �x = �y = 1
480 (bottom).

proceed as follows. First, for each simplex K, we define the approximation qh of
the flux au as the element of Pk(K) + xPk(K) that is the solution of

(qh � auh,v)K = 0, 8 v 2 Pk�1(K)

h(qh � abuh) · n, wiF = 0, 8 w 2 Pk(F ), for all faces F of K.

Here Pk(K) := [Pk(K)]d. Then, if we set @au?
h := r · qh, it is easy to show [10, 9]

that @au
?
h � PW (K)(@au) = �(PW (K)u � uh) on each simplex K 2 ⌦h, and to

conclude that

k@au?
h � @aukL2(⌦h)  C(|u|Hk+1(⌦h) + |@au|Hk+1(⌦h)) h

k+1.

2.4. The RKDG methods. Let us briefly point out that the extension
of the orignal DG method to nonlinear hyperbolic conservation laws, called the
Runge-Kutta discontinuous Galerkin (RKDG) methods, [27, 26, 25, 23, 28], shares
with the original DG method many of the above-mentioned properties since it uses
DG method to discretize the equations in space. To discretize the equations in
time, a special type of explicit Runge-Kutta time marching methods is used. The
distinctive feature of these Runge-Kutta methods is that their stability follows from
the stability of a single Euler-forward step. A crucial component of the method is
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an operator (the so-called slope limiter) used to enforce the stability of the Euler-
forward step and, as argued in [6], to ensure the convergence to the physically
relevant solution. A rigorous convergence proof, however, remains a challenging
open problem even for the scalar hyperbolic conservaton law. See [20] for rigorous
error estimates for an implicit, shock-capturing DG method for that equation.

In practice, however, the methods turned out to be optimally convergent as
well as able to capture very well the discontinuities of the solution. For example,
consider the classical double-Mach reflection problem for the Euler equations of gas
dynamics. In Fig. 1, obtained in [28], details of the approximation of the density
are shown. The strong shocks are very well resolved by the RKDG solution using
piecewise linear and piecewise quadratic polynomials defined on squares. Note that
there is a remarkable improvement in the approximation of the density near the
contacts when going from linear to quadratic polynomials.

3. HDG methods for di↵usion

In this section, we consider HDG methods to numerically solve the di↵usion model
problem

c q +ru = 0 in ⌦, (3.1a)

r · q = f in ⌦, (3.1b)

u = uD on @⌦. (3.1c)

Here c is a matrix-valued function which is symmetric and uniformly positive
definite on ⌦.

We are going to show that despite the fact that the nature of this problem is
radically di↵erent from the one just considered, we can devise HDG methods by
using a very similar approach. Most of the material for this section is contained
in [16, 11, 22, 18].

3.1. The HDG methods.

Rewriting the equations. For each K 2 ⌦h, the methods provide an approxi-
mation to the restriction of (q, u) to K as well as an approximation to the traces
(bq · n, bu) on @K. We are thus going to rewrite the original equations in terms
of those functions in order to be able to define the HDG methods by discretizing
them.

Thus, if for each K 2 ⌦h, we assume that we know the trace bu on @K, we can
obtain (q, u) inside K as the solution of

c q +ru = 0 in K,

r · q = f in K,

u = bu on @K.
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The function bu can now be determined as the solution, on each F 2 Eh, of the
equations

[[bq · n]] = 0 if F 2 Eo
h,

bu = uD if F 2 E@
h .

Here we are using the notation [[bq · n]] := bq+ · n+ + bq� · n�.

The Galerkin formulation and the numerical traces. Now we discretize
these equations by using a Galerkin method together with a suitable approxima-
tion of the traces. First, we take (qh, uh) on the element K 2 ⌦h in the finite
dimensional space V (K)⇥W (K) and buh on the face F 2 Eo

h in the finite dimen-
sional space M(F ).

On each element K 2 ⌦h, the function (qh, uh) is expressed in terms of (buh, f)
by using a Galerkin method. Since

(c q,v)K � (u,r · v)K + hbu,v · ni@K = 0,

�(q,rw)K + hbq · n, wi@K = (f, w)K ,

for all su�ciently smooth functions (v, w), we determine (qh, uh) in terms of (buh, f)
as the solution of

(c qh,v)K � (uh,r · v)K + hbuh,v · ni@K = 0, (3.2a)

�(qh,rw)K + hbqh · n, wi@K = (f, w)K , (3.2b)

for all (v, w) 2 V (K)⇥W (K), where the numerical trace bqh ·n is assumed to have
the following simple form:

bqh · n = qh · n+ ⌧(uh � buh) on @K. (3.2c)

Then the function buh is determined by enforcing weakly the single-valuedness of
the normal component of the numerical trace bqh and by capturing the Dirichlet
boundary condition. Thus, for each face F 2 Eh, we require that

hµ, [[bqh · n]]iF = 0 8 µ 2 M(F ), (3.2d)

buh = uD if F 2 E@
h . (3.2e)

This completes the definition of the HDG methods. Note that equation (3.2d)
is a condition on the single-valuedness of the normal component of bqh on Eo

h.
Indeed, if the restriction of [[bqh ·n]] to F lies in M(F ) for all F 2 Eo

h, we have that
[[bqh · n]] = 0 on Eo

h and the normal component of bqh is single valued. Studies of
the importance of this property can be found in [22, 21].
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The discrete energy identity and the existence and uniqueness of the
approximation. The HDG methods are well defined under some very mild con-
ditions, as we see in the next result.

Proposition 3.1. The HDG method is well defined if (i) ⌧ > 0 on @⌦h, and if
(ii) for any element K 2 ⌦h, rw 2 V (K) for all w 2 W (K).

We can prove this result by using an energy argument. If we multiply the first
two equations (3.1) defining the exact solution by q and u, respectively, integrate
over ⌦ and add the equations, we obtain the following energy identity

(c q, q)⌦ = (f, u)⌦ � huD, q · ni@⌦.

If we now apply a similar procedure to the HDG method, we get a discrete energy
identity. So, taking (v, w) := (qh, uh) in the first two equations defining the
HDG method, adding over all the elements K 2 ⌦h and then adding the resulting
equations, we get

(c qh, qh)⌦ +⇥⌧ (uh � buh) = (f, uh)⌦ � huD, bqh · ni@⌦. (3.3)

where ⇥⌧ (uh � buh) :=
P

K2⌦h
h⌧(uh � buh), uh � buhi@K .

To prove Proposition 3.1, we only have to show that if we set f = 0 and
uD = 0, the only solution is the trivial one. But, by the discrete energy identity
and condition (i) of Proposition 3.1, we have that qh = 0 on ⌦h and that uh = buh

on Eh. Now, by equation (3.2a), this implies that (ruh,v)K = 0 8 v 2 V (K),
and by conditon (ii), we conclude that uh is a constant on ⌦. Since uh = buh = 0
on @⌦, we see that uh = 0 on ⌦h and hence that buh = 0 on Eh. The proof of
Proposition 3.1 is complete.

Implementation. To describe the implementation of the HDG methods, we need
to introduce some notation. We denote by (Q(buh, f),U(buh, f)) the linear mapping
(see equations (3.2a), (3.2b) and (3.2c)) that associates (buh, f) to (qh, uh) and set

(Qbuh ,Ubuh) := (Q(buh, 0),U(buh, 0)),

(Qf ,Uf ) := (Q(0, f),U(0, f)).

We also introduce the space Mh := {µ 2 L2(Eh) : µ|F 2 M(F ) F 2 Eo
h} and set

Mh(⇣) := {µ 2 Mh : µ|@⌦ = ⇣}.
With this notation, we can characterize the approximate solution given by the

HDG method as follows.

Proposition 3.2. We have that (qh, uh) = (Qbuh ,Ubuh) + (Qf ,Uf ), where buh 2
Mh(uD) is the solution of

ah(buh, µ) = bh(µ) 8 µ 2 Mh(0).

Here, ah(µ, ⌘) :=
P

K2⌦h
((cQµ,Q⌘)K + h⌧(Uµ � µ),U⌘ � ⌘i@K), and bh(µ) :=

(f,Uµ)⌦, for any µ, ⌘ 2 Mh.
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Note that the formulation characterizing buh is a rewriting of equations (3.2d)
and (3.2e).

We can thus see that the HDG method can be implemented as a typical finite
element method. Once the function buh is computed, we can readily compute
(qh, uh). For details of the implementation, see [34], where the HDG methods
are shown to be more e�cient than the CG method for high-degree polynomial
approximations.

3.2. The stabilization mechanism.

The relation between the residuals. Note that, also for di↵usion problems, the
HDG method is defined by imposing a linear relation between the residuals in the
interior of the elementK, Ru

K := cqh+ruh and Rq
K := r·qh�f , and the residuals

on its boundary @K, Ru
@K := uh � buh and Rq

@K := (qh � bqh) · n = �⌧ (uh � buh).
Indeed, in terms of these residuals, the first two equations defining the HDG

method read

(Ru
K ,v)K = hRu

@K ,v · ni@K 8 v 2 V (K),

(Rq
K , w)K = hRq

@K , wi@K 8 w 2 W (K).

Since this implies that

kPV (K)R
u
KkL2(K)  C h

�1/2
K kRu

@KkL2(@K),

kPW (K)R
q
KkL2(K)  C h

�1/2
K kRq

@KkL2(@K),

where PV (K) and PW (K) are the L
2-projections into V (K) andW (K), respectively,

we see that the quality of the approximation depends only on uh � buh, ⌧ and on
the approximation properties of the spaces V (K) and W (K).

Stabilization by the jumps. The discrete energy identity (3.3) indicates that
we can control the jumps uh � buh if we take ⌧ to be strictly positive. In this
case, ⇥⌧ (uh � buh) becomes a dissipative term which enhances the stability of the
numerical method, just as for the original DG method. That this stabilization
does not a↵ect in a negative manner the accuracy of the method is shown next.

3.3. Convergence properties. Here we discuss the convergence proper-
ties of the method when ⌦ is a polyhedral domain, the triangulations ⌦h are made
of shape-regular simplexesK, and when we take V (K)⇥W (K) := P k(K)⇥Pk(K).
For simplicity, we assume that the stabilization function ⌧ is constant on each @K.

The auxiliary projection. To do this, we follow what was done for the original
DG method and define an auxiliary projection. On any simplex K, the projection
of the function (q, u) 2 H1(K) ⇥ H1(K), ⇧(q, u) := (⇧q,⇧u) is the element of
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P k(K)⇥ Pk(K) which solves the equations

(⇧q,v)K = (q,v)K 8 v 2 P k�1(K),

(⇧u,w)K = (u,w)K 8 w 2 Pk�1(K),

h⇧q · n+ ⌧⇧u, µiF = hq · n+ ⌧u, µiF 8 µ 2 Pk(F ),

for all faces F of the simplex K. This projection is well defined, as we see in the
next result.

Theorem 3.3. Suppose that ⌧K := ⌧ |K is positive. Then (⇧q,⇧u) is well defined
for any k � 0. Furthermore, there is a constant C independent of K and ⌧K such
that

k⇧q � q kK  C hk+1
K |q|Hk+1(K) + C hk+1

K ⌧K |u|Hk+1(K),

k⇧u� ukK  C hk+1
K |u|Hk+1(K) + C

hk+1
K

⌧K
|r · q|Hk(K).

Estimate of the projection of the errors. This projection is fitted to the
structure of the numerical trace bqh because, if we consider the projection of the
errors ("q, "u) := (⇧q� qh,⇧u� uh), we see that we have, by the last property of
the projection,

PMh(q · n) = ⇧q · n+ ⌧(⇧u� PMhu) on @K.

Comparing this expression with the definition of the numerical trace bqh, (3.2c),

bqh · n = qh · n+ ⌧(uh � buh) on @K,

we obtain that "bq ·n := "q ·n+⌧("u�"bu) on @K, provided we set "bu := PMhu�buh

and "bq · n := PMh(qh · n)� bqh · n, where PMh is the L2-projection into the space
Mh. This implies that the equations satisfied by the projection of the errors are
the following. For each simplex K 2 ⌦h,

(c "q,v)K � ("u,r · v)K + h"bu,v · ni@K = (c (⇧q � q),v)K ,

�("q,rw)K + h"bq · n, wi@K = 0,

for all (v, w) 2 V (K)⇥W (K). Moreover, for each face F 2 Eh,

hµ, [["bq · n]]iF = 0 8 µ 2 M(F ),

"bu = 0 if F 2 E@
h .

We thus see that the projections of the error solely depend on⇧q�q. In particular,
the discrete energy identity for these equations is

(c "q, "q)⌦ +⇥⌧ ("u � "bu) = (c (⇧q � q), "q)⌦,

and we can estimate the projection of error in the flux and in the jumps. In fact,
we have the following result.
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Theorem 3.4. For k � 0, we have that

k"qkL2(⌦) +⇥
1/2
⌧ ("u � "bu)  C k⇧q � qkL2(⌦).

Moreover, if the elliptic regularity estimate kukH2(⌦)  C kr · (cru)kL2(⌦) holds
when u = 0 on @⌦, we have that

k"ukL2(⌦)  C C⌧ h
min{k,1} k⇧q � q kL2(⌦),

where C⌧ = maxK2⌦h{1, hK⌧K}.
We can now conclude that, whenever the exact solution (q, u) is smooth enough,

and the stabilization function ⌧ is of order one, we have that

k"qkL2(⌦)  C hk+1 and k"ukL2(⌦)  C hk+1+min{k,1},

and so,
kq � qhkL2(⌦)  C hk+1 and ku� uhkL2(⌦)  C hk+1.

Postprocessing. We can take advantage of the superconvergence of the projec-
tion of the error "u for k � 1 to define a better approximation u?

h to u. The
approximation u?

h is defined on the simplex K 2 ⌦h as the unique function in
Pk+1(K) satisfying

(ru?
h,rw)K =� (cqh,rw)K for all w 2 Wk+1(K),

(u?
h, w)K =(uh, w)K for all w 2 Pk�1(K).

HereWk+1(K) denotes the L2(K)-orthogonal complement of Pk�1(K) in Pk+1(K).
This projection is a modification of the projection proposed in [51, 32, 52].

Theorem 3.5. We have that

ku� u?
h kL2(⌦)  C C⌧ h

min{k,1}k⇧q � q kL2(⌦) + C hk+2 |u |H`+2(⌦h),

for any k � 0 where C⌧ = maxK2⌦h{1, hK ⌧K}.
We thus conclude that, when the exact solution (q, u) is smooth enough, the

stabilization function ⌧ is of order one and k � 1, we have that

ku� u?
h kL2(⌦)  C hk+2.

3.4. Comparison with other finite element methods.

Finite element methods fitting the HDG formulation. Many finite element
methods fit the formulation (3.2); the main examples are displayed in Table 1. In
fact, the RT and BDM mixed methods can be viewed as particular cases of the
HDG methods and the CG method can be considered as a limiting case. This
suggests that we could consider that the HDG methods are between the RT and
BDM mixed methods and the CG method.
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Table 1. Methods fitting the formulation (3.2) for triangulations ⌦h of simplexes.

Method V (K) W (K) M(F ) ⌧

RT Pk(K) + xPk(K) Pk(K) Pk(F ) 0
BDM Pk(K) Pk�1(K) Pk(F ) 0
HDG Pk(K) Pk(K) Pk(F ) (0,1)
CG Pk�1(K) Pk(K) Pk(F ) 1

Boundary residuals and accuracy. To further elaborate this idea, we compare
in Table 2 how these methods deal with the residuals at the boundary of the
elements and how this is reflected in their convergence properties.

We see, on the one hand, that the RT and BDM methods force the residual
Rq

@K := (qh � bqh) · n to be equal to zero and obtain the orders of convergence of
k + 1 and k + 2 for qh and u?

h, respectively. On the other hand, the CG method
forces the residual Ru

@K := uh � buh to be equal to zero and obtain the orders of
convergence of only k and k + 1 for qh and u?

h, respectively. (For a comparison
between the RT and CG methods, see [19].) However, unlike these methods, the
HDG method does not force any of these two residuals to be zero. Instead, it
plays with the stabilization function ⌧ to balance their relative sizes so that the
approximation error is optimal. As we see in Table 2, this happens when both
residuals have a similar weight, that is, when the stabilization function ⌧ is of
order one. Note that we would expect, from Table 1, that taking ⌧ small or big
enough would guarantee that the convergence properties of the HDG method are
closer to those of the RT and BDM methods or to the CG method, respectively.
The results displayed in Table 2 actually confirm this. A rigorous explanation of
this fact can be found in [22, 18].

Table 2. Residuals, stabilization and order of accuracy (for k � 1).

Method Ru
@K Rq

@K ⌧ qh uh u?
h

RT � 0 0 k + 1 k + 1 k + 2
BDM � 0 0 k + 1 k k + 2
HDG � � O(1) k + 1 k + 1 k + 2
HDG � � O(1/h) k k + 1 k + 1
CG 0 � 1 k k + 1 k + 1
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4. HDG methods for incompressible fluid flow

In this section, we extend the HDG methods to the more involved Stokes equations
of incompressible fluid flow,

�⌫�u+rp = f on ⌦, (4.1a)

r·u = 0 on ⌦, (4.1b)

u = uD on @⌦, (4.1c)

(p, 1)⌦ = 0, (4.1d)

where huD · n, 1i@⌦ = 0. Most of the material for this section is contained in
[43, 17].

4.1. The HDG methods.

Rewriting the equations. For each K 2 ⌦h, the method provides an approxi-
mation to the restriction of (L,u, p) to K, where L is the gradient of the velocity
u, as well as to the traces (�⌫bLn+ bpn, bu) on @K. So, we first rewrite the Stokes
equations in a manner that will be suitable to defining the HDG methods.

If we assume that we know the trace of the velocity on @K, bu, as well as the
average of the pressure on K, p, we can obtain (L,u, p) inside K as the solution of

L�ru = 0 in K,

�⌫r · L +rp = f in K,

r·u =
1

|K| hbu · n, 1i@K in K,

u = bu on @K,

1

|K| (p, 1)K = p.

The functions bu and p can now be obtained as the solution of

[[�⌫bLn+ bpn]] = 0 for all F 2 Eo
h,

hbu · n, 1i@K = 0 for all K 2 ⌦h,

bu = uD on @⌦,

(p, 1)⌦ = 0.

The Galerkin method and the numerical traces. We now discretize the
equations by using a Galerkin method together with a suitable approximation of
the traces. On the element K 2 ⌦h, we take (Lh,uh, ph) in the space G(K) ⇥
V (K)⇥Q(K), and on the face F 2 Eo

h, we take buh in the space M(F ).
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On each element K 2 ⌦h, the function (Lh,uh, ph) is expressed in terms of
(buh, ph, f) as follows. Since

(L,G)K + (u,r ·G)K � hbu,Gni@K = 0,

(⌫L,rv)K � (ph,r · v)K � h⌫bLn� bpn,vi@K = (f ,v)K ,

�(u,rq)K + hbu · n, q � qi@K = 0,

for smooth emough (G,v, q), we determine (Lh,uh, ph) in terms of (buh, ph, f) as
the solution of

(Lh,G)K + (uh,r ·G)K � hbuh,Gni@K = 0, (4.2a)

(⌫Lh,rv)K � (ph,r · v)K � h⌫bLhn� bphn,vi@K = (f ,v)K , (4.2b)

�(uh,rq)⌦h + hbuh · n, q � qi@K = 0, (4.2c)

1

|K| (ph, 1)K = ph, (4.2d)

for all (G,v, q) 2 G(K)⇥V (K)⇥Ph(K), where the numerical trace �⌫bLhn+bphn
is assumed to be given by

�⌫bLhn+ bphn = �⌫Lhn+ phn+ ⌫ ⌧ (uh � buh) on @K. (4.2e)

Then we determine (buh, ph) by enforcing the remaining equations, that is, by
requiring that

h [[�⌫bLhn+ bph n]],µiF = 0 8µ 2 M(F ) 8 F 2 Eo
h, (4.2f)

hbuh · n, 1i@K = 0 8 K 2 ⌦h, (4.2g)

buh = uD on @⌦, (4.2h)

(ph, 1)⌦ = 0. (4.2i)

This completes the definition of the HDG methods.

The discrete energy identity and the existence and uniqueness of the
approximation. These methods are well defined under very mild conditions, as
we see in the next result.

Proposition 4.1. The HDG method is well defined if (i) the stabilization function
⌧ is strictly positive on @⌦h, (ii) rv 2 G(K) for any v 2 V (K), and if (iii)
rq 2 V (K) for all q 2 Q(K).

To prove this result, we begin by establishing an energy identity. Note that for
the exact solution we have

(L,L)⌦ = (f ,u)⌦ + h�⌫Ln+ p n,uDi@⌦,
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and so we should have a similar energy identity for the solution of the HDGmethod.
Indeed, it is not di�cult to obtain

(Lh,Lh)⌦ +⇥⌧ (uh � buh) = (f ,uh)⌦ + h(�⌫bLh + bph I)n,uDi@⌦, (4.3)

where ⇥⌧ (uh � buh) :=
P

K2⌦h
h⌧(uh � buh),uh � buhi@K .

Once again, to prove Proposition 4.1, we only have to show that when if we
set f = 0 and uD = 0, the only solution is the trivial one. By the discrete energy
identity, we see that in this case we have that Lh = 0 on ⌦h and that uh = buh on
Eh. By equation (4.2a), this implies that

(ru,G)K = 0 8 G 2 G(K),

and by condition (ii), we conclude that uh is constant on ⌦. Since uh = buh = 0 on
@⌦, we see that uh = 0 on ⌦ and, as a consequence, that buh = 0 on Eh. Finally,
by equation (4.2b),

(rph,v)K = 0 8 v 2 V (K),

and by condition (iii), we have that ph is a constant on ⌦. By equations (4.2d)
and (4.2i), we conclude that ph = ph = 0 on ⌦h. This completes the proof of
Proposition 4.1.

Implementation. To describe the implementation of the HDG methods, we need
to introduce some notation. We denote by (L,U ,P) the linear mapping (given by
equations (4.2a) to (4.2e)) that associates (buh, ph, f) to (Lh,uh, ph), and set

(Lbuh ,U buh ,Pbuh) := (L,U ,P)(buh, 0, 0),

(Lph ,Uph ,Pph) := (L,U ,P)(0, ph, 0),

(Lf ,Uf ,Pf ) := (L,U ,P)(0, 0, f).

We also introduce the spaces

Mh := {µ 2 L2(Eh) : µ|F 2 M(F ) 8 F 2 Eo
h},

Ph := {qh 2 L2(⌦) : qh 2 P0(K) 8 K 2 ⌦h},
and set Mh(⇣) := {µ 2 Mh : µ|@⌦ = ⇣}.

With this notation, we can characterize the approximate solution given by the
HDG method as follows.

Theorem 4.2. We have that

(Lh,uh, ph) = (Lbuh ,U buh ,Pbuh) + (Lph ,Uph ,Pph) + (Lf ,Uf ,Pf ),

where (buh, ph) is the only element in Mh(uD)⇥ Ph such that

ah(buh,µ) + bh(ph,µ) = `h(µ), 8 µ 2 Mh(0),

bh(q, buh) = 0, 8 q 2 Ph,

(ph, 1)⌦ = 0.
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Here the forms are given by

ah(⌘,µ) =
X

K2⌦h

((⌫L⌘,Lµ)K + h⌫⌧(U⌘ � ⌘), (Uµ � µ)i@K) ,

bh(q,µ)= �
X

K2⌦h

hq,µ · ni@K ,

`h(µ) = (f ,Uµ)⌦ ,

for all ⌘ 2 Mh,µ 2 Mh, and q 2 Ph.

Note that the first equation of the formulation characterizing (buh, ph) is a
rewriting of equation (4.2f) whereas the second is a rewriting of equation (4.2g).

We see that the HDG method can be implemented as a typical mixed method.
In fact, an augmented lagrangian algorithm can be used to further improve its
implementation; see [43].

4.2. The stabilization mechanism.

The relation between the residuals. Note that also for The Stokes problem,
the HDG method is defined by imposing a linear relation between the residuals in
the interior of the element K, Ru

K := Lh � ruh, R
L,p
K := r · (�⌫Lh + ph I) � f ,

and Rr·u
K := r ·uh and the residuals on its boundary @K, Ru

@K := (buh �uh)⌦n

and RL,p
@K := (�⌫Lhn+ ph n)� (�⌫bLhn+ bph n) = �⌫ ⌧ (uh � buh).

Indeed, the equations of the Galerkin method defining the HDG method can
be rewritten as follows:

(Ru
K ,G)K = hRu

@K ,Gi@K
(RL,p

K ,v)K = hRL,p
@K ,vi@K ,

(Rr·u
K , q)K = htrRu

@K , qi@K .

Since this implies that

kPG(K)R
u
KkL2(K)  C h

�1/2
K kRu

@KkL2(@K),

kPV (K)R
L,p
K kL2(K)  C h

�1/2
K kRL,p

@KkL2(@K),

kPQ(K)R
r·u
K kL2(K)  C h

�1/2
K ktrRu

@KkL2(@K),

we see that the quality of the approximation depends only on u � buh, ⌧ and on
the approximation properties of the spaces G(K), V (K) and Q(K).

Stabilization by the jumps. By the energy identity (4.3), we see that we can
control the jumps uh�buh if we require the stabilization function ⌧ to be positive on
@⌦h. Next, we show that this stabilization mechanism does not spoil the accuracy
of the method.
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4.3. Convergence properties. Here we discuss the convergence proper-
ties of the method when ⌦ is a polyhedral domain, the triangulations ⌦h are made
of shape-regular simplexes K, and when we take

G(K)⇥ V (K)⇥W (K) := PK(K)⇥ P k(K)⇥ Pk(K).

Here Pk(K) is the space of matrix-valued functions whose components belong to
Pk(K). Once again, for simplicity, we assume that the stabilization function ⌧ is
constant on each @K.

The auxiliary projection. Given a simplex K 2 ⌦h and a function (L,u, p) in
H1(K) ⇥ H1(K) ⇥ H1(K), we define its projection ⇧(L,u, p) := (⇧L,⇧u,⇧p)
as the element of Gh ⇥ V h ⇥ Ph that solves the equations

(⇧L,G)K = (L,G)K 8 G 2 Pk�1(K),

(⇧u,v)K = (u,v)K 8 v 2 Pk�1(K),

(⇧p, q)K = (p, q)K 8 q 2 Pk�1(K),

(tr ⇧L, q)K = (tr L, q)K 8 q 2 Pk(K),

h⌫⇧Ln�⇧pn� ⌫ ⌧⇧u,µiF = h⌫Ln� pn� ⌫ ⌧u,µiF 8 µ 2 Pk(F ),

for all faces F of the simplex K. This projection is actually well defined.

Theorem 4.3. Suppose that ⌧K := ⌧ |K is a positivie constant on @K. Then the
projection ⇧ is well defined. Moreover, on each element K 2 ⌦h, we have that

k⇧u� ukK  C hk+1
�|u|Hk+1(K) + ⌧K

�1|u|Hk+2(K)

�
,

k⌫⇧L� ⌫LkK  C hk+1⌫
�|u|Hk+2(K) + ⌧K |u|Hk+1(K)

�
,

k⇧p� pkK  C hk+1
K |p|Hk+1(K) + C k⌫⇧L� ⌫LkK .

We have assumed that tr L = 0 for the last two inequalities and that r · u = 0 in
the last one.

Estimates of the projection of the errors. This projection is fitted to the
structure of the numerical trace �⌫bLn + bpn in the following sense. Consider the
projection of the errors (EL, "u, "p) := (⇧L � Lh,⇧u � uh,⇧p � ph). Then, by
the last equation defining this projection, we have that

PMh(�⌫Ln+ pn) = �⌫⇧Ln+⇧pn+ ⌫ ⌧(⇧u� PMhu),

where PM is the L2-projection into Mh. Comparing this with the definition of
the numerical trace

�⌫bLhn+ bphn = �⌫Lhn+ phn+ ⌫ ⌧ (uh � buh),

we get that �⌫"bLn+ "bpn = �⌫ELn+ "p n+ ⌧("u � " bu) provided �⌫"bLn+ "bpn :=

PM (�⌫Ln+ pn)� (�⌫bLhn+ bphn) and " bu := PM (u� bu).
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The equations satisfied by the projection of the errors are then the following.
For each simplex K 2 ⌦h,

(EL,G)K + ("u,r·G)K � h" bu,Gni@K = (⇧ L� L,G)K ,

�(r · (⌫EL),v)K + (r"p,v)K + h⌫⌧ ("u � " bu),vi@K = 0,

�("u,rq)K + h" bu, qni@K = 0,

for all (G,v, q) in G(K)⇥ V (K)⇥Q(K). Moreover,

h�⌫ELn+ "pn+ ⌫⌧ ("u � " bu),µiF = 0 8 µ 2 M(F ) 8F 2 Eo
h,

" bu = 0 on @⌦,

("p, 1)⌦ = (⇧p� p, 1)⌦.

We thus see that the projection of the errors only depend on ⇧L � L and on
(⇧p� p, 1)⌦, the latter quantity being equal to zero for k � 1.

In particular, the discrete energe identity for the equations is

(EL,EL)⌦ +⇥⌧ ("u � " bu) = (⇧L� L,EL)⌦,

and we immediately obtain an estimate of the projection of the error in the gradient
and in the jumps of the velocity. In fact, we can prove the following result.

Theorem 4.4. We have

kEL kL2(⌦) +⇥
1/2
⌧ (u� buh)  C k⇧L� L kL2(⌦),

k"pkL2(⌦)  |(⇧p� p, 1)⌦| |⌦|�1/2 + C
p
C⌧ ⌫ k⇧ L� LkL2(⌦),

where C⌧ := maxK2⌦h{1, ⌧K hK}. Moreover, if the elliptic regularity estimate
⌫kukH2(⌦)  Ck � ⌫�u+rpkL2(⌦) holds whenever u = 0 on @⌦, we have that

k "u kL2(⌦)  C C⌧ h
min{k,1} k⇧L� L kL2(⌦).

We can now conclude that, whenever the exact solution (q, u) is smooth enough,
and the stabilization function ⌧ is of order one, we have that

⌫kELkL2(⌦) + k"pkL2(⌦)  C hk+1 and k"ukL2(⌦)  C hk+1+min{k,1},

and so,

⌫kL� LhkL2(⌦) + kp� phkL2(⌦)  C hk+1 and ku� uhkL2(⌦)  C hk+1.

Postprocessing. Here we show how to obtain a new approximate velocity which
is exactly divergence-free, H(div)-conforming, and converges with an additional
order for k � 1. We only describe the three dimensional case, as the two dimen-
sional case is much simpler. We quote [17] almost verbatim.
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In the three dimensional case we define the postprocessed approximate velocity
u?
h on the tetrahedron K 2 ⌦h as the element of Pk+1(K) such that

h(u?
h � buh) · n, µiF = 0 8 µ 2 Pk(F ),

h(n⇥r)(u?
h · n)� n⇥ ( {{Lt

h}}n), (n⇥r)µiF = 0 8 µ 2 Pk+1(F )?,

for all faces F of K, and such that

(u?
h � uh,rw)K = 0 8 w 2 Pk(K),

(r⇥u?
h �wh, (r⇥v) BK)K = 0 8 v 2 Sk(K).

Here Pk+1(F )? := {µ 2 Pk+1(F ) : hµ, eµiF = 0, 8eµ 2 Pk(F )}, n ⇥ r is the
tangential gradient rotated ⇡/2 in the positive sense (from the point of view of the
normal vector) and the function {{Lt

h}} is the single-valued function on Eh equal to
((Lt

h)
++(Lt

h)
�)/2 on the set Eh\@⌦ and equal to Lt

h on @⌦. In the last equation, we
have that wh := (Lh

32�Lh
23,L

h
13�Lh

31,L
h
21�Lh

12) is the approximation to the vorticity
and BK :=

P3
`=0 �`�3�`�2�`�1r�`⌦r�` is the so-called symmetric bubble matrix

introduced in [15]. Here the �0
is are the barycentric coordinates associated with the

tetrahedron K, the subindices being counted modulo 4. Finally, to define Sk(K),
recall the Nédélec space of the first kind [36], defined by Nk = Pk�1(K) � Sk,
where S` is the space of vector-valued homogeneous polynomials v of degree `
such that v · x = 0. Then, define Sk(K) := {p 2 Nk : (p,r�)K = 0 for all
� 2 Pk+1(K)}.
Theorem 4.5. We have that u?

h 2 H(div,⌦) and that r·u?
h = 0 on ⌦. Moreover,

ku?
h � ukL2(⌦)  C hk+2|u |H`u+2(⌦) + C C⌧ h

min{k,1} k⇧L� LkL2(⌦).

We thus conclude that, when the exact solution (L,u, p) is smooth enough, the
stabilization function ⌧ is of order one and k � 1, we have that

ku� u?
h kL2(⌦)  C hk+2.

5. Conclusion and ongoing work

The described approach to devise HDG methods has proven to be very powerful
for the model problems considered in the previous sections. We believe that it can
be used in a systematic manner to obtain e�ciently implementable and accurate
HDG methods for a wide variety of problems of practical interest. In fact, many
HDG methods have already been defined and numerically tested on a variety of
problems; their analyses constitute the subject of ongoing research. To end this
paper, we describe them and briefly discuss their main convergence properties.

HDG methods have been devised for linear, steady-state convection-di↵usion
problems in [13], and for time-dependent linear and nonlinear convection-di↵usion
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Figure 2. a) deformed shape using P1, b) deformed shape using P3, c) closeup view of
Figure a), d) closeup view of Figure b).

problems in [41] and [42], respectively. The convergence properties for HDG meth-
ods for the purely di↵usive case seem to carry over to all these problems in the
di↵usion-dominated regime.

HDG methods for linear and nonlinear elasticity have been devised in [50] and
[49] with very good results. Indeed, by using polynomial approximations of degree
k for all the components of the stress and displacement, the order of convergence
of k + 1 for k � 0 in all variables is obtained. Moreover, by means of a local
postprocessing, a new approximation of the displacement can be computed which
converges with order k + 2 for k � 2. In Fig. 2, we show the approximate
displacement of the borders of the elements for a nonlinear elasticity problem; see
[49] for a detailed description. The approximation with polynomials of degree one
is not as good as the approximation using polynomials of degree three. In full
agreement with the properties of the HDG methods, this is reflected in the fact
that the jumps for the former are highly visible whereas those of the latter are not.

HDG methods for Timoshenko beams have been developed in [5] with optimal
convergence results. Indeed, if polynomials of degree k are used to approximate
the displacement, rotation angle, bending moment and shear stress, numerical
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experiments suggest that all of these variables converge with order k + 1 for k �
0. For biharmonic problems [12], the HDG methods provide the optimal order
of convergence of k + 1 for the scalar variable and its gradient. However, the
approximation of the laplacian is only of order k + 1/2 and that of its gradient
of only order k � 1/2. On the other hand, on strict subdomains, the order is
the optimal k + 1 for all these variables. Further analysis of this phenomenon is
required to obtain an optimally convergent HDG method on the the whole domain.

HDG methods for vorticity-velocity-pressure formulations of the Stokes equa-
tions have been proposed in [14] and later numerically compared with other HDG
methods in [38]. The results indicate that the HDG method considered in the
previous section performs better. Extensions of this HDG method for the incom-
pressible Navier-Stokes has been recently proposed in [39, 37]. Once again, all the
convergence properties of the HDG methods seem to carry over to these equations.

Finally, we would like to report that the HDG methods for both the Euler equa-
tions of gas dynamics and the compressible Navier-Stokes equations been devised
in [44] seem to provide approximations with optimally convergent properties.
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