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Abstract— In this paper, we introduce a new covariance based
feature descriptor to be used on “colored” point clouds gathered
by a mobile robot equipped with an RGB-D camera. Although
many recent descriptors provide adequate results, there is not
yet a clear consensus on how to best tackle “colored” point
clouds. We present the notion of a covariance on RGB-D data.
Covariances have not only been proven to be successful in image
processing, but in other domains as well. Their main advantage
is that they provide a compact and flexible description of point
clouds. Our work is a first step towards demonstrating the
usability of the concept of covariances in conjunction with RGB-
D data. Experiments performed on an RGB-D database and
compared to previous results show the increased performance
of our method.

I. INTRODUCTION

One of the most important properties of a mobile robot
is the ability to process information from the surrounding
environment. In order to perform its tasks, a robot needs
to be able to perceive its environment. For instance, in
navigation a robot needs to be able to recognize certain
features that can be used as landmarks. If a robot needs
to grasp an object, it first needs to find the object in the
scene. For this task, 3D object detection and 3D object
classification have to be performed. The recent introduction
of affordable RGB-D cameras such as the Microsoft Kinect
[1], has induced a great interest in the robotics and computer
vision community towards developing efficient algorithms
for point cloud processing. Previously, in order to capture
a point cloud, expensive specialized sensors such as lasers
or dedicated range imagers were needed; now range data
is readily available from cheap sensors which provide point
clouds that can easily be extracted from a depth map. In
addition, these RGB-D cameras provide additional infor-
mation in a “colored” point cloud. In image processing,
descriptors such as SIFT [2] and SURF [3] have been shown
to be very successful. Work has been done in the last few
years on descriptors for RGB-D data that have proven to
be successful. However, it is not yet clear how to robustly
process RGB-D data from a mobile robot.

In this work, we introduce a covariance based 3D point
descriptor which is compact (low dimensionality) and fast
(processing speed) to match against one another. Its greatest
benefit is the flexibility that it offers in including other dis-
criminative features from the objects of interest for improved
object retrieval. Also, the description is very compact; a
single positive definite matrix describes an entire “colored”

point cloud. In Section III-A we describe in detail which
features were chosen as well as discuss the number of
parameters used to compute the point cloud features. This
paper attempts to open the door to exploring covariances on
RGB-D data, as they have been successful in a range of other
areas.

In the next section we point to those successful areas
and discuss some of the previous descriptors for RGB-D
data. Then we present the covariance descriptor and show
the experimental results. Finally, we conclude and mention
potential future work.

II. RELATED WORK

One of the earliest descriptors developed for point clouds
are the spin images introduced by Johnson et al. [4]. Spin
images have been evolved and refined by many other works.
For instance, Carmichael et al. [5] address spin images in
the context of different depth and thus different sampling
densities. Moving away from the idea of spin images, Frome
et al. [6] export Belongie et al.’s work from image processing
into point cloud processing. A survey on different point cloud
descriptors has been published by Tangelder and Veltcamp
[7]. In a more recent development, Rusu et al. [8] use a
histogram based approach to find matching points in order
to facilitate alignment and merging of point clouds. Tombari
et al. [9] show that building signatures on top of histograms
provides good results for feature detection.

The common denominator of these methods is that they
have been developed for “simple” point clouds. Now that
access to “colored” point clouds has been drastically sim-
plified with the introduction of low cost RGB-D cameras, a
lot of work has begun in the area of RGB-D data. Lai et al.
[10] introduced an RGB-D image database of objects that
have been pre-segmented with which different algorithms
can be tested. The present paper uses this database for the
experiments. Alongside the introduction of the benchmark,
the authors introduce a descriptor that can classify and
detect objects from RGB-D data. The same authors introduce
a second approach to classification in [11] using sparsity
techniques in order to classify objects. Their work also shows
that shape, in conjunction with appearance information, pro-
vides better classification results than classifying for shape
or appearance separately. Bo et al. [12] introduces kernel
descriptors for object recognition. In [13], Bo et al. compute
and evaluate descriptors at different patch sizes and thus



build a hierarchical model of depth kernels. With a similar
focus, Blum et al. [14] use dictionary learning in order to find
relevant features for classification. In their work, Bo et al.
[15] merge the previous ideas of hierarchical models with
dictionary learning. Similar work has been performed by
Tang et al. [16] on a dataset provided by Willow Garage for
the 2011 ICRA Solutions in Perception Instance Recognition
Challenge.

Point clouds in the Lai et al. database [10] are cleanly
segmented. The assumption of pre-segmented objects facili-
tates the classification task, but moves the problem towards
answering the question of how to perform the segmentation.
Work by Mishra et al. [17] that segments objects from “col-
ored” point clouds using oriented masks, tries to answer this
question. Covariances have been introduced as descriptors in
image processing by Tuzel et al. [18] and have been shown
to produce excellent results for detection and classification.
Porikli et al. [19] continue to build on this idea to track
objects in videos.

III. COVARIANCE DESCRIPTOR

A. Covariance

The various different application domains of covariance
descriptors led us to test this paradigm for classification. A
first try of the approach has been given by the authors in [20].
These point-wise comparisons were very time consuming
due to the enormous number of descriptors that characterized
each object and do not qualify well for the task of classi-
fication. They are rather suited for a different task such as
registration. In this paper, a different approach is pursued.
Instead of computing point-wise covariance descriptors, a
covariance descriptor over an entire object is computed,
resulting in a single positive definite matrix characterizing
each object. Comparisons between different objects are thus
drastically sped up and the number of saved descriptors is
enormously reduced.

The descriptors are defined as follows:
Definition 1: Let Fi ∈ Rp, for i = 1, 2, . . . , N , be

the feature vectors of the N points of an object, then the
covariance descriptor of this object K ∈ Sp++ is defined as:

K =
1

N − 1

N∑
i=1

(Fi − µF )(Fi − µF )
T (1)

where µF is the mean feature vector and Sp++ is the space
of p× p Symmetric Positive Definite (SPD) matrices.

This allows for a compact description in each frame.
Since the covariance is a positive symmetric matrix, we are
effectively reducing the number of values that we need to
save to the number of upper or lower triangular entries in
the matrix. It is also quite easy to add additional features at
each point as the matrix will only grow by a row and column.
Compared to a histogram based approach where adding a
feature adds an additional dimension to the histogram cube,
the appeal of the covariance descriptor method is clearly
apparent. The used features will be described in Section III-
C.

B. Distance

One of the problems with using covariances as descriptors
is that their space is not Euclidean, but they instead span
a Riemannian manifold. Arsigny et al. [21] introduced the
following metric that is used throughout this work:

dLE (X,Y ) = ‖log (X)− log (Y )‖F (2)

where X and Y are two positive definite matrices, log (·)
designates the matrix logarithm, and ‖·‖F is the Froebinius
norm.

The matrix logarithms can be precomputed and determin-
ing this distance becomes a vector operation. The additional
advantage of using this distance is that we can use it as is,
as the distance for the radial basis function (RBF) kernel for
the SVM classification.

C. Features

The RGB-D dataset provides at each point the x, y, z
Cartesian coordinate as well as the r, g, b color channel
values. This allows for six different features.

This number is augmented by computing the normal
(nx, ny, nz) at each point to get three additional features.
The normals are computed using the method introduced by
Hoppe et al. [22]. At each point x, a neighborhood is taken
and the directions along which the data is least scattered is
determined. This direction is the normal estimate.

Once the normals are computed at each point, the cur-
vature can be estimated which provides us with two values
along the main curvature axes (c1, c2). These directions are
estimated by projecting the normals in the neighborhood of
the point onto the tangential plane at that point. The param-
eters of the ellipse fitting these points are then computed
which provides us the main curvature axes values. Finally,
the product of these curvatures provides a “total” curvature
C = c1 · c2 at the point. The use of the local curvature at a
point has been inspired by work on non-rigid shapes by the
Bronstein brothers [23], where they show that the curvatures
provide a good feature for classifying non-rigid objects.

Since image derivatives have produced excellent results
in image processing, they are computed here as well in
addition to the different derivatives on the depth image:
I is the intensity image computed from RGB. Ix and Iy
correspond to the output of the Sobel operator [24], when
applied to I along x and y respectively. This in effect
produces the gradient along x and y at each pixel. For
Ixx, Iyy, Ixy , the operator is applied a second time on the
patch. M =

√
I2x + I2y corresponds to the magnitude of

the gradient of the image patch. The same operations are
performed on the depth image D to produce Dx, Dy and
DM =

√
D2

x +D2
y .

Thus, a total of 22 features can be used in the computation
of our covariance descriptor. The experiments are run with 15
different combinations of these features, a sample of which
is as follows:



FPCN = [x, y, z, r, g, b, nx, ny, nz]

FPCNK = [x, y, z, r, g, b, nx, ny, nz, C]

FPCIM = [x, y, z, r, g, b, Ix, Iy, Ixx, Iyy, Ixy,M ]

FPCIMIDNKk = [x, y, z, r, g, b, I, Ix, Iy, Ixx, Iyy, Ixy,

M,Dx, Dy, DM , nx, ny, nz, C, c1, c2] .

Each object is represented by its covariance matrix. Since
this matrix is symmetric, each object is characterized by the
number of upper-triangular (or lower-triangular) values. The
total number of parameters that describe a frame are then
(p+1)p

2 (p is the number of features).

D. Scale Invariance

The descriptor is scale invariant in that the covariance
captures the relationships between the different features. At
different distances, the distribution of the points remains
constant as well as the covariance. In order to show this
scale invariance we performed the experiment described in
Section IV-C.4.

IV. EVALUATION

A. Setup

For our experiments, the database of RGB-D data intro-
duced by Lai et al. [10] is used. This database comprises
video-frames of approximately 300 objects divided into 51
categories. There are about 250,000 total frames in the
database. Following the experimental procedure in [10] and
[14], we sub-sample this database by taking every fifth
frame in order to have around 45,000 frames on which we
run classification. As described in the previous section, we
compute the normal and curvature at each point and add these
to our features. During the experimental runs, we follow
[10]’s Section V. For category recognition, we randomly
leave one object out from each category for testing and train
the classifiers on all the views of the remaining objects. For
instance recognition, we consider two scenarios:

• Alternating contiguous frames: Divide each video into
3 contiguous sequences of equal length. There are 3
heights (videos) for each object which gives 9 video
sequences for each instance. We randomly select 7 of
these for training and test on the remaining 2.

• Leave-sequence-out: Train on the video sequences of
each object where the camera is mounted 30◦ and
60◦ above the horizon and evaluate on the 45◦ video
sequence.

An additional test on category recognition is performed
to test the correlation between the classification accuracy
and the number of categories. In this experiment, for every
chosen number n ∈ [2, . . . , 45], n categories are chosen
randomly out of 51 and the same category recognition
procedure is applied in which for every category one object
is randomly removed from the entire set for testing purposes
and the learning is done on the remaining objects.

Where frames are randomly chosen, the experiments are
run 10 times and the average is reported.

Fig. 1: This figure shows the classification accuracy results
for the Alternating Contiguous Sequence experiment. The x-
axis shows the different features used. The standard deviation
over 10 runs is displayed in red.

B. Experiments

The experiments are run with the ten different combina-
tions of feature vectors described in Section III-C. For each
set of features, the covariance for each frame is computed
as well as its matrix logarithm. Classification is performed
using an RBF kernel SVM classifier [25] in which the log-
Euclidean distance described in Section III-B is used.

C. Results

1) Instance Classification: Fig. 1 shows the results for the
Alternating Contiguous Sequences run. The standard devia-
tion is also given for 10 tries. It is interesting to note that for
instance recognition, the classifier on color C (color channels
rgb) performs better than the classifiers using only shape P ,
N , Kk (point coordinates xyz, normals N , and curvatures
Kk respectively). The feature vectors containing more image
cues perform best in these scenarios. It is reasonable to obtain
such results as the differences in an instance of “similar”
objects lie more in its appearance than in its shape. Using
shape together with color information produces improved
results as already shown in [10] and [11]. When classifying
over color features as well as shape features, the results are
similar for the combination of features. This indicates that the
curvature information in addition to the normal information
is not that useful. A similar case can be made against the
information the depth image provides. More investigation
is needed in order to provide a definite explanation of this
phenomenon.

2) Category Classification: Fig. 2 shows the results over
the category test. These results are interesting in that they
show improved classification with the shape features com-
pared to color features. This is somewhat expected as the
color pattern over different categories might be similar
whereas the shape pattern differs more. The best result is
achieved when using all the shape features available to us.

The best results over the different feature combinations are
reported in Table I for comparison purposes with the other
methods.



Fig. 2: This figure shows the classification accuracy results
for the categories experiment. The x-axis shows the differ-
ent features used. The standard deviation over 10 runs is
displayed in red.

TABLE I: Classification Accuracy. (a) Leave-Sequence-Out
(b) Alternating Contiguous Frames. Accuracies Are Aver-
aged Over 10 Trials. Dimensionality Comparison

Method Instance Category Dim
(a) (b)

Linear SVM [10] 73.9 90.2± 0.6 81.9± 2.8 4203
Nonlinear SVM [10] 74.8 90.6± 0.6 83.8± 3.5 4203
Random Forest [10] 73.1 90.5± 0.4 79.6± 4.0 4203
IDL [11] - 91.3± 0.3 85.4± 3.2 4203
HKDES [13] 82.4 - 84.1± 2.2 7000
Kernel Desc. [12] 84.5 - 86.2± 2.1 39000
CKM Desc. [14] 90.4 92.1± 0.4 86.4± 2.3 19200
upgraded HMP [15] 92.1 - 87.5± 2.9 188300
Cov Desc. (this work) 90.7 94.4± 2.0 80.4± 1.9 253

3) Sub-sampled Category Classification: In an effort to
understand the relationship between the number of categories
and the classification accuracy, the sub-sampled category
classification was run. Fig. 3 provides the results for this
experiment. The x-axis shows the number of categories used
in the runs. For clarity purposes, only the results from
the best performing descriptors are displayed. The decaying
trend is somewhat expected. For each run, the categories
have been redrawn. There exists 10 runs for each number of
subsamples.

4) Scale Invariance: For the six objects given in Fig. 4,
we performed an experiment where a point cloud of each
object was captured at four increasing distances from the
RGB-D camera corresponding to 2-8 ft (0.61-2.43 m). Fig. 5
shows one such set of images. At 8 feet, the object is
near the far-end range of the camera’s capabilities. For
each combination of features, we computed the norm of
the geodesic distance between each object and itself, and
object to object at the various positions. The object’s feature
vector consisted of the following parameters: FPCN =
[x, y, z, r, g, b, nx, ny, nz]. The average norm of the geodesic
distance between each object and itself, at different scales,
was found to be 0.104. The average norm between each
object and all other objects was 0.204. This corresponds to a
difference of 48.8% between the different objects, and shows
a clear distinction in the geodesic distance regardless of the

Fig. 3: This figure shows the classification accuracy results
for the sub-sampled categories experimental run. The x-axis
shows the number of sub-sampled categories for each run.

(a) Box (b) Coffee can (c) Water heater

(d) Paper roll (e) Shoe (f) Shuttle

Fig. 4: Objects used for the scale invariance testing.

scale.
A second experiment to test the classification performance

of the scaled data set was run using the Microvision robot
[26]. A circling motion control scheme [27] was used to
capture a sequence of view points of each object. Next, the
object point clouds were filtered and used to train an SVM.
Finally, the data of the scaled object was passed to the SVM
classifier to predict the label. In all cases, the prediction
performed flawlessly, i.e. a misclassification rate of zero. It
is worthy to note that at the smallest scale, the point cloud
composition of the object is less than 1% of the total point
cloud size, yet the classification was consistently performed
correctly.

(a) 2 ft (b) 4 ft (c) 6 ft (d) 8 ft

Fig. 5: Shuttle at four different scales.



V. DISCUSSION

In [10] and [11] the authors come to the conclusion that
using shape and vision information separately yields low
classification scores, whereas using the same information
together provides better accuracies. Our experimental results
confirm this conclusion.

A. Instance Classification

The results of the experiments for instance classification
are interesting in that they give insight into which features
are important. For example, one can see in Fig. 1 that the
descriptors using solely the color (C) information, although
not giving very good results, outperform the shape feature
based descriptors (P,N,NK,NKk). This is expected as the
objects in each different category usually have very similar
shapes. For instance, there are various colored apples in
the database and consequently they share the same (similar)
shape but only differ by color. The different objects have
a similar overall shape inside each category which makes
it difficult to classify on these features. On the other hand,
color can manage the classification better. It explains why the
descriptors containing the most visual information perform
best. This trend is visible in both scenarios, leave-sequence-
out and alternating contiguous frames.

When comparing the results with other works (Table I),
our method produces comparable results to other state of
the art methods. However, it is important to note that for
our method only the covariance over the different objects
is computed. We did not compute and choose specific key
feature points needed for comparison purposes. Finally, the
classification is operated in a (p+1)p

2 dimensional space,
where p is the number of features used and as such is rela-
tively small. The amount of processing necessary to compute
covariances is minimal. Our method not only performs as
well as others, but can do so using less parameters.

B. Category Classification

Contrary to the previous runs, in the category classification
test (Fig. 2), the shape features (P,N,NK,NKk) are more
meaningful than the color descriptor (C). Intuitively, this
again makes sense since different objects should have differ-
ent shapes, but could have the same color. For instance, in
the database there is a red apple and red toothpaste tube that
may be confused when classifying only on color. Combining
the classifiers provides better results. When we compare
our classifier to other classifiers (Table I), the covariance
descriptor produces results that are reasonable. From these
results, it shows that the classification space cannot be too
small, allowing the different classes to remain separable.
An indication of this fact is that the best classification
results come from the higher dimensional feature descriptors.
Repeating the previous section, a strength but at the same
time a potential weakness of our descriptors, is that they
have a very small number of parameters that are used for
classification.

C. Sub-sampled Category Classification

To understand where the category classification breaks
down, another experiment was run in which an increasing
number of categories was used. For each run, the used
categories have been redrawn. The results are shown in Fig.
3.

It is noticeable that the addition of the curvature does not
significantly increase the accuracy of the classification. This
raises the point that some features might be more suitable
than others for classification. In the scope of this experiment,
(PCIMIDN), (PCIMIDNK), and (PCIMIDNKk)
all perform similarly well. This means that there is infor-
mation in the normal distribution of the objects, but the
curvatures do not add more separability. It is interesting to
note that the descriptors with the highest dimension perform
best. These additional dimensions may be necessary to make
the various classes separable enough in the classification
space.

Another possible approach is to completely switch to a
different classification paradigm. Instead of using a “linear”
classifier such as SVMs, a dictionary learning approach
might provide better results. Initial work by Blum et al. [14]
and Bo et al. [15] suggests that this approach is viable for
processing of 3D point cloud data. There has been signifi-
cant research done that uses classifiers based on dictionary
learning, such as Ramirez et al. [28] or Wright et al. [29], in
which reconstruction error is used for classification purposes.

D. Scale Invariance

The experiment run provides us with strong empirical
evidence that the covariance descriptor is scale invariant. We
are currently working on a formal proof.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a novel point cloud descriptor
based on covariances. The main goal is to introduce the
notion of covariances in conjunction with point clouds in
general and RGB-D data (“colored” point clouds) in partic-
ular. There are two main advantages to using covariances:

1) Compactness. Only a small number of parameters is
necessary. These parameters amount to the number
of upper or lower triangular entries in the covariance
matrix computed from the features. The advantages
are two-fold. First, the descriptors can be computed
very efficiently. Second, the storage space necessary
for these descriptors is dramatically reduced. An entire
object cloud is now saved with 253 parameters (for 22
features). In the same space, only 43 RGB-D points
need to be saved.

2) Flexibility. It is easy to add new features for use in the
covariance. Adding a feature amounts to adding a new
row and a column to the descriptor. This is simpler than
a histogram based approach in which adding a feature
amounts to adding a new dimension to the histogram
cube.



The experiments have shown the usability of such an ap-
proach in instance classification as well as category clas-
sification. They show that a simple covariance approach
produces comparable results to other state of the art methods.

These same experiments have also uncovered some poten-
tial weaknesses that provide a direction for future work. The
results have shown that the curvature used as a feature may
not provide enough discriminative power in order to help in
the classification. Other features that focus more on the visual
appearance, have shown promise in instance classification.
Combining these image cues with shape cues allows for
a larger space in which classification performance of the
SVM classifier could be increased. Future work includes
using principle component analysis (PCA) to determine the
compact features to use in the covariance descriptor. We are
also interested in testing other classifiers such as random
forests and implementing classification based on a dictionary
learning approach.

There is much work left in the area of RGB-D data
processing methods such as the one presented in this paper.
The works of Lai et al. [10], Bo et al. [13] [15] and Blum
et al. [14] only scratch the surface. Due to there being
no de facto method for processing RGB-D data, interesting
research opportunities persist in the area of processing point
cloud data. This work has presented a new direction that has
produced promising results and provides a new perspective
in the exploration of RGB-D data processing.
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