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Abstract— Object segmentation and classification is an im-
portant and difficult task in robotic vision. The task is compli-
cated even further when the different objects are partially or
completely occluded. Allowing a robot to take measurements
from varying points of view can help in alleviating or completely
removing occlusions. A robot equipped with an RGB-D sensor
has the capability of searching for new and better points of view
to facilitate object recognition. In this work, a motion control
algorithm is designed and implemented on a mobile robot
to facilitate object classification in RGB-D data of clustered
objects.

I. INTRODUCTION

On factory assembly lines and in warehouse settings,
robots routinely need to pick out objects, identify them,
and bring them to the proper stations. To perform these
tasks, object segmentation and classification is of crucial
importance. Detecting, segmenting, and classifying objects
in images has been intensely studied. The problem is more
complicated when the objects are partially or completely
occluded given the current viewing angle. In the past, various
methods have been proposed to deal with these problems.
However, many of these techniques do not utilize the advan-
tage of a mobile robot with a suitable sensor that can move
about the environment in order to alleviate occlusions.

In this paper, we introduce a system that uses a control
strategy to circumnavigate objects in order to capture a view
of the objects from several different angles. These different
points of view help the machine learning classification al-
gorithm in labeling the objects. The sensor used with the
mobile robot, the Microvision robot (Fig. 1), is an RGB-
D camera. The RGB-D camera not only provides a regular
image, but also a depth map which can be merged into a
“colored” point cloud. The point clouds are then used to
perform object segmentation and classification.

Due to the recent introduction of affordable RGB-D
cameras, research in the area of 3D point cloud processing
is thriving. This research involves the object segmentation
and feature processing steps. In addition, several different
classification methods have been introduced and work on
different descriptors is ongoing. Despite recent advances in
the field, the occlusion problem is still present and there is a
definite advantage of having a robot equipped with an RGB-
D sensor compared to a camera that is statically placed.

This paper presents the possibilities and advantages that a
mobile robot provides over a spatially fixed sensor. Mobile
robots are ideal sensor carrying platforms. Their ability to

Fig. 1: The Microvision robot equipped with an RGB-D
camera.

move about the environment instead of remaining in a fixed
location (e.g., industrial robots) allows them to dynamically
sense and report on their surroundings. As research expands
in the area of robotics, we can expect mobile robots to
increasingly take on the role of performing object recognition
in various scenarios.

The remainder of this paper is organized as follows.
Presented in Section II is related work that provides solutions
to occlusions through mobile sensors. Section III describes
the motion scheme used to intelligently circumnavigate the
different objects. The covariance based classification is de-
scribed in Section IV. Section V discusses the Microvision
robot used in this paper followed by experimental results
(Section VI). The paper concludes in the last section with
an outlook on future work.

II. RELATED WORK

This paper associates with several different aspects of
computer vision and machine learning. Two of its main topics
are the following: occlusion alleviation and RGB-D data
classification. Below we discuss past and current work in
these areas.

Occlusions always present difficulties when performing



object recognition. In the areas of vehicle and pedestrian
tracking, much research has been done regarding the allevi-
ation of occlusions. Although these areas address a slightly
different problem, they nevertheless offer important findings
in the pursuit of a solution. Pang et al. [1] fit models around
different vehicles and uses anomalies in the model size ratios
to detect vehicle occlusions. This is then followed by a
partitioning of the model to separate the foreground and the
occluded object. Ghasemi and Safabakhsh [2] use a Kalman
filter to track vehicles and resolve occurring occlusions.
Xing et al. [3] try to associate tracklets of partially and
heavily occluded pedestrians using particle filters with ob-
server selection. When tracking generic objects in stationary
scenes with fixed sensors, it is difficult to overcome heavy
occlusions.

By observing the movement of objects, Wang et al. [4]
propose a novel approach by modeling the occluder rather
than the occluded object and scanning the area around the
occluder until the object of interest reappears. Guha et al.
[5] show that only 7 states of occlusions are possible and
formulate a systematic approach which they call Oc-7. Al-
ternatively, occlusions can be alleviated by adding movement
to the sensor itself. Blaer and Allen [6] and Maver and Bajcsy
[7] have implemented a next best view approach by utilizing
a mobile robot in order to acquire better views of occluded
objects. Radmard e al. [8] use a robotic manipulator in order
to overcome obstacles and reach the occluded object.

One of the most important works relating to RGB-D data
classification has been performed by Lai ef al. [9], in which
the authors introduce a database for testing purposes. Many
different algorithms have been tested against this database
with more or less success. For instance the same authors
use sparsity techniques to classify objects in [10]. Kernel
methods for recognition have been used by Bo er al. [11].
The authors refine this method by adding a hierarchical
model [12]. Dictionary learning to find good features is used
by Blum et al. [13].

Classification databases usually provide clean, occlusion
free, data. Under occlusions, the problem becomes more
complex. Several approaches for the classification problem
have been proposed using static sensors and RGB-D data.
For instance, in [14], Tombari et al. introduce a Hough
voting technique that helps with the problem of recognition
through occlusion. Merchan et al. [15] have developed the
Depth Gradient Image Based on Silhouette representation
algorithm to deal with the object classification problem under
occlusions.

IIT. MOTION CONTROL SCHEME

The motion control scheme involves the robot navigating
around a cluster of objects for the purpose of obtaining dif-
ferent viewpoints of the objects within the cluster. Previous
work, [16] and [17], uses a similar scheme in connection
with a laser range finder. Data from the RGB-D camera
is used to compute the convex hull of the detected objects
and an aiming point used for velocity controls. The RGB-
D camera is positioned along the yr axis of the robot. This
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Fig. 2: This figure shows the definition of the aiming point
A. R is the center of the robot reference frame, and C
the centroid of all the detected objects. The blue square
corresponds to one detected object.

pose enables the robot to smoothly circle the objects without
having to rotate the camera to keep the objects of interest in
the field of view.

First, the points on the objects are projected onto the
ground plane. Then their centroid and convex hull in the
same plane are computed. Finally, the aiming point A is
derived, which is depicted in Fig. 2 along with the different
points and angles used in the computation. R is the center of
the robot reference frame. C'is the centroid of all the detected
objects. A is the intersection of the circle centered at C' of
radius  with the line containing R tangential to that circle.
The blue square represents one of the detected objects that
is the farthest away from the centroid. This distance defines
dm. do sets the offset distance at which the objects are to
be circled. From there, the aiming point A can be defined in
the robot centric coordinate frame as follows:
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Eq. (11) shows that if the robot is too close to the centroid
of the objects, i.e., r > d, 6 is not defined. In this case d is
set to d = r + 1, with 7o an offset, allowing A to still be
available.

The linear and rotational velocities, V' and w respectively,
are then set proportionally to the distance and angle of the
aiming point:

V. = K,|RA|
K, tan_l(Ay/Am) ,
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w =
where K, and K, are the gain coefficients.

IV. OBJECT CLASSIFICATION

Covariance based descriptors are used for object classifi-
cation. They represent a new paradigm for the classification
of point clouds and were introduced by Tuzel et al. [18]
and Porikli et al. [19] for people tracking in the area of
image processing. They have shown execptional results not
only for people tracking, but also for other domains such
as face recognition. Additionally, Pang et al. [20] describe
covariances descriptors built on Gabor filters that perform
very well.

Classification using covariance based descriptors on 3D
point cloud data has shown promising results in [21]. These
descriptors are being developed further in [22]. In the current
work, the point clouds provide nine different features for
each point producing the following feature vector:
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The features used are the Cartesian coordinates (x, y, z), the
color channel values (R, G, B), and the normal coordinates
(ng,ny,n;) at the specific point.

From the feature vector f of each point, the covariance C'
of an object can be computed:
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where N is the number of points in the object and i the
point’s index in the objects list. py is the mean of the
considered feature vectors.

These covariances characterize the objects and are the
descriptors on which the classification is done. The classi-
fication uses a support vector machine (SVM, [23]) with a
radial basis function, exp (—y d? (C1,C3)), on the distance
d between the covariances C; and Cs. Although the geodesic
distance developed by Forstner and Moonen [24] produces
the exact distance between two covariance matrices, its
determination is computationally expensive. An estimate of
the distance between covariances, the log Euclidean distance,
has been developed by Arsigny et al. [25], which can be

computed much faster. It is defined as the Frobenius norm
of the difference of the matrix logarithms of the covariances.

d(Cy,C) = |[log (C1) = log (Co)| (16)

Since the matrix logarithm computations are decoupled,
they can be computed separately allowing for faster compu-
tation.

V. ROBOT DESCRIPTION

Developed at the University of Minnesota’s Center for
Distributed Robotics, the Microvision is a versatile robotics
platform [26]. The robot is equipped with a scanning laser
range finder, RGB and RGB-D cameras, and audio stream
capture ability. Its on-board computational power and sensor
payload give the robot the capability to run a number of
applications under different scenarios. Within the laboratory,
the Microvision is deployed for experimental research in
robotics and computer vision.

Mounted on top of the Microvision is the Asus Xtion Pro
Live. The Xtion is a motion sensing device equipped with an
RGB-D camera and a pair of microphones. The depth camera
has a range of 0.8 m to 3.5 m. It has viewing angles of 45°
in the vertical direction, 58° in the horizontal direction, and
70° in the diagonal direction. The Xtion is positioned at a
90° offset relative to the base of the robot.

The Microvision runs the Robot Operating System (ROS)
[27]. To facilitate occlusion alleviation, a ROS node has been
developed which implements the motion control scheme in
Section III. This node performs three main services. First,
it implements a callback function for receiving point cloud
data from the RGB-D camera. Second, the node processes
the point cloud data and computes a new aiming point as
described in the motion control scheme. Lastly, the node
sends linear and angular velocities to the Microvision ROS
node based on the location of the computed aiming point.

The Microvision ROS node functions as the driver for
the robot and provides control to the robot’s wheels and
tail. The node subscribes to linear and angular velocity
messages published by the motion control node. Throughout
this process, point clouds are saved to a disk for offline
processing. The point cloud processing pipeline is currently
being optimized to perform classification tasks in real time.

VI. EXPERIMENTAL RESULTS
A. Setup

The different objects used in this experiment are given in
Fig. 3. The top row ((a) - (f)) shows a full image of the
different objects. The middle row ((g) - (1)) shows a view
from the robot and the bottom row ((m) - (r)) shows the
color associated with the different objects.

The robot is set up to autonomously navigate around
the different objects following the strategy described in
Section III. Fig. 4 shows the setup of the experiment.

Fig. 5 shows the robot’s computation of the aiming point,
which is shown in cyan. The robot is represented by a blue
dot and the objects are displayed in green. The centroid of
the objects is in red and the aiming circle is drawn in yellow.



(b) Coffee can (c) Water heater

(g) Box (h) Coffee can (i) Water heater

(n) Coffee can

(m) Box (o) Water heater

(d) Paper roll (e) Shoe (f) Shuttle

(j) Paper roll (k) Shoe (1) Shuttle

(p) Paper roll (r) Shuttle

(q) Shoe

Fig. 3: These figures show the different objects used in the experiment. The top row gives an RGB view of the objects, the
middle row depicts the robot’s view of the object, and the bottom row gives the color coding corresponding to each object.

Fig. 4: Robot and object setup.

B. Classification

Figs. 6 to 8 provide results for a couple of experimen-
tal runs. While circling, the robot is able to capture and
recognize the different objects. When there is no occlusion
(Fig. 6), the segmentation of the objects is relatively simple
and the covariance descriptor provides excellent results. In
some cases where there is slight overlap (Figs. 7 and 8), the
classification still provides good results.

A difficulty in this approach is encountered when the

segmentation merges parts that should not be merged, or
separates parts of the point cloud that should be together.
Fig. 9 shows an example of this problem, which is from
the same run as Fig. 8. In this figure, the coffee can and
paper roll clusters get merged and as a consequence they are
wrongly classified. A better and more robust segmentation
scheme is necessary to address this issue.

When there is too much occlusion the classification breaks
down, however the circling robot can provide another point
of view from which it is possible to correctly classify.
Fig. 10 shows an instance in which occlusion leads to
misclassification. This view is taken from the same run as
in Fig. 8. Only the shuttle’s nose is in the robot’s field of
view. If the robot can only see parts of an object, then it can
be problematic to categorize the object since the classifier
has been trained on full, non-occluded views. As the robot
moves around the cluster, the field of view changes to allow
for better classification.

VII. CONCLUSION AND FUTURE WORK

A circling robot with point cloud capture ability provides
a robust solution to the classification of occluded objects.
If a certain point of view does not provide a good angle,
other views readily become available after the robot adjusts



Fig. 5: Aim (cyan) computed by the robot (blue) computing
the aiming circle (yellow) from the objects (green) and their
centroid (red).

Fig. 6: Result of one classification run with the objects’
color code given in Fig. 3.

Fig. 7: Result of one classification run with the objects’
color code given in Fig. 3.

Fig. 8: Result of one classification run with the objects’
color code given in Fig. 3.

Fig. 9: This figure shows an instance where poor segmenta-
tion leads to misclassification. The coffee can and paper roll
clusters are merged.

its position. These experiments have shown that a robot,
equipped with an RGB-D camera and employing a motion
control algorithm, can help alleviate problems that occlusions
present for classification. This work also shows the potential
of using a mobile robot for performing real-time object
recognition within its surrounding environment.

Future work includes the development of a more dedicated
motion control scheme. Other than an autonomous circum-
navigating algorithm, a path planning strategy that steers
the robot towards or around areas of occlusions is under
development. The point density of a cluster can be used to
drive the robot to different positions with better points of
view [28], thus facilitating the object classification process.

As discussed in the previous section, a more robust seg-
mentation scheme is necessary and is currently being worked
on. Improved segmentation will naturally lead to improved
classification. The merging and splitting of clusters within a
point cloud remains an important and non-trivial problem.

Finally, the classification descriptor itself can be improved.
For example, using a larger feature vector that contains more
than only nine features is easily envisioned. However, a
trade off needs to be found between the computation speed
of the features and the additional performance provided.
Furthermore, the performance of these improvements needs
to be tested in a similar, real world scenario, as presented in



Fig. 10: This figure shows an instance where occlusion leads
to misclassification. Most of the shuttle is occluded which
leads to that segment being classified as part of the shoe.

this paper.
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