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Abstract—1In this paper, we present two real-time methods
for controlling data transmission in a robotic network that
utilizes a remote computing infrastructure. The proposed al-
gorithms use information and communication theory concepts
to perform a highly efficient transfer of RGB-D data from a
client (robot) to a server (cloud). We show that this approach
makes it possible to conserve bandwidth and reduce network
latency while allowing a mobile robot to perform vision tasks.

I. INTRODUCTION

Visual perception is employed by many robots to interpret
the surrounding environment. The development of affordable
RGB-D sensors has sparked interest in the robotics commu-
nity, especially in the area of 3D point cloud processing. An
RGB-D sensor is able to simultaneously capture both color
and depth images. The sensor operates at high frame rates,
and can produce over 10 MB/s of data, allowing for potential
bottlenecks in robotic networks.

Robot vision tasks, such as detecting, segmenting, and
classifying objects, are inherently data and processing inten-
sive. Small robot platforms often do not have the on-board
resources to perform these tasks. However, by making use
of a remote computing infrastructure, data and computations
can be offloaded thus expanding the capabilities of a stand-
alone robot.

Cloud computing is a model for enabling ubiquitous,
convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort of
the service provider [1]. Recently, the field of robotics has
begun to make use of cloud computing resources. Cloud
robotics exploits advances in cloud computing and big data,
and allows for the potential of developing a new generation
of robotics applications.

In this work, we present two algorithms that allow for the
intelligent throttling of RGB-D data between a client (robot)
and server (cloud) for the purpose of object classification and
tracking. The client makes use of redundant information in
point cloud frames to reduce the amount of data transmitted.
The server analyzes the received data and makes adjustments
to the client’s rate of transmission by employing an adaptive
threshold setting. Together, the client and server maintain the
usability of the network while performing the vision task at
hand.

Fig. 1.

The Microvision robot equipped with an RGB-D sensor.

The remainder of this paper is organized as follows.
Presented in Section II is related work. Section III details
the client-side point cloud culling technique. The server-
side throttling of RGB-D data based on object classification
performance is described in Section I'V. Section V introduces
the Microvision robot used in this paper followed by exper-
imental results (Section VI). The paper concludes in the last
section and presents future work.

II. RELATED WORK

In this work, we use ideas from information and commu-
nication theory to reduce unnecessary data packet traffic in
a robotic cloud infrastructure. Cloud robotics is an emerging
area. This is the first work that we are aware of that incorpo-
rates a vision-based solution to the problem associated with
transmitting large amounts of sensor data over a network for
robot vision tasks such as object classification.

Entropy is a measure of information content based on the
uncertainty of a random variable, and has a long history
in the field of information theory. Shannon first defined the
entropy of an information source [2]. An increase in entropy
corresponds to an increase in the amount of information
present in the system. Likewise, a decrease in entropy means



there is a decrease in the total amount of information. The
use of entropy as a metric for measuring image information
is used in the area of image compression [3]. Entropy is used
in this work to measure of the overall information content
of an RGB-D point cloud.

In the communication theory literature, much work has
been done in the field of limited feedback wireless com-
munications [4]. These systems allow a transmitter to adapt
to the propagation conditions based on knowledge of the
wireless conditions. This knowledge is acquired through
feedback using a low rate data stream on the reverse side
of the link to pipe information to a transmitter on the
forward side of the link. This information may provide
details on the forward link condition (e.g., received power,
channel state, interference level, etc.), and the transmitter
uses the information to adjust the forward link transmission.
Our work does not seek to replace nor outperform existing
feedback methods. Instead, we introduce a system that can
complement these methods by the addition of vision-based
feedback.

Covariance descriptors are used for object classification
and tracking. Introduced by Tuzel ef al. [5] and Porikli et
al. [6] for people tracking in the area of image processing,
covariance descriptors present a new model for the classifi-
cation of point cloud data. These descriptors have not only
been used for people tracking, but also in other domains such
as facial recognition. Object classification using covariance
based descriptors on 3D point cloud data was first developed
by Fehr et al. [7]. Features of the covariance based descrip-
tors are further developed in [8]. Comprehensive coverage of
covariance descriptors can be found in [9]. We also use the
descriptors in this work for tracking object clusters within a
point cloud frame.

III. CLIENT-SIDE POINT CLOUD CULLING
A. Scene Entropy

The Shannon entropy of a discrete random variable X =

{x1,22,...,xN} is defined by
N
H(X) == p(x;) log p(as), (1)
i=1
where N = |X|, and p(z;) = Pr[X = z;] for i €
{1,...,N}. In a cloud infrastructure, significant difficulties

are encountered due to limited bandwidth and network la-
tency. Under these communication constraints, we selectively
cull point cloud data prior to transmission. This culling is
done by measuring the scene entropy of sequential point
cloud frames.

To define the entropy of a scene S, the density of the
voxels in the point cloud provided by the robot’s current
point of view is used as the probability distribution. Thus,
the scene entropy is defined as
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where N is the total number of voxels in the scene, d; is
the density of voxel 4, and d; = Zfil d; is the total density
of all the voxels. Here, % represents the density of the ith
voxel with respect to the robot’s observation of scene S, and
maximum entropy is obtained when all voxels have the same
density d;.

Voxel density is used as the metric for the entropy cal-
culation as it provides a direct way to detect changes in
the overall information content. For example, movement of
the robot and/or objects in the scene causes a corresponding
change in entropy. On the contrary, a static scene results
in no change in entropy. We are interested in transmitting
sequential frames with a significant difference in entropy
while discarding frames that have similar entropy values.

B. Robot Entropy Calculation

We make use of the robot’s on-board resources to perform
filtering of the incoming point cloud frame from the RGB-D
sensor. This filtering includes removing range outliers, and
the estimation and extraction of a planar model in order to
reduce the scene to the objects being classified. An octree
structure is used for downsampling and storing each filtered
point cloud frame. Let 7" be an octree representing the current
frame and let [ be a leaf (voxel) of 71" containing 3D point
data where d is the density of the leaf. The density of all
leafs in T, d;, is computed prior to the entropy. We iterate
over the leaves of the T" and accumulate the total entropy of
the frame (Alg. 1).

Algorithm 1 computeEntropy(7’)
1: for all I € T do
2 d < l.size
3: entropy < entropy + d% log d%
4
5

: end for
: return —entropy

In Alg. 1, the for loop is computed in parallel by using
a reduction clause on the entropy variable. This results
in a substantial speedup in the per leaf calculation. After
computing the entropy, a comparison is made to the currently
set threshold. If the entropy value falls below the threshold,
the frame is discarded. Otherwise, the octree of the frame is
compressed [10] and sent to the remote server. In the next
section, we explain how the entropy threshold is determined
by the server.

IV. SERVER-SIDE TRANSMISSION THROTTLING
A. Object Classification and Tracking

For each filtered point cloud frame received by the server
from the client, we use scale invariant covariance descriptors
to both classify and track the objects from frame to frame.
The point cloud frames processed by the server provide nine
different features per point. This feature vector is represented
as

f: [x,y,z,r,gﬁ,nmny,nz]. 3)



The entries of the feature vector are composed of the Carte-
sian coordinates (z,y, z), the color channel values (r, g, b),
and the coordinates of the surface normals (ng,n,,n;) at
the specific point.

From the feature vector f of each point, the covariance C'
of an object can be computed

N
C= g S UGi—mi—u)s @
i=1
where IV is the number of points in the object, 7 the point’s
index in the objects list, and py is the mean of the feature
vector.

These covariance matrices characterize the objects and
form the descriptors on which the classification is per-
formed. The classification process uses a support vec-
tor machine (SVM) [11] with a radial basis function,
exp (= d* (C1,C2)), on the log Euclidean distance d be-
tween the covariances C; and Cs. The distance is defined
as the Frobenius norm of the difference of the covariance
matrix logarithms

d(C,Cs) = |llog (C1) — log (Co)]| - S

Covariance descriptors are also used to track the objects
from frame to frame. After the segmentation and extraction
of the object clusters in the current frame, we iterate over
the objects and match them to their corresponding clusters in
the previous frame. Specifically, for a given object ¢ in the
current frame, we select object j from the previous frame
such that the distance between the covariance matrices is
minimized

arg min d (C;, Cj) . (6)

J

Using covariance descriptors for object tracking provides
computational savings versus the use of other tracking
methods. Since the covariance matrices of the objects have
already been computed for classification in the previous
frame, they are readily recalled for matching in the current
frame. In addition, the covariance matrix of each object can
be compactly stored in memory making the descriptor an
ideal choice for tracking objects.

B. Entropy Threshold Setting

For the robot vision task of recognizing common objects,
we allow the server to throttle the client’s transmission
of RGB-D data. By utilizing a sliding window method,
the server acknowledges the point cloud frames received
by the client by adjusting the entropy threshold. Correct
classification of the objects in the current frame causes the
server to increase the entropy threshold. Incorrect labeling
of the objects in the current frame results in the server
decreasing the client’s entropy threshold.

In Alg. 2, let F; represent the ith frame of 3D point cloud
data received by the server. For each frame, we compute the
covariance descriptor of the extracted object cluster c. The
predicted label for cluster c is then obtained from the SVM
model based on the computed descriptor. Next, cluster c is

matched to the cluster in F;_; with minimum log Euclidean
distance (Eq. (5)). Finally, the entropy threshold is decreased
by ¢ if there is a label mismatch between the current and
previous frame, or increased by J if the labels match and
the current entropy threshold is less than the maximum
threshold.

Algorithm 2 setEntropyThreshold(F;)
1: for all ¢ € F; do
2 computeCovariance(c)
3 getPredictedLabel(c)
4: findClusterMatch(c)
5: if c.label; # c.label;_, then
6
7
8
9

threshold < threshold — ¢
else
if theshold < max_threshold then
: threshold < threshold + ¢
10: end if

11: end if
12: end for

13: return threshold

Sensor noise and the results of poor segmentation of the
clusters can cause misclassification in the labeling of the
objects. By decreasing the entropy threshold, we allow the
client to transmit more frames with the expectation that
additional frames will decrease the overall misclassification
rate. When the system is performing optimally (i.e., no
misclassified objects in the current frame), we can decrease
the sending rate of the client by increasing the entropy
threshold thus reducing packet traffic in the robotic network.

V. ROBOT DESCRIPTION

The Microvision robot platform was developed at the
University of Minnesota’s Center for Distributed Robotics.
The robot is equipped with a scanning laser range finder,
RGB and RGB-D sensors, and audio capture ability. The
Microvision is used for experimental research in robot vision
within the laboratory.

The Asus Xtion Pro Live RGB-D sensor is mounted on
top of the Microvision. The depth sensor has a range of 0.8
m to 3.5 m. It has viewing angles of 45° in the vertical
direction, 58° in the horizontal direction, and 70° in the
diagonal direction.

The Robot Operating System (ROS) [12] is deployed on
the Microvision. A Microvision ROS node functions as the
driver for the robot and provides control to the robot’s
wheels and tail. Point cloud frames are transmitted via
wireless signal to a remote server for real-time processing.
Feedback from the server is also received over the wireless
communication medium.

VI. EXPERIMENTAL RESULTS
A. Object Training

The objects used in the experiment are shown in Fig. 2.
The top row ((a) - (f)) shows the color image of each object.
The middle row ((g) - (1)) provides the robot’s viewpoint,



Fig. 3.

The robot and an object set.

and the bottom row ((m) - (r)) shows the classification color
coding of the objects. Fig. 3 shows the experimental setup.
Prior to the experiment, the robot was trained on each object
individually by capturing a series of point clouds while
completing one revolution around the object. These point
clouds were then used in the creation of the SVM model.

B. Motion Control and Data Transmission

The motion control scheme involves the robot navigating
around a set of objects to obtain different points of view. It
was first developed and utilized in [13] and [14], then later
refined in [15]. Positioned along the yr axis of the robot is
the RGB-D sensor. The convex hull of the detected objects
and the aiming point used for velocity control are computed
from the sensor data.

To perform point cloud culling, a ROS node implements
Alg. 1 in Section III. This node runs on-board the robot
with the following functionality. First, it contains a callback
function that receives point cloud data from the RGB-D
sensor. Then, the node filters the point cloud data and
computes the entropy of the remaining points in the frame.
Finally, the data is compressed and sent to the server or
dropped based on the current entropy threshold setting. At all
times, the client node maintains a subscription to messages
published by the server.

C. Classification and Transmission Throttling

Object classification is performed on the server. To per-
form the transmission throttling, a ROS node implements
Alg. 2 in Section IV. The node first extracts the object
clusters from the received point cloud based on a Euclidean
distance segmentation method. Next, the covariance descrip-
tor of each cluster is computed. The SVM classifier is then
used to predict the object label of the cluster based on
the covariance distance metric. Each cluster is matched to
its closest cluster from the previous frame. If a mismatch
occurs between the predicted label and matched cluster from
the preceding frame, and the entropy threshold is less than
the maximum threshold, then the server node updates and
publishes the entropy threshold. The subscribed client node

Fig. 4. A correctly classified frame from object set A.

Fig. 5. An example of a misclassified frame from object set A. The box,
occluded by the shoe, is merged with it.

adjusts its entropy threshold upon receiving the updated value
from the server.

For the experiment, we performed object classification
using the Microvision robot on three sets of objects labeled
A, B, and C. Set A consists of the box, coffee can, and shoe.
Set B is made up of the coffee can, water heater, paper roll,
and shuttle. Set C is comprised of all six objects: box, coffee
can, water heater, paper roll, shoe, and shuttle. A starting
entropy threshold value of § = 0.1 was used. Figs. 4 through
9 show results of the experimental runs.

While circumnavigating the object set, the robot is able to
capture RGB-D data and classify the different items. When

Fig. 6.

A correctly classified frame from object set B.



(a) Box (b) Coffee can (c) Water heater

(i) Water heater

(o) Water heater

(g2) Box (h) Coffee can

(m) Box (n) Coffee can

Fig. 2.
the color classification label of each object.

Fig. 7. An example of a misclassified frame from object set B. The shuttle
is incorrectly labeled.

the objects are cleanly segmented and the predicted label
corresponds to the matched cluster (Fig. 4, 6, 8), the server
increases the entropy threshold thus throttling the data trans-
mission from the robot. Occlusion and/or excessive noise
in the data causes the segmentation to break down (Fig. 5,
7, 9). Under these circumstances, a mismatch in the label
predicted and matched cluster results in the server decreasing
the entropy threshold allowing the client to transmit more
frames.

(d) Paper roll (e) Shoe

(j) Paper roll (k) Shoe (1) Shuttle

(p) Paper roll (q) Shoe (r) Shuttle

The collection of objects used in the experiment. The top row shows the RGB image, the middle row is the robot view, and the bottom row is

Fig. 8.

A correctly classified frame from object set C.

In Table I, we present the results of performing point cloud
culling. For each object set, the table shows the ratio of point
cloud frames transmitted from the client to the server versus
the total number of frames captured, the amount of data saved
by not transmitting the similar frame data, and the accuracy
of the classification. Accuracy is measured by the number of
frames with each object cluster correctly classified, divided
by the total number of frames captured. By working together,
the client and server were able to reduce the number of
frames sent over the network by 45.1% for object set A



Fig. 9. An example of a misclassified frame from object set C. The majority
of the shuttle is occluded which causes the segment to be classified as part
of the shoe.

TABLE I
RESULTS OF POINT CLOUD CULLING

Object set | Frames transmitted | Savings (MB) | Accuracy (%)
A 17/31 168 94.44
B 19/32 156 84.72
C 24/31 84 85.61

and 40.6% for object set B. Object set C, consisting of all
objects placed within close proximity to each other and with
many occlusions among the objects, saw a 22.6% decrease
in the number of frames transmitted from the robot to the
server. With point cloud culling, the performance of the
classification over each set of objects remained consistent
(compared to not performing culling) while reducing the
overall number of frames transmitted.

VII. CONCLUSION AND FUTURE WORK

Clients (robots) ideally make use of processing and data
resources when connected to a server in a cloud environment.
The role of the server can also be used to provide guidance
to the actions of the client. Classifying and tracking objects
is both a data and computationally intensive robot vision
task. It can overwhelm the on-board resources of a robot
and strain the network. We’ve presented a novel framework
that can autonomously prevent the saturation of the network
by reducing the number of point cloud frames transmitted
from the client to the server.

As the robot moves around an object set, the experimental
results show that it is unnecessary for the robot to transmit
every point cloud frame; the classification performance is
maintained by transmitting a subset of the frames. This work
shows the capability of using a mobile robot for performing
real-time vision tasks in a cloud computing environment.

Future work includes the development of a more robust
segmentation scheme. With improved segmentation of the
object clusters, we can improve the classification perfor-
mance and further decrease the RGB-D data transmission
rate. Extraction of the object clusters remains an important
and difficult problem in this area. The incorporation of
additional information metrics, such as mutual information,
is part of our work going forward.

Finally, we are interested in applying the ideas of cloud
computing to vision tasks among heterogeneous teams of
robots. At the Center for Distributed Robotics, we are cur-
rently working on the development of robotic algorithms that
make use of a cloud computing infrastructure. We believe
the field of cloud robotics will open new avenues for the
utilization of small and low-cost robots in an increasing
number of applications.
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