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Abstract— We present the Signature of Topologically Persis-
tent Points (STPP), a global descriptor that encodes topological
invariants of 3D point cloud data. These topological invariants
include the zeroth and first homology groups and are computed
using persistent homology, a method for finding the features of
a topological space at different spatial resolutions. STPP is a
competitive 3D point cloud descriptor when compared to the
state of art and is resilient to noisy sensor data. We demonstrate
experimentally on a publicly available RGB-D dataset that
STPP can be used as a distinctive signature, thus allowing for
3D point cloud processing tasks such as object detection and
classification.

I. INTRODUCTION

The automatic recognition of shapes in 3D data contin-
ues to attract growing interest in the research community.
Shape recognition is significant to applications such as shape
matching and retrieval, object classification, 3D reconstruc-
tion, manipulation and grasping, and robot localization and
navigation. In recent times, the availability of low-cost 3D
sensors (RGB-D, stereo, time-of-flight, etc.) has strongly
motivated the development of this technology.

Shape recognition is performed by either a local or global
approach. Local descriptors rely on keypoints extracted from
surfaces. The aim of descriptors using local methods is
to try to single out points that are distinctive in order to
allow for effective description and matching. Within the
local neighborhood of each keypoint, geometric information
is encoded to obtain a compact representation of the input
data invariant up to a predefined transformation (translation,
rotation, scaling, point density variations, etc.). Global de-
scriptors encode object geometry. They are not computed
for individual points, but for a whole cluster of points that
represents an object.

Although there has been substantial progress on extracting
and encoding discriminative geometric information, only
recently have researchers started looking into the topological
structure of the data as an additional source of information.
The emergence of topological data analysis (TDA) [1] has led
to the creation of computational tools capable of identifying
topological structure. Since that time, researchers have shown
that TDA can capture characteristics of the data that other
methods often fail to provide. Contemporary applications
of TDA include, but are not limited to, gait recognition
[2], activity recognition [3], facial recognition [4], digital
forensics [5], discriminating among breast cancer subtypes
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Fig. 1. The evolution of a scale parameter defining the neighborhood radius
about each point (left) and the corresponding barcode diagram (right). When
the neighborhoods of two points overlap, one dies while the other survives.
At the end of this process, the lone surviving point (red) is a point of infinite
persistence and is the representative of the set of points which forms a
connected component. This procedure of computing topological persistence
over varying spatial resolutions is known as a filtration.

[6], mesh segmentation [7], 3D point cloud segmentation [8],
[9], and many more.

Persistent homology is a particularly useful tool in TDA
[10]. It captures the birth and death times of topological
features (e.g. connected components, holes, and higher di-
mensional analogs), at multiple scales. This information can
be visualized through a barcode diagram: a collection of
horizontal line segments in a plane where the horizontal
axis corresponds to a scale parameter and the vertical axis
represents an arbitrary ordering of the homology generators,
Fig. 1. A key feature of persistent homology is its stability;
small changes in the input data lead to small changes in the
associated barcode diagrams [11].

Our contribution is the introduction of a novel global de-
scriptor STPP (Signature of Topologically Persistent Points)
which is based on computing the persistence of the zeroth
and first homology groups of a 3D point cloud. This signature
is used to create a feature vector where the birth and death
of the generators of homology correspond to the evolution
of the number of connected components and the number of
holes in the dataset. STPP can be computed quickly and
efficiently on point cloud data, requires no preprocessing
(sampling, hole filling, surface normal calculation, etc.) and
uses a single tuning parameter. Moreover, it can cope with
noisy datasets without compromising on performance.

This paper is structured as follows. Related work is de-
scribed in Section II. Section III states the problem followed
by our approach to computing a signature of topologically
persistent points in Section IV. The experimental setup
and results are presented and discussed in Section V. We
conclude in Section VI.



II. RELATED WORK

The problem of shape analysis has generated a great
amount of research. Shape representation and description is
an area of shape analysis with many important applications.
In this section, we review relevant global descriptors for de-
scribing shapes composed of 3D point cloud data followed by
developments in shape analysis using topological persistence
that has led to this work.

Rusu et al. generalize the fast point feature histograms
(FPFH) idea to create a descriptor that captures the relation-
ship of local geometric parts in whole objects [12]. This
descriptor, termed the global fast point feature histogram
(GFPFH), is used for scene interpretation in mobile manipu-
lation scenarios. Their work is followed by a 3D point cloud
descriptor, called the viewpoint feature histogram (VFH)
descriptor, which incorporates both geometry and viewpoint
[13].

In [14], a multimodal perception system consisting of
hierarchical object geometric categorization and appearance
classification for personal robots introduces the global radius-
based surface descriptor (GRSD). This descriptor is derived
from the radius-based surface descriptor [15]. It can gener-
alize over objects with similar geometry thus limiting the
possibilities of corresponding an object instance to its 3D
point cloud cluster.

The clustered viewpoint feature histogram (CVFH) de-
scriptor, based on the VFH descriptor, is described by
Aldoma et al. [16]. The main idea behind the semi-global
CVFH descriptor is to take advantage of object parts obtained
by a depth sensor and use them to build a coordinate system
similar to the VFH descriptor. It improves upon issues that
make VFH sensitive to missing point cloud data due to partial
occlusions, segmentation, or sensor artifacts.

Wohlkinger and Vincze introduce an ensemble of shape
functions (ESF) descriptor in [17]. This global shape descrip-
tor is built on three distinct shape functions that describe
distance, angle, and area distributions on the surface of a
partial point cloud. ESF allows for real-time classification
of objects sensed with an RGB-D sensor based on learning
from synthetic CAD models.

Kanezaki et al. present the concatenated voxelized shape
and color histograms descriptor, (Con)VOSCH [18]. It com-
bines the GRSD and the circular color cubic higher-order
local auto correlation descriptors (C3-HLAC). The descriptor
is designed to facilitate object classification by considering
geometric and visual features in a unified manner.

The authors of [19] propose a global object recognition
pipeline utilizing a 3D semi-global describer called oriented,
unique, and repeatable CVFH (OUR-CVFH). OUR-CVFH
employs a method to estimate semi-global unique reference
frames (SGURF) computed on the surface of an object as
seen from a single viewpoint. By exploiting the orientation
provided by these reference frames, OUR-CVFH efficiently
encodes the geometrical properties of an object surface.

A global covariance-based point cloud descriptor for ob-
ject detection and recognition is put forward by Fehr et al.

[20]. The descriptor is constructed by forming the covariance
matrix from an RGB-D feature vector. The authors show that
covariance descriptors are computationally fast and provide
a compact (low dimensionality) representation of a 3D point
cloud object.

In contrast to the aforementioned global descriptors, STPP
encodes the topological information of a 3D point cloud.
Our work is inspired by an early study of shape description
and classification via persistent homology [21]. Additional
inspiration comes from the results of Li et al. [22] where
persistence diagrams built from functions defined on objects
serve as compact and informative descriptors for images and
shapes.

III. PROBLEM STATEMENT

Given a topological space X = {x0, . . . , xm−1} ∈ R3

where x0, . . . , xm−1 are the points in a point cloud acquired
by an RGB-D sensor, our goal is to compute a topologically
persistent description of the point cloud. To do this, we first
approximate the topology of the space using a simplicial
complex. Next, we compute the persistent homology of the
complex up to a maximum scale value. Finally, we record
the births and deaths of the generators of homology.

IV. SIGNATURE OF TOPOLOGICALLY PERSISTENT
POINTS

We formulate a solution to the problem outlined in III
by creating a pipeline that: 1) Models the input space as
a Vietoris-Rips complex; 2) Uses an incremental algorithm
to compute the topological persistence of the zeroth and
first generators of homology through a filtration; 3) Forms
a feature vector comprised of the birth-death pairing of
the homology generators. The end result is the capability
to distinguish between noisy point cloud datasets, sensed
by a depth sensor, using only topological features. In the
proceeding subsections we describe the details of computing
a topologically persistent signature for a 3D point cloud
dataset. To do so requires a few definitions from algebraic
topology.

A. Constructing a Simplicial Complex Representation

1) Simplices: A k-simplex σ is the convex hull of k + 1
affinely independent vertices v0, . . . , vk ∈ Rn. We call k the
dimension of a k-simplex. Note that a 0-simplex corresponds
to a point, a 1-simplex is a finite line segment, and a 2-
simplex is a triangle in Rn. A face τ of σ is the convex hull
formed by the subset {v0, . . . , vk} of the k+ 1 vertices. For
example, the face of a line segment corresponds to its two
end points.

2) Simplicial Complexes: A simplicial complex K is a
non-empty set of simplices such that if σ ∈ K and τ is a
face of σ, then τ ∈ K. In addition, the intersection of any two
simplices σ, σ′ ∈ K is a face of both σ and σ′. We denote
|K| as the set of points in Rn that are contained in the union
of all simplices in K. The set |K| is a topological space with
the subspace topology from Rn. A subset of simplices L ⊂
K that is itself a simplicial complex is called a subcomplex



Fig. 2. A Vietoris-Rips complex generated on a point cloud consisting of
38 points.

of K. The conditions that define a simplicial complex ensure
that the assembly of simplices is well-defined. A simplicial
complex generalizes both the notion of a geometric graph
and a triangulation.

3) Vietoris-Rips Complex: To compute the topological
invariants of a point cloud, we need to make sure that
the topology of the simplicial complex representation is
close to the topology of the underlying space. We do this
using a Vietoris-Rips complex, Fig. 2. Given a set of points
{x0, . . . , xm−1} ∈ Rn and fixed radius ε, the Vietoris-Rips
complex of the topological space is defined as

K = {σ ⊂ {x0, . . . , xm−1} | dist(xi, xj) ≤ ε,∀xi 6= xj ∈ σ}.

In this definition, dist is the Euclidean distance metric and
the points of σ are pairwise within ε of each other.

B. Persistent Homology Computation

1) Chains, Cycles, Boundaries: For a simplicial complex
K ∈ R3, a k-chain is a subset of k-simplices in K. The
addition of chains is defined with integer coefficients modulo
2. In other words, we sum two k-chains, c and d, by taking
the symmetric difference of the two sets,

c+ d = (c ∪ d)− (c ∩ d).

This operation is commutative. The group Ck is the set of all
k-chains with the addition operator and the empty set defined
as the zero element of Ck. For every integer k there is a
chain group, however for a complex in R3 only 0 ≤ k ≤ 3
are non-trivial.

The collection of (k − 1) dimensional faces forms the
boundary, ∂k(σ), of a k-simplex σ and is a (k−1)-chain. By
taking the sum of the boundaries of the simplices in a k-chain
we have the boundary of the k-chain, ∂k(c) =

∑
σ∈c ∂k(σ).

A homomorphism, ∂k : Ck → Ck−1, is defined for each
boundary operator. The collection of boundary operators on
the chain groups form a chain complex,

∅ → C3
∂3−→ C2

∂2−→ C1
∂1−→ C0

∂0−→ ∅.

The kernel of ∂k, ker ∂k = {c ∈ Ck | ∂k(c) = ∅}, is
the set of k-chains with empty boundary. The image of ∂k,
img ∂k = {d ∈ Ck−1 | ∃c ∈ Ck : d = ∂k(c)}, is the set of
(k− 1)-chains that are boundaries of k-chains. A k-chain in
the kernel of ∂k is a k-cycle and a (k−1)-chain in the image

of ∂k is a k-boundary. Together, the sets Zk of k-cycles and
Bk of k-boundaries with addition form subgroups of Ck.
Note that the boundary of a vertex is the empty set and
since K is a complex in R3 there are no non-empty 3-cycles
or 3-boundaries, i.e. Z3 = B3 = ∅.

2) Homology Groups: The k-cycle group factored by the
k-boundary group defines the kth homology group, Hk =
Zk/Bk. Elements of Hk are the homology classes c+Bk =
{c+ b | b ∈ Bk}, for all c ∈ Zk. A subset of Hk generates a
vector space if every element is the sum of elements in the
subset. A minimal generating set creates a basis for Hk. The
size of the basis corresponds to the rank of the homology
group. We express the rank of the kth homology group as
the kth Betti number of K, βk = rank Hk, where

rank Hk = rank Zk − rank Bk.

That is, βk corresponds to the number of k-dimensional holes
in a topological space. Although there exists a Betti number
for each integer k, only ones for 0 ≤ k ≤ 2 are non-zero
for complexes in R3. It follows that for k = 0, β0 is the
number of connected components in K and for k = 1, β1 is
the number of holes in K.

3) Filtrations: To compute persistent homology, an in-
creasing sequence of topological spaces known as a filtration
is created. A filtration can be described as an evolution of
the growth of a complex. It contains an ordering of the
simplices in a subcomplex which we call a filter. Formally,
if f : X → R is defined on a topological space X , then each
sublevel set Xr = f−1((−∞, r]) yields a topological space
Xr where Xr ⊂ X ′r and r ≤ r′.

As the spatial range r increases, homological features are
created (born) and can disappear (die). We work with a
filtration of finite simplicial complexes in R3,

∅ ⊂ K0 ⊂ K1 ⊂ . . . ⊂ Kl = K∞,

where l is the maximum threshold for constructing the
complex.

C. Incremental Algorithm

1) Overview: Our approach to computing a topologically
persistent signature of a 3D point cloud is based on the
scheme described in [23]. It uses the ordering of the sim-
plices in a filter to compute persistence incrementally. In
this subsection, we present the essential background of the
algorithm.

Suppose the sequence of σi, for 0 ≤ i ≤ l, is a filter and
let the sequence Ki = {σj | 0 ≤ j ≤ i}, for 0 ≤ i ≤ l, be
the corresponding filtration. We need to determine whether
a (k+1)-simplex σi belongs to a (k+1)-cycle in Ki. When
k + 1 = 0, this is trivial since every vertex belongs to a 0-
cycle. For edges, we keep track of the connected components
of the complex where each component is represented by its
vertex set. An edge belongs to a 1-cycle if and only if its
two endpoints belong to the same component.

After settling the cycle question the algorithm labels each
simplex. A (k + 1)-simplex σi is positive if it belongs to a
(k+ 1)-cycle, otherwise it’s labeled negative. Let βk = βk,i



be the kth Betti number of Ki, and let posk = posk,i and
negk = negk,i be the number of positive and negative k-
simplices in Ki. Then,

βk = posk − negk+1,

for 0 ≤ k ≤ 2. In other words, the Betti number βk is
the number of k-simplices that create k-cycles minus the
number of (k+1)-simplices that destroy k-cycles by creating
k-boundaries. This pairing between positive k-simplices and
negative (k + 1)-simplices describes the persistence of non-
bounding cycles in homology groups. Furthermore, it pro-
vides a signature that expresses the expansion of the filtration
Ki.

2) Computation: To compute the persistence of 0-cycles
we use a union-find data structure. For each edge, we perform
two find operations on the end points to determine the point
set representatives. A union operation is then performed
based on the youngest (shortest-lived) 0-cycle representative.

Computing persistent 1-cycles is complicated by the fact
that there can be multiple unpaired edges at any time. To
compute the persistence of 1-cycles, we use a list of points,
edges, and triangles created during the simplicial complex
construction, and maintain a linear array T [0, . . . , s − 1].
The function of this array is similar to a hash table. For
a pair of simplices (σi, σj), the index j of the matching
negative simplex identified by the algorithm is stored in T [i].
Additionally, a set of positive 1-simplices Λi defining the
cycle created by σi and destroyed by σj is also stored in
T [i]. Each simplex in the filter has an entry in the array,
but information is only stored in the entries of the positive
simplices.

The search for a 1-cycle proceeds as follows. Assume that
σj is a negative 2-simplex and suppose that the algorithm
arrives arrives at T [j]. We search for the youngest 1-simplex,
in the set of positive 1-simplices that represent the boundary
of σj , by successively probing entries in T from right to left
until we find the appropriate one. More specifically, starting
with a set Λ equal to the positive boundary 1-simplices, we
let i = max(Λ) be the index of the youngest member of
Λ. If T [i] is unoccupied, then we end the search and store
Λ and j in T [i]. If T [i] is occupied, then it contains a set
Λi representing a permanently stored 1-cycle. Therefore, we
add Λ and Λi by taking the symmetric difference of the two
sets, and get a new Λ that represents a 1-cycle homologous
to the old one. This procedure repeats until we find an empty
slot in the array.

When searching for 1-cycles the incremental algorithm
makes many redundant computations. To improve the per-
formance of the algorithm, we introduce two procedures for
speeding up the search for 1-cycles. These procedures, store-
cycles and update-cycles, are shown in Alg. 1-3.

3) Runtime: With a union-find data structure the search
for 0-cycles can be done in nearly constant time. By using
weighted merging for union and path compression for find,
the amortized time per operation is O(A−1(n)), where n
is the number of 0-simplices and A−1(n) is the very slowly
growing inverse of the Ackermann function. The cycle search
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Fig. 3. The birth-death pairings of the homology generators are encoded
in a feature vector where the indices of the vector correspond to the birth
of a k-simplex and the entries of the vector correspond to the index of a
destroying (k + 1)-simplex. Unpaired simplices, denoted by −1 entries,
represent k-dimensional holes.

approach introduced by Edelsbrunner et al. has a runtime
that is cubic in the number of simplices. However, with our
proposed procedures the algorithm operates in nearly linear
time thus making the computation of persistent 1-cycles on
large 3D datasets feasible.

Algorithm 1 COMPUTE-PERSISTENCE
1: for all σj do
2: Λ = {σ ∈ ∂k+1(σj) | σ positive}
3: store-cycles(Λ)
4: end for

D. Topologically Persistent Feature Vector

1) Overview: A barcode or persistence diagram encapsu-
lates a concise description of the topological changes that
occur during a filtration. Intuitively, a k-dimensional hole
born at time b and filled at time d gives rise to a point
(b, d) in the kth persistence diagram or an interval in the
kth barcode diagram. Therefore, a persistence diagram is
a multiset of points in R2 while a barcode diagram is an
equivalent multiset of intervals in R.

The use of distances between barcode/persistence dia-
grams has received much attention lately in applications
[24]–[26] where they serve as topological proxies for the
input data. Distances between the diagrams serve as measures
of the similarity between datasets. These distances can be
expressed as a bottleneck or Wasserstein distance between
two planar point sets using the L∞ metric.

2) Construction: Although the distance between bar-
code/persistence diagrams has been shown to measure the
similarity between some datasets, we observe that a single
scalar value is not enough to discriminate between massive
3D point clouds. In contrast to the work mentioned in the
previous subsection, we construct a vector of topologically
persistent features as follows.

The output of Alg. 1 is a sorted birth and death pairing
between a k-simplex and (k + 1)-simplex, respectively. We
encode this information in a feature vector where the indices
of the vector correspond to the birth of a k-simplex and the
entries of the vector correspond to the index of a destroying
(k + 1)-simplex, Fig. 3. This pairing is unique, e.g. a 0-
simplex is terminated by exactly one 1-simplex and a 1-
simplex is terminated by exactly one 2-simplex. An unpaired
simplex is a simplex of infinite persistence and represents a
k-dimensional hole.



Algorithm 2 STORE-CYCLES
1: Λ = sort(Λ), i = max(Λ), Λc = {∅}
2: if T [i] is unoccupied then
3: for n = 0 to |Λ| − 2 do
4: if T [Λ(n)] is unoccupied then
5: Λc = Λc + Λ(n)
6: else if T [Λ(n)].cycle is nonempty then
7: Λc = Λc + T [Λ(n)].cycle
8: else
9: continue

10: end if
11: T [Λ(n)].update← i
12: end for
13: T [i].cycle← Λc

14: T [i].death← j
15: σj ← negative
16: update-cycles(i, 0, T [i].update)
17: else
18: for n = 0 to |Λ| − 2 do
19: if T [Λ(n)] is unoccupied then
20: Λc = Λc + Λ(n)
21: else if T [Λ(n)].cycle is nonempty then
22: Λc = Λc + T [Λ(n)].cycle
23: end if
24: end for
25: Λ = Λc + T [i].cycle
26: if Λ is nonempty then
27: i = max(Λ)
28: if T [i] is unoccupied then
29: for n = 0 to |Λ| − 2 do
30: T [Λ(n)].update← i
31: end for
32: T [i].cycle← Λ− i
33: T [i].death← j
34: σj ← negative
35: update-cycles(i, 0, T [i].update)
36: end if
37: end if
38: end if

V. EXPERIMENTAL RESULTS

In this section, we construct and evaluate a processing
pipeline for computing topological signatures as described in
Section IV. The experiments were performed using the RGB-
D Object Dataset [27] where we focus on the task of category
classification. Construction of the simplicial complexes and
computing topological persistence were done on a 64-bit
GNU/Linux machine with a single CPU core.

1) Setup: The RGB-D Object Dataset consists of 300
objects divided into 51 categories and provides roughly
250,000 point clouds. Following the experimental procedure
in [27], we subsample the dataset by taking every fifth
point cloud. This gives us approximately 45,000 point clouds
upon which we run classification experiments. To perform
category recognition, we randomly leave one object out from

Algorithm 3 UPDATE-CYCLES
1: if update is nonempty then
2: for n = 0 to |update| − 1 do
3: update-cycles(i, update(n), T [update(n)].update)
4: end for
5: end if
6: T [update(n)].cycle← T [update(n)].cycle+T [i].cycle+i

Fig. 4. A subset of objects from the RGB-D Object Dataset [27] used for
the experiments.

each category for testing and train the classifiers on the point
clouds of the remaining objects. Classification is performed
using an SVM classifier and RBF kernel [28]. The accuracies
are averaged over 10 trials.

2) Experiment 1: In this experiment, we compare STPP
against five different global 3D point cloud descriptors: VFH,
GRSD, CVFH, OUR-CVFH, and ESF. Implementations of
each of these descriptors are publicly available in the Point
Cloud Library (PCL)1. We compute STPP features using a
single step filtration as follows.

The Vietoris-Rips complex representation of the data is
computed by first performing a nearest neighbors search
about each point up to a radius of 3.5 mm using a kd-tree.
Next, we create an edge list where an edge exists between
two neighboring points. We then proceed to create a triangle
list by finding all three cliques in the edge graph. Once we
have the edge and triangle lists we can compute the signature
of the point cloud using the incremental algorithm (Alg. 1).

The last stage of the pipeline uses the output of the
incremental persistence computation to form a feature vector.
The indices of the vector range over the sorted 0-simplices
and 1-simplices while the entries consist of the indices of the
destroying 1-simplices and 2-simplices. We also construct
feature vectors for each of the five global descriptors on the
subsampled data. These feature vectors are then used to train
separate classifiers for comparison as shown in Table I.

3) Experiment 2: This experiment considers the affect of
exposing the STPP descriptor to different noise levels. To
compare the effect of noise on the descriptor we randomly
perturb all the points by δ ∈ [−0.0005, 0.0005], δ ∈
[−0.001, 0.001], and δ ∈ [−0.003, 0.003]. This perturbation
essentially deforms the surface of the point cloud. We then
recompute the signatures and rerun the category classification
experiments as described above.

1http://www.pointclouds.org



TABLE I
OBJECT CLASSIFICATION RESULTS

Descriptor Category Accuracy Number of Features
GRSD 8.89 ±0.55 4
STPP 23.32 ±1.58 2
VFH 23.61 ±1.92 4

OUR-CVFH 26.91 ±1.64 6
CVFH 29.39 ±1.35 5
ESF 39.60 ±1.01 6

4) Discussion: In these experiments we compare the
performance of state of the art global geometrical descriptors
with STPP, a global topological descriptor. To highlight the
discriminative power of STPP in performing category classi-
fication we create separate feature vectors for the generators
of homology: 0-cycles (Betti 0) and 1-cycles (Betti 1). The
overall accuracy of the Betti 0 and Betti 1 feature vectors on
the dataset is 14.16% ±1.46 and 18.34% ±1.48, respectively.
Table I reports the overall accuracy of combining 0-cycles
and 1-cycles (Betti 0+1) as features. We see that combining
the birth-death pairing of the homology generators increases
the classification accuracy of the descriptor. We also note
that in terms of the number of features used, STPP uses
two features while other methods make use of four to six
features. As for robustness to noise, the average accuracy
of STPP is 22.57% for δ ∈ [−0.0005, 0.0005], 21.24% for
δ ∈ [−0.001, 0.001], and 16.28% for δ ∈ [−0.003, 0.003].

VI. CONCLUSION

This paper presents STPP, a new 3D point cloud descriptor
that uses persistent homology to compute a topological signa-
ture based on the birth-death pairing of 0-cycles and 1-cycles.
To show the feasibility of STPP, we implemented a pipeline
that computes and compares the topological signature of 3D
point cloud objects against geometrical-based descriptors.
We showed that the classification performance of STPP is
competitive, it inherently deals with noisy datasets, and is
theoretically well-founded.
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