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Abstract

3D point cloud datasets are becoming more common due to the availability of low-cost

sensors. Light detection and ranging (LIDAR), stereo, structured light, and time-of-

flight (ToF) are examples of sensors that capture a 3D representation of the environ-

ment. These sensors are increasingly found in mobile devices and machines such as

smartphones, tablets, robots, and autonomous vehicles. As hardware technology ad-

vances, algorithms and data structures are needed to process the data generated by

these sensors in innovative and meaningful ways.

This dissertation develops and applies algebraic topological methods for processing

3D point cloud datasets. The area of topological data analysis (TDA) has matured

in recent years allowing researchers to analyze point cloud datasets using techniques

that take into account the ‘shape’ of the data. This includes topological features such

as connected components, holes, voids, and higher dimensional analogs. These ideas

have been successfully applied to datasets which are naturally embedded in a metric

space (such as Euclidean space) where distances between points can be used to form a

parameterized sequence of spaces. By studying the changing topology of this sequence

we gain information about the underlying data.

In the first part of the thesis, we present a fast approach to build a 3D Vietoris-Rips

complex which allows us to approximate the topology of a point cloud. The construction

of the complex is done in three parallelized phases: nearest neighbors search, edge list

generation, and triangle list generation. The edge and triangle lists can then be used

for persistent homology computations.

In the second part of the thesis, we present approaches to segment 3D point cloud

data using ideas from persistent homology theory. The proposed algorithms first gen-

erate a simplicial complex representation of the point cloud dataset. Then, the zeroth

homology group of the complex which corresponds to the number of connected compo-

nents is computed. Finally, we extract the clusters of each connected component in the

dataset. We show that these methods provide a stable segmentation of point cloud data

under the presence of noise and poor sampling conditions, thus providing advantages

over contemporary segmentation procedures.
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In the third part of the thesis, we address an open problem in computational topology

by introducing a nearly linear time algorithm for incrementally computing topologically

persistent 1-cycles. Further, we develop a second algorithm that utilizes the output of

the first to generate a spanning tree upon which non-bounding minimal 1-cycles can be

computed. These non-bounding minimal 1-cycles are then used to locate and fill holes

in a dataset. Experimental results show the efficacy of our algorithms for reconstructing

the surface of 3D point clouds produced by noisy sensor data.

In the fourth part of the thesis, we develop a global feature descriptor termed Sig-

nature of Topologically Persistent Points (STPP) that encodes topological invariants

(zeroth and first homology groups) of 3D point cloud data. STPP is a competitive

3D point cloud descriptor when compared to the state of art and is resilient to noisy

sensor data. We demonstrate experimentally that STPP can be used as a distinctive

signature, thus allowing for 3D point cloud processing tasks such as object detection

and classification.

This dissertation makes progress towards effective, efficient, and scalable topological

methods for 3D point cloud processing along two directions. We present algorithms with

an analysis of their theoretical performance and proof of correctness. We also demon-

strate the feasibility and applicability of our results with experiments using publicly

available datasets.
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Chapter 1

Introduction

Contemporary times have witnessed a dramatic increase in advanced technologies such

as smartphones, robots, and autonomous/connected vehicles. These mobile devices and

machines are fueling the growth of an interconnected data sharing ecosystem known

as the Internet of Things (IoT) [4]. For each of these technologies, the number of

sensors deployed is rapidly progressing. Moreover, these sensors have the capacity to

continuously generate vast amounts of data. To add value to raw sensor data, we must

be able to understand it. Consequently, this requires effective, efficient, and scalable

algorithms and data structures.

Among the various sensor data modalities such as audio, image, text, etc., 3D data

(in the form of point clouds) is beginning to constitute a growing portion of the spec-

trum. A 3D point cloud is composed of a set of points where each point has a Cartesian

coordinate value in Euclidean space, and optionally an RGB color value. With today’s

hardware, the typical size of a 3D point cloud can range from thousands to hundreds of

thousands of points. They can also be stitched together in a process know as registra-

tion, a procedure for finding a spatial transformation that aligns two point clouds, to

produce datasets with billions of points.

Robotics is at the forefront of technologies that are making use of 3D point cloud

data. Senors such as light detection and ranging (LIDAR), stereo, structured light, and

time-of-flight (ToF) can enhance the vision capabilities of a robot, Figure 1.1. The 3D

representation of the environment provided by these sensors can facilitate robotic tasks

such as object detection, pose estimation, motion planning, and grasping. The DARPA

1
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Figure 1.1: Examples of a LIDAR system, stereo camera, ToF camera (top row) and

their respective datasets (bottom row).

Grand, Urban, and Robotic Challenges and the Amazon Picking Challenge have shown

the effectiveness of incorporating 3D sensors into robotic platforms. These challenges

have propelled advances in 3D perception for self-driving cars, humanoid robotics, and

warehouse automation.

1.1 3D Point Cloud Processing Challenges

Contrary to other data modalities, processing 3D point clouds poses several significant

challenges. Point cloud data generated by low-cost sensors suffers from the presence

of artifacts, non-uniform noise, and variation in density. The established 2D image

processing techniques are not directly applicable to 3D point clouds. The main reasons

for this are:

• Difference in the data representation: An image is organized as a matrix while a

3D point cloud is an unorganized and irregularly distributed set of points.

• Difference in the information presentation: An image contains ambiguous spatial

information and abundant spectral information while a 3D point cloud contains
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explicit spatial information and possibly no spectral information.

• Difference in the spatial neighborhood: An image is arranged in a grid-like pat-

tern thus allowing the neighborhood of a pixel to be easily determined while the

neighborhood of 3D point cloud must be determined by a nearest neighbors search.

Motivated by these observations, this thesis explores new algorithms and data structures

for 3D point cloud processing. The fundamental viewpoint of this work is that the

incorporation of topological features can yield new insight into the structure of 3D

point cloud data which is not obtainable from other methods. To this end, we make use

of persistent homology, the main tool of topological data analysis (TDA).

1.2 Persistent Homology and its Applications

Datasets are often contained in a metric space, such as Euclidean space, with an inher-

ited distance function. In many cases, we are not interested in the exact geometry of

these spaces, but instead we seek to understand basic topological characteristics. Al-

gebraic topology obtains these characteristics through homology. Homology associates

algebraic structures to a space. These algebraic structures are robust in the sense that

they do not change when the underlying space is transformed by deformations.

Persistent homology is an algebraic method for measuring the topological features of

a dataset. The key insight of persistent homology is the following: one considers a series

of scale values, to extract qualitative information from data, since a priori there is no

clear choice for what the value of scale parameter should be. Persistent homology thus

captures how the homology of the algebraic structures change as the scale parameter

increases. In other words, it detects which features ‘persist’ across changes in resolution.

The initial motivation of persistent homology was to denoise datasets where small

size features are classified as noise. However, one’s definition noise is application depen-

dent. Features come in multiple scales and can be nested in complicated relationships.

Persistent homology addresses these factors.

The notion of persistence emanated independently in the work of Frosini, Ferri,

and collaborators in Bologna, Italy, in the doctoral work of Robins at the University

of Colorado, Boulder, and within the BioGeometry project of Edelsbrunner et al. at
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Duke University, North Carolina [5]. These developments happened at the turn of the

last century with relevant discoveries occurring over a period of fifteen years. Frosini

and Ferri refer to persistent homology in degree 0 as size theory which is motivated

by the study of the natural pseudo-distance between two functions on homeomorphic

topological spaces [6–8]. Persistence is defined in shape theoretic terms by Robins who

uses the idea in the study of fractal sets with alpha shapes [9]. Alpha shapes are also

at the foundation of the developments at Duke University [10].

Simplicial filtrations and the differentiation between positive and negative simplices,

two of the essential algebraic components of persistence, can be traced back to the

implementation of three-dimensional alpha shapes by Mücke [11] and the incremental

Betti number algorithm of Delfinado and Edelsbrunner [12]. Another pivotal insight is

the existence of a unique pairing where positive simplices mark the appearance (birth)

of topological features while negative simplices mark their disappearance (death). This

pairing of positive and negative simplices, and an algorithm to compute it, has been

crucial in connecting the mathematical ideas to practical problems.

Early applications of persistent homology can be found in the two-dimensional cov-

erage of static sensor networks. Given a set of sensors with minimal observational

capabilities, the question is to determine if the sensors cover a given area. Based on

weak assumptions regarding the location of the sensors in the network, DeSilva and

Ghrist use the homology of simplicial complexes to decide this question [13–15]. They

show that by using persistence these characterizations can be made robust to varia-

tions in the distribution of sensors and gaps in the coverage. More recently, Gamble

et al. have developed methods that make use of zigzag persistent homology to analyze

coverage properties in dynamic sensor networks [16].

The situation in which objects are embedded in three dimensions is significant and

its applications are numerous. Given an object in R3, a typical topological question is

how many connected components, holes, and voids exist. These features (components,

holes, voids) have concrete interpretations. For example, the number of celestial bodies

in a galaxy, the number of independent closed routes that go around an obstacle, and

the number of sections of a cell that are occupied by fluid [17].
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1.3 Contributions

Towards developing topological methods for 3D point cloud processing this thesis makes

the following contributions. In the first part, we introduce algorithms and data struc-

tures to speedup the simplicial complex construction process which is a prerequisite to

computing persistent homology. The second part presents 3D segmentation algorithms

based on computing the zeroth homology group (number of connected components) in a

point cloud. In the third part, we introduce a new algorithm for quickly computing the

first homology group (number of holes) and show how it can be used for determining

the boundary points of holes in a 3D point cloud. In the last part, we propose a global

3D point cloud descriptor based on computing topological persistence. A brief overview

of each problem along with our contributions is given next.

1.3.1 Fast Construction of the Vietoris-Rips Complex in R3

A simplicial complex, formally defined in Chapter 2, is a space built from the union of

points, edges, triangles, tetrahedra, and higher-dimensional polytopes. Approximating

a space as a simplicial complex allows us to compute homology. The Vietoris-Rips

complex, one of many different types of simplicial complexes used in TDA, is particularly

appealing because it can be computed efficiently. Our contribution is a set of algorithms

and data structures that not only allow the Vietoris-Rips complex to be computed

efficiently, but also show how it lends itself to be constructed in parallel. This fast

construction of the Vietoris-Rips complex is then used in the 3D point cloud processing

applications that follow.

1.3.2 Point Cloud Segmentation

To correctly interpret 3D point cloud data, we need to partition the dataset into clusters

that correspond to objects or regions. This process, known as data segmentation, is

an imperative filtering step for high-level functions such as machine learning. Using

ideas from persistent homology theory, we address this problem as follows. First, our

algorithms grow a simplicial complex representation of the dataset. Then, at each step

in the growth process we compute the zeroth homology group of the complex. For

region-based segmentation, we combine global (topological) and local (color, surface
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normal) information to segment colored 3D point clouds. Lastly, we extract out the

segmented objects/regions of the dataset. We show that these methods provide a stable

segmentation of point cloud data in the presence of noise and poorly sampled data, thus

providing advantages over contemporary segmentation techniques.

1.3.3 Point Cloud Hole Boundary Detection

The absence of connectivity information simplifies the definition and implementation

of many tasks in the area of point cloud processing. However the detection of holes,

straightforward in the case of mesh-based datasets, becomes an ill-defined problem.

Knowing about the existence and location of holes in the data is necessary for many

point cloud applications. These applications can range from surface reconstruction to

determining where to place a sensor in order to gain more information. To address

this problem, we first establish a fast algorithm for computing 1-cycles (holes) in a 3D

point cloud. We then propose a topological approach to finding the boundary points of

holes in a dataset that is qualitatively competitive with and quantitatively exceeds the

current dominant method in this area.

1.3.4 Point Cloud Signatures

Within a 3D point cloud, objects can be recognized by either local or global means.

Local description of an object is carried out by encoding geometric information within

the neighborhood of a point. A global description can be realized by encoding the entire

object geometry. While the use of discriminative geometric information is typically used

in composing point cloud descriptors, we look to the topological structure of the data

as a complementary source of information. In doing so, we present the Signature of

Topologically Persistent Points (STPP), a global descriptor that encodes topological

invariants of 3D point cloud data. These topological invariants include the zeroth and

first homology groups and are computed using persistent homology. We show that

STPP is a competitive 3D point cloud descriptor when compared to the state of art

and is resilient to noisy sensor data. We also demonstrate experimentally on a publicly

available RGB-D dataset that STPP can be used as a distinctive signature, thus allowing

for 3D point cloud processing tasks such as object detection and classification.
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1.4 Thesis Organization

This remainder of this thesis is organized as follows. In Chapter 2, we present the

essential mathematical background necessary for this dissertation. This background

starts with defining simplices and ends with computing persistent homology. We then

explore parallel methods for constructing a three dimensional Vietoris-Rips complex

in Chapter 3. In Chapter 4, the first application of our work is presented: object and

region segmentation of 3D point clouds. This application is followed by the introduction

of a fast incremental algorithm for computing persistence and a technique for hole

boundary point detection in Chapter 5. Our final application, in Chapter 6, shows how

to generate a topologically persistent signature that can be used for object detection

and classification. We conclude the thesis with an overview of our contributions and

highlight avenues of future research.



Chapter 2

Mathematical Background

This thesis makes use of ideas stemming from algebraic topology. In the following

sections we provide a brief index of key definitions and constructs necessary to compute

topological persistence. We start with simplices, simplicial complexes, and abstract

simplicial complexes. Then, we proceed with chains, cycles, boundaries, and homology

groups for Z2 coefficients. Finally, we define filters, filtrations, persistent homology, and

show how to compute persistent homology.

2.1 Simplices

Definition 1. A k-simplex σ is the convex hull of k + 1 affinely independent points

p0, . . . , pk ∈ Rn. We denote σ = conv{p0, . . . , pk} where the dimension of σ is k.

For any of the points, pi, the k vectors pj − pi, j 6= i, are linearly independent. In

other words, given a set of k + 1 points, a simplex is the set of points each of which is

a linear combination of these points with nonnegative coefficients summing to 1. The

convex hull is simply the solid polyhedron determined by the k+ 1 points. Examples of

simplices can be seen in Figure 2.1.

Definition 2. A face of σ is convS where S ⊂ {v0, . . . , vk} is a subset of the k + 1

points.

For example, the four faces of a tetrahedron correspond to the four subsets of S ob-

tained by removing points one at a time from σ. These four triangle faces are themselves

8
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Figure 2.1: A point, edge, triangle, and tetrahedron are simplices of dimension 0, 1, 2,

and 3 respectively.

2-simplices. There also exists six edge faces and four point faces.

2.2 Simplicial Complexes

Topological spaces are composed of simplicial complexes, Figure 2.2.

Definition 3. A simplicial complex K is a finite collection of simplices such that if

σ ∈ K and τ is a face of σ, then τ ∈ K and if σ, σ′ ∈ K then σ ∩ σ′ is either empty or

a face of both σ and σ′.

Figure 2.2: A simplicial complex is constructed by gluing together simplices.

An abstract simplicial complex, based on a set of points P = {p0, . . . , pk}, is a

collection K of simplices closed under the operation of taking subsets: if σ ⊂ P is a

simplex (σ ∈ K) and τ is a face of σ (τ ⊂ σ ⊂ P ), then τ ∈ K as well.

2.2.1 Nerve Complex

The Nerve complex is an abstract simplicial complex constructed from an open covering

of a topological space.

Definition 4. Let X = {x0, . . . , xm−1} ∈ Rn be a set of points in Euclidean n-space

and let U = {Ui} be a finite collection of sets. The nerve of U is an abstract simplicial
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complex whose k-simplices are unordered collections of k+ 1 elements of U having non-

empty intersection,

N(U) = {X ⊆ U |
⋂
X 6= ∅}.

According to the Nerve theorem [18], when U consists of convex sets in Euclidean

space, N(U) is homotopic (topologically equivalent) to the union ∪iUi.

Figure 2.3: A Čech complex.

2.2.2 Čech Complex

The Čech complex is an abstract simplicial complex that models of the topology of a

space, Figure 2.3.

Definition 5. Let X = {x0, . . . , xm−1} ∈ Rn be a set of points in Euclidean n-space

and let r be a fixed radius. The Čech complex is an abstract simplicial complex whose

k-simplices are determined by unordered (k+ 1)-tuples of points in X whose closed balls

of radius r centered at x, B(x, r), have a point of common intersection:

Cr(X) = {σ ⊆ X} |
⋂
x∈σ

B(x, r) 6= ∅}.
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The Čech complex is the nerve of the union of balls of radius r. If the cover sets,

and all nonempty finite intersections of the cover sets are contractible, then the Čech

complex faithfully captures the topology of the cover [19].

2.2.3 Vietoris-Rips Complex

The Vietoris-Rips complex is an abstract simplicial complex that approximates the

topology of a space, Figure 2.4.

Definition 6. Let X = {x0, . . . , xm−1} ∈ Rn be a set of points in Euclidean n-space

and let r be a fixed radius. The Vietoris-Rips complex of X is an abstract simplicial

complex whose k-simplices correspond to unordered (k + 1)-tuples of points in X that

are pairwise within r distance of each other,

VRr(X) = {σ ⊆ X | d(xi, xj) ≤ r, ∀xi 6= xj ∈ σ},

where d is the Euclidean distance metric.

Figure 2.4: A Vietoris-Rips complex.

An explicit example showing the difference between a Čech and Vietoris-Rips com-

plex can be seen in Figure 2.5. Although the Vietoris-Rips complex has more simplices,
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it is less expensive to compute when compared to the corresponding Čech complex.

The Nerve theorem does not hold for Vietoris-Rips complexes, however for all r > 0

the following inclusions do hold: Cr ⊂ VRr ⊂ C2r (Theorem 2.5 [14]). Therefore, if

the Čech complexes for both r and 2r are good approximations of the underlying space

then it follows that the Vietoris-Rips complex is too.

(a) (b)

Figure 2.5: In the Čech complex (a), all balls of radius r must have a common point

of intersection to form a 2-simplex while in the Vietoris-Rips complex (b) only pairwise

intersections among the balls are needed.

2.3 Chains, Boundaries, Cycles

Let K be a simplicial complex in R3. A k-chain is a subset of k-simplices in K. Addition

of chains is defined via integer coefficients modulo 2, i.e. the sum of two k-chains c and

d is the symmetric difference of the two sets,

c+ d = (c ∪ d)− (c ∩ d). (2.1)

In addition, taking the symmetric difference is a commutative operation. We denote Ck

as the set of all k-chains together with the addition operator. The zero element of Ck

forms the empty set. For every integer k there is a chain group, however for a complex

in R3 only the chain groups for 0 ≤ k ≤ 3 may be non-trivial.

The boundary ∂k(σ) of a k-simplex σ is defined as the set of its (k − 1)-dimensional

faces which also forms a (k − 1)-chain. To find the boundary of a k-chain we sum
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Figure 2.6: The chain, cycle, and boundary groups along with their images under the

boundary operators.

of the boundaries of its simplices, ∂k(c) =
∑

σ∈c ∂k(c). Each boundary operator is a

homomorphism ∂k : Ck → Ck−1 defined as follows.

Definition 7. A boundary homomorphism is the linear mapping ∂k : Ck(K)→ Ck−1(K)

produced by associating each basis element of Ck(K) to the formal sum of its oriented

faces of dimension k − 1.

The collection of boundary operators on the chain groups form a chain complex,

· · · → ∅ → C3
∂3→ C2

∂2→ C1
∂1→ C0 → ∅ · · · .

The kernel of ∂k is defined as the set of k-chains with empty boundary and the image

of ∂k is defined as the set of (k − 1)-chains that are boundaries of k-chains:

ker ∂k = {c ∈ Ck | ∂k(c) = ∅}

img ∂k = {d ∈ Ck−1 | ∃c ∈ Ck : d = ∂k(c)}.

A k-cycle is a k-chain in the kernel of ∂k while a k-boundary is a k-chain in the image

of ∂k+1. The sets Zk of k-cycles and Bk of k-boundaries, with addition, form subgroups

of Ck. An important property of the boundary operators is that the boundary of every

boundary is empty, ∂k1 ◦ ∂k(c) = ∅. Thus, the groups are nested, Bk ⊂ Zk ⊂ Ck, as

shown in Figure 2.6. Taking the boundary of a point yields the empty set. This implies

that every 0-chain is also a 0-cycle, Z0 = C0. Since K is a complex in R3, there exist

no non-empty 3-cycles or 3-boundaries, Z3 = B3 = {∅}.
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2.4 Homology Groups

Homology is an algebraic means to identify the holes in a topological space. It is based

on the concept of a boundary homomorphism where simplicial homology encodes how

simplices are attached to their lower dimensional faces.

The kth homology group is defined as the kth cycle group factored by the kth bound-

ary group: Hk = Zk/Bk. Its elements consist of the homology classes c+Bk = {c+ b |
b ∈ Bk}, for all c ∈ Zk. The sum of two classes is (c + Bk) + (d + Bk) = (c + d) + Bk

and the zero element is ∅+Bk = Bk.

Hk(K) is the quotient vector space whose generators are k-cycles (which correspond

to k-dimensional boundaryless subcomplexes surrounding a hole) modulo the equiva-

lence relation which states that two such k-cycles are the same (homologous) whenever

they are the oriented boundary of a (k + 1)-dimensional subcomplex. Additionally, a

main property of Hk(K) is that its dimension (number of generators) corresponds to

the number of k-dimensional holes in the simplicial complex.

The homology groups are vector spaces where a subset generates a vector space if

every element is the sum of elements in the subset, and a basis is a minimal generating

set. Although there are no canonical bases, all bases have the same size which corre-

sponds to the rank of the group. Since taking symmetric differences is equivalent to

adding modulo 2, the size of a group is equal to 2 raised to the power of its rank. Figure

2.7 shows an example of adding two 1-cycles.

+

Figure 2.7: The symmetric difference between two 1-cycles produces a new 1-cycle.

The kth Betti number of K is defined as the rank of the kth homology group,

βk = rank Hk where

rank Hk = rank Zk − rank Bk. (2.2)
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For complexes in R3, only the Betti numbers for 0 ≤ k ≤ 2 can be non-zero. A non-

bounding 0-cycle represents a set of components of K where there is one basis element

per component. Therefore, β0 is the number of components that comprise K. A set of

holes formed by K is represented by a non-bounding 1-cycle. Each hole can be expressed

as a sum of holes in a basis and β1 is the size of the basis. A non-bounding 2-cycle

represents a set of voids in K which are components of R3 −K. Finally, because K is

a complex in R3 there are no 3-cycles.

2.5 Computing Homology Groups

To compute the homology groups of a simplicial complex K we first encode the simplices

in a boundary matrix. After reducing the boundary matrices we then compute the Betti

numbers of K using Equation 2.2. The details of the boundary matrix creation and an

example of computing homology follow.

2.5.1 Boundary Matrix

To compute homology we represent the relationship between a simplex and its face

using a boundary matrix, Figure 2.8. For each entry of a boundary matrix we store

a 1 if simplex τ is a face of simplex σ, otherwise we store a 0. We then reduce the

boundary matrix into Smith normal form to compute the Betti numbers. In normal

form, the number of zero columns is the rank of the cycle group and the number of ones

on the diagonal is the rank of the boundary group, Figure 2.9. The Betti number is the

difference between the rank of the cycle and boundary groups, βk = rank Zk− rank Bk.

2.5.2 Example

Given the simplicial complex in Figure 2.8 (a), the boundary matrices are

∂0 =
[
0 0 0

]
,

∂1 =


1 1 0

1 0 1

0 1 1

 .
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Figure 2.8: A simplicial complex (a) and its boundary matrix representation (b).

After reduction, we have the following matrices

∂̄0 =
[
0 0 0

]
,

∂̄1 =


1 0 0

0 1 0

0 0 0

 .
The Betti numbers are

β0 = 3− 2 = 1,

β1 = 1− 0 = 1,

indicating that the complex contains one connected component and one hole.

2.6 Filters and Filtrations

An ordering of the simplices, where each prefix of the ordering contains the simplices of a

subcomplex, is called a filter. A sequence of subcomplexes defined by taking successively

larger prefixes is called a filtration. Figure 2.10 illustrates an example of a filtration

consisting of 7 simplices. A filtration can be thought of as the evolution of a simplicial

complex in which the sole element of change is growth.
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Figure 2.9: In the reduced boundary matrix, the number of zero columns is the rank of

the cycle group, Zk, and the number of ones on the diagonal is the rank of the boundary

group, Bk. The Betti number is the difference between the rank of the cycle group and

the rank of boundary group, βk = rank Zk − rank Bk.

Given a simplicial complex K, let f : K → R be a non-decreasing function. Here

non-decreasing means that if τ is a face of σ, then f(τ) ≤ f(σ). The level subcomplexes

are then defined to be K(α) = f−1(−∞, α]. Let αi denote the values of f on the

simplices of K in increasing order, thus the level subcomplexes define a filtration of K.

Furthermore, if KL = K(αL) where L is the index of the largest value αL then

∅ ⊂ K0 ⊂ K1 ⊂ . . . ⊂ KL = K.

As the scale parameter increases, new simplices are added until the complete complex

K(∞) = K is obtained. For simplicial complexes described in Section 2.2, we generate

a filter and the resulting filtration by growing epsilon balls about each point.

2.7 Persistent Homology

Persistence is a way to measure topological attributes by their lifetime in a filtration.

More precisely, let Z lk and Bl
k be the kth cycle group and kth boundary group, respec-

tively, of the lth complex K l in a filtration. To obtain the persistent cycles in K l, its

kth cycle group is factored by the kth boundary group of K l+p, p complexes later in
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Figure 2.10: A filtration is made up of a sequence of subcomplexes.

the filtration. The p-persistent kth homology group of K l is defined as

H l,p
k = Z lk/(B

l+p
k ∩ Z lk),

and the p-persistent kth Betti number βl,pk of K l is the rank of H l,p
k . As p increases

negative simplices cancel positive simplices earlier in the filtration, i.e. increasing p by

one will shorten the persistence of all non-bounding cycles by one.

2.8 Computing Persistent Homology

To compute the persistent homology of a filtered simplicial complex K we first encode

the complex in a boundary matrix. We then proceed to reduce the matrix using the

standard algorithm. The details of these operations along with an example are given

next.

2.8.1 Standard Algorithm

Similar to computing homology groups we use a boundary matrix to store the informa-

tion regarding the faces of every simplex. We place a total ordering on the simplices of

the complex in the filtration such that the following conditions hold:

• The face of a simplex precedes the simplex.

• The simplex in the ith complex Ki precedes simplices in Kj , j > i.

Let n be the total number of simplices in the complex and let σ1, . . . , σn be the simplices

with respect to this ordering. We build a square matrix δ of size n×n by storing a 1 in
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δ(i, j) if σi is a face of σj , otherwise we store a 0 in δ(i, j). Once the boundary matrix

is constructed, we can then proceed to compute persistent homology.

Persistent homology can be computed by reducing the boundary matrix using Gaus-

sian elimination. For every j ∈ {1, . . . , n} we define low(j) to be the largest index value

i such that δ(i, j) = 1. If column j consists of all 0 entries then low(j) is undefined. This

process for reducing the boundary matrix is illustrated in Algorithm 2.1. In the worst

case, the standard algorithm has a runtime complexity that is cubic in the number of

simplices.

Algorithm 2.1 Standard Algorithm

Input: Boundary matrix B

Output: Reduced boundary matrix B̄

1: for i = 1 to n do

2: while ∃ i < j and low(i) = low(j) do

3: Add column i to column j

4: end while

5: end for

After the boundary matrix is reduced, we can find the persistence pairs (barcodes)

as follows:

• If low(j) = i then σi is paired with σj . The entrance of σi in the filtration

corresponds to the birth of a feature that dies with the entrance of σj .

• If low(j) is undefined then the entrance of σj in the filtration causes the birth of

a feature. If there exists a k such that low(k) = j then σj is paired with σk. The

entrance of σk causes the death of σj . If no such k exists then σj is unpaired.

The pair (σi, σj) gives the half-open interval [i, j) and an unpaired σk gives the infinite

interval [k,∞).
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Figure 2.11: An ordering of the simplices that is compatible with the filtration in Figure

2.10.

2.8.2 Example

Working with the filtration in Figure 2.10 and its simplicial ordering in Figure 2.11, the

boundary matrix is

B =



0 0 0 1 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0


.

The reduced boundary matrix is:

B̄ =



0 0 0 1 1 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 0


.

After reduction, we have the following intervals from B̄:

• σ1 is positive and unpaired. This gives the interval [1,∞) in H0.



21

• σ2 is positive and paired with σ4. Since σ2 and σ4 enter at the same time in the

filtration there is no interval.

• σ3 is positive and paired with σ5. This gives the interval [2, 3) in H0.

• σ6 is positive and paired with σ7. This gives the interval [3, 4) in H1.



Chapter 3

Fast Construction of the

Vietoris-Rips Complex in R3

The topology of a point cloud can be described using a Čech or Vietoris-Rips (VR)

complex. It is nontrivial to compute a Čech complex since we need very precise data on

the distances between points and we need to check for a large number of intersections.

Consequently, in many applications the Čech complex is unattainable, thus we work

with the VR complex which only measures pairwise distances between points. Despite

being simple to compute, constructing the VR complex is the primary bottleneck in

a TDA pipeline due to the growth in the number of simplices as the complex is built

at different scales. In this chapter, we focus on speeding up the construction of three

dimensional VR complexes which have many practical applications.

3.1 Related Work

The VR complex is often computed using provisional algorithms due to its simplicity.

These implementations may be sufficient for building low-dimensional complexes on

small datasets consisting of a few hundred points in size. Nevertheless, even for low-

dimensional complexes the computational cost quickly rises when the size of the dataset

and the scale parameter increase.

Previous work by Zomorodian developed fast algorithms for creating complexes in

arbitrary dimensions [20]. Zomorodian’s approach separates the construction of the
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filtered VR complex into two phases. In the first phase, a neighborhood graph on the

input points based on the ambient metric is computed. In the second phase, the graph

is expanded to include higher-dimensional simplices. In contrast to this serial approach

for any dimension, we optimize the construction of VR complexes in R3.

Open source libraries such as Dionysus, DIPHA, GUDHI, JavaPlex, and Perseus

contain software for computing the VR complex [21]. Other recent software packages

for computing VR complexes include Eirene [22] and Ripser [23]. We compare our

work to Ripser, a lean implementation for computing VR persistence barcodes, which

is considered the state of the art.

3.2 Problem Formulation

Suppose that S ⊆ R3 is a finite set of three dimensional points. The Vietoris-Rips

complex of S at radius r is

VRr(S) = {σ ⊆ S | d(u, v) ≤ r, ∀u 6= v ∈ σ}, (3.1)

where d is the Euclidean metric. Our approach is to separate the construction of the

filtered VR complex into three parallelized phases. In the first phase, we perform a

nearest neighbors search about each point. In the second phase, we use the results of

the nearest neighbors search to create an edge list. In the final phase, we generate a

triangle list based on the edge relationships among the points. The generated edge and

triangle lists can then be used for persistent homology computations.

3.3 Nearest Neighbors Search

Searching for nearest neighbors is a classic computing problem. The idea is to preprocess

S such that for a given query q the closest p ∈ S can be quickly found Figure 3.1. Given

a 3D point cloud, we begin by sorting the points by their xyz-coordinates. Next, we

initialize and utilize a kd-tree to perform a nearest neighbors search about each point,

Algorithm 3.2. Among the set of nearest neighbors returned from a radius search, we

save the indices of the points whose position in the sort comes after the current point.

These points within r distance of each other form the r-neighborhood graph of S whose
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(a) (b)

Figure 3.1: In the first phase of constructing the VR complex the neighborhood of each

point (a) is searched for neighboring points (b).

edges in the VR complex are

{(u, v) ∈ S × S | u 6= v and d(u, v) ≤ r}.

3.4 Edge List Construction

The product of computing nearest neighbors is an array where the indices correspond the

positions of the sorted points and the entries contain the number of nearest neighbors

(edges) per point. We proceed to find the total number of edges by performing a

reduction on the array. To find the offset of each set of edges, for each point, an all-

prefix-sums operation is performed [24]. From the prefix sums array a variable length

edge list is created, Figure 3.2. The list is then populated with edge information in

parallel, Algorithm 3.3.

3.5 Triangle List Construction

Points within distance r of each other create edges and these edges constitute the r-

neighborhood graph of S. We identify triangles by finding all three cliques in the
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Algorithm 3.2 Nearest Neighbors

Input: Set of points S

Output: {(u, v) ∈ S × S | u 6= v and d(u, v) ≤ r}

1: sort(cloud.points)

2: kd-tree.buildIndex(cloud.points)

3: for i ∈ [1, |cloud.points|] do

4: query ← [cloud.points[i].x, cloud.points[i].y, cloud.points[i].z]

5: nearest neighbors ← radiusSearch(query, radius, kd-tree)

6: for j ∈ [1, |nearest neighbors|] do

7: if i < nearest neighbors[j] then

8: cloud.points[i].nearest neighbors ← j

9: cloud.points[i].n edges ← cloud.points[i].n edges + 1

10: end if

11: end for

12: end for

thread 1 ...thread 2 thread n

Figure 3.2: A prefix sum of offsets allows for the creation of a variable length list that

can be written in parallel.
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Algorithm 3.3 Edge List

Input: {(u, v) ∈ S × S | u 6= v and d(u, v) ≤ r}
Output: Populated variable length edge list

1: for i ∈ [1, |cloud.points|] do

2: offset ← cloud.points[i].edge offset

3: for j ∈ [1, |cloud.points[i].nearest neighbors|] do

4: cloud.edges[offset].u ← i

5: cloud.edges[offset].v ← cloud.points[i].nearest neighbors[j]

6: cloud.edges[offset].negative ← 0

7: cloud.edges[offset].death index ← 0

8: offset ← offset + 1

9: end for

10: end for

(a) (b)

Figure 3.3: In the second and third phases of constructing the VR complex the edge (a)

and triangle (b) cliques, highlighted by the colored regions, are determined.
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r-neighborhood-graph as follows. Suppose u, v, w ∈ S. If edges (u, v) and (u,w) exist

then we have a triangle if and only if v and w are neighbors (i.e. (v, w) exists), Algorithm

3.4. The total number of triangles and their offsets are computed using a reduction and

all-prefix-sums operations, respectively. After the resulting operations, a variable length

triangle list is constructed (Figure 3.2) and initialized in parallel using Algorithm 3.5.

Algorithm 3.4 Compute Triangles

Input: {(u, v) ∈ S × S | u 6= v and d(u, v) ≤ r}
Output: List of edge offsets comprising each triangle

1: for i ∈ [1, |cloud.points|] do

2: for j ∈ [|cloud.points[i].nearest neighbors|] do

3: v ← cloud.points[i].nearest neighbors[j]

4: for k ∈ [j + 1, |cloud.points[i].nearest neighbors|] do

5: w ← cloud.points.[i].nearest neighbors[k]

6: for l ∈ [1, |cloud.points[v].nearest neighbors|] do

7: if w = cloud.points[v].nearest neighbors[l] then

8: cloud.points[i].uv offset ← cloud.points[i].edge offset + j

9: cloud.points[i].uw offset ← cloud.points[i].edge offset + k

10: cloud.points[i].vw offset ← cloud.points[v].edge offset + l

11: cloud.points[i].n triangles ← cloud.points[i].n triangles + 1

12: end if

13: end for

14: end for

15: end for

16: end for

3.6 Analysis

Although we only need to check pairwise distances the VR complex has the same worst-

case complexity as the Čech complex. In the worst-case, the VR complex can have up

to 2|S|−1 simplices and dimension |S|−1. However, in applications we usually compute

the VR complex up to dimension k � |S| − 1 where k = 1 or k = 2.
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Algorithm 3.5 Triangle List

Input: List of edge offsets comprising each triangle

Output: Populated variable length triangle list

1: for i ∈ [1, |cloud.points|] do

2: offset ← cloud.points[i].triangle offset

3: for j ∈ [1, |cloud.points[i].v|] do

4: cloud.triangles[offset].uv offset ← cloud.points[i].uv offset[j]

5: cloud.triangles[offset].uw offset ← cloud.points[i].uw offset[j]

6: cloud.triangles[offset].vw offset ← cloud.points[i].vw offset[j]

7: cloud.triangles[offset].negative ← 0

8: offset ← offset + 1

9: end for

10: end for

3.7 Experiments

In this section we evaluate our parallel VR (PVR) construction, implemented in C++,

against Ripser1 a publicly available C++ software program for the computation of VR

persistence barcodes.

3.7.1 Experimental Setup

Searching for nearest neighbors is done using nanoflann [25], a fast library for building

kd-trees of datasets. We also make use of OpenMP, a set of compiler directives and

callable runtime library routines for invoking parallelism and the CUDA parallel com-

puting platform. All experiments were performed using a single node 64-bit GNU/Linux

machine with 24 CPU cores and an NVIDIA Tesla K40 GPU.

3.7.2 Experimental Results

The performance of the PVR complex construction compared to Ripser on point clouds

ranging from 15k to 100k points is shown in Figure 3.3. For each plot, the size of the

complex (number of simplices) as a function of the radius and the construction time

1 https://github.com/Ripser/
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15k Point Cloud 30k Point Cloud 60k Point Cloud 100k Point Cloud

PVR 0.401 ±0.26 3.215 ±4.87 3.32 ±4.26 9.018 ±12.82

Ripser 8.728 ±0.37 45.098 ±1.82 141.37 ±2.73 474.24 ±4.74

Table 3.1: The mean runtime results (seconds) of PVR versus Ripser on various sized

3D point clouds.

(seconds) is shown for both PVR and Ripser. Table 3.1 shows the overall mean runtime

between PVR and Ripser for each point cloud.

From the plots in Figure 3.3 we can see that the runtime of PVR, through the range

of filtration values, remains below the growth of the complex as it approaches a billion

simplices. In comparison to Ripser, PVR is significantly faster on various sized point

clouds. However, we note that the design goals between these two implementations

of the VR complex differ. Ripser was designed for computing VR complexes, in any

dimension, with memory efficiency in mind. On the other hand, PVR was conceived for

constructing VR complexes as quickly as possible for real-time 3D point cloud processing

applications.

3.8 Conclusion

This chapter developed algorithms and data structures for the parallel assembly of a

VR complex in R3. Fast construction of the VR complex, having many important

applications, is a major hurdle in TDA due to its high computational costs. We’ve

shown the increased performance of constructing a 3D VR complex, with a speedup

over a state of the art implementation, for practical point cloud processing tasks.
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Figure 3.3: The construction time of Parallel Vietoris-Rips (PVR) and Ripser along

with the size of the complex for a given radius using a set of non-uniformly sampled

points in R3. The results of each plot are averaged over 10 independent runs per plot

point.



Chapter 4

Point Cloud Segmentation

3D point clouds can be filtered, segmented, compressed, etc., to accomplish the job at

hand. Segmentation algorithms aim to divide a point cloud into constituent objects or

regions that are perceptually meaningful. The act of segmentation is a vital preprocess-

ing step in computer and robotic vision systems. The performance of high level tasks

such as object localization, feature extraction, and classification are dependent upon the

quality of the segmented data. This chapter presents techniques for performing object

and region segmentation of 3D points clouds utilizing topological persistence.

4.1 Object Segmentation

Segmenting objects in point clouds is a challenging problem. 3D point clouds are of-

ten incomplete, sparse, unorganized, lack connection information, and have an uneven

dispersion. In addition, object clusters can be highly entangled and the topological

features of an object’s surface can be arbitrary with no statistical distribution pattern

in the data. Real-world sensor data is noisy. The physical limitations of sensors, bound-

aries between features, multiple areas of reflectance, occlusions, etc., lead to the creation

of outliers that make the process of segmentation difficult.

In this section, we implement and evaluate algorithms for segmentation based on

computing the topological persistence of a point cloud dataset at different spatial reso-

lutions. Our key contributions are:

• The introduction of persistent homology to the area of 3D point cloud processing.

32
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• A novel approach for segmenting 3D point clouds based on topological persistence.

4.1.1 Related Work

Data segmentation has been a heavily worked on research problem for decades with

a rich history of literature. Many different approaches have been taken in segmenting

both 2D and 3D data. In the following paragraphs we highlight several areas of research

that are relevant to our work.

A variety of algorithms have been proposed in computer graphics on the segmen-

tation of 3D models of single objects where the objects are typically represented by

meshes [26]. These algorithms include watersheds [27], k-means [28], hierarchical [29],

and spectral clustering [30]. The objective of these methods is to decompose an object

into meaningful parts. Typically a graph is constructed from an input mesh. Clustering

is then performed on the graph to produce a segmentation using graph cuts.

Prior to the appearance of inexpensive RGB-D sensors, datasets produced by laser

scanning and stereo vision technologies fueled segmentation-based research. Golovin-

skiy and Funkhouser segment foreground objects from background clutter in outdoor

scenes using a min-cut method on a nearest neighbors graph [31]. A multi-class point

cloud segmentation technique, developed by Johnson-Roberson et al., proposes multiple

seeding methods and a min-cut framework [32]. In [33], Douillard et al. demonstrate a

set of segmentation methods for 3D point clouds of varying densities.

With the introduction of RGB-D sensors, interest in segmenting point clouds has

continued to increase. Pre-segmentation based on surface normals followed by surface

patch estimation and model selection to find a learned representation for the given data

is presented by Richtsfeld et al. [34]. A segmentation strategy by Mishra et al. extracts

objects, defined as compact regions enclosed by the depth and contact boundary in a

scene, as single regions using color, texture, and 3D information [35]. Efficient planar

segmentation of organized point clouds based on connected components is proposed by

Trevor et al. [36].

The idea of topological persistence has been used in computer vision for performing

image segmentation. Hierarchical segmentation using the mean shift method is discussed

by Paris and Durand [37]. The authors apply these concepts to a density function in

a 5-dimensional space that combines the x- and y-coordinates of a pixel along with its
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(a) (b)

Figure 4.1: A point cloud (a) and its approximation as the 1-skeleton of a VR complex

(b).

RGB color components. A way to integrate knowledge about topological properties

into a random field segmentation model is introduced by Chen et al. [38]. In contrast to

these works on 2D images, we utilize topological persistence to support 3D point cloud

processing tasks.

4.1.2 Problem Formulation

Let X = {x0, . . . , xm−1} ∈ R3 be a topological space and let x0, . . . , xm−1 denote the

points in a point cloud captured by a depth sensor. To segment out the objects of X

we have the following objectives. First, we represent the topology of the space as a

simplicial complex. Next, we compute the zero-dimensional homology group of X using

a filtration. Lastly, the connected component clusters are extracted from the data.

To achieve these objectives, we make the following assumptions:

Assumption 1. The input space is voxelized: points in the space are approximated

(downsampled) with their centroid.

Assumption 2. The input space is locally connected: each point consists of a neigh-

borhood containing open and connected sets. This constraint is enforced by using only

the neighboring points during the segmentation process.
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4.1.3 Vietoris-Rips Complex Construction

Given an input point cloud our goal is to form the Vietoris-Rips (VR) complex, VRr(X) =

{σ ⊆ X | d(xi, xj) ≤ r, ∀xi 6= xj ∈ σ}, where d is the Euclidean metric and the vertices

of σ are pairwise within distance r of each other. We observe that the 1-skeleton of the

VR complex is sufficient to compute the zeroth homology group of the space at each

step in the filtration, Figure 4.1. Thus, to generate VRr(X) we construct a set of edges

as outlined in Algorithm 4.6. The input to the algorithm is an ordered set of points.

A kd-tree is instantiated and used to carry out range searches for finding the nearest

neighbors of each point at a given radius.

Algorithm 4.6 Compute Connected Components

Input: Ordered set of points X

Output: One or more sets of points each representing a connected component

1: kd-tree.buildIndex(cloud.points)

2: while radius ≤ max distance do

3: for i ∈ [1, |cloud.points|] do

4: query ← [cloud.points[i].x, cloud.points[i].y, cloud.points[i].z]

5: nearest neighbors ← radiusSearch(query, radius, kd-tree)

6: min nn ← min(nearest neighbors)

7: for j ∈ [1, |nearest neighbors|] do

8: nn ← nearest neighbors[j]

9: if cloud.points[nn].parent > cloud.points[min nn].id then

10: root ← find(cloud.points[nn])

11: if cloud.points[root].id = cloud.points[nn].id then

12: cloud.points[nn].death ← radius

13: end if

14: union(cloud.points[nn], cloud.points[min nn])

15: end if

16: end for

17: end for

18: radius ← radius + step size

19: end while
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4.1.4 Persistent Homology Computation

In Section 2.8, we saw how the standard algorithm can be used for computing persistent

homology. Alternatively, to compute the zero-dimensional homology of a complex we

can use a modified form of a disjoint-set data structure [39] as follows. Let G = (V,E) be

a graph with a function f and an ordering on the points u, v ∈ V such that f(u) < f(v).

The original version of the disjoint-set data structure tracks the components of the

graph. In our modified version, we care about the order in which the points are added

and the function value on the points which causes the components to merge.

To populate the data structure we add points, one at a time, in the order of their

function values. For each point u, the data structure stores a pointer to its parent,

denoted u.parent. The data structure is initialized by making each point the root of

its own tree, u.parent = u. We then use the following functions during the filtration

process:

• find(u): Returns the root of the tree containing u by recursively following u.parent

until it finds the point who’s parent is itself.

• union(u, v): Merges the trees containing u and v into one or does nothing if u

and v already belong to the same tree. This operation is performed by calling

find(u) and find(v) to determine the roots of the respective trees. If the roots of

the two points are equal, then the components are contained in the same tree and

nothing is done. Conversely, if the roots differ then the function sets one to be

the parent of the other.

Initially, all points are born at time zero and die when merged in the data structure.

The death of a point is tracked as follows. If the call to union(u, v) determines that the

points belong to different trees, we set a.parent = b where a and b are the roots of the

respective trees and a.birth > b.birth. The death time of the younger component, a, is

set to be the function value of b.

4.1.5 Connected Component Extraction

At the end of the filtration, we find the connected components based on the sets of

points that are joined to 0-dimensional simplices of infinite persistence. Within the
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data structure, a simplex of infinite persistence is a point with no recorded death time

and represents the root of a tree. Each extracted connected component is equivalent to

a segmented object in the point cloud.

4.2 Region Segmentation

Within a 3D point cloud, a region can be defined as a group of connected points with

similar properties. The concept of a region is essential in interpreting point cloud data

since regions may correspond to objects or parts of an object in a scene. Segmenta-

tion of regions is a crucial preprocessing step towards pattern recognition and scene

understanding.

Region segmentation algorithms are based on the expansion of a region whenever

its interior is homogeneous according to certain features such as intensity, color, or

texture. Unlike edge-based segmentation, which returns boundaries between regions,

region-based segmentation is a method that allows the determination of regions directly.

Region growing is one of the simplest and most popular algorithms for region-based

segmentation. Traditional implementations start by choosing a starting point called a

seed. Then, the region is grown by adding similar neighboring points according to a

homogeneity criterion, thus increasing the size of the region step by step. The homo-

geneity criterion has the function of determining whether a point belongs to the growing

region or not. The decision of merging is generally taken based only on the difference

between the evaluated point and the region. However, it is not easy to decide when this

variance is small (or large) enough to make a decision.

Defining a predicate for a homogeneity criterion which controls the region growing

process involves the interplay between local and global considerations. Neighbors are

joined together by a local or regional decision process, however what is desired is a

satisfactory global result when the algorithm terminates. In general, this dilemma can

be resolved by using as much global information, as is available, to make local decisions.

In this section, we present a new 3D region segmentation technique utilizing persis-

tent homology that builds upon ideas in Section 4.1. Our main contribution is:

• The novel combination of global (topological) and local (color, surface normal)

information, to produce a stable region growing segmentation of a 3D point cloud.
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This approach is fully automated and lacks the requirement of an initial seeding. Fur-

thermore, the final segmentation does not depend on the order in which the regions are

grown or joined.

4.2.1 Related Work

Region-based segmentation is a classic technique in computer vision and image process-

ing with over forty years of history [40, 41]. ‘Region growing’ and ‘split and merge’ are

the two most common region-based segmentation algorithms. In the following para-

graphs we summarize several domains of region segmentation research that are relevant

to our work.

The notion of seeded region growing was introduced by Adams and Bischof [42].

Later work by Lin et al. furnishes algorithms that do not require an initial seeding of

the data [43]. A region growing sequence built by incrementing a maximal homogeneity

threshold from a small to large value is described by Revol et al. [44]. Their work uses

an assessment function to determine the optimal homogeneity criterion.

Segmentation of regions is often used in the processing of medical images. A frame-

work for segmenting 3D imaging data volumes, developed by Justice et al., uses inter-

actively guided initial seed points [45]. Interactive region segmentation with graph cuts

is proposed by Boykov and Jolly [46]. The approach requires that a user impose con-

straints for segmentation by indicating which seeds must be part of an object and which

seeds must be part of the background. The rest of the image is segmented automatically

by computing a global optimum among all segmentations satisfying the constraints. In

a work by Pohle and Toennies, a region growing algorithm is introduced based on a

model that describes homogeneity and simple shape properties [47].

Tremeau and Borel present a color segmentation algorithm that combines region

growing and merging processes [48]. The algorithm generates a segmentation of an image

into spatially disconnected but similar in color regions. A method that simultaneously

segments and models a point cloud through a minimum spanning tree ellipsoidal region

growing process is presented by Pauling et al. [49].

A statistically robust segmentation algorithm for planar and non-planar surfaces

extracted from laser scanning data is proposed by Nurunnabi et al. [50]. The algorithm

uses principle components analysis (PCA) to make saliency features used for region
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growing more resistant to outliers. Holz and Behnke present a fast segmentation method

for range images and organized point clouds [51]. The main idea, geared towards planes,

is to approximately reconstruct the surface by means of polygonal meshing and then

segment the resulting mesh by growing regions about local neighborhoods.

A hybrid split-and-merge segmentation method using persistent homology is de-

scribed by Letscher and Fritts [52]. The algorithm first performs edge detection on the

input image. Then, the image is split into regions using edge-directed topology where

regions with similar features are selected and merged in order of topological persistence.

4.2.2 Problem Formulation

Given a topological space X = {x0, . . . , xm−1} ∈ R3 where x0, . . . , xm−1 are the points

in a point cloud captured by an RGB-D sensor, our goal is to partition X into disjoint

subsets X1, X2, . . . , XN such that

N⋃
i=1

Xi = X (4.1)

Xi, i = 1, 2, . . . , N is connected (4.2)

P (Xi) = TRUE for i = 1, 2, . . . , N (4.3)

P (Xi ∪Xj) = FALSE for i 6= j,Xi, Xj adjacent, (4.4)

where P is a logical predicate defined on a set of proximate points.

The predicate P associated with the third and fourth conditions determines what

type of attributes the segmented regions must have to satisfy the homogeneity criterion.

The second condition implies that regions must be connected, i.e. constructed with

contiguous points. This requirement affects the central structure of the segmentation

algorithm, especially the region growing process, by enforcing the constraint that points

are processed according to neighbor relationships. The first condition simply states that

the space is composed of the disjoint regions.

4.2.3 Homogeneity Criterion

Our criterion of homogeneity employs the analysis of the color characteristics of the

nearest neighbors. The CIELAB color space, defined by the International Commis-

sion on Illumination and chosen for its perceptually uniform color distances, is used to
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compare the chromaticity between two neighboring points

∆E =
√

(l2 − l1)2 + (a2 − a1)2 + (b2 − b1)2, (4.5)

where l corresponds to the luminance channel, a and b are the color channels, and ∆E

is the Euclidean distance.

In addition, a similarity measure using the surface normal of a point is used. We

estimate the coordinates of the surface normal by performing an eigendecomposition of

the covariance matrix created from the nearest neighbors. The angle between a surface

normal u and its neighbor v is computed as

θ = arccos
u · v
‖u‖‖v‖

. (4.6)

4.2.4 Region Growing Algorithm

The homogeneity criterion formulated in the previous subsection is used in conjunction

with topological persistence to perform region growing. Regions are grown by construct-

ing the 1-skeleton of the VR complex as described in 4.1.3. As regions are grown based

on local similarities between nearest neighbors, the global connectedness of the region

is preserved using topology. To enforce the constraint that each disjoint region is a

connected component we compute the zeroth homology group of the complex at each

step of the filtration, Algorithm 4.7.

Similar to Algorithm 4.6, the region growing algorithm takes as input an ordered set

of points, i.e. u, v ∈ V and f(u) < f(v). Range queries for finding the nearest neighbors

of each point at a given radius are done with a kd-tree. For all nearest neighbors we

compute the similarity measures based on Equations 4.5 and 4.6. The indices of the

nearest neighbors that satisfy the homogeneity criterion are saved.

Among the indices of similar nearest neighbors we compare the parent function value

of the current nearest neighbor to the nearest neighbor with the minimum function value.

We proceed to find the root of the similar nearest neighbor point if the parent function

value is greater (younger). When a point has not been previously joined to any other

point, we record the radius (death) at which the points are to be connected. In the last

step, we take the union of the pair by setting the parent of the point with the larger

(younger) function value to be a sibling of the point with the smaller function value.
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Algorithm 4.7 Grow Homogeneous Regions

Input: Ordered set of points X

Output: One or more sets of points each representing a homogeneous region

1: kd-tree.buildIndex(cloud.points)

2: while radius ≤ max distance do

3: for i ∈ [1, |cloud.points|] do

4: query ← [cloud.points[i].x, cloud.points[i].y, cloud.points[i].z]

5: nearest neighbors ← radiusSearch(query, radius, kd-tree)

6: min nn ← min(nearest neighbors)

7: for j ∈ [1, |nearest neighbors|] do

8: θ ← computeNormalAngle()

9: ∆E ← computeColorDistance()

10: if θ ∈ (θmin, θmax) and ∆E ∈ (∆Emin,∆Emax) then

11: similar nearest neighbors ← nearest neighbors[j]

12: end if

13: end for

14: min nn ← min(similar nearest neighbors)

15: for j ∈ [1, |similar nearest neighbors|] do

16: similar nn ← similar nearest neighbors[j]

17: if cloud.points[similar nn].parent > cloud.points[min nn].id then

18: root ← find(point(similar nn))

19: if cloud.points[root].id = cloud.points[similar nn].id then

20: cloud.points[similar nn].death ← radius

21: end if

22: union(cloud.points[similar nn], cloud.points[min nn])

23: end if

24: end for

25: end for

26: radius ← radius + step size

27: end while



42

4.2.5 Region Growing Post-processing

At the end of region growing, we may have regions that are smaller than a predefined

region size. To satisfy property (4.1) we post-process the remaining regions as follows.

For each region representative, a nearest neighbors query is run. The point from the

nearest neighboring region that best satisfies the homogeneity criterion is selected. A

union operation is then performed thus joining the two regions. In practice, sufficiently

small regions can be treated as noise and removed resulting in a cleaner segmentation

of the data.

4.2.6 Region Extraction

The outer loop of Algorithm 4.7 is run for each step in the filtration. At each step the

0-dimensional homology group of the complex, which corresponds to the number of dis-

joint regions, is computed. Upon completion of the filtration we extract the segmented

regions based on the sets of points that are joined to 0-dimensional simplices of infinite

persistence, i.e. points with no recorded death time.

4.3 Analysis

Our disjoint-set data structure for computing and storing 0-cycles requires O(n) opera-

tions where n is the number of 0-simplices. However, by making use of weighted merging

for union and path compression for find, the disjoint-set data structure can operate in

nearly constant time. More precisely, the amortized time per operation is O(α−1(n))

where α−1(n) is the extremely slow growing inverse of the Ackermann function. There-

fore, computing 0-dimensional homology can be done in O(n · α−1(n)). In addition, we

can significantly speedup up each filtration step by precomputing the nearest neighbors

and similarity measures for each point in parallel.

4.4 Object Segmentation Experiments

In this section, we perform an evaluation of the object segmentation method outlined in

Section 4.1. The experiments are conducted using the Object Segmentation Database

(OSD) [1]. The OSD provides RGB-D data in several subcategories to enable evaluation
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(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5 (f) Scene 6

Figure 4.2: The RGB images of selected scenes from the Object Segmentation Database

[1] used for the object segmentation experiments.

of object segmentation approaches. The six scenes selected from the database for the

experiments are shown in Figure 4.2. These scenes, labeled 1-6, contain a mixture of

occluded and stacked objects.

4.4.1 Experimental Setup

All experimental runs were done using MATLAB on a 64-bit GNU/Linux machine with

a single CPU core. Before segmentation occurs the data is preprocessed as follows.

First, we remove outlying points (background clutter) that are beyond range of the

objects of interest. Next, we find and remove all points that correspond to a planar

surface upon which the objects are resting. We then downsample the point cloud with

a voxelgrid filter using 1 cm3 voxels. Finally, we construct the VR complex, compute

homology, and extract the connected components.

4.4.2 Experimental Results

The results of segmenting the six scenes can be seen in Figure 4.2. For each scene, we

show the filtered representation of the point cloud prior to segmentation followed by the
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color coded clusters extracted after segmentation. We set a threshold of 32 points as

the minimum number of points to be considered a cluster. The filtration is performed

for 10 steps up to the maximum distance value set for the complex. Note that under the

existence of noise and occlusions in the dataset, the topological filtration process cleanly

segments each object cluster. However, this method fails to segment the individually

stacked objects in scene 6. Therefore, the segmentation procedure may benefit from

the incorporation of additional features such color and surface normals when processing

complex scenes.

To aid our understanding of the results we present the barcode diagrams for each

scene in Figs. 4.3a - 4.3f. In these diagrams, the x-axis represents the filtration values

and the y-axis represents the 0-dimensional generators of homology. The length of the

blue lines corresponds to the lifespan of the generators of homology. Shorter lines are

points that die early in the filtration while longer lines are points that persist for a

greater number of steps. A line with a red triangle equates to a point with infinite

persistence; the corresponding 0-dimensional generating cycle persisted past the end of

the filtration and did not get filled in as a boundary after all simplices of the underlying

complex had been added.

Table 4.1 displays the following information for each scene: the number of points in

the point cloud after filtering, the maximum distance value chosen for the VR complex

construction, the size of the complex in the number of simplices, and the total CPU

execution time.

4.5 Region Segmentation Experiments

In this section, we evaluate the 3D region segmentation algorithm described in Sec-

tion 4.2. The following eight objects were used in the experiments: plant, water heater,

paper roll, robot, box, shoe, shuttle, coffee can. The experimental runs were carried out

using MATLAB on a 64-bit GNU/Linux machine with a single CPU core.

4.5.1 Experimental Setup

Prior to executing region segmentation we preprocess the data using the following steps.

First, background subtraction is done to remove outlying points that are beyond range



45

(a) Scene 1 filtered. (b) Scene 1 segmented.

(c) Scene 2 filtered. (d) Scene 2 segmented.

(e) Scene 3 filtered. (f) Scene 3 segmented.
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(g) Scene 4 filtered. (h) Scene 4 segmented.

(i) Scene 5 filtered. (j) Scene 5 segmented.

(k) Scene 6 filtered. (l) Scene 6 segmented.

Figure 4.2: The results of 3D object segmentation using topological persistence.
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(a) Scene 1 barcode: 2 clusters. (b) Scene 2 barcode: 3 clusters.

(c) Scene 3 barcode: 3 clusters. (d) Scene 4 barcode: 3 clusters.

(e) Scene 5 barcode: 5 clusters. (f) Scene 6 barcode: 4 clusters.

Figure 4.3: The barcode diagrams for the scenes in Figure 4.2. Lines with red triangles

show points of infinite persistence.
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Scene Points Distance Size Time

1 1289 0.025 4,813 2.211

2 1924 0.030 12,264 4.025

3 1410 0.020 3,744 2.344

4 1524 0.025 5,903 2.826

5 1581 0.025 5,994 3.179

6 2444 0.016 5,365 4.866

Table 4.1: The experimental results of object segmentation using topological persistence.

The column categories are as follows: Points - Number of points in the point cloud,

Distance - Maximum value for the complex construction, Size - Number of simplices in

the complex, Time - CPU time in seconds.

of the object to be segmented. Next, the surface is removed upon which the object is

resting. To do this, we find all points that correspond to a planar model and discard

them.

After preprocessing the point cloud, we run a filtration using topological persistence

in combination with the homogeneity criterion to grow regions and then extract the

segmented regions. The results of segmenting the eight objects can be seen in Figure

4.2. For each object, we show the preprocessed representation of the point cloud before

region segmentation proceeded by the randomly colored regions extracted after the

segmentation has finished.

All filtrations are performed for ten steps up to the maximum distance value set

for the complex. The threshold for the minimum number of points to be considered

a region ranges from 8 to 128. For the homogeneity criterion, the color difference ∆E

ranges from 3 to 10, and the angle difference θ between surface normals is set to ±5◦.

4.5.2 Experimental Results

Under the existence of noise and the inherent limitations of the RGB-D sensor resolution,

our region segmentation process is able to extract the major regions of each object. In

the plant point cloud, the regions corresponding to the pot, soil, trunk, and leaves are

captured. Note the existence of noise around each plant leaf in the original point cloud is
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Object Points Distance Features Time

1 12,729 0.03 color+normals 1.508

2 10,395 0.035 color+normals 3.314

3 7,178 0.03 color+normals 1.884

4 25,790 0.02 color+normals 6.620

5 10,511 0.03 color 5.432

6 9,268 0.03 color 3.594

7 12,524 0.02 color 1.404

8 8,376 0.028 color 1.541

Table 4.2: The results of region segmentation using topological persistence. The column

categories are as follows: Points - Number of points in the point cloud, Distance -

Maximum value for the complex construction, Features - Type of local features used,

Time - CPU time in seconds to compute topological persistence.

removed in the segmented version resulting in a clean delineation of the leaves. Regions

of uniform color distribution and/or surface normals such as the water heater, paper roll,

and shoe are easily segmented. The robot, box, shuttle, and coffee can render much

more challenging scenarios. These objects have regions that are very small, contain

subtle color changes, and are disjoint when in fact they should not be. For example,

in the segmented coffee can 112 regions are found. Some of these regions make up the

product label, many are noise. Therefore, a trade-off in region segmentation must be

made between granularity and noise.

Similar to the object segmentation experiments in Section 4.4, we present the bar-

code diagrams for each point cloud in Figures 4.3a - 4.2h. In these diagrams the filtration

values are represented on the x-axis, and the y-axis shows the 0-dimensional generators

of homology. Lines with blue triangles indicate points with infinite persistence and

correspond to the set representatives of the segmented regions. Table 4.2 displays the

following information for each object (plant, water heater, paper roll, robot, box, shoe,

shuttle, coffee can): the number of points in the point cloud after filtering, the maxi-

mum distance value chosen for the VR complex construction, the type of local features

used, and the execution time for computing topological persistence.
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(a) Plant filtered. (b) Plant region segmented.

(c) Water heater filtered. (d) Water heater region segmented.

(e) Paper roll filtered. (f) Paper roll region segmented.
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(g) Robot filtered. (h) Robot region segmented.

(i) Box filtered. (j) Box region segmented.

(k) Shoe filtered. (l) Shoe region segmented.
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(m) Shuttle filtered. (n) Shuttle region segmented.

(o) Coffee can filtered. (p) Coffee can region segmented.

Figure 4.2: The results of 3D region segmentation using topological persistence.



53

(a) Plant barcode: 7 regions. (b) Water heater barcode: 2 regions.

(c) Paper roll barcode: 1 region. (d) Robot barcode: 14 regions.

(e) Box barcode: 4 regions. (f) Shoe barcode: 2 regions.
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(g) Shuttle barcode: 12 regions. (h) Coffee can barcode: 112 regions.

Figure 4.2: The barcode diagrams for the objects in Figure 4.2. Lines with blue triangles

indicate points of infinite persistence.

4.6 Conclusion

The segmentation of noisy point cloud data is problematic due to the occurrence of

sensor artifacts, outliers, and variation in the density of the data. Towards making

progress in addressing these problems, this chapter presented and evaluated algorithms

and data structures for segmenting 3D point clouds by applying topological persistence.

The purpose of this work is to not only establish a new way of performing segmentation,

but also to introduce the notion of persistent homology into the area of 3D point cloud

processing.

Our experimental results show that point cloud object segmentation using topologi-

cal persistence is an effective and robust method for finding and extracting scene objects

in the presence of noise. We’ve seen that regions in point cloud data often match fun-

damental parts of an object or entirely complete objects. Moreover, the extraction of

regions is an imperative action in high-level computer and robotic vision tasks such as

scene understanding. Experimentally, our results show a region growing approach using

persistent homology that combines global and local knowledge is a capable method for

identifying regions in noisy 3D point cloud data.



Chapter 5

Point Cloud Hole Boundary

Detection

The nature of point cloud datasets requires fundamentally different processing paradigms

for extracting information. Compared to mesh-based datasets, the lack of explicit con-

nectivity information simplifies the definition and implementation of many tasks en-

countered in point cloud processing. On the contrary, the detection of holes in the

surface, trivial in the case of meshes, becomes an ill-defined problem, Figure 5.1.

The knowledge of holes in the data is vital for many applications dealing with 3D

point clouds. For example, it can be used to reconstruct surfaces with boundaries or

to direct a further step for the next best view. Furthermore, identification of points on

the boundary of a hole is required before any attempt to algorithmically fill in the hole

is made.

In this chapter, we establish fast algorithms for computing 1-cycles and locating

non-bounding minimal 1-cycles. These non-bounding minimal 1-cycles tell us precisely

the boundary points of the holes in the dataset. The main contributions of our work

are:

• A nearly linear time algorithm for incrementally calculating topologically persis-

tent 1-cycles.

• An algorithm for computing non-bounding minimal 1-cycles based on the output

of the topologically persistent 1-cycles algorithm.

55
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(a) (b)

Figure 5.1: A point cloud (a) and the points on the boundary of a hole highlighted in

red (b). One of challenges in detecting the boundary points of a hole is that the density

of the point cloud can vary. For example, in this point cloud the left side is more sparse

than the right side.

• A topological approach for 3D point cloud hole boundary point detection utilizing

these algorithms.

The content of this chapter is organized as follows. First, we take note of previous

work in the area of computing 1-cycles and the state of the art in 3D point cloud

hole boundary point detection. Next, we provide the algorithmic background for an

incremental way to compute persistent homology. We then present our approach to

quickly compute persistent 1-cycles incrementally. Finally, we devise a new algorithm

for hole boundary point detection based on incrementally computing 1-cycles.

5.1 Related Work

The fast incremental algorithm we develop for computing the topological persistence of

1-cycles is based on the algorithm proposed by Edelsbrunner et al. [53]. In their work,

it was noted that the addition of 1-cycles is the slowest part of the algorithm. They

asked for a different and more efficient algorithm, if one exists. Our work addresses this

problem and provides a comparison with the state of the art [54]. Additionally, we both

compute and store generating 1-cycles which can have useful applications [55].

Within the computer graphics and computer vision communities, there has been a
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substantial amount of research done in the area of hole filling for the purpose of 3D

surface reconstruction [56]. Hole filling methods can be classified into two types: point

cloud-based methods and mesh-based methods. Each hole filling type can be further

divided into volume-based methods and surface-based methods. Popular hole filling

methods utilize moving least squares [57], radial basis functions [58], a spatial Poisson

formulation [59], and template-based data-driven approaches [60].

Detecting holes in a triangle mesh is a straight forward task. A triangle mesh is

composed of a set of vertices, edges, and triangles. Two triangles that share an edge

are called adjacent triangles of that edge. A boundary edge is defined as an edge that

is only adjacent to a single triangle. Correspondingly, a boundary edge loop is the

representation of a closed hole which can be extracted from the input mesh by tracing

its adjacent boundary edges.

The detection of holes in a point cloud is much more difficult due to the absence of

connectivity information. Bendels et al. [61] propose a method to detect the boundary

of missing regions in a point cloud. Their work computes the probability of a given

point being a boundary point of a hole according to three criteria: angle criterion, half-

disc criterion, and shape criterion. These criteria are then combined into a weighted

sum with multiple tuning parameters. This state of the art method is currently used in

recent data-driven deep learning approaches to hole filling [62]. In contrast to the work

of Bendels et al., we propose a hole detection method that does not require heuristics

and can be executed in parallel.

5.2 Preliminaries

In the following subsections we present the background behind computing persistent

homology incrementally, an alternative method to the standard algorithm (Section 2.8)

when simplicial complexes exist in 3-dimensions or less.

5.2.1 Betti Numbers Algorithm

A procedure to compute the Betti numbers of all complexes in a filtration is shown in

Algorithm 5.8. It is based on the ordering of simplices in a filter as follows. Let the

sequence σi be a filter and let the sequence Ki = {σj | 0 ≤ j ≤ i}, 0 ≤ i < m, be the
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corresponding filtration. At each step, the algorithm must decide if a (k + 1)-simplex

σi belongs to a (k + 1)-cycle in Ki. When k + 1 = 0, this is trivial since every vertex

belongs to a 0-cycle. For edges, the algorithm maintains the connected components of

the complex each represented by its vertex set. An edge belongs to a 1-cycle if and only

if its two endpoints belong to the same connected component. Triangles and tetrahedra

are treated similarly by the algorithm using symmetry as outlined by [12].

After establishing the presence of cycles the algorithm labels each simplex. A (k+1)-

simplex σi is positive if it belongs to a (k+ 1)-cycle, otherwise it’s labeled negative. The

correctness of the algorithm implies the following. Let βk = βlk be the kth Betti number

of K l. In addition, let posk = poslk and negk = neglk be the number of positive and

negative k-simplices in K l. Then,

βk = posk − negk+1, (5.1)

for 0 ≤ k ≤ 2. The Betti number, βk, is the number of k-simplices that create k-cycles,

minus the number of (k + 1)-simplices that destroy k-cycles by creating k-boundaries.

Note that Equation (5.1) is just a different way to express Equation (2.2). Furthermore,

Betti numbers are non-negative hence posk ≥ negk+1 for all l.

Algorithm 5.8 Betti Numbers

Input: Filtration K

Output: Betti numbers β0, β1, β2

1: for i ∈ [0,m− 1] do

2: k ← dim σi − 1

3: if σi belongs to a (k + 1)-cycle in Ki then

4: βk+1 ← βk+1 + 1

5: else

6: βk ← βk − 1

7: end if

8: end for

9: return (β0, β1, β2)
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Figure 5.2: An example of a filter consisting of a sequence of simplices that constitute

a subcomplex.
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5.2.2 Pairing Simplices Algorithm

The pairing simplices algorithm matches the creation of a non-bounding cycle with its

conversion to a boundary. It measures the lifetime of non-bounding cycles by determin-

ing when a cycle’s homology class is created and when its class merges with a boundary

group. Positive simplices create classes while negative simplices merge classes with the

boundary groups. These events are detected by maintaining a basis for Hk implicitly

through simplex representatives.

The algorithm starts with an initially empty basis for Hk. For each positive k-

simplex σi, a non-bounding k-cycle ci that contains σi but no other positive k-simplices

is first identified. Upon finding ci, the homology class of ci is added as a new element

to the basis of Hk. In this way, the class ci + Bk is represented by ci. Likewise, ci

is represented by σi. For each negative (k + 1)-simplex σj , its corresponding positive

k-simplex σi is found. Next, the homology class of σi is removed from the basis. A

general homology class of Ki can be expressed as a sum of basis classes,

d+Bk =
∑

(cg +Bk)

= Bk +
∑

cg.

The chains d and
∑
cg are homologous, i.e. they belong to the same homology class.

For each cg, there is a positive k-simplex σg, g < j, not yet paired by the algorithm. The

collection of positive k-simplices, Γ = Γ(d), is determined uniquely by d. The youngest

simplex in Γ is the simplex with the largest index and is denoted as y(d).

As seen in Algorithm 5.9, the procedure determines if σj turns the k-cycle created

by σi into a k-boundary. If so, (σi, σj) are appended to the list Lk. The difference

between the indices minus one (j − i− 1) is the persistence of that k-cycle.

5.2.3 Computing Persistent Homology Incrementally

The persistence of a k-cycle created by σi and destroyed by σj is one short of the

difference between the indices, j − i− 1. We now explain how to determine the index i

of the youngest positive k-simplex in Γ(d), where d = ∂k+1(σ
j) (line 6, Algorithm 5.9).

First, we describe the data structure and cycle search procedure for finding σj . Then,

we show a comprehensive algorithm that combines the elements of preceding algorithms
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Algorithm 5.9 Pair Simplices

Input: Filtration K

Output: Simplicial pair lists L0, L1, L2

1: L0 ← L1 ← L2 ← ∅
2: for j ∈ [0,m− 1] do

3: k ← dim σj − 1

4: if σj is negative then

5: d← ∂k+1(σ
j)

6: i← y(d)

7: Lk ← Lk ∪ {(σi, σj)}
8: end if

9: end for

10: return (L0, L1, L2)

for calculating both Betti numbers and persistence along with an example of computing

the persistence of a 1-cycle.

Data Structure

The data structure consists of a hash table, T [0, . . . ,m− 1], which is initially empty. A

slot T [i] stores set of positive simplices Λi defining a cycle created by σi and terminated

by σj . This cycle contains the youngest simplex, σi, in Γ(d). The simplices in the set

Λi are not necessarily the same as the ones in Γ(d). However, it’s guaranteed that d is

homologous to the sum of cycles represented by the simplices in the set and that the

set contains the youngest simplex σi [53].

An illustration of the data structure can be seen in Figure 5.3. Each simplex in the

filter has a slot in the hash table, but data is only stored in the slots of the positive

simplices. This information consists of the index j of the matching negative simplex

and a set of positive simplices defining a cycle. Cycles that exist beyond the end of the

filter are indicated by ∞.
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Figure 5.3: The state of the hash table after running Algorithm 5.9 on the filter in

Figure 5.2.

Cycle Search

Let σj be a negative k-simplex and suppose that the algorithm arrives at index j in the

hash table T . Recall that the homology class of d = ∂σj in Hj−1
k is represented by Γ(d),

the set of positive k-simplices. The goal is to find the correct slot in T that corresponds

to the youngest k-simplex in Γ(d).

To begin, the set Λ is created to contain the positive k-simplices in d and i = max(Λ)

is initialized to be the index of the youngest member of Λ. If T [i] is unoccupied, then

i = y(d) and the search concludes. The set Λ and index j are stored in T [i].

On the contrary, if T [i] is occupied then it contains a set Λi that represents a

permanently stored k-cycle. This k-cycle is already a k-boundary. Therefore, Λ and Λi

are added to produce a new Λ that represents a k-cycle homologous to the old one (and

also homologous to d). The cycle search procedure for σj shows how to implement lines

5 and 6 of Algorithm 5.9 and is shown in Algorithm 5.10.

Example

We combine Algorithms 5.8 - 5.10 into an all-inclusive method for computing both

Betti numbers and persistence incrementally as shown in Algorithm 5.11. In the event

of a collision in the hash table, the sets Λ and Λi are added by taking the symmetric

difference between the two (Equation (2.1)). Consider the first negative triangle bce in

the filter of Figure 5.2. We have Λ = {bc, ce, be}, i = 12, and j = 13. The 12th slot of T

is unoccupied, therefore we store Λ and j in T [12]. Processing the proceeding negative

triangle, ace, we get Λ = {ce, ac}, i = 11, and j = 14. Since T [11] is unoccupied, Λ and
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Algorithm 5.10 Youngest

Input: Chain d← ∂k+1(σ
j)

Output: Index i

1: Λ← {σ ∈ ∂k+1(σ
j) | σ positive}

2: while 1 do

3: i← max(Λ)

4: if T [i] is unoccupied then

5: T [i]← Λ and j

6: break

7: end if

8: Λ← Λ + Λi

9: end while

10: return (i)

j are stored in the 11th slot of T .

The next negative triangle, abc, creates a collision. Initially, we have Λ = {bc, ac},
Λi = {bc, ce, be}, i = 12, and j = 15. The sum of the two 1-cycles is Λ+Λi = {ce, ac, be},
which is the new set Λ and i = 11. We have another collision at T [11], thus we again take

the sum of the two 1-cycles: Λ + Λi = {be}. This time we find that T [i] is unoccupied

for i = 7, therefore T [7] stores Λ = {be} and j = 15. The remaining two triangles are

handled as follows. For triangle acd we store Λ = {ac} and j = 16 in T [10]. Triangle

abe gives Λ + Λi = {∅}. Finally, the number of positive edges minus the number of

negative triangles yields the Betti number: β1 = 4− 4 = 0.

5.3 Fast Incremental Persistence for 1-Cycles

The running time of cycle search can be improved to almost constant time for k =

0 and k = 2 using a disjoint-set data structure and its supporting operations [39].

However, searching for 1-cycles has required the slower algorithm described above as

there can be multiple unpaired edges at any time [53]. In this section, we introduce

a fast algorithm for incrementally computing the persistence of 1-cycles based on the

pairing of simplices. We first explain the data structure followed by the cycle storage
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Algorithm 5.11 Incremental Persistence

Input: Chain d← ∂k+1(σ
j)

Output: Hash table T

1: for all σj do

2: Λ← {σ ∈ ∂k+1(σ
j) | σ positive}

3: i← max(Λ)

4: if T [i] is unoccupied then

5: T [i].cycle← Λ

6: T [i].death← j

7: σj ← negative

8: else

9: while 1 do

10: Λ← Λ + T [i].cycle

11: if Λ is empty then break end if

12: i← max(Λ)

13: if T [i] is unoccupied then

14: T [i].cycle← Λ

15: T [i].death← j

16: σj ← negative

17: break

18: end if

19: end while

20: end if

21: end for
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and cycle update procedures. Then, we provide an example of the algorithm in action,

show its correctness, and analyze its running time.

Algorithm 5.12 Fast Incremental Persistence

Input: Chain d← ∂k+1(σ
j)

Output: Hash table T

1: for all σj do

2: Λ← {σ ∈ ∂k+1(σ
j) | σ positive}

3: storeCycles(Λ)

4: end for

5.3.1 Data Structure

The data structure we use is made up of a hash table T , initially empty, where a slot T [i]

stores set of positive k-simplices Λi defining a cycle created by σi and annihilated by σj .

The youngest simplex, σi in Γ(d), is contained in this cycle. Although the simplices in

Λi are not necessarily the same as the ones in Γ(d), d is homologous to the sum of cycles

represented by the simplices in the set and the set contains σi, the youngest simplex.

Each k-simplex in the filter has a slot in the hash table with data stored only for

positive simplices. This information consists of the index j of the matching negative

(k+1)-simplex and a balanced binary search tree (BST) of positive k-simplices defining

a cycle. Additionally, we keep a list of positive k-simplices to be updated after a cycle

is stored as described in the next subsection.

5.3.2 Cycle Storage Algorithm

Suppose that the algorithm reaches index j in the hash table T and let σj be a negative

k + 1-simplex. Recall that Γ(d), the set of positive k-simplices, is represented by the

homology class d = ∂σj in Hj−1
k . Our aim is to find the proper slot in T that corresponds

to the youngest k-simplex in Γ(d). We start with a set Λ that contains the positive k-

simplices in d, and set i = max(Λ) to be the index of the youngest member of Λ. There

are two cases to consider.
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Algorithm 5.13 Store Cycles

1: Λ← sort(Λ), i← max(Λ), Λc ← {∅}
2: if T [i] is unoccupied then

3: for n ∈ [0, |Λ| − 2] do

4: if T [Λ(n)] is unoccupied then

5: Λc ← Λc + Λ(n)

6: else if T [Λ(n)].cycle is nonempty then

7: Λc ← Λc + T [Λ(n)].cycle

8: else

9: continue

10: end if

11: T [Λ(n)].update← i

12: end for

13: T [i].cycle← Λc

14: T [i].death← j

15: σj ← negative

16: updateCycles(i, 0, T [i].update)

17: else

18: for n ∈ [0, |Λ| − 2] do

19: if T [Λ(n)] is unoccupied then

20: Λc ← Λc + Λ(n)

21: else if T [Λ(n)].cycle is nonempty then

22: Λc ← Λc + T [Λ(n)].cycle

23: end if

24: end for

25: Λ← Λc + T [i].cycle

26: if Λ is nonempty then

27: i← max(Λ)

28: if T [i] is unoccupied then

29: for n ∈ [0, |Λ| − 2] do

30: T [Λ(n)].update← i

31: end for

32: T [i].cycle← Λ− i
33: T [i].death← j

34: σj ← negative

35: updateCycles(i, 0, T [i].update)

36: end if

37: end if

38: end if
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Case 1

In the first case, the slot T [i] in the hash table is unoccupied and we proceed to form

a new cycle set Λc by the following procedure. For each element in Λ, excluding the

youngest, we replace it with its cycle if it has one. To do this, we add Λc with the

cycle stored at that element by taking the symmetric difference of the two sets. After

constructing Λc we store it in the ith position of T .

Case 2

In the second case, the slot T [i] in the hash table is already occupied. We need to

find the correct slot to store the cycle. Since T [i] is nonempty it contains a set Λi

representing a stored k-cycle which is also a k-boundary. Similar to the previous case,

we create a new cycle set Λc by replacing each element in Λ, exclusive of the youngest,

with its cycle if it has one. Then we add Λc and Λi to get a new set Λ. This Λ is

either empty or it represents a k-cycle homologous to the old one and therefore also

homologous to d.

Algorithm 5.14 Update Cycles

1: if update is nonempty then

2: for n ∈ [0, |update− 1] do

3: updateCycles(i,update(n), T [update(n)].update)

4: end for

5: end if

6: T [update(n)].cycle← T [update(n)].cycle + T [i].cycle + i

5.3.3 Cycle Update Algorithm

For each entry in the hash table T that belongs to a cycle, a list of positive k-simplices

to be updated is maintained. When storing a cycle at T [i] we check if the list of elements

to be updated is empty or not. If the list is nonempty, then for each simplex we remove

the ith element from its cycle and add the cycle elements stored in T [i]. The cycle

update procedure is recursively performed for each simplex in the list.
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Figure 5.4: The hash table states (left to right, top to bottom) while processing 1-cycles

for the filter shown in Figure 5.2.
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5.3.4 Example

In this subsection we show how to compute the 1-cycles for the filter in Figure 5.2 using

the fast incremental persistence method, Algorithm 5.12. The hash table states are

depicted in Figure 5.4. The details of the cycle storage and update procedures are given

in Algorithms 5.13 and 5.14.

For the first negative triangle, bce, we have Λ = {be, ce, bc}, i = 12, and j = 13.

Since T [12] is empty we create and store Λc = {be, ce} along with j in the slot. In

addition, for edges be and ce we add i to the list of simplices to be updated. Proceeding

with the next negative triangle, ace, we have Λ = {ac, ce}, i = 11, and j = 14. Slot

T [11] is empty, therefore Λc = {ac} and j are stored in the 11th position of T . We also

notice that T [11] has a nonempty update list indicating that a cycle update needs to

be performed. To perform the update, we remove the simplex corresponding to i = 11

(ce) in T [12] and replace it with the cycle stored at T [11] (ac).

The remaining two negative triangles are processed as follows. Triangle abc brings

about a collision with Λ = {ac, bc}, Λi = {be, ac}, i = 12, and j = 15. We construct

Λc = {ac} and sum the two 1-cycles, Λc + Λi = {be}, which is the new set Λ with i = 7.

We store j = 15 in slot 7 and execute a cycle update. The cycle update mechanism

removes the 7th element (be) from T [12]. The last negative triangle, acd, gives Λ = {ac},
i = 10, and j = 16 with T [10] available. The cycle update process for slot 10 recursively

traverses slots 11 and 12. Upon finding the simplex list in slot 12 empty, element 10

(ac) is removed from the stored cycle. Backtracking to slot 11, element 10 is removed

thus completing the cycle update procedure.

There are two key observations this example. First, when processing triangle abc

only one sum is needed versus two sums in the original algorithm. Second, cycle updates

for single element 1-cycles reduce the size of the stored cycles.

5.3.5 Correctness

Consider the case were T [i] is occupied. The construction of the set Λc replaces each

element in Λ, excluding the youngest, with its stored cycle if it has one. Thus, Λc

consists of positive k-simplices all older than σi. Furthermore, the cycle set Λi stored

at T [i] also contains other positive k-simplices all older than σi. Adding Λc and Λi
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produces a new set Λ where all of the simplices in Λ are older than σi. Therefore, the

new index i is less than the previous one which implies that the search for an open

slot in T moves strictly from right to left. The search halts at the unoccupied slot T [g]

of the hash table where g = y(d) and d = ∂k+1(σ
j) is the boundary of the negative

(k + 1)-simplex that initiated the search, all other possibilities lead to contradictions.

To show that T [g] is the correct slot consider the following. Let e be the cycle cre-

ated by Λg. We know that e and d are homologous in Kj−1 because e is obtained from d

by adding bounding cycles. When the youngest positive simplex corresponds to an un-

occupied slot in T we have a collision-free cycle. Cycle storage computes a collision-free

cycle, e.g. e is collision-free since its youngest positive simplex is σg and T [g] is unoccu-

pied before e arrives. After a cycle is placed in slot T [g], existing cycles that store g are

updated. The simplices that store a cycle containing g are younger than g, therefore the

update procedure moves strictly from left to right in T . Each update replaces g with the

cycle e modulo g. The update ends at the youngest simplex with a cycle that includes g.

Cycle Storage-Update Lemma. Let Λ = Λc+Λi where Λ is nonempty, i = max(Λ),

and T [i] is occupied. T [i] represents a single element 1-cycle.

Proof. Suppose that the cycle stored at T [i] consists of more than one element. It

takes at most two additions to compute the new set Λ: one addition to compute Λc

and one addition to sum Λc and Λi. Therefore, it must be the case that either Λc or Λi

contains a cycle that has not been updated thus requiring more than two additions and

contradicting the correctness of the algorithm.

5.3.6 Analysis

In this subsection we analyze the running time of computing 1-cycles. Let Λ = {σo, σm, σy}
where σo, σm, and σy respectively denote the oldest, middle, and youngest elements of

Λ. Furthermore, let to, tm, and ty represent the cycles stored as balanced BSTs in the

hash table slots T [σo], T [σm], and T [σy] respectively. We consider each case of cycle

storage separately.

In the first case of cycle storage the slot T [σy] is unoccupied. Assume that the

cycle trees to and tm stored in T [σo] and T [σm] have i and j elements respectively. We
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construct Λc as follows. Among to and tm we choose the largest tree, say to, and create

a copy called tc. We then perform a tree traversal on tm. For each element in tm we

check to see if it’s in tc. If so, we delete that element in tc, otherwise we insert it.

Therefore, it takes j · log(i) operations to construct tc which represents Λc and is stored

in T [σy]. Since i and j can be at most the number of positive edges minus 1, the worst

case runtime is O
(
(ep − 1) · log(ep − 1)

)
where ep is the number of positive edges.

In the second case of cycle storage the slot T [σy] is occupied. Assume that the

cycle trees to, tm, and ty stored in T [σo], T [σm], and T [σy] have i, j, and k elements

respectively. Λc is constructed by starting with a copy of the largest tree, say to. Next,

tree traversals are done on both tm and ty. If an element from either tm or ty appears

in tc we delete it, if not we insert it into tc. In total we have (j + k) · log(i) operations

to build tc and a worst case runtime of O
(
(2ep − 2) · log(ep − 1)

)
.

Each time an unoccupied slot in T is found we check to see if a cycle update needs to

be performed. The update list for a stored cycle can be no longer than ep− 1 elements.

For each cycle in the list, we need to perform at most 1 delete operation and (ep − 1)

insert operations. Thus, the runtime for cycle update is O
(
(ep− 1) · (log(ep− 1) + (ep−

1) · log(ep − 1))
)
. A parallel implementation of cycle update could reduce the runtime

to O
(

log(ep − 1) + (ep − 1) · log(ep − 1)
)
.

As the slots in T fill up the runtime is dominated by the second case of cycle

storage due to the additional tree traversal. Therefore, the fast incremental persistence

algorithm runs in time at most O
(
c · n

)
where n is the number of triangles and the

constant c = (2ep−2)·log(ep−1) is the amount of work done per triangle. In practice, the

number of elements stored per cycle is far less the number of positive edges. Moreover,

single element 1-cycles that trigger a cycle update reduce the size of stored cycles.

5.4 Minimal 1-Cycles

The fast incremental persistence algorithm marks simplices as either positive or nega-

tive. Specifically, a simplex of dimension k in a filter is positive if it creates a k-cycle

or negative if it destroys a (k − 1)-cycle by turning it into a boundary. In a filter, each

negative edge connects two components and the set of all negative edges forms a span-

ning tree of the subcomplex. We use this spanning tree to find the minimal 1-cycles,
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i.e. the smallest sets of non-bounding edges that envelop the holes in the subcomplex.

5.4.1 Minimal 1-Cycles Algorithm

When Algorithm 5.12 terminates each unpaired positive edge corresponds to a non-

bounding edge of a 1-cycle, its slot in the hash table T is empty otherwise the edge would

bound. If we add this unpaired positive edge to the spanning tree of negative edges a

cycle is created. However, this cycle is not necessarily the smallest cycle bounding the

hole, it’s a homologous cycle among possibly other cycles surrounding the hole.

To find the minimal 1-cycle we check if there are any edges in the set of paired positive

edges that connect to vertices on the cycle. If such connections exist we augment the

cycle with those edges. Then, we compute the shortest path between the endpoints of

the original unpaired positive edge modulo their incident edge.

Concretely, computing minimal 1-cycles begins by constructing a graph, G = (V,E),

where the vertices are the set of 0-simplices and the edges are the set of negative 1-

simplices. The graph G is the spanning tree of the subcomplex. The minimal 1-cycles

can then be found in two steps.

Step 1

For each unpaired positive edge we compute and store the shortest path from one

endpoint of the edge to the other in G. This path can be computed efficiently using

breadth-first search (BFS) [39]. Next, we determine if this is indeed the shortest path

between the endpoints in the subcomplex.

Step 2

Given an initial shortest path computed in the previous step, we proceed to verify

whether the path constitutes a minimal 1-cycle. First, we project the vertices onto a

plane and find those that are contained in the polygon formed by the path. To confirm

if a given vertex lies inside the polygon we use the classic point-in-polygon algorithm

from computational geometry. The algorithm counts the number of times a ray through

each vertex intersects the edges of the polygon. A vertex is inside the polygon if the

number of intersections is odd, otherwise the vertex is outside.
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(a) Initial 1-cycle. (b) Final 1-cycle. (c) 1-cycle cord.

Figure 5.5: The red vertices constitute an initial followed by a final minimal 1-cycle.

Edges inside the graph are akin to a chord from one vertex to another on the final path.

(a) Boundary to boundary. (b) Interior to boundary. (c) Interior to interior.

Figure 5.6: The three corner cases to handle when checking for a paired positive edge

from one vertex to another.

After determining if there are vertices inside the polygon, we then check for the

existence of a paired positive edge from one vertex to another. If such edges exist, we

add them to the set of edges that compose the initial shortest path. This action is

analogous to adding a chord to the cycle created by the unpaired positive edge in G,

Figure 5.5. For non-convex polygons there are three corner cases to evaluate: the edge

between boundary vertices, the edge between interior and boundary vertices, and the

edge between interior vertices must all lie inside the polygon, Figure 5.6. We then run

BFS again on the updated path. The end result is the shortest path between the two

endpoints of the unpaired positive edge in the subcomplex bounding the hole.

5.4.2 Example

A procedure for computing minimal 1-cycles is given in Algorithm 5.15. Consider the

point cloud shown in Figure 5.7a. The connectivity graph and simplicial complex of the

point cloud are shown in Figures 5.7b and 5.7c, respectively. This complex consists of 8
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Algorithm 5.15 Minimal 1-Cycles

Input: Hash table T

Output: Set of minimal 1-cycles

1: σ+ ← {σ ∈ ∂2(σ1...j) | σ positive}
2: σ− ← {σ ∈ ∂2(σ1...j) | σ negative}
3: G← spanning tree of σ−

4: for all σ ∈ σ+ do

5: if T [σ] is empty then

6: T [σ].path← BFS(G, σ.u, σ.v)

7: if T [σ].path has cords then

8: T [σ].path← add cords

9: T [σ].path← BFS(T [σ].path, σ.u, σ.v)

10: end if

11: end if

12: end for

a b c

d e

f g h

(a) Point cloud.

a b c

d e

f g h

(b) Connectivity graph.

a b c

d e

f g h

(c) Simplicial complex.

Figure 5.7: The example dataset for computing minimal 1-cycles in Section 5.4.2.
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Figure 5.8: The hash table state after determining persistent 1-cycles on the dataset

shown in Figure 5.7.
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(c) Final 1-cycle.

Figure 5.9: The process of finding minimal 1-cycles on the dataset shown in Figure 5.7.

points, 12 edges, and 4 triangles with β0 = β1 = 1. We find the minimal 1-cycles using

the output of the fast incremental persistence algorithm (Figure 5.8) as follows.

We begin by initializing a set of positive edges, a set of negative edges, and generate

a spanning tree using the negative edge set. The spanning tree is shown in Figure 5.9a

where σ+ = {bd, ce, gh, dg, fg} and σ− = {ab, ad, bc, be, eh, eg, df}. Next, we iterate

over the elements of the positive edge set. Upon finding the only unpaired positive

edge, dg, we perform the following actions.

First, we compute the shortest path from d to g in the spanning tree which gives

us an initial 1-cycle consisting of the vertex set {d, a, b, e, g}, Figure 5.9b. Next, we

determine if there are any projected vertices inside the polygon formed by the initial

shortest path. In this case there are none. Then, we check if there exists any paired

positive edges that serve as chords in the 1-cycle. In this example, we find that bd can

be added as a chord. Finally, we recompute the shortest path from d to g thus giving

the minimal 1-cycle that consists of the vertex set {d, b, e, g}, Figure 5.9c.
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5.4.3 Correctness

The set of all positive edges form the fundamental cycle basis of the spanning tree G.

Furthermore, the cycle space of G is a collection of Eulerian subgraphs. Recall that a

subgraph of G is said to be Eulerian if each of its vertices has an even number of incident

edges. Eulerian subgraphs form a vector space over Z2. The vector addition operation

is the symmetric difference between subgraphs, the identity operation is multiplication

by the scalar 1, and multiplication by the scalar 0 takes every element to the empty

graph thus forming the additive identity element for the cycle space.

The algorithm reduces the size of the Eulerian subgraphs until a smallest non-

bounding subgraph is found. In the first step, we add an unpaired positive edge to

G hence creating a cycle and the initial Eulerian subgraph. In the second step, we

potentially add paired positive edges if they act as chords in the cycle therefore creating

smaller Eulerian subgraphs. Lastly, we compute the smallest non-bounding Eulerian

subgraph that contains the unpaired positive edge.

Minimal 1-Cycle Lemma. If c is a minimal 1-cycle, then it is a smallest non-

bounding Eulerian subgraph.

Proof. Let c be a minimal 1-cycle and suppose that c is not a smallest non-bounding

Eulerian subgraph. Then there exists a paired positive edge e that can be added as a

chord to c. We can reduce the size c by taking the symmetric difference of c and the

cycle created by adding e thus obtaining a 1-cycle with less edges than c, a contradiction.

5.4.4 Analysis

The running time of the algorithm is dominated by the search for the shortest path

using BFS. BFS runs in time proportional to O(|V | + |E|) where |V | is the number of

0-simplices and |E| is the number of negative 1-simplices. Observe that the problem of

finding a minimal 1-cycle for one hole is independent of finding a minimal 1-cycle for

another hole in the subcomplex. Therefore, the workload for finding minimal 1-cycles

can be distributed and all minimal 1-cycles of a subcomplex can be computed in parallel.
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5.5 1-Cycle Computation Experiments

In this section we compare our Fast Incremental Persistence (FIP) algorithm for com-

puting 1-cycles, explained in Section 5.3, against version 1.5 of the Persistent Homology

Algorithm Toolbox (PHAT) [54]. PHAT is a state of the art software library providing

methods for computing the persistence pairs of a filtered cell complex represented by

an ordered boundary matrix with Z2 coefficients.

5.5.1 Experimental Setup

Our implementation of FIP, written in C++, makes use of a single CPU core. FIP

is compared against several algorithmic variants provided by the PHAT C++ library

interface. These variants include the ‘standard’ [63], ‘twist’ [64], ‘chunk’ [65], and ‘spec-

tral sequence’ [63] algorithms using the bit tree pivot column representation. In PHAT,

all but the standard algorithm exploit the special structure of the boundary matrix to

take shortcuts in the computation.

In addition, we’ve compiled PHAT with OpenMP support to allow the chunk and

the spectral sequence algorithms to make use of multiple CPU cores. The ordered

boundary matrices, used as input by both FIP and PHAT, were generated using our

parallel implementation of constructing the Vietoris-Rips complex (PVR) as explained

in Chapter 3. All experiments were performed using a single node 64-bit GNU/Linux

machine with up to 24 available CPU cores.

5.5.2 Experimental Results

The runtime performance of FIP versus PHAT on a point cloud of size 15k points is

shown in Figure 5.10. Within the plot, the size of the complex (number of simplices) as

a function of the radius and the runtime (seconds) for computing 1-cycles is shown for

all the algorithms. From the results we see that FIP is more than an order of magnitude

faster than PHAT as the simplicial complex grows in size. It is also worth noting that

the speed of FIP at the lower range of the radius value make it ideal for computing

persistent 1-cycles in real-time on 3D point cloud datasets.
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Figure 5.10: The runtime of Fast Incremental Persistence (FIP) and several variants of

the Persistent Homology Algorithm Toolbox (PHAT) along with the size of the complex

for a given radius using a set of non-uniformly sampled points in R3. The results of

each plot are averaged over 10 independent runs per plot point.
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(a) Soup (b) Crackers (c) Cereal

(d) Snack Bars (e) Coffee Creamer (f) Detergent

Figure 5.11: The RGB images of the objects from the BigBIRD dataset [2] used in the

experiments.

5.6 Hole Boundary Detection Experiments

This section provides an experimental evaluation of the minimal 1-cycles algorithm

presented in Section 5.4. The objective of the experiments is to show the applicability

of finding hole boundary points (minimal 1-cycles) for aiding surface reconstruction of

3D point clouds (Algorithm 5.15).

5.6.1 Experimental Setup

The experiments were performed using the BigBIRD dataset [2] on the following six

objects: soup, crackers, cereal, snack bars, coffee creamer, detergent. Figure 5.11 shows

the RGB images of the objects. The algorithms were implemented and tested using

MATLAB on a 64-bit GNU/Linux machine with a single CPU core. The point clouds

were first downsampled using a 2 mm voxel grid. Then, we induced additional noise

by randomly removing 10, 20, and 30 percent of the points. For each point cloud, the

maximum distance value of the Vietoris-Rips (VR) complex was set to 3 mm.
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(a) Minimal 1-cycles. (b) Minimal 1-cycles and centroids.

Figure 5.12: An example of locating hole boundary points and filling the holes with

their centroids.

5.6.2 Experimental Results

Holes on the surface of a 3D point cloud are found and filled in the following way. The

points on the path of a minimal 1-cycle projected onto a plane form a polygon. We

compute the centroid of this polygon and add it to the reconstructed point cloud, Figure

5.12. Minimal 1-cycles composed of a maximum of 8, 16, and 32 points are computed

for point clouds that have been reduced by 10, 20, and 30 percent, respectively. Figure

5.12 shows the reduced point clouds while Figure 5.12 shows the reconstructed point

clouds with the computed centroids. From the results, we can see that the centroid is a

good approximation for reconstructing small holes formed by convex polygons. As the

point clouds are further reduced, the holes become larger and the number of non-convex

polygons increases. Thus, for bigger complicated holes a more sophisticated hole filling

scheme is required.

A comparison of the runtimes between Algorithms 5.11 and 5.12 is shown in Tables

5.1 - 5.4. For each table the column categories are as follows: Points - number of

points processed, 2-simplices - number of 2-simplices processed, Betti 1 - number of

holes detected in the point cloud, Time - CPU time in seconds to compute persistent

1-cycles. In Tables 5.1 - 5.3 we can see that our fast incremental persistence algorithm

outperforms the original incremental persistence algorithm for point clouds of various
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sizes. Runtimes on the raw point clouds (i.e. no downsampling) are reported in Table

5.4. Runs that did not complete were not reported. Table 5.4 highlights the scalability in

the number of 2-simplices of our fast approach for computing persistence incrementally.

5.7 Conclusion

Data produced by depth sensors is corrupted to a varying extent by noise. This noise

can manifest itself as missing points on the surfaces of objects. Preprocessing of noisy

sensor data is an essential step in the pipeline of many computer vision and robotic

applications. In this chapter, we developed algorithms and data structures for incre-

mentally computing topologically persistent 1-cycles with application to hole boundary

point detection. In summary:

• We provided a fast incremental persistence algorithm for calculating 1-cycles.

• We developed an algorithm for computing non-bounding minimal 1-cycles, i.e.

the smallest set of points on the boundary of a hole, based on the spanning tree

output of the fast incremental persistence algorithm.

• We showed experimentally the application these algorithms to 3D point cloud

surface reconstruction.
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(a) 10% point reduction. (b) 20% point reduction. (c) 30% point reduction.

(d) 10% point reduction. (e) 20% point reduction. (f) 30% point reduction.

(g) 10% point reduction. (h) 20% point reduction. (i) 30% point reduction.
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(j) 10% point reduction. (k) 20% point reduction. (l) 30% point reduction.

(m) 10% point reduction. (n) 20% point reduction. (o) 30% point reduction.

(p) 10% point reduction. (q) 20% point reduction. (r) 30% point reduction.

Figure 5.12: The reduced point clouds with 10, 20, and 30 percent of the points randomly

removed.
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(a) 8 point 1-cycles. (b) 16 point 1-cycles. (c) 32 point 1-cycles.

(d) 8 point 1-cycles. (e) 16 point 1-cycles. (f) 32 point 1-cycles.

(g) 8 point 1-cycles. (h) 16 point 1-cycles. (i) 32 point 1-cycles.
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(j) 8 point 1-cycles. (k) 16 point 1-cycles. (l) 32 point 1-cycles.

(m) 8 point 1-cycles. (n) 16 point 1-cycles. (o) 32 point 1-cycles.

(p) 8 point 1-cycles. (q) 16 point 1-cycles. (r) 32 point 1-cycles.

Figure 5.12: The reconstructed point clouds with centroids (red) computed using min-

imal 1-cycles of maximum length of 8, 16, and 32 points.
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Object Points 2-simplices Betti 1 Time (Alg. 5.11) Time (Alg. 5.12)

Soup 1,533 4,451 200 1.744 0.353

Crackers 6,571 19,724 994 5.884 1.614

Cereal 11,279 31,589 2031 8.841 2.533

Snack Bars 4,902 12,513 951 2.862 0.961

Coffee Creamer 2,643 7,669 394 2.744 0.536

Detergent 6,585 18,976 868 5.673 1.340

Table 5.1: The results of computing persistent 1-cycles for the objects in Figure 5.11

with the point clouds reduced by 10%.

Object Points 2-simplices Betti 1 Time (Alg. 5.11) Time (Alg. 5.12)

Soup 1,363 3,079 209 0.922 0.212

Crackers 5,841 13,932 987 3.706 0.954

Cereal 10,026 22,102 2,006 5.442 1.533

Snack Bars 4,357 8,750 935 1.851 0.585

Coffee Creamer 2,349 5,364 394 1.541 0.339

Detergent 5,853 13,383 908 3.551 0.813

Table 5.2: The results of computing persistent 1-cycles for the objects in Figure 5.11

with the point clouds reduced by 20%.

Object Points 2-simplices Betti 1 Time (Alg. 5.11) Time (Alg. 5.12)

Soup 1,193 2,073 195 0.605 0.130

Crackers 5,111 9,220 929 2.049 0.542

Cereal 8,773 14,787 1720 3.020 0.815

Snack Bars 3,813 6,035 733 1.153 0.310

Coffee Creamer 2,056 3,711 310 0.961 0.194

Detergent 5,122 8,995 830 1.961 0.477

Table 5.3: The results of computing persistent 1-cycles for the objects in Figure 5.11

with the point clouds reduced by 30%.
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Object Points 2-simplices Betti 1 Time (Alg. 5.11) Time (Alg. 5.12)

Soup 3,726 92,661 0 869.694 2.018

Crackers 17,586 536,008 0 8592.778 12.067

Cereal 32,148 1,083,191 0 - 24.917

Snack Bars 13,622 456,727 0 7802.860 10.827

Coffee Creamer 6,425 155,849 1 1129.257 3.734

Detergent 15,706 287,429 4 2435.037 6.444

Table 5.4: The results of computing persistent 1-cycles for the objects in Figure 5.11 on

the raw point clouds.



Chapter 6

Point Cloud Signatures

Shape analysis is essential for computer vision applications such as matching, retrieval,

reconstruction, detection, and classification. Automatically recognizing shapes in 3D

datasets continues to attract interest in the research community. In recent times, this

research activity has been driven by the development of economical 3D sensor (RGB-D,

stereo, time-of-flight, etc.) technologies.

Shape recognition is performed by either a local or global approach. Local de-

scriptors rely on keypoints extracted from surfaces. The aim of descriptors using local

methods is to single out points that are distinctive in order to allow for effective de-

scription and matching. Within the local neighborhood of each keypoint, geometric

information is encoded to obtain a compact representation of the input data invariant

up to a predefined transformation (translation, rotation, scaling, point density varia-

tions, etc.). Local descriptors are ideal for performing operations in cluttered scenes

containing occluded objects. Global descriptors encode object geometry and are not

computed for individual points, but for a whole cluster of points that represents an

object. Although global descriptors require a clean segmentation of an object they are

useful for many operations such as shape-based recognition, retrieval, clustering, and

classification.

In this chapter, we introduce a new global shape descriptor STPP (Signature of

Topologically Persistent Points) which is based on computing the persistence of the

zeroth and first homology groups of a 3D point cloud. This signature is used to create

a feature vector where the birth and death of the generators of homology correspond to

88
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the evolution of the number of connected components and the number of holes in the

dataset. The advantages of STPP are the following:

• It can be computed quickly and efficiently on point cloud data.

• No preprocessing (sampling, hole filling, surface normal calculation, etc.) is re-

quired.

• A small number of features are used.

• Only a single tuning parameter is needed.

In addition, STPP can cope with noisy datasets without compromising on performance.

6.1 Related Work

The area of shape analysis has generated a considerable amount of research. Shape

representation and description is a field of shape analysis with many important ap-

plications. In this section, we review relevant global descriptors for describing shapes

composed of 3D point cloud data followed by developments in shape analysis using

topological persistence that has led to this work.

Rusu et al. generalize the fast point feature histograms (FPFH) idea to create a

descriptor that captures the relationship of local geometric parts in whole objects [66].

This descriptor, termed the global fast point feature histogram (GFPFH), is used for

scene interpretation in robotic manipulation scenarios. Their work is followed by a 3D

point cloud descriptor, called the viewpoint feature histogram (VFH) descriptor, which

incorporates both geometry and viewpoint [67].

A multimodal perception system consisting of hierarchical object geometric catego-

rization and appearance classification for personal robots introduces the global radius-

based surface descriptor (GRSD) [68]. This descriptor developed by Marton et al. is

derived from the radius-based surface descriptor [69], and can generalize over objects

with similar geometry thus limiting the possibilities of corresponding an object instance

to its 3D point cloud cluster.

The clustered viewpoint feature histogram (CVFH) descriptor, based on the VFH

descriptor, is described by Aldoma et al. [70]. The main idea behind the semi-global
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CVFH descriptor is to take advantage of object parts obtained by a depth sensor and

use them to build a coordinate system similar to the VFH descriptor. It improves upon

issues that make VFH sensitive to missing point cloud data due to partial occlusions,

segmentation, or sensor artifacts.

A global object recognition pipeline utilizing a 3D semi-global describer called ori-

ented, unique, and repeatable CVFH (OUR-CVFH) [71] is proposed by the creators of

CVFH. OUR-CVFH employs a method to estimate semi-global unique reference frames

(SGURF) computed on the surface of an object as seen from a single viewpoint. By

exploiting the orientation provided by these reference frames, OUR-CVFH efficiently

encodes the geometrical properties of an object surface.

Wohlkinger and Vincze introduce an ensemble of shape functions (ESF) descriptor

[72]. This global shape descriptor is built on three distinct shape functions that describe

distance, angle, and area distributions on the surface of a partial point cloud. ESF allows

for real-time classification of objects sensed with an RGB-D sensor based on learning

from synthetic CAD models.

Kanezaki et al. present the concatenated voxelized shape and color histograms

descriptor, (Con)VOSCH [73]. The descriptor combines the GRSD and the circular

color cubic higher-order local auto correlation descriptors (C3-HLAC). It is designed to

facilitate object classification by considering geometric and visual features in a unified

manner.

Fehr et al. put forward a global covariance-based point cloud descriptor for object

detection and recognition [74]. The descriptor is constructed by forming the covariance

matrix from an RGB-D feature vector. The authors show that covariance descriptors

are computationally fast and provide a compact (low dimensionality) representation of

a 3D point cloud object.

In contrast to the aforementioned global descriptors, STPP encodes the topological

information of a 3D point cloud. Our work is inspired by an early study of shape

description and classification via persistent homology [75]. Additional inspiration comes

from the results of Li et al. [76] where persistence diagrams built from functions defined

on objects serve as compact and informative descriptors for images and shapes.
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Figure 6.1: The evolution of a scale parameter defining the neighborhood radius about

each ordered point and the corresponding barcode diagram. When the neighborhoods of

two points overlap, the younger point dies while the elder point survives. This produces

a topologically persistent signature of the point cloud.

6.2 Problem Formulation

Given a topological space X = {x0, . . . , xm−1} ∈ R3 where x0, . . . , xm−1 are the points in

a point cloud acquired by a 3D sensor, our goal is to compute a topologically persistent

description of the point cloud. We formulate a solution to the problem by creating a

framework that:

• Models the input space as a Vietoris-Rips (VR) complex.

• Uses a fast incremental persistence algorithm to compute the zeroth and first

generators of homology through a filtration, Figure 6.1.

• Forms a feature vector comprised of the birth-death pairing of the homology gen-

erators.

The end result is the capability to distinguish between noisy 3D point cloud datasets

using only topological features.
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Figure 6.2: The birth-death pairings of the homology generators are encoded in a feature

vector where the indices of the vector correspond to the birth of a k-simplex and the

entries of the vector correspond to the index of a destroying (k + 1)-simplex. Unpaired

simplices, denoted by −1 entries, represent k-dimensional holes.

6.3 Topologically Persistent Feature Vector

In this section, we give an overview of barcode/persistence diagrams and the role they

play in comparing datasets. We then describe our approach to computing a topologically

persistent signature of a 3D point cloud. This approach is based on our algorithms for

constructing the VR complex, computing 0-cycles, and computing 1-cycles.

6.3.1 Overview

A barcode or persistence diagram encapsulates a concise description of the topological

changes that occur during a filtration. Intuitively, a k-dimensional hole born at time

b and filled at time d gives rise to a point (b, d) in the kth persistence diagram or an

interval in the kth barcode diagram. Therefore, a persistence diagram is a multiset of

points in R2 while a barcode diagram is an equivalent multiset of intervals in R.

The use of distances between barcode/persistence diagrams has received attention in

applications [77–79] where they serve as topological proxies for the input data. Distances

between the diagrams serve as measures of the similarity between datasets. These

distances can be expressed as a bottleneck or Wasserstein distance between two planar

point sets using the L∞ metric.
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6.3.2 Construction

Although the distance between barcode/persistence diagrams has been shown to mea-

sure the similarity between some datasets, we observe that a single scalar value is not

enough to discriminate between massive 3D point clouds. In contrast to the work

mentioned in the previous subsection we construct a vector of topologically persistent

features as follows.

The output of Algorithm 5.12 is a sorted birth and death pairing between a k-simplex

and (k+ 1)-simplex, respectively. We encode this information in a feature vector where

the indices of the vector correspond to the birth of a k-simplex and the entries of the

vector correspond to the index of a destroying (k+ 1)-simplex, Figure 6.2. This pairing

is unique, e.g. a 0-simplex is terminated by exactly one 1-simplex and a 1-simplex

is terminated by exactly one 2-simplex. An unpaired simplex is a simplex of infinite

persistence and represents a k-dimensional hole.

6.4 Analysis

The VR complex can be computed quickly and efficiently in parallel (Chapter 3). With

a disjoint-set data structure employing weighted merging for union and path compres-

sion for find, the amortized time per operation for computing 0-cycles is O(α−1(n)),

where n is the number of 0-simplices and α−1(n) is the very slowly growing inverse

of the Ackermann function (Chapter 4). For computing 1-cycles our fast incremental

persistence algorithm operates in nearly linear time, O
(
c · n

)
, where n is the number of

2-simplices and the constant c is the amount of work done per 2-simplex thus making

the computation of persistent 1-cycles on large 3D datasets feasible (Chapter 5).

6.5 Experiments

In this section, we set up and evaluate a processing pipeline for computing topological

signatures as described in Section 6.3. The experiments were performed using the

RGB-D Object Dataset [3] where we focus on the task of object category classification.

Construction of the simplicial complexes and computing topological persistence were

done on a multi-core 64-bit GNU/Linux machine.
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Figure 6.3: A subset of objects from the RGB-D Object Dataset [3] used for the exper-

iments.

6.5.1 Experimental Setup

The RGB-D Object Dataset consists of 300 objects divided into 51 categories and pro-

vides roughly 250,000 point clouds. Following the experimental procedure in [3] we

subsample the dataset by taking every fifth point cloud. This gives us approximately

45,000 point clouds upon which we run classification experiments. To perform category

recognition, we randomly leave one object out from each category for testing and train

the classifiers on the point clouds of the remaining objects. Classification is performed

using an SVM classifier and RBF kernel [80]. The accuracies are averaged over 10 trials.

6.5.2 Experiment Results

Experiment 1

In this experiment, we compare STPP against five different global 3D point cloud de-

scriptors: VFH, GRSD, CVFH, OUR-CVFH, and ESF. Implementations of each of

these descriptors are publicly available in the Point Cloud Library (PCL).1 We com-

pute STPP features using a single step filtration as follows.

The VR complex representation of the data is computed by first sorting the points

by their Cartesian coordinates. A nearest neighbors search about each point is then

1 http://www.pointclouds.org
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Descriptor Category Accuracy Number of Features

GRSD 8.89 ±0.55 4

STPP 23.32 ±1.58 2

VFH 23.61 ±1.92 4

OUR-CVFH 26.91 ±1.64 6

CVFH 29.39 ±1.35 5

ESF 39.60 ±1.01 6

Table 6.1: The accuracy results of object category classification.

carried out up to a radius of 3.5 mm using a kd-tree. Next, we create an edge list where

an edge exists between two neighboring points. We then proceed to create a triangle

list by finding all three cliques in the edge graph. Once we have the edge and triangle

lists we can compute the signature of the point cloud using Algorithm 5.12.

The last stage of the pipeline uses the output of the incremental persistence computa-

tion to form a feature vector. The indices of the vector range over the sorted 0-simplices

and 1-simplices while the entries consist of the indices of the destroying 1-simplices and

2-simplices. We also construct feature vectors for each of the five global descriptors on

the subsampled data. These feature vectors are then used to train separate classifiers

for comparison as shown in Table 6.1.

Experiment 2

To gain an insight into the effectiveness of the STPP features for performing category

classification, we create separate feature vectors for the generators of homology: 0-cycles

(Betti 0), 1-cycles (Betti 1), and the combination of 0-cycles and 1-cycles (Betti 0+1).

We then use these feature vectors to compute the classification accuracy on category

subsamples. The results of this experiment are presented in Figure 6.4.

Experiment 3

This experiment considers the affect of exposing the STPP descriptor to different noise

levels. To compare the effect of noise on the descriptor we randomly perturb all the

points by δ ∈ [−0.0005, 0.0005], δ ∈ [−0.001, 0.001], and δ ∈ [−0.003, 0.003]. This
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perturbation essentially deforms the surface of the point cloud. We then recompute the

signatures and rerun the category classification experiments as previously described.

The average accuracy of STPP was found to be 23.38% ±1.72 for δ ∈ [−0.0005, 0.0005],

22.35% ±2.63 for δ ∈ [−0.001, 0.001], and 16.10% ±1.04 for δ ∈ [−0.003, 0.003].

Experiment 4

In this experiment, we explore the use of STPP as a feature in a covariance descriptor. A

covariance descriptor condenses features (position, color, normals, etc.) over the entire

point cloud of an object. Concretely, let fi ∈ Rp, for i = 1, 2, . . . , n, be a feature vector

consisting of the n points of an object. The covariance descriptor of the object is then

defined as

C =
1

n− 1

n∑
i=1

(fi − µf )(fi − µf )T ,

where µf is the mean feature vector and C ∈ Sp++ is the space of p×p Symmetric Positive

Definite (SPD) matrices. Distances between covariance descriptors are approximated

using the log-Euclidean metric. We use the Betti 0 information, defined for every point,

and a three step filtration with maximum scale values of 3, 4, and 5 mm. First, we

obtain a baseline accuracy of 67.20% ±3.00 using the Cartesian coordinate, color, and

surface normal coordinate of each point as features. Then, we add in the Betti 0 values

for each filtration step as features. This improves the overall accuracy to 68.29% ±3.01.

Discussion

In these experiments we compare the performance of several state of the art global

geometric descriptors with a STPP, global topological descriptor. The classification

accuracy of STPP on the RGB-D Object Dataset is competitive with other global de-

scriptors. Furthermore, we see that combining the birth-death pairing of the homology

generators (Betti 0+1) increases the overall classification accuracy of the descriptor.

STPP shows robustness to noisy datasets with a moderate degradation in accuracy.

We also see that encoding both geometrical (surface normal) and topological (Betti 0)

features in a covariance descriptor helps improve the classification accuracy.

In terms of storage and computational performance, STPP is compact and fast to
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Figure 6.4: The classification accuracy results on the subsampled categories (1-51) using

Betti 0 (0-cycles), Betti 1 (1-cycles), and Betti 0+1 (0-cycles and 1-cycles) as features.
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compute when compared to other 3D point cloud descriptors. Moreover, no preprocess-

ing of the point cloud is required to support the descriptor. Using only two features,

the STPP feature vector stores a double precision value for each vertex (0-simplex) and

edge (1-simplex) in a point cloud. For example, given a point cloud consisting of 10k

points and 70k edges, STPP stores 10, 000 · 8 + 70, 000 · 8 = 640, 000 bytes. Computing

STPP on the same point cloud takes 0.040 seconds for 0-cycles and 0.200 seconds for

1-cycles giving a total of 0.240 seconds.

6.6 Conclusion

In this chapter we presented STPP, a novel 3D point cloud descriptor that uses persistent

homology to compute a topological signature based on the birth and death of 0-cycles

and 1-cycles. Persistent homology allows us to track topological features, such as the

number of connected components and holes in a dataset, at varying spatial scales. 3D

point cloud description is a necessary prerequisite for high-level computer vision tasks

including object detection and classification.

STPP encodes the basic topological structure of 3D point cloud data. To show

the feasibility of STPP, we implemented a pipeline that computes and compares the

topological signature of 3D point cloud objects against geometrical-based descriptors.

We showed that the classification performance of STPP is competitive, it inherently

deals with noisy datasets, and is theoretically well-founded. We also demonstrated

that for certain combinations, topological features provide complementary information,

which in turn improves the performance of covariance-based descriptors.
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Conclusion and Discussion

In this thesis, we studied how topological features can aid us in the processing of 3D

point cloud datasets. We did this using the primary tool of TDA, persistent homology,

which allows us to compute homology groups (e.g. connected components, holes, voids,

and higher dimensional analogs), at multiple resolutions. Not only did we develop

efficient algorithms for computing persistent homology in low dimensions, but we also

showed novel applications of these algorithms to relevant problems in computer and

robotic vision systems. In the following we summarize our contributions, discuss open

problems, and point out future research directions. We then conclude with a broader

discussion on the future of 3D point cloud processing.

7.1 Contributions and Open Problems

To be a useful for TDA, a simplicial complex must satisfy certain theoretical properties.

Specifically, if we build a simplicial complex on a set of points sampled from a space

then the homology of the complex has to approximate the homology of the space. In

Chapter 3, we studied the problem of building a Vietoris-Rips (VR) complex over a

filtration of various sized point clouds. We showed how the VR complex can be quickly

computed in R3 and that its construction is suitable for parallelization. As a result, our

construction of the VR complex is ideal for real-time applications on 3D point cloud

datasets. The development of new simplicial complexes is an active area of research.

An immediate research question is whether we can obtain a better simplicial complex

99



100

representation in terms of computational performance and memory efficiency.

Data segmentation is a necessary preprocessing step in computer and robotic vision

systems when handling 3D point clouds. The stability of higher level tasks is contingent

upon the condition of the segmented data. In Chapter 4, we explored methods for

object and region segmentation using topological persistence. By combining both local

and global properties of the data we showed how homogeneous areas can be identified

and extracted under the presence of noise. From this work the following question arises:

can we utilize topological persistence to find regions that conform to object boundaries

better than existing methods.

The knowledge of the existence and location of holes in a dataset is essential in

3D point cloud processing. This information can be applied towards the preprocessing

of noisy sensor data. In Chapter 5, we presented algorithms and data structures for

determining both the number of holes (1-cycles) and the boundary points that comprise

the holes. The challenges that lie ahead involve the optimization and parallelization of

these methods for real-time 3D point cloud processing applications.

The analyses of shapes in point cloud data is an important component of many 3D

computer vision systems. With the availability of low-cost 3D sensors, detection and

classification is a major application in this field of research. In Chapter 6, we introduced

a global point cloud descriptor (STPP) that uses a feature vector based on the birth-

death pairing of the homology generators. From this work, we seek to determine if the

combination of both geometrical and topological features can provide additional insight

for describing 3D point cloud datasets.

7.2 Future Research Directions

These are remarkable times for the intersection of data science and applications in com-

puter and robotic vision. Technology has matured to the point where it is economically

viable to equip smartphones, robots, autonomous/connected vehicles, and other mobile

devices and machines with an array of sensors. The rich datasets produced by these

sensors are allowing devices and machines to perform a variety of impressive and chal-

lenging tasks, especially in the field of robotics. This trend will continue as interest in

industry and government for this technology grows stronger. In the following, we list
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possible directions to pursue future research with the goal of developing practical and

effective 3D point cloud processing methods.

7.2.1 Simplicial Complex Construction

Many of the recent simplicial complexes proposed for TDA are based on variations

of the Delaunay complex. The Delaunay complex and its dual, the Voronoi diagram,

have many useful properties in computational geometry. The complexity of Delaunay

complex is O(N logN) for dimension d = 2 and O(N dd/2e) for d ≥ 3 where N is the

number of simplices. Therefore, the construction of the Delaunay complex is prohibitive

in high dimensions. In low dimensions, developing capable algorithms for computing

the complex for large numbers of simplices is a potential subject of our research.

Another avenue of research in simplicial complex construction is the use of reduction

techniques. In this approach, heuristics are used to reduce the size of filtered complex

while leaving the homology unchanged. One way of performing this reduction to fil-

trations of simplicial complexes is based on discrete Morse theory [81]. The algorithm

developed in [82] makes use of this idea by computing a partial matching of simplices

in a filtered simplicial complex such that (i) only simplices that enter the filtration at

the same time are paired, (ii) the homology is determined by unpaired simplices, and

(iii) paired simplices can be removed from the filtered complex without affecting the

overall persistent homology. Unfortunately, heuristics must be relied upon to find par-

tial matchings that reduce the complex size since finding optimal partial matchings was

shown to be NP-hard [83].

Another heuristic, the tidy-set method, reduces the size of clique complexes (e.g. the

VR complex) [84]. The tidy-set method skips the construction of the clique complex by

extracting a minimal representation of the graph using maximal cliques thus requiring

less memory. The method cannot be extended to filtered complexes, however it can be

used for computing zigzag persistent homology.

7.2.2 Supervoxel Segmentation

Supervoxel segmentation is the unsupervised over-segmentation of a point cloud into

regions of perceptually similar voxels. Its counterpart, superpixel segmentation, is a
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widely used preprocessing step in 2D image segmentation algorithms. Supervoxels can

reduce the number of regions that must be considered later by more computationally

expensive algorithms with a minimal loss of information. We are working on extending

our topologically persistent region segmentation method to this more restricted form of

segmentation.

7.2.3 Morphological Operations

Having established a method for hole boundary point detection, we can now begin to

expand into the area of 3D morphological operations. Mathematical morphology is a

theory and technique used for describing and manipulating shapes using set theory.

The basic morphological operations include dilation, erosion, opening, closing, thin-

ning, thickening, and more. In 2D image processing, morphological operations are used

for filtering and noise removal. In this area, we are working on the creation of 3D

morphological operations that incorporate a multiresolution approach using persistent

homology.

7.2.4 Topological Descriptors

We’ve seen how topological features can provide additional information over geometrical-

based descriptors. Going forward, our goal is to combine the differentiating power of

geometry with the classifying power of topology. We are exploring the combination of

geometrical and topological features at the local level for improved predicative perfor-

mance on classification tasks.

7.3 Concluding Remarks

We started this thesis by noting the rapid increase in 3D sensor datasets brought about

by new technologies. We end with the optimism that this new data modality will

enable these technologies to make greater progress in solving real-world problems. In

this dissertation, we explored the potential of algebraic topological methods for 3D

point cloud processing. It is our hope that engineers and researchers will continue this

exploration in developing and applying topological data analysis to extract meaningful

information from point cloud data.
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Kragic. Attention-based active 3D point cloud segmentation. In IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems (IROS), pages 1165–1170,

2010.



106

[33] Bertrand Douillard, James Underwood, Noah Kuntz, Vsevolod Vlaskine, Alastair

Quadros, Peter Morton, and Alon Frenkel. On the segmentation of 3D lidar point

clouds. In IEEE International Conference on Robotics and Automation (ICRA),

pages 2798–2805, 2011.

[34] Andreas Richtsfeld, Thomas Mörwald, Johann Prankl, Michael Zillich, and Markus

Vincze. Segmentation of unknown objects in indoor environments. In IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 4791–

4796, 2012.

[35] Ajay K Mishra, Ashish Shrivastava, and Yiannis Aloimonos. Segmenting “sim-

ple” objects using RGB-D. In IEEE International Conference on Robotics and

Automation (ICRA), pages 4406–4413, 2012.

[36] Alexander JB Trevor, Suat Gedikli, Radu B Rusu, and Henrik I Christensen. Ef-

ficient organized point cloud segmentation with connected components. Semantic

Perception Mapping and Exploration (SPME), 2013.
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