Problem 1. Given a continuous function \(f(x) \) on \([0, \pi]\), solve the temperature problem:
\[
\begin{align*}
 u_t &= ku_{xx}, \\
 u_x(0, t) &= u(0, t), \\
 u_x(\pi, t) &= u(\pi, t), \\
 u(x, 0) &= f(x).
\end{align*}
\]

Write your answer in the form of an infinite functional series
\[
 u(x, t) = \sum_{n=0}^{\infty} c_n y_n(x) T_n(t).
\]

Describe the functions \(y_n(x) \) and \(T_n(t) \) that are involved and indicate how to compute the coefficients \(c_n \) in terms of \(f \).

Note. You will need to consider an associated Sturm-Liouville problem which is exactly the same as the one in Problem 4 from HW3 with parameters \(\beta = 1 \) and \(c = \pi \).

Problem 2. Given parameters \(A, B, C \) (real), consider the temperature problem with non-homogeneous boundary conditions:
\[
\begin{align*}
 u_t &= ku_{xx}, \\
 u_x(0, t) &= u(0, t) + A, \\
 u_x(\pi, t) &= u(\pi, t) + B, \\
 u(x, 0) &= Cx.
\end{align*}
\]

Reduce it to Problem 1 by virtue of a suitable substitution \(u(x, t) = U(x, t) + \Phi(x) \). Indicate new initial temperatures \(F(x) \) in the homogeneous problem about \(U(x, t) \).

Problem 3. Use the Fourier transform to solve the temperature problem in the upper half-plane
\[
\begin{align*}
 u_t &= ku_{xx}, \\
 u(x, 0) &= e^{-2x^2}.
\end{align*}
\]

Hint. First formulate a general theorem about the boundary value problems
\[
\begin{align*}
 u_t &= ku_{xx}, \\
 u(x, 0) &= f(x).
\end{align*}
\]

Problem 4. Use the Fourier transform to solve the boundary value problem, involving the Laplace equation:
\[
\begin{align*}
 \Delta u &= 0, \\
 u_x(0, y) &= 0, \\
 u(x, 0) &= \frac{1}{1+x^2}.
\end{align*}
\]
Hint. First formulate a general theorem about boundary value problems of the form

\[\Delta u = 0, \quad u = u(x, y), \quad x, y \geq 0, \quad u \text{ is bounded}, \]
\[u_x(0, y) = 0, \]
\[u(x, 0) = f(x). \]

Note that the Fourier transforms for the functions

\[f(x) = e^{-x^2/(2\sigma^2)} \quad \text{and} \quad f(x) = \frac{1}{1 + x^2} \]

(needed in Problems 3 and 4) are known and have been evaluated in class.