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VARTATIONS OF RANDOM PROCESSES WITH INDEPENDENT INCREMENTS

S. G. Bobkov UDC 519.53

In the paper one considers random processes {§5}0<s§t with independent incre-
ments, continuous in the mean (VP<°%- One establishes relations among multiple
integrals, variations, i.e., the limits of sums of the form Z(gk;-gtbq)” s and

the Itd stochastic integrals.

0. Notations and Definitions

Let (.Q.,q,P) be a probability space, let (:*',,0(/) be a measurable space, and let @
be a semiring of sets that generaté o . By a process (or measure) with independent in-
crements we shall mean a mappiﬁg /4,@—> LO(SZ.)?7 P) satisfying the conditionms:

a) N is additive, i.e., VA Be® AnB=@=sp(AUB}pA+uB,

b) for any finite collection of nonintersecting sets ApujAN from P , jLAb-nleN
are independent random variables.

A process M 1is said to be m -continuous if m is a finite, positive, continuous
measure defined on the § -algebra Ol and if for some sequence oy 0 we have \E(MAdﬂ
$dwh1A for each A from P . A process MW 1is said to be strongly continuous if for

some M it is M -continuous.

1. Extension of Processes

o
Let ){,:@-»L(_SES,P) be a process with independent increments. We denote Z(ﬁ)={ml

M is m -continuous }. Clearly, the condition of strong continuity means that Z(M)#¢.

We introduce on Z()b) an order structure: mqgm,chVAeO‘b qu\<m,zA. Running slightly
ahead, we mention that many properties and the definition of M -continuous processes, in
which m  occurs and which will be considered below, actually do not depend on MV , pro-
vided the process MW is strongly continuous. This circumstance explains in a great deal

THEOREM 1. If the process M is strongly continuous, then ZCM) is a lattice.

Proef. First we mention that an ordered set Z is said to be a lattice if V&,%ez

EIxAy:Lnf{x,y},vat:sup{m,g}. We denote by Z - the family of all finite measures on the measur-—
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able space (1*:,01,). We introduce on Z the same ordering as on Z(MWcZ . From Hahn's
theorem on the decomposition of a finite measure there follows that Z is a lattice.

Indeed, let m, and mzeZ7 m=m,~m, . Then there exist A‘BGOL such that
A05=¢,AU6=$, mlAZO,MIB\<O . We set m’C=m%(AﬂC)+m4(BﬂC), m”c:rn‘(AnC)er,“(BnC)'- Obviously,
Wv’.—.n/lql\m,z, m'=m,vm, . Moreover, if M, and My are continuous, then also m' m/”
are continuous measures, Since the order in Z(/u) is inherited from Z , it is sufficient
to show that thmzeZQ.) My Aty m,szeZ(/L) . We recall that MGZ@@ m is a finite,
positive, continuous measure and for some sequence o,,20  we have !E(,LA)WKdWmA. From
the last inequality it can be seen that if m1n'1,’ are continuous measures, than meZ(/u,)
implies m,’eZ(/w) s as soon as m<m'. Since m,&mVvm,  and n’!quC}W) s then,
consequently, M,Vim, e Z (}o) .

Let A,B be those measurable sets which have been mentioned above for the measure
: n K K K)o Y%Ak
_ . n 15 ni_ <
M=y, [E(NC)"] Sebym,C, LE (KOY1 € BymyC => [E.(uef'}= EOE[)((AnC)] Epeac]-c,[¢Xc, By g (A Ancle
n
1 .k K
$ Eoicn:dmk'?'()‘[mmmk(c)] SXH,‘ m’4Am'2,(C>’ where szm Am (%) KZ.__OCVL °Ln,—|{f‘5l<. . Thus,
my A€ Z (). |
COROLLARY. Ve demote Uy (®)={T:tankTmi<e},  where €30, meZ(W),T={An., A 1s
a partition of E,AL€%7WTQ’YL=WM~A; The family {%m(i):'éw} forms a basis of the filter
{-}’m . denoted usually as 'Lank'i(m)—-»O . From Theorem 1 it follows that for a strongly
. (rud - : . .
continuous process M , :f(/;):mléz(m?w is a filter.
We consider now the question of the extension. As before, P is a semiring generating

0 and }LC\P——»L?(SE,‘.T-,P) is a process with independent increments.

THEOREM 2. If the process M 1is strongly continuous, then on the measurable space
(ﬁ,o(,) there exists a unique strongly continuous process )4/* with independent increments

such that J&*IgF}b. If m 1is m -continuous, then also a*¥ 1is m -continuous, i.e.,
Z) =2 ().

N .
Proof. Let {:ga,i{A_ be a step function based on A,
—_— 3= 3

i from l:P, and let X  be the

vector space of these functions. We set
I = ZN: a M.A

We note that one has the following algebraic equality:

<ZN:x-)n=Z —"‘—‘—— Z 90?-___-1‘,%’

i i ?;’f‘sﬁ oL1‘,...cLs!S! {
isssn (P#9)

where welj, ao,,.:.,acNeR .
Let meZ(/g),lE(}cA)ﬂrlsxwmA for each A from P . If we set :1:3= J/“’AJ » then for

the interior sums we have
ols o o ' olsy . -
|E;mi:-...-mtsl=]Z(Exi; (E:r,bz)\ < LP#EP#%IG,LI‘-...~,‘a-bs‘ Vo YdémA-%. mhA

€ (s {24 ol < |

isisn

S
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by Hlder's inequality for some constant (‘,s> 0. Thus,

ICHR R FPa—_—E z

dls Cs.-

Entending by continuity the linear mapping I from the space X to I,ZGE,GL,M), we ob-
tain the mapping I*:ilzfi,ogm)* .La’(S&)(;,P), which is continuous and satisfies the inequality
|E_I*({)n|\<2f'ig|ﬂnd,m , where 'S'ei,hﬁm,) if y is even and fef™(m) if N is odd.
It remains for Ael@l to set *A=I*(1A)_- Obviously, /k.* is a process with independent
increments and lE()‘-*A>n[$X;; mA . At the same time we have established that rrvez,(}b*).

The uniqueness of the extension is obvious.

2. A Condition of Strong Continuity for Stochastic Continuous Processes with Independent

Increments

Let X=[af] let 0o be the s -algebra of Borel subsets of [af], Let % be the
semiring of cells [t7s>,a,$t$5\<€ . If we have a process E(‘t) ,ast<d , with independent
increments, such that E(q,):O » then a measure /A.[‘t)s)=§(s)-§(t) is connected with it, which,
in accordance with our first definition is a process with independent increments. We also
have the reverse relation: §(t)=/»[w,t).

When saying that a process E(t)‘ is strongly continuous, we apply this term to the pro-
cess MW . Obviously, the condition of the strong continuity of ¥(t) is equivalent to the
fact that for some nondecreasing function K | continuous on ‘[a,)ﬁ] , and a sequence o(,n>/0

one has

|E(x(s)-2t)"] € o, (Fs)-F ), t<s.

Here we present, in terms of the Levy—Xhinchin representation, the conditions that are
necessary and sufficient for strong continuity. Let E(t) be a stochastic continuous pro-—
cess with independent increments such that E)(a)=0 . It is known [3] that there exist a con-
tinuous function Y (t) , a nondecreasing continuous function D(t) , and a function G(t,%),
continuous with respect to 1 and nondecreasing with respect to x€R such that G@,x)=0
and for t<s the function G(5,%)— &(T,x) does not decrease with respect to X such that

for t<s one has

2 : ,
E o (LA (3(5)-3t)=exp {Lh(){(s)—){(t))—%‘;(b ($-D(t)) Jr_S(e“}‘gc 1%,) frat (G(S dx)-G (T dx)}

THEOREM 3. In order that the process E(‘b) be strongly continuous it is necessary and
sufficient that 1) the function X should have bounded variation and 2) Slw\"’(; (%)dx)<o° for
all neN. ’

Proof. Sufficiency. From condition 2) it follows that the random variable §(S)—§(t),t<3

has a characteristic function ‘fts(}\) » infinitely differentiable on the entire line and, con-
sequently, also moments a,w(t;s) of all orders [4], which are expressed in terms of the com-

mutants se,n(t,s) of the random variable g(s)—g(t) according to the formula [4]:

w!
A NI

0, (1,5)=2_ - acm(t,s)i-‘...-aekv(t,s)b°,
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where the summation is carried out over all collections (L“,.)i,?‘,.k,l);..‘k ) of nonnegative in-
tegers, subjected to the condition YRty Ky =1V Therefore, it is sufficient to find a
function R , nondecreasing and continuous on [a,@] and a sequence eLn>/O, such that for
t <SS one should have l%m(t,s)‘\(dm(F(s)—F('t)), and for this it is sufficient to find for

each v a function [a8] nondecreasing and continuous on Fu, , such that l%w(t,S)KFn(S)—

YF'WCC) and then the function F(‘t)=§; __15'_u.£+ F?)(ﬂ')-— F'E m(a()?-izn’
) Tl

will be the desired oné.

We write down the second characteristic of the random variable E(-%(V. As it is known,
V()
x, (ts)=V L{Jt(’s)(o). We have

2,(b.9)=Y(5) -y (F)+ | (G (5,d0) -G (F,dx)) ,
2,(1,5)=D(5)-Dh) + {1+9)(G (5,d) - &(,dx)) ,
x,(1,9) =Ssc"'?"(1 DG (5,dx)-G (t,de)), n>2.

We note that if \pe_Lq((;(%,dm)) , then function G4 (t):&.{)(x)(;(t)dx) is continuous on [a,)@] .

For ~{)n(€ll)=lm\w we denote G‘n/ _=VG"PW. Then it is sufficient to set

F, (b)=Vaz Y|} +6, by,
P (0)=D(H)+Go(h) +Galt)
R (0)=Gy D) +6, (1), n>2 .
Necessity. From the strong continuity there follows the existence of all the moments
§(sF¥(t) and, consequently, the infinite differentiability at zero and of its second char—
acteristic \h,s(}\).
Therefore, the function {'U\):S(ei’)‘EF%g)-v%%zﬁ(&dx) has at zero all the derivatives.

From the finiteness of the second moment of ¥(f), there follows the finiteness of S(‘l+ac’")

Q(@,dx). Therefore, for all AeR. we have -S—” O\)= —Selm({.wz)c((z,a{x), We denote K(ac):&?i.f

-0

lf)G(»@)dg) . Then the function 9()\)=Seu‘°[k(dx) has all the derivatives at zero. Conse-
quently [4], for all neN we have S‘(I}ln'K(oLx)<oo s whence we obtain at once that S[mlnG
(E,d:r.) <oo 4 i.e., condition 2) holds. Now we prove 1).

By assumption, for some nondecreasing and continuous function F on [a,@-] we have
|E‘(§(s)—§(t)>|\< Fey-Ft), t<s But E(§(5)-3(1)=%,(1,5)=Y(6)-ytH&*(S)~-G"(t),  where G*(t)=SmQLt,d,x).
Obviously, |GXs)-G*(})|€G((s)—G&, (¥) for t<s , and, therefore, {X(S)—}{(t)lS"E@(S)-E(’t))]-kl&*
(S)-G*(t)IQ( F(s)+C1(S))—F‘(t)+G4(t)),‘|;<S. Consequently, Vam”i < q1(g)+ F&)-F(a) < oo

3. Variations and the Relation with Multiple Integrals

Let M be a process with independent increments on a measurable space (%, 0'(/). We
denote ‘?ﬁ-{Ag...xA"}Aﬁ%,AﬂAf%(#j)}, jwh’(A4x,__xAn\=}cA4'..:}lAw . Thus, we have a new process )\LW
(i.e., a random additive measure on the semiring (Py‘, of sets) which, however, is not a
process with independent increments. Nevertheless, one has

THEOREM 4, 1f the process }v is strongly continuous, then the process jwn' has a
unique strongly continuous extension to the & -algebra O . Moreover, if m/eZ(/w).
then m'eZ (W*)- |

Proof. Without loss of generality, we can assume that m%={ , where m is some fixed

measure from Z(jw), i.e., m 1is finite, continuous and for some sequence D’K)O we have
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\E(}MAﬂ\‘b’kmA for each measurable A . We denote by T  the family of all partitions

’f=r{A”...,AA’§ of the set % , for which mA-:i—,deN. 1f %eT -, then by (.PW(’C) we shall
mean the family of all those sets from ¢, , which are products of sets from T . We de-
note by AW(T) the ring of sets generated by (J)n(’t') . We note that by virtue of the con-
tinuity of m , for each Ce®™ there exists a sequence 9T and (g& A, @) - such

that m (CAC'E) 0. Therefore, it is sufficient to find a sequence d, 30 such thatlE(M"’c)k‘\(
o m'e for all Ce A, (T), TeT. _

Let D=ff,.,d}, let D be the family of subsets of D of order w, let § be
an arbitrary subset of :Drv of order N, Let nsp4k~w§dz . We show that the order
of the set EE—_{(SW..‘SK)'- S-UG.IS,‘L:)S-J =P} is not larger than S(K)n,’t))-N‘o[p"", where S'QK,YL,P') de—
pends only on k,wpP-

! ‘ ¢ AP .
We denote S4=84)Sz=52\31,...,S,-;:SK\LL‘JKSL --|3 l .21 e {( S)eE : lS-I:‘z-} . We estimate the
order 8;,...,7,&. where Uy, 1is a sequence of length kK such that 2. =P, Y=ho. The set
S, can be chosen in at most N  ways since §,€8§, Sz=SzU (54032). The set S; can be
-
chosen in at most Cd < d®  ways, and the set SnS in (;n ¥ ways; consequently, S,
can be chosen in at most "% 4% ways. Similarly, S; S ul( S sN(S,US)); can be chosen
in at most (%3 waysz and  $30(§US,) in at most Czy;_:zz ways; consequently, S; can be
. =g 3 P -+, . KN _ p-n

chosen in at most C, _ - 0(/ ways. Thus, IEZ‘.“‘LKKS%__%d N_NS,‘.‘.__ZKA ) where 321,._zk

n-"¢, n-% . -1 -
=C,, 2. C(K—i).:ll"zg =24 > consequently, |EP|_\< N(;LP ZS:Z‘“_Z:S(K,YL,P)N@[P . . The summa-
tion is taken over all 'z“.._,’&K such that Z'?’if—'P)?’i:n” and, therefore, S'(K,W,P) depends

only on K,nW,p- .
Assume now that (C= u'{CUC)e (“C),'L:{Ah...,Ad}. Since the partition can be always re-
fined, we shall assume that d)kn . . By assumption, each set C; has the form ALL..K ALW
g

where .L’dﬁe"p(d#f’) .- We associate to it the set S(Cp:{‘ﬂ“';"} €Dy  and we denote SPZ{(J“"'J.K):

(S(CA4),--'PS<CJK))GEP}, where for 8 we have taken the set of all S(C) i= A Since
for any permutation %  of the elements {1,..., B we have S(c) S<Cd) where (‘_g;' Ab:’"«)
A , it follows, obviously, that

()

[sPlsn!™ [ePI\<S'@;,n®.N-dP'rﬁ where SI(K,n;p)=n!K-S(k‘n)p)‘
Now we note that if (S(CJ)’...)S(CJQ)e&P’ then \Eﬂnch_,.ﬂ,ncak\‘ SX[G(,VQ. d® .,  vhere X’(k)n})

depends only on Kk,  and Xﬂ ’ Consequently,
Ee)|s Z [Ex'coe |< Z§<Z|SP‘X(Kn>dP <kl L2 AN
Jf"JK 1 K =
dK~mC.

Remark., For the process /wn one constructs the so-called multiple integral In such
that IM%){M"’C,CG%W. Therefore, any statement regarding the measure /A/w can be con-
sidered as a statement on the multiple integral.

We consider now polynomials of n variables with integer coefficients:

‘ U+, +bw H M
n! ()1 b, U
P (24 T)=3 bﬂj IS R
A4 2 cpitey ety
where the summation is over all nonnegative integers ... [ such that 14 +2L+...+ri,i,'-b=n,,
These polynomials possess the following characteristic property: Ya, aeR N>n

N
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N
Q... ry -
5»,1 0 “():w :“N:«aw a‘:ﬂa”)'
(aL#B)

We note that
a) Pn(m,{,OJ...,O)=Hnjx) is the Hermite polynomial of degree 1,
B, (x,5,0,..,0)=H, (x 5);

b) 'Pn(m)a‘,»;b),.,)x,-p-'l:)_—.Gn(‘t,m) is the Poisson—Charlier polynomial of degree M

B (%%, D)= (). . (z-n +1).

THEOREM 5. Let M be a strongly continuous process with independent increments on a
measurable space (%,0). Then
1) VYAeol in all L7@FP), p<oo  there exists the limit jﬁWA=LLm:2)w AT, where
{A1) AN) is a partition of A , max mhA,—0, meZ (k) (This limit is with respect
to the filter i()tlA independent of wm according to Theorem 1.)

2) My 1s a strongly continuous process with independent increments; moreover

Z(p) < Z (My).
3) A”’ ()"4 - ;/“'WA> for each measurable A.

We carry out the proof of 1) and 3) by induction. Both statements are obvious for h={

since My=pM . Let n){ ‘I’={A“ N} be a partition of A N)h/. We denote n(") L#W.A“ X
AL ,mnk‘t‘—m.axmA Obviously, S (L)c A" and m"'(S @A A"')—’O as ankT—0, Consequently,
by Theorem 4, if meZ(K), then M 43 (T)—»/L as wukT—0 in all LP P<;=o~
From the formula for £, it is clear that Pn(xh,__,{x:n):Qn(x‘, . fL_1)+(-)(I'l«— ' If for
x; one takes N)(A" then by virtue of the mentioned property of Pn, , we shall
€34
have

M ’ Sn(T) =Pn(x4)' ")x’n)=Qn(xh' : .,:r,n_’)+(.1)n(n~1) L,

By the induction hypothesis, for i<n we have :1:~—>1M-LA inall L?, p<=o , in the same place,
consequently, also there we have @ (14, o n-1 n_‘w ,)Lu_{A), and thus, in all LP,p<oo
there exists the limit M A=fim®y as wank 9—0; moreover, )L"'AW=PW(/L4A)...)/wnA') « The
statement 2) is obvious. 7 \

Definition. The process )LW is called the variation of /M« of order W , and the
measure ,=Ep, is its variational moment of order .,

Remark. In [1] one can find another proof of formula 3) for Wiener and Poisson pro-

cesses.

4., Meaning of the Variational Moments

We define the generating function for the sequence of variational moments:

}t(z) i m/w-Lr

=1

We assume that this series converges absolutely in some neighborhood of zero IZ|4R ’
where Q<Rgoo . Then, we have

THEOREM 6. Ee"'t/*=ep‘ﬁ("'t),|t| <R , and, consequently, mnA- is the cumulant of order
tv of the random variable /wA .
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Proof. Representing /A,A as EN;/“'Au and letting the rank of the partition go to
Cees . n n!
tai ithout diff lty that = : h th -
zero, we can obtain withou ifficulty a E(}A«A) Edm mqu m"‘sA » where e sum

mation is over all integers d4,...ds'>0 such that °l4+"‘+°ls=n’;1 £ssn.
But then for |Z|<R we have

Z 4 clg o]
Ee k—-HZJST %1--%5%7--* —i—; =1+ 3 4+ F}L(_Z)S=CF)‘(Z)

5. Characterization of Wiener and Poisson Processes in Terms of Variations

A process w with independent increments on a measurable space (a_,eb) is said to be
a Wiener process if each random variable )(,A , where Ae6l , has a normal distribution.
In this case the strong continuity of g 1is equivalent to the fact that E/(/ and D)u, are
continuous measures on (a“,’e(/).

THEOREM 7. For a strongly continuous process M with independent incremehts(the fol-
lowing statements are equivalent:

1. )1, is a Wiener process;

2. .V¥n>2 f“’n=0 5

3. VYn>2 'm"’=0 B

4o Fny2 my=0.

Proof. The implications I.=>2.=3.=p4 are obvious. From statement 3 we obtain that

/A,z=m and by Theorem 6 we obtain statement 1, It remains to show that 4.=3. From the

definition of the variation it is clear that Vi 1> )/1 E(/‘ m'.)ﬁ“ mJ)—m = Va,@elk 0<:D(a,(,4,rmi).

%
+gQL-m)) um +2a2m +£ sz = V"l My Sy, - g Therefore M,=0 implies
My, = 0 Yiyd. Let n=0. In the natural segment [ng+1, an_l we find a least even
°
number 2Ny and we have again M4 =0 Vi2>1. In a similar manner we construct a sequence

of natural numbers # for which 2Wg is the smallest even number in [rLK_ﬂ)Q.N/K_J « In
this case m""K‘*"':O Viytl . Obviously, for some K we have H=4 =5 m;=0 - Since
—m =0 , we have M=, = =0 . But 4=2'2_, and, conmsequently, Ma=my,, = 0.

COROLLARY. Let E(t),ﬂ,d;&é » be a stochastic continuous process with independent incre-
ments such that ¥(a)=0, E¥(})=0 . Then ¥E(1) is a Wiener process <=1n)2 EIE(S)—E(t)\m
=0(s-1).

A process with independent increments on a measurable space (%)9(,) will be called a
Poisson process if each random variable /wA s, Where Ae%_ R has a Poisson distribution
with parameter m4A=E/n,A . In this case the condition of strong continuity is equivalent
to the fact that my is a continuous measure on (’i,%).

THEOREM 8. For a strongly continuous process jW with independent increments, the
following statements are equivalent:

1. M 1is a Poisson process;

2. Yo op,=p40

3. Y m, = I/l'lq .
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Proof, The implications I.=»3. and &.~3. are obvious, while 3,==1. follows from

Theorem 6. We prove that 3.=%2, As mentioned before, E(ML"”%)(/‘V;‘*'LJ):MHJ . Consequently,
EQup)f =0  if all my=m,.
6. Applications to Locally Weakly Dependent Processes

Definitions. 1) We shall say that the processes /A,,\) have joint independent incre-

ments if VAh ANEOL A nA ¢(bﬂ) (MA4,‘)A (/"ANQ)AN) are independent random vectors.

2) The strongly contlnuous processes _/M/)Q with independent increments will be said to
be locally weakly dependent (LWD) if for some measure WLGZQ’-)(\Z(‘) and any d,;%eN one has
E(ﬂA)d(VA 55 O(mA) as mA—0.

We give without proof a statement which can be easily obtained with the aid of Theorem
6,

THEOREM 9, Let jﬂ,,\) be strongly continuous processes having joint independent incre-
ments. Let F/'u, and Fy be entire functions. Then /u,,\) are independent processes
<> MY are LWD.

COROLLARIES., Let M,V be strongly continuous processes having joint independent incre-
ments.

' If /Wv.‘) are Poisson processes, then /K._-H? is a Poisson process ¢:r/b,9 are inde-
pendent processes.

2. If M 1is a Wiener process and F'v is an entire function, then M,) are inde-

pendent =>ImeZ(nZp) YeleN ExAIR<O(mA)
g M

7. Stochastic Integrals

Here we prove that the pol?nomials PH, » 1introduced in Sec. 3, play the same role in
the It6 integration as the standard polynomials o' in the Riemann integral.

Let §(t)} 0st<a, be a strongly continuous process with independent increments such
that ¥(a)=0. We denote by M the strongly continuous extension of the process ¥E(t) to
the ¥ -algebra of Borel subsets of [0,a] , which exists according to Theorem 2.

It is known (see [1]) that there exists a unique continuous linear mapping I [_?“([O CL]“'

LR'<P) where meZ(k) is such that I, (4 C)=/W"’C for all Borel sets Ccloa]™.
The operator Ly is called a multiple integral and is usually denoted by In(‘f):S‘F(m) d/‘"’(sc)

We denote
Crb)={(Fgobn) 1 0 €8, &gty € 3], where 03501,
THEOREM 10, TLet gelf(c  @ym™) f(t)={alt, b De'(t, .. b,)  Then

Calt)
1) 4 1is a progressively measurable function;
n+1
) THOa80=hd, b ) by )

o
The proof is obvious for step functions and they are dense in L2

COROLLARY. We denote by En(‘b)=/u,w[o,‘t) the variations of order n . Then

t
%Pn(’%(s),-~-;§n(‘5))d§(5) g 8 &5, B) for 0 s s
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We consider two special cases.
1. Let ¥(t) be the standard Wiener process, i.e., Ex1=0DEt) =t . Then, as
already known, EndD=O for n>2 %,(t)=1% . Consequently, we have (see also [1] or [2])

Ha(36,943(9)= g Hy, G ).1).

2. Let ¥(%) ©be the standard Poisson process, i.e., Ext)=t . By Theorem 8, we
have §,(t)=%(). Consequently,

S:E O (5)-1)'- (B 6) -+ AT )= B (&)1 -

. o T o .
From this formula it is clear that &F@)d§§kﬁwﬂ@fb), where the polynomials %n can be

found recurrently. One can also show that

45

=TT where g & tI‘,,eq'#i.
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