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VARIATIONS OF RANDOM PROCESSES WITH INDEPENDENT INCREMENTS 

S. G. Bobkov UDC 519.53 

In the paper one considers random processes {~}o.~s~ with independent incre- 

ments, continuous in the mean (Vp<~). One establishes relations among multiple 

~ , integrals, variations, i.e., the limits of sums of the form ~(~- ~_,) and 

the It8 stochastic integrals. 

0. Notations and Definitions 

Let (~P) be a probability space, let (~,~) be a measurable space, and let 

be a semiring of sets that generate 0~ . By a process (or measure) with independent in- 

crements we shall mean a mapping ~:~ , U~ P) satisfying the conditions: 

a) ~ is additive, i.e., ~A,B~ AnS=   CAUs  A+ s , 

b) for any finite collection of nonintersecting sets k~,..)~ N from ~ , ~4,...~N 

are independent random variables. 

A process d~ is said to be rr~ -continuous if rr~ is a finite, positive, continuous 

measure defined on the q -algebra 0~ and if for some sequence oLpr we have I~(~AI~'I 

~a~A for each A from @ . A process ~ is said to be strongly continuous if for 

some rr~ it is ~ -continuous. 

i. Extension of Processes 

~:~--~(~P) be a process with independent increments. We denote 7(~)=~: Let 

~ is ~ -continuous }. Clearly, the condition of strong continuity means that ~(~)~. 

We introduce on Z(~) an order structure: ~ 4 ~ = ~ @ ~  ~iA~ ~. Running slightly 

ahead, we mention that many properties and the definition of ~-continuous processes, in 

which ~ occurs and which will be considered below, actually do not depend on ~ , pro- 

vided the process ~ is strongly continuous. This circumstance explains in a great deal 

THEOREM i. If the process ~ is strongly continuous, then ~7~) is a lattice. 

Proof. First we mention that an ordered set ~ is said to be a lattice if V~,~e~ 

~^~=~a~{~,~v~=$~0{~,~} We denote by ~ the family of all finite measures on the measur- 
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able space (~,~). We introduce on Z the same ordering as on Z(,M,)cZ . From Hahn's 

theorem on the decomposition of a finite measure there follows that ~ is a lattice. 

Indeed, let mq and ~b=~-~g. Then there exist A,$~O~ such that 

A~=~U~--~[~0,~]B40 �9 We set ~YC=~(A~c~C), ~YYc=n~C)+~(~C) . Obviously, 

m/=~k~, ~=~Vr~ . Moreover, if rrb 4 and ~ are continuous, then also ~ ~u 

are continuous measures. Since the order in ~(~) is inherited from ~ , it is sufficient 

to show that V~4~~) ~A~,~4V~e~(~) . We recall that ~.e~)<==~ y~ is a finite, 

positive, continuous measure and for some sequence ~0 we have }E~A)mI$~A. From 

the last inequality it can be seen that if ~4~ ~ are continuous measures , than ~e~(~) 

implies ~I~(~) , as soon as ~4~. Since ~4~4V~ and ~e~(~) , then, 

consequently, ~4V~$~). 

Let ~ be those measurable sets which have been mentioned above for the measure 

,~, A,keZO~). 
we d e n o t e  w h e r e  i s  

a partition of ~,A~r The family {~m(~):~>O~ forms a basis of the filter 

~ , denoted usually as "~nk~(~)----O . From Theorem i it follows that for a strongly 

continuous process ~, ~(~)=~~ is a filter. 

We consider now the question of the extension. As before, ~ is a semiring generating 

and ~:~-~(~g~) is a process with independent increments. 

THEOREM 2. If the process ~ is strongly continuous, then on the measurable space 

(~) there exists a unique strongly continuous process ~ with independent increments 

such that Jl~l~:./~,. 
z.(-,,,~ : z ( ~ ) .  

If ~ is n'V.-continuous, then also ~ is 1,11,, -continuous, i.e., 

Proof. Let - J=~='~<~ be a step function based on Aia from ~ and let ;~ be the 

vector space of these functions. We set 

N 

J=1 

We note that one has the following algebraic equality: 

=r . Z 7  
~r a~[-.-~s!s! Le§ t >-%=~ 

where ~e~ ~ ~4,...~N~. 

Let ~),IE ~A)~I ~<~m~ 

the interior sums we have 
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for each A from 7 . If we set ~=~-~A} , then for 

= l ~ . r E r  " . -  
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by H~ider's inequality for some constant r 0. Thus, 

I / " ti,[ 

Zntending by cont inui ty  the l inear  mapping Z from the space ~ to ~V . .~ . , ~ ,~ ) ,  we ob- 

ta in the mapping I ~ : r  . I ,~(~,%P), whioh is continuous and s a t i s f i e s  the inequa l i ty  

IE!(~)b~II~l~ , where ~ ~ )  if ~ is even and ~+1(~) if Fb is odd. 

It remains for Ae~ to set ~*A=I~I4AI. Obviously, #~ is a process with independent 

increments and IE(~t*A~[~<y~. ~ . At the same time we have established that ~veZ(~). 

The uniqueness of the extension is obvious. 

2. A Condition of Strong Continuity for Stochastic Continuous Processes with Independent 

Increments 

Let ~=[~,~]~ let 0~ be the ~ -algebra of Borel subsets of [~, Let ~ be the 

semiring of cells [~S)~0~.~<S~<~. If we have a process ~(~), gL~<~<~, with independent 

increments, such that ~(Ct)=O, then a measure ~[~S)=~(S)-~(~) is connected with it, which, 

in accordance with our first definition is a process with independent increments. We also 

have the reverse relation: ~(~)=~[O~,~) 

When saying that a process ~(~ is strongly continuous, we apply this term to the pro- 

cess ~ �9 Obviously, the condition of the strong continuity of ~(~) is equivalent to the 

fact that for some nondecreasing function ~ , continuous on [0~;~] , and a sequence ~m>/0 

one has 

Here we present, in terms of the Levy--Khinchin representation, the conditions that are 

necessary and sufficient for strong continuity. Let ~(~) be a stochastic continuous pro- 

cess with independent increments such that ~(~)=0 �9 It is known [3] that there exist a con- 

tinuous function ~ (%) , a nondecreasing continuous function ])(%) , and a function ~(~), 

continuous with respect to ~ and nondecreasing with respect to ace~ such that ~(c~z)=0 

and for t<S the function ~($,~e)--~(9,z) does not decrease with respect to ~ such that 

for %~S one has 

E § 1)}. 
THEOREM 3. In order that the process ~C~) be strongly continuous it is necessary and 

sufficient that i) the function ~ should have bounded variation and 2) II~l~[~)d~)<e~ for 

all ~ .  

Proof. Sufficiency. From condition 2) it follows that the random variable ~(51-~(~<$ 

has a characteristic function ~,s~) , infinitely differentiable on the entire line and, con- 

sequently, also moments 0r162 ) of all orders [4], which are expressed in terms of the corn- 

mutants ~m(~,S) of the random variable ~($)-~(~) according to the formula [4]: 

m! ~! Ckh~,..... ~,~! ~.~;~)~ ~K~(t,~%.. ~K~(t,s) ~, 
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where the summation is carried out over all collections ([4)...~#~k4),..~kgl of nonnegative in- 

tegers, subjected to the condition ~4N4+...+L~Ng=m. Therefore, it is sufficient to find a 

function F , nondecreasing and continuous on [~O~] and a sequence ~k~>/0~ such that for 

<S one should have J~[%,$)l $~<~(s)--~(%)). and for this it is sufficient to find for 

each N/ a function [c~,~] nondecreasing and continuous on ~ , such that ]S6~�89 
~m~t) and then the function ~)-~__~(~+~n(~)_~(~i):Z, u will be the desired one. 

We write down the second characteristic of the random variable ~(~D-~(O. As it is known, 

~m (t $)='u-~,~) (0). We have 

We note that if ~h'(r , then function ~@C~)=I~(~)~(~,~$6) is continuous on [~,g] . 

For ~[01)=I0~I ~/ we denote ~ = ~ �9 Then it is sufficient to set 

Necessity. From the strong continuity there follows the existence of all the moments 

~$~(~) and, consequently, the infinite differentiability at Zero and of its second char- 

acteristic ~,S~)" 

Therefore, the function ~[~)=I(eb~-~-~+~z)-~(~,~m) has at zero all the derivatives. 

From the finiteness of the second moment of ~(~), there follows the finiteness of li~+0~ ~) 

~,~C). Therefore, for all ~R we have ~HC~)= _I~k~(i§ We denote ~(~)=I~* 

~(~)i~) . Then the function 9(~)=leLA~k(~) has all the derivatives at zero. Conse- 

quently [4], for all ~s~ we have SI~J~(~)<=~ , whence we obtain at once that II0~I~ 

(~)~) <=~ , i.e., condition 2) holds. Now we prove i). 

By assumption, for some nondecreasing and continuous function F on [~,g] we have 

Obviously, j~*($~-~*($)I4~Cs)-~4C4~ for $<$ , and, therefore, I~[S~-~[~II$1~(~($)-~(~))I+I~ * 

($)-~(~)I ~ ( ~($)+~(~))-~(~)+~4~)),~$. Consequently, V~ ~Ii ~ ~4 (~) + S(~)-~(~) < ~. 

3. Variations and the Relation with Multiple Integrals 

Let ~ be a process with independent increments on a measurable space (~ 01~. We 

denote >A I=#Aj. Thus, we have a new process ~/ 

(i.e., a random additive measure on the semiring ~ of sets) which, however, is not a 

process with independent increments. Nevertheless, one has 

THEOREM 4. If the process ~ is strongly continuous, then the process ~ has a 

unique strongly continuous extension to the ~ -algebra O~ ~ . Moreover, if ~E(~), 

then ,~ ~ (~'). 

Proof. Without loss of generality, we can assume that ,~=~ , where ~, is some fixed 

measure from ~()~), i.e., r~ is finite, continuous and for some Sequence ~>~0 we have 
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IE~A)~I4~-.*A for each measurable A . We denote by T the family of all partitious 

~={Air..,A~l of the set ~ , for which rr~A~=~, ~E~. If ~T , then by %(~) we shall 

mean the family of all those sets from ~m , which are products of sets from ~ . We de- 

note by A~('g) the ring of sets generated by ~m(T) . We note that by virtue of the con- 

tinuity of ~ , for each GE~ m there exists a sequence ~eT and C~eAm~T{) such 

that rr~(CAC{)s -~O' Therefore, it is sufficient to find a sequence d,K>/0 such thatlE[~0)Klx< 

~k't~mC for all C~Am(T) ~ ~eT. 

Let ~)={],...~&}~ let ])m be the family of subsets of D of order ~/, let S be 

an arbitrary subset of ])m of order N . Let G,~p4k'm~d, . We show that the order 

of the set [P={[SI~..,~SK): %~;I~S%1 =p} is not larger than ~iK~)p).N-~P-m, where $(~,~,p) de- 

pends only on k~m,~- 
~ ~ / p ~e denote S~=S,,~=S~\ ~,...,S'=~\U%;~ ~ ~<. ~.~=ls~l, %,...,=Z {(%...,~,)~ae-l~il=~]. We e s t i m a t e  the  

order gg where ~gb is a sequence of length k such that >-Zb=p, g~=~/ �9 The set ~i~...~z~, 

' Z] S I can be chosen in at most N ways since %{~S, Z~=%zU(Slf~S �9 The set $~ can be 

chosen in at most O:~ &%z ways, and the set ~nS~ in ~-zz ways; consequently, S~. 
I can be chosen in at most O~-z~.~ ~ ways. Similarly, ~5--Z~U(S~g(S~u$D ); $5 can be chosen 

in at most ~g~ ways and S~n(S4U$~ in at most Z~'$z ways; consequently, ~' can be 

r ~za e '~ a%+'"+~ tl P-m chosen in atmost ~ _ ~  ways. Thus, l[~r ,=,,~...~ ~ where ~(..$~ 

~-~ ~m-*~ - consequently, JLPI,,< NoLP-'y:.g z=~(k,b,p)~.~{P-~. The ----C~. "... '~(~_'0~_~-..-~_~ ; summa- 

tion is taken over all Z~,...,Z~ such that ~-Z~---p~l=~b, and, therefore, ~(k~%p) depends 

only on R,b,P. 

Assume now that O--0,O~)C[~r Since the partition can be always re- 

fined, we shall assume that &~/k~ . By assumption, each set C/~ has the form A%,i..x Abe, 

where "b&~(~).- We associate to it the set ~(~]--{b4...~ ~[m~ and we denote sP_-{(i4,...~ ] . 

(~(C~a)~...~S(c}~))~$P}, where for S we have taken the set of all ~.(c~),]=4s...]N. Since 

S ~ ~ -  ~ for any permutation % of the elements {~,'",~t we have S % ) :  ( q ) .  where C~ -A~r~ 1 
...• , it follows, obviously, that 

/ i K 

Now we no te  tha t  i f  ~ i ) , . . . , ~  &P, then IE/g$  . . . ~ C } , / ~ ' ( K , ~ .  g P  , where ~'7 . (R, ~b) 

depends on ly  on k~r and $ ~ . . . ~ .  Consequent ly ,  

r "<' < x , , < =  I<l .a a :  = 
. . .  ~ n:~ %n p = . .  

~ . ~ c .  
Remark. For the process j~ one constructs the so-called multiple integral I~ such 

that _T~({C)=~r C~{)~ "/. Therefore, any statement regarding the measure ~ can be con- 

sidered as a statement on the multiple integral. 

We consider now polynomials of ~b variables with integer coefficients: 
�9 + 

where the summation is over all nonnegative integers ~,... "br~ such that 1.~+~L~+...+~m=r~. 

These polynomials possess the following characteristic property: V~<o.&Ne~ ) N>/~ 
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~., ..~; =p. ('~,~r o.. ~ 

C ~ ~- ID 
We note that 

a) ~C~)~0~...~0)=~C) is the Hermite polynomial of degree Y~ 

b} P~{~0~+~)...)~+~)=G~(~,~) is the Poisson--Charlier polynomial of degree ~) 

p~{~,~ .,., o~= ~ r (.~-,. + ~. 

THEOREM 5. Let ~ be a strongly continuous process with independent increments on a 

measurable space (~) 0~) . Then 

i) ~AE~ in all ~,PI~P))p<=~ there exists the limit ~mA--~n~-2.~A~, where 

{_.A,Ij,...AI~ ) is a partition of A , ~,~--~0) ~(~) (This limit is with respect 

to the filter ~[~A)~ independent of ~ according to Theorem i.) 

2) ~ is a strongly continuous process with independent increments; moreover 

z ( ~ ;  c z C ~ ) ,  

3} ,~A~=P,,(#~A,...,?,,,A) for each measurable A. 
We carry out the proof of i) and 3) by induction. Both statements are obvious for ~=~ 

since /~4=y~. Let ~>4,~={Ad)...)AN} be a partition of A)N>/~. we denote S~(%)=~U~.A[(x..X 

A~m~R~--n~a~nsAL. Obviously, Sm(E)c A ~ and ~m(S~(~)AA~# --~O as z~zr~kT-~O. Consequently, 

'~s,~C~}---~A" by Theorem 4, if ~Z (~), then ~ as %pv~k~0 in all b P) p ~ ~' 

P~v it is clear that p~(m~,...,~)=Q~(~,...~_~+C-i)gC~-l)!=~. If for 

then by virtue of the mentioned property of ~m , we shall 

From the formula for 

one takes ~-- A.~ 
~N ~ ~' 

have 

By the induction hypothesis, for ~<n we have ~L~A in all ~ p~ , in the same place, 

consequently, also there we have QK(~4r..)~H)-~O~c~f..)~n_4A~, and thus, in all ~P,p~ 

�9 A ~ p - - there exists the limit /~A=s as ~k~--~O; moreover, ~ = m~4A,...~/~A) �9 

statement 2) is obvious. 

Definition. The process ~m is called the variation of /~ of order ~ , and the 

measure ~m= E~ is its variational moment of order ~ . 

Remark. In [i] one can find another proof of formula 3) for Wiener and Poisson pro- 

The 

ceases. 

4. Meaning of the Variational Moments 

We define the generating function for the sequence of variational moments: 

We assume that this series converges absolutely in some neighborhood of zero 

where 0 <R~=~ . Then, we have 

THEOREM 6. Ee~=e~# C~t), I~I < 

of the random variable /~A . 
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Proof. Representing ~A as ~A~A ~ and letting the rank of the partition go to 

zero, we can obtain without difficulty that E ~, !s! A . where the sum- 

mation is over all integers ~l...~$ >0 such that ~+..+aS=~ ~ ,~ S ~< ~, 

But then for l~l<~ we have 

5. Characterization of Wiener and Poisson Processes in Terms of Variations 

A process ~ with independent increments on a measurable space (~0~) is said to be 

a Wiener process if each random variable ~A , where ~E0~ , has a normal distribution. 

In this case the strong continuity of ~ is equivalent to the fact that E~ and D~ are 

continuous measures on (~). 

THEOREM 7. For a strongly continuous process j~, with independent increments~the fol- 

lowing statements are equivalent: 

i. ~ is a Wiener process; 

2 .  V ~ > ~  /%=0 , 

3. V~>Z n*~=O 

Proof. The implications I.==>2.==>3.~4 are obvious. From statement 3 we obtain that 

~=m~ and by Theorem 6 we obtain statement i. It remains to show that 4.==>3. From the 

definition of the variation it is clear that V~ji){ E~O(~j-~~ ~ , ~  0~(g[~O~ 

+ ~ - ~ ) ) = ~ ~ b ~ + ~  ~ ~i ~ ~ ~ ~ -I'Inv~j . Therefore ~ 0  implies 

~b~+L~- 0 ~>~ �9 Let ~m~ 0. In the natural segment [~o+I, ~ we find a least even 

number ~ and we have again ~+~=0 V~>I �9 In a similar manner we construct a sequence 

of natural numbers ~ for which ~n~ is the smallest even number in [~_~%~_~]. In 

this case ~K§ V~{ Obviously, for some K we have ~--~~ ~=0 �9 Since 

~6=~.~ : 0 , we have ~=~5+~: 0 �9 But 4:~'~ and, consequently, ~$=~ = O: 

COROLLARY. LeD ~(~$~ , be a stochastic continuous process with independent incre- 

ments such that ~(~)=0, E~(~)=0 �9 Then ~(~) is a Wiener process ~==~>% EI~(~-~(~)I ~ 

=O~-t). 
A process with independent increments on a measurable space (~ will be called a 

Poisson process if each random variable /~A , where A ~  , has a Poisson distribution 

with parameter ~A=Ey~A In this case the condition of strong continuity is equivalent 

to the fact that ~ is a continuous measure on (~@~). 

THEOREM 8. For a strongly continuous process ~ with independent increments, the 

following statements are equivalent: 

i. ~ is a Poisson process; 

3. V~ m,~=r,~,i. 
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Proof. The implications I.~3. and 2.~3. are obvious, while 3.~I. 

Theorem 6. We prove that 3.~2. As mentioned before, ~-,~)(/~i-~t~):=~+~ . --~ -- 

E ,, ~ - P j ~  = o if all 
u~. 4 �9 

follows from 

Consequently, 

6. Applications to Locally Weakly Dependent Processes 

Definitions. i) We shall say that ~he processes /~ have joint independent incre- 

ments if V&, ,Aae~, A~nAj=~(~j) ~,~A~ ,~A~,gA~) are independent random vectors. 
2) The strongly continuous processes r with independent increments will be said to 

be locally weakly dependent (LWD) if for some measure ~)a~(9) and any ~ one has 

E~A~A) ~ =o.(~A) as ~A---'~O. 

We give without proof a statement which can be easily obtained with the aid of Theorem 

6. 

THEOREM 9. Let y~ be strongly continuous processes having joint independent incre- 

ments. Let ~ and F~ be entire functions. Then y~ are independent processes 

~=~,~ are LWD. 

COROLLARIES. Let 

ments. 

If /~,~ are Poisson processes, then ~i~ is a Poisson process ~==~ are inde- 

pendent processes. 

2. If /~ is a Wiener process and ~ is an entire function, then 7~ are inde- 

fi, O be strongly continuous processes having joint independent incre- 

7. Stochastic Integrals 

Here we prove that the polynomials P~ , introduced in Sec. 3, play the same role in 

the It8 integration as the standard polynomials ~ in the Riemann integral. 

Let ~(~ D~4~, be a strongly continuous process with independent increments such 

that ~(~)=0 �9 We denote by ~ the strongly continuous extension of the process ~(~) to 

the ff -algebra of Borel subsets of [0~] , which exists according to Theorem 2. 

It is known (see [I]) that there exists a unique continuous linear mapping I~:~([0~]~ 

~) ~L~(P) , where ~i~(~) is such that Im(~c~=~mC for all Borel sets CC[0,~] ~. 

The operator I~ is called a multiple integral and is usually denoted by Im(~)=I~(~)dfim(~ ) 

We denote 

THEOREM i0. Let  Then 

i) ~ is a progressively measurable function; 

2) 
o C~+~(~) 

The proof is obvious for step functions and they are dense in [.~ . 

COROLLARY. We denote by ~(~)=~m[0,~) the variations of order ~ . Then 

p, (~.cs). s  (g  .<t  . I �9 ~ ...., ,o ,-,.§ ,~ . , .  ~d;), . . . ,~;~.(~)) f o r  0 .~ 
o 

3188 



We consider two special cases. 

i. Let 

already known, 

2. Let "~("b) 
have ~,,('I;) =-~ ("I;) . 

From this formula it is clear that I;(.$)md.~(S')=~l,t,.i1@(~)), where the polynomials ~ 

found recurrently. One can also show that 

e '~(~')- t where Or~ I~, e$#  t 
S -- e -i ' O 

~(~) be the standard Wiener process, i.e., E~C~)=0,])~(~)---~ . Then, as 

~(�89 for ~>~(~)=~ . Consequently, we have (see also [i] or [2]) 

be the standard Poisson process, i.e., E~(~) ~ . By Theorem 8, we 

Consequently, 

can be 

i. 

. 

3. 

. 
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