MAXIMUM LIKELIHOOD ESTIMATION FOR DENSITY AS AN
INFINITE-DIMENSIONAL GAUSSIAN SHIFT

S. G. Bobkov

A new approach is suggested for the nonparametric estimation of the unknown distribution density under the
assumption of the bounded variation of the true density. As an estimator there occurs a statistic based on the
application of the maximum likelihood method to the estimation of an infinite-dimensional shift of a Gaussian
process with a known correlation function. The quality of the obtained estimate is investigated.

Let xy,..., X, be a sample, extracted from a distribution F, continuous on the real axis R. It is known that for the
sample distribution F, the "normalized" random functions £,(t) = n”z(Fn(t) — F(t)) converge in distribution to the Brownian
bridge W2, more exactly, to the distribution £(£) of the Gaussian random process £(t) = WO(F(t)). Therefore, for large n, the
function £, can be considered as a one-element sample from £(£) or, equivalently, the sample function F, can be considered
as a one-element sample from the distribution of the process n~1/2¢ + F, and, consequently, with respect to one "observation”
F, the unknown F = E{n~ 12¢ 4 F} can be estimated as a shift of a centralized Gaussian process. A somewhat informal (since
the correlation function depends on F) application of the maximum likelihood method to the estimation of an infinite-
dimensional shift of a Gaussian process with a known correlation function (see [1]) leads to the following definition.

Let V be an arbitrary family of densities on R. From a sample x;,..., x, € R we define f, € V by the equality
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Definition (1) has to be understood in the following sense: if a maximum point in the right-hand side of (1) exists, then the
density P, € V is one (any) of these points. In the next statement V is such that p, is defined for almost all values of the
sample Xq,..., X, from the distribution F, whose density isp € V.
THEOREM. We assume that each density from V is a function of bounded variation and, moreover,
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Then a. s.
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Remarks. 1. The distribution of the random variable in the right-hand side of (3) does not depend on F and, therefore,
for the true p with a prescribed significance level one can construct a "confidence” ball in L%(R, dx) with center at , and
radius of order const-n~1/4. 2. By virtue of (2) we have jp%) dt <eo for all p € V and, in addition, the right-hand side
in (1) is bounded. '

The proof of the theorem is based on the lemma given below. Let V C H C E, E being a normed linear space with
norm || - ||, H is a linear subspace of E, and there is defined a bilinear form (3, x) on H X E with the following properties:
1) vny, 1 € H we have (qy, 15) = (15, 71), 2) ¥n € H we have <p, 9> = 0,3) vy € V we have | <y, x> | =
C-|x| g for any x € E.
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Properties 1) - 2) define on H X H an inner product (possibly without the separation property), which generates in
H a Euclidean distance |1 — 6] y. As in (1), we define

@(m)=mg%@m<g,x>—%llzlﬁ, @

under the condition that the maximum in (4) exists and f(x) is any of its maximum pomts
LEMMA. For all § € V and all x € E, for which §(x) is defined, we have | 8cx)—8 II2 4C Jx-01lg.
In order to apply the lemma to the theorem we have to take E to be the space of finite measures on the line (functions

of bounded variation) with the uniform norm fx | = /w,p lx($)] , H , consists of those n € E for which there exists a
density %’ of bounded variation, and

o= | ntydaiy=- addy'd).

Proof of the Lemma. [[8(x) — 8y = e=:m €V, |n—-06[g= asuch that <{»%7- 1 K'ZNH W’P{<7’x> 7 “'Z" }
such that <y~ 9,x>>/2(1|9, —lleil )=—->3QEV, g~ GMH 7 § such that -{9-8,

7<0,x>-4 181 = IneV, In- 0, 76
But <y —6,x — 6> < 2C||x — 6 g on the strength of 3). Therefore

-6 75 U~ 161%) —<-6,0>= Ip-01%, 7.
16x) —0]ly = & =>2C[x — 8|5 = &2/2. Tt remains to set & = [|8(x) — 7] 4.

We give an example of a nonparametric family. Assume that Vi consists of densities, equal to zero on (—oe, 0],
nonincreasing and left-continuous on (0, + o), and the left limit at ze1Q is < C. In this case the density p pn has the form: f, =
oy on (0, x4], P, = ay on (X', X5l,..., P, = &, on (xn-4 ,xn), Py’,"o on (x,', + o), where x;' < ... < x,' is the
variational series, constructed from the sample, while the constants oy realize the maximum (A= Zy - X, TRV x;)
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