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A new approach is suggested for the nonparametric estimation of the unknown distribution density under the 

assumption of the bounded variation of the true density. As an estimator there occurs a statistic based on the 

application of the maximum likelihood method to the estimation of an infinite-dimensional shift of a Gaussian 

process with a known correlation function. The quality of the obtained estimate is investigated. 

Let x l .... , x n be a sample, extracted from a distribution F, continuous on the real axis R. It is known that for the 

sample distribution F n the "normalized" random functions ~n(0 = nl/2(Fn(t) - F(t)) converge in distribution to the Brow~an 

bridge W ~ more exactly, to the distribution ~(~) of the Gaussian random process ~(t) = W~ Therefore, for large n, the 

function ~n can be considered as a one-element sample from ~(~) or, equivalently, the sample function F n can be considered 

as a one-element sample from the distribution of the process n-1/2~ + F, and, consequently, with respect to one "observation" 

F n the unknown F = E{n-  uz~ + F} can be estimated as a shift of a centralized Gaussian process. A somewhat informal (since 

the correlation function depends on F) application of the maximum likelihood method to the estimation of an infinite- 

dimensional shift of a Gaussian process with a known correlation function (see [1]) leads to the following definition. 

Let V be an arbitrary family of densities on R. From a sample x],. . . ,  x n @ R we define 13 n E V by the equality 

= a t ~  g~v [ n. - pd;ffd, f, . (1) 
- o 0  

Definition (1) has to be understood in the following sense: if a maximum point in the right-hand side of (1) exists, then the 

density On E V is one (any) of these points. In the next statement V is such that On is defined for almost all values of the 

sample x],. . . ,  x n from the distribution F, whose density is p E V. 

THEOREM.  We assume that each density from V is a function of bounded variation and, moreover, 

Then a. s. 

v < 
(2) 

(3) 

Remarks. 1. The distribution of the random variable in the right-hand side of (3) does not depend on F and, therefore, 

for the true p with a prescribed significance level one can construct a "confidence" ball in L2(R, dx) with center at ~3 n and 

radius of order const'n -u4.  2. By virtue of (2) we have Sp~(~)d,~; <co for all p E V and, in addition, the right-hand side 

in (1) is bounded. 

The proof of the theorem is based on the lemma given below. Let V C H C E, E being a normed linear space with 

norm 1[" II E, H is a linear subspace of E, and there is defined a bilinear form (n, x) on H • E with the following properties: 

1) Vr/1 , r/2 E H we have (r/l, r/z} = (r/z, r/l), 2) vr/ E H we have <r/, r/> _> 0, 3) u E V we have I <r/, x> I --< 
OUxU z for any x E E. 
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Properties 1) - 2) define on H x H an inner product (possibly without the separation property), which generates in 

H a Euclidean distance 11,7 - 0 II.. As in (1), we define 

~ v  i H' (4) 

under the condition that the maximum in (4) exists and 0(x) is any of its maximum points. 

LEMMA. For all 0 ~ V and all x ~ E, for which ~(x) is defined, we h av e  II ~(0c)-0 II~ .< ~0 fix- 0 lira. 
In order to apply the lemma to the theorem we have to take E to be the space of finite measures on the line (functions 

of bounded variation) with the uniform norm II0:llE=,S~p Ix(~)l , H , consists of those n ~ E for which there exists a 

density ~' of bounded variation, and 

eroofofthe Lemma. II0(x) - 0 l l .  >-- ~ =  ~n ~ v ,  Iln - 011. ---~ such that (~,x)-~=~c4~v{(~'xP-~ll~ll~J 
r , < 0 , x y - r ~ 0 1 1 H ~  3 ~ r  II~-0l l ,  ~ 6  suchthat  < ~ - e , x >  ~ - ~ ( I I ~ U Z H - I I 0 1 1 ~ ) ~ V ,  II~-0H H ~asuchthat  <?-0 .  

h . , . .  

8;r ~ - 0 >  ~ u e u ~ - n 0 1 1 , ~ - < g - 0 , 0 > = ~  ,~-011~ ~ - f .  But < n  - 0, x - 0 >  _ 2CIIx - 0 l I E  onthe strength of 3). Therefore 

II 0(x) - -  0 II. >- e ~ 2C II x - -  0 II E >-- e 2/2, It remains  to set e = II ~<x) - w II . .  

We give an example of a nonparametric family. Assume that V c consists of densities, equal to zero on ( -  ~ ,  0], 

nonincreasing and left-continuous on (0, + ~ ) ,  and the left limit at zero is _< C. In this case the density Pn has the form: Ib n = 
/ X  

al  on (0, Xl], p~ a 2 on (xl ' ,  x 2] .... , On a n on (X~_4 ' ... x n' = = , x  n) ,  p~,=0 on(xn'  , + o o ) , w h e r e x  1' < < is the 
' ' A~-- x'~) variational series, constructed from the sample, while the constants a k realize the maximum (AK= x~-xK_  ~ , 

~4 , ' "  ~'d,,+...+d,~, ~ ( ~  A, I + . . . + , ~  A~,)). w,x, "1" 

aq ~...~,t~An=~ 
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