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Variance of Lipschitz functions and an 
isoperimetric problem for a class of 
product measures 
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The maximal variance of Lipschitz functions (with respect to the /'-distance) of independent random 
vectors is found. This is then used to solve the isoperimetric problem, uniformly in the class of product 
probability measures with given variance. 
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1. Statements 

Let < = (tl,. . . , be a vector of independent random variables with finite variance 
a: = var<,, 1 5 i 5 n. Denote by F1the class of all functions on Rn which are Lipschitz 
with respect to the P '-distance 

By definition, f EF1,if for all x, y E Rn,  f (x) -f ( y ) ]I dl(x, y).  Let Sn= <I  + . . . +En. 

Theorem 1. In the class PI,the maximal value of var f (<) is attained at the function 
f (x) = xl + . . . + x,. In other words, for any f EF1, 

varf (<) 5 var Sn= xa:. 

Fernique (1981, Theorem 3.2) proved an inequality similar to (1.1) for f EF1convex. 
However, in that case < is only assumed to be symmetrically distributed, i.e. for all 6 ,  = &1, 
the random vectors ( E , < ' ,  . . . , en&) have the same distribution (of course, this assumption 
holds if the <, are i.i.d. with a symmetric one-dimensional distribution). In contrast to 
Fernique's difficult proof, Theorem 1 can easily be obtained by induction. 

Theorem 1 also has the following consequence: Denote by M n ( a )  the family of all the 
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product measures p = p1 . . . @ pn on Fin with given variance var(p) = u2 ,  where 

Hence, with the above notation, var(p) = var Sn.Now, given a set A c Rn and h > 0, 
denote by 

A ~ = A + ~ B ~={.YE Wn:d l ( a , x )  < h ,  f o r s o m e a ~ A )  

the open h-neighbourhood of A (B1 is the open t ' -unit  ball in Wn). From Theorem 1 we 
obtain a solution to the isoperimetric problem with respect to the PI-distance uniformly in 
the class M n ( a )  controlled by the parameter a .  

Theorem 2. For any h > 0,a > 0 andp  E (0, l ) ,  

if- "'j-
~ ( 1-P) 

The first infimum in (1.2) is taken over all the p E Mn(u) ,  the second is taken over all the 
Bore1 sets A of p-measure greater or equal t op .  In particular, from Theorem 2, we have: 

Corollary 3. Given a > 0 andp E (0, I ) ,  one can guarantee that , L L ( A ~ )  > p regardless of the 
dimension n 2 1, regardless of the measure p E Mn(u ) ,  and regardless of the set A c W n  of p- 
measure p,  if and only if 

Otherwise, it is possible to have p ( ~ " )  =p.  

Equality in (1.2) is easy to obtain when n = 1. Indeed, denote by 6, the unit mass at the 
point x E R. If h 5 h(p, a ) ,  take 

p =p60 + - ~ ) S h ( ~ . o ) ,  A = (0). 

Then, var(p) = a 2 ,  = (-h, h), so p ( ~ ~ )  == p  p(A). If h 2 h(p ,a ) ,  take 

p=pGo+qSY+rSh,  A={O), 

with r =pu2/(ph2 - a 2 ) ,  q = I - p  - r, x= rh/(p + q).  Then it is again easy to verify that 
var(p) = u 2 , and that p(A h ) = 1 -pa2/(ph2 - a 2 ) .  

Since equality in (1.2) is attained when n = 1, (1.2) will not change if the h-neighbour- 
hood is defined with respect to the t2-distance, or, more generally, with respect to the to-
distance in Rn ,  1 < a < +m. Indeed, the ["-unit ball B, is larger than B,, hence, 
A + hB1 cA + hB,, and therefore p(A + hB1) 5 p(A + hB,). Hence, the same inequality 
holds when one takes the second infimum in (1.2). But all the balls B, coincide when n = 1 
(in which case equality in (1.2) is attained). 
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For individual measures p (for example, for those having finite exponential moments) 
there exist estimates for 1 - , u ( A ~ )which decrease exponentially when h + +cc (see 
Talagrand 1994). For example, given a, > 0 , l  5 i I n, let p = p1 8 . . . 8 pn E M n ( a ) ,  
where pl = (6, + 6 - , ) / 2 ,  a  2 = al2 + . . . + 02. Then, as shown in Talagrand (1994, Propo- 
sition 2.1.1 ., Theorem 2.4.1 .) (see also Ledoux 1994, p. 24, for an extension to non-identical 
marginals), if h > 0,  p(A) =p, then 

When all the a, = 1, the extremal sets minimizing , u ( A ~ ) ,while p(A) = p  is fixed, are 
known, having been obtained by Harper (1966). If one minimizes ,u(A")over all convex sets 
A, the situation changes considerably, and we are then dealing with a much more powerful 
concentration principle discovered by Talagrand (1988; 1994). In particular, when all the 
u1= 1, one has 

In our case, since one is looking for a uniformly minimal value of p(A + hB1) ,it does not 
matter whether one considers convex sets or arbitrary sets, since the extremal A = ( 0 )  is 
convex. 

To complete this section, we give an inequality which is actually equivalent to the second 
part of (1.2). For non-empty sets A, B  c Rn , let dl ( A ,  B)  = inf {dl  (a,  b )  : a E A, b  E B) .  

Corollary 4. For any p  E M n ( a ) ,  and any non-empty Bore1 sets A,  B  c Rn, 

Let p(A) > O,p(B)> 0 be such that p(A)+ p(B) 5 1. Then, choosing B = { h )  with h 
equal to the right-hand side of (1.4), it is easily seen that equality in (1.4) is attained at the 
same measure p and for the same set A = ( 0 )  as the second inequality in (1.2). 

2. Proofs 

A statement slightly more general than Theorem 1 will actually be proved. Assume we have 
n measurable spaces ( X k ,  C k )  and n measurable functions hk = hk(xkryk )  defined on 
Xk x Xkr1 I k 5 n, and which vanish on the diagonal xk = yk. let Q be independent 
random variables with values in Xkr1 5 k 5 n, such that 

where qk is an independent copy of &. Put I = (tl, . . . , t n ) .  
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Lemma 5. Let f be a measurable,function dejined on XI  x . . . x Xn such that 

for x = ( X I , .  . . ,x n ) ,y = ( y l , .. . , y n )  E X I  x . . . x X,. Then 

Proof. This lemma is proved by induction on the dimension n. For n = 1, and since 2var 
f (<) = J J- ( f  (<) -f ( r1))2dp(<)dp(r l ) ,(2.2) is immediate. Assume now that (2.2) is true for 
n. Denote by ,u,+~the distribution of and by P, the distribution of the random vector 

. . ,&), thus P,+l = P, @ pn+~is the distribution of (I1,.. . Let f : X I  x . . . x 
Xn+l + R satisfy (2.1). Now, fix x n + ~ .Since the function g ( x l , ...,x,) =f ( x l ,. . . ,x,, .un+l) 
satisfies (2.1), making use of the induction hypotheses and writing (2.2) for g, we obtain: 

The function m ( . ~ , + ~ )= JgdP,  is well defined, measurable and as a function of one 
variable, 

I ~ ( X ~ + I )- m ( ~ n + 1 ) 15 ~ ~ + I ( x ~ + I > Y ~ + I ) .  

Thus m satisfies (2.l), hence 
2 

Jm2da,+i  9 ( J m d p , + l )  

Integrating (2.3) over Xn+l (with respect to P , + ~ ) ,and taking into account (2.4). gives (2.2) 
for f .  Lemma 5 and thus Theorem 1 are proved. 

Proof of Theorem 2.  Let A c W n  be such that p ( A )  5 p. Since the function 
f ( x )  = inf,,, d l ( a ,x )  belongs to P I ,we have, by Theorem 1, that varf 5 a 2 .In addition, 
f 2 0 and p ( f  = 0) 2 p. Note also that = { X  E W n  :f ( x )  < h) .  To get (1.2), it just 
remains to appeal to the following result: 

Lemma 6. For any h > 0 , a  > 0 andp  E ( 0 ,I ) ,  

where the supremum is taken over all non-negative random variables < on a probability space 
(R,  99,P )  such that P(< = 0 )  2 p and var < 9 a 2 .  
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Proof. Denote by 9 ( < )  the distribution of <. The cases of equality in (2.5) were, in fact, 
already settled in Section 1. If 

where r =pa2/(ph2 - a2) ,  q = 1 - p  - r, x = rh/(p + q), then, as easily verified. we have 
var(<) = a 2 , P(< = 0) =p, and P(< 2 h) = r =pa2(ph2- a 2 ) .  So, one need only show 
that whenever h 2 h(p, a ) ,  

To prove this, we first show. following a suggestion by M. Talagrand, that in (2.6) it 
suffices to consider only those [whose distribution is of the type 2 ( < )  =poho +p16, +p26,,, 
for some 0 I x < h. Then, keepingp2 constant, we maximize the functional J =p2 over all 
po > p and x E [0, h) such that var(<) 5 a2. 

Note first that in (2.6), < can be replaced by 7 = min(<, h) since P(7 > h) = P(< > h), 
while var(7) 5 var(<) 5 a2 (7 is a Lipschitz function of < : 7 =f (<), where f (t) = 

min(t, h)).  Then, let < take values in [0, h], have distribution v, and assume that 
v(0, h) > 0. Then, v can (uniquely) be written as 

where the distribution X is concentrated in (0, h). Let be a random variable whose 
distribution is A, and let x = E(E1). Then 

Therefore, given the mean value x, var(<) is minimal if and only if X = S,, when var 
(I,)0. Thus, <can be replaced in (2.6) by a random variable 7 which takes three values, 0, = 

x and h. 
So let us assume that 2 ( < )=poSo +p16, +p2hh, 0 5 x < h, po 2 p,  p1.p2> 0, 

po + p ,  +p2  = 1. Again, J = p 2  is constant. By simple algebra, and for fixed po lp , , p2 .  
the minimal value of 

as a function of x in (0. h), is attained at 
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For this value of x, we find 

Now, we have to maximize J =p2 under the condition 

Pop2 h2 5 a 2var (<) = -
Po +P2 

From (2.7), when po decreases, var(<) also decreases, while J =p2 = 1 -po -p l  increases 
(pl is fixed). Hence, to conclude, it is enough to consider only the case po =p. The possible 
maximal value p2 = 1 -p satisfies (2.7) if and only i fp  (1 -p)  5 a2 /h2 ,that is, if and only 
if h 5 h(p,a ) .  Otherwise, if h > h (p,a ) ,  or even if h = h(p,a ) ,  the maximal value of J =p2 
is, according to (2.7), the value which satisfies 

The only solution to this equation is given by 

Lemma 6 follows. 

Pvoof of Covollavy 4.  Let p = ,u(A),q = ,u(B).I fp  = 0 or q = 0, there is nothing to prove. If 
p + q > 1, then A nB # 0, so dl(A,B) = 0. Thus, we need consider only the casep + q 5 1. 
Let p ,  q > 0,p  + q 5 1, and assume A n B = 0. Note that 

7 

Therefore, by (1.2), 

and again by (1.2) for all 11, > 11, 1 - ,u(A1'l)< q. Hence, B n (A ' l l \  A) # 0, and therefore, 
dl(A,B) 5 h l .  Letting hl + h completes the proof. 
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