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1 IntroductionMotivation, Examples, Statements of ResultsIt is well known that the Sobolev inequalityZRn jrf(x)jd�(x) � n!1=nn �ZRn jf(x)j nn�1 d�(x)�n�1n ; n � 2;(1.1)where f is a compactly supported smooth function on the Euclidean space Rn, where �is the Lebesgue measure in Rn, and where !n is the volume of the unit ball in Rn, isequivalent to the isoperimetric property of the balls in Rn. This isoperimetric propertystates that, among all the compact sets of a �xed volume, the balls have the least surfacearea. This can also be written as�+(A) � n!1=nn (�(A))n�1n ;(1.2)where A � Rn is compact, and where �+ is the surface measure.With the best constant c = n!1=nn , (1.1) is due to Federer and Fleming [Fed{Fle,Remark 6.6] and to Maz'ya [Ma1, Theorem 6] who apparently were the �rst to pointout the equivalence between (1.1) and (1.2) (see Osserman [Oss, p.1192], Federer [Fed,p.510], [Ma2, p.69]). Equality in (1.1) is only possible asymptotically for a sequence ofsmooth functions converging to the indicator function of an arbitary ball.Rothaus [Rot, Theorem 1] found a natural extension of the equivalence between (1.1)and (1.2) for (X; d; �) where X is a Riemannian manifold equipped with its Riemannianmetric d and its Riemannian measure �. His approach which, as the one in [Fed{Fle],is based on Federer's co{area formula will be generalized to an abstract setting. Be-fore presenting such a generalization, let us introduce our framework and recall somede�nitions.Throughout the paper, (X; d; �) is a metric space equipped with a separable non{atomicBorel probability measure �, i.e., �(X1) = 1 for some separable Borel set X1 � X and�(fxg) = 0, for all x 2 X.Let A � X be a Borel set, and let �+(A) denotes the surface measure of A. Moreprecisely, and as suggested in [Oss, p.1189], �+(A) is the lower outer 1-dimensionalMinkowski �{content of the boundary of A, (see also Burago and Zalgaller [Bur{Zal,p.69]) which is de�ned by �+(A) = lim infh!0+ �(Ah)� �(A)h ;(1.3)where Ah = fx 2 X : 9a 2 A; d(x; a) < hg is the open h{neighbourhood of A. Analo-2



gously, the appropriate de�nition of the modulus of gradient isjrf(x)j = lim supd(x;y)!0+ jf(x)� f(y)jd(x; y) :(1.4)The function jrf j is always Borel measurable whenever f is continuous on X. Of course,if the function f , de�ned on X = Rn or on a submanifold X � Rn, is di�erentiable ata point x 2 X, then (1.4) de�nes jrf(x)j in the usual sense. Conversely, by Stepano�'stheorem [Fed, p.218], if for almost all x 2 X (with respect to the Lebesgue measure), theright side in (1.4) is �nite, then f is di�erentiable almost everywhere. Thus, (1.4) maybe used without any confusion for locally Lipschitz functions, i.e., for functions f suchthat for any x 2 X, there exists a ball around x where the restriction of f to this ballis Lipschitz. In our abstract framework, we apply the de�nition (1.4) to functions whichare Lipschitz on every ball, i.e., functions whose restriction to any ball is Lipschitz; andwhen X is locally compact, locally Lipschitz functions are Lipschitz on every ball.Next, following [Rot], let G be a non-empty set of pairs (g1; g2) of �-integrable func-tions on X, and let L(�) be a functional generated by G viaL(f) = sup(g1;g2)2G ZX(f+g1 + f�g2)d�;(1.5)where we used the standard notation f+ = max(f; 0); f� = max(�f; 0). The value L(f),�nite or not, is de�ned for all f such that f+g1 and f�g2 are �-integrable whenever(g1; g2) 2 G. If g1 = �g2, then (1.5) becomesL(f) = supg2G ZX fgd�;(1.6)where the sup is now taken over some set G of �{integrable functions. Examples offunctionals (1.6) include norms k � kB in many Riesz (Banach ideal) spaces B such asLebesgue spaces B = L�(X;�) with L(f) = kfk� = (RX jf j�d�) 1� ; 1 � � � +1. Weremind the reader the following de�nition: a Banach space B of �{measurable functions(with the usual identi�cation of functions which coincide almost everywhere) is calleda Riesz (or a Banach ideal) space, if for all �{measurable f , g such that jf j � jgj andg 2 B, we have f 2 B and kfkB � kgkB. In a Riesz space, the existence of therepresentation (1.6) is equivalent to the property of order semicontinuity of the norm(see, e.g., Kantorovich and Akilov [Kan{Aki, Theorem 6, p.190]): for any pointwisenon{decreasing sequence ffng � B, converging pointwise to a function f 2 B, one haskfnkB ! kfkB. In particular, any Orlicz norm can be represented in the form (1.6).Another class of functionals which admit this representation is the one given byL(f) = kf �m(f)kB;(1.7) 3



wherem(f) = RX fd�. This last class of functionals is of particular interest for probabilitymeasures because it is shift invariant, i.e., L(f + const) = L(f) and such is also themodulus of gradient functional. It is also clear that (1.7) corresponds to (1.6) for thefunctions g � m(g); g 2 G. Another interesting example of representation (1.6) is thefunctional L(f) = infa2R jjf � ajj�. On the other hand, the functionalL(f) = ZX jf j log jf jd� � ZX jf jd� log ZX jf jd� = supRX egd��1 Z jf jgd�admit the representation (1.5), but cannot be expressed in the form (1.6).For (X; d; �), and if �A is the indicator function of the set A, the extension of Rothaus'theorem can now be formulated as:Theorem 1.1 Let c � 0, then the following are equivalent:a) for all Borel measurable (or closed) sets A � X,�+(A) � cmax(L(�A);L(��A));(1.8)b) for all bounded Lipschitz functions f ,ZX jrf jd� � cL(f):(1.9)Under (1.8), if f is Lipschitz (not necessarily bounded) and if L(f) is de�ned, then it is�nite and moreover (1.9) holds.Often, the inequality (1.9) extends to functions which are Lipschitz on every ball inX. So, roughly speaking, (1.9) is true for all functions if and only if it is true for indicatorfunctions. It will also be clear that the above result, as well as many others, continue tohold for two measures, i.e., if � in the right hand sides of (1.8) and (1.9) is replaced byanother (non{atomic, separable) Borel probability measure �. In fact, often, our resultsalso continue to hold for in�nite measures �.Part of our attention will be devoted to Theorem 1.1 for Orlicz spaces LN = LN (X;�)with norm k � kN given by:jjf jjN = inf (� > 0 : ZX N  f(x)� ! d�(x) � 1) ;(1.10)where N is a non{negative, even, convex function on the real line such that N(x) = 0 onlyfor x = 0 (such N will be called a Young function, although no polynomial behavior atin�nity is assumed). Below, we will, in particular, discuss the following three questions:� How to �nd the optimal constant c in (1.9) via (1.8), if L(f) = kf �m(f)kN?4



� Does there exists a function N , as above, for which the (analytic) inequality (1.9)with L(f) = kf�m(f)kN becomes equivalent to the (geometric) isoperimetric inequalityin (X; d; �). In other words, can (1.9) be equivalent to the isoperimetric problem in(X; d; �) or, more precisely, to the extremal property of some sets in the isoperimetricproblem?� Does there exists a minimal Orlicz space which contains the Sobolev space W =W (X;�) as an embedded space? So as not to consider problems of completeness, byW we mean the space (equipped with the norm jjf jjW = RX jrf jd�) of all �{integrablefunctions f which are Lipschitz on every ball in X, and such that m(f) = RX fd� = 0.To precise our second question, let us explain what is meant here by the isoperimetricproblem. In its classical form to solve the isoperimetric problem, one needs to minimizethe \surface area" �+(A) when the \volume" �(A) = p 2 (0; 1) is constant. In otherwords, one needs to �nd the isoperimetric functionI�(p) = inf�(A)=p �+(A);(1.11)where the in�mum is taken over all Borel measurable (or, equivalently, closed) sets A � Xof measure �(A) = p, and where by our separable and non{atomic assumptions, thevalue of I�(p) is de�ned for all p 2 (0; 1). The sets Ap, of measure p, which attainthe in�mum in (1.11) are called extremal. Moreover, a set Ap is said to possess theisoperimetric property, if for all h > 0, Ap minimizes �(Ah) among all the sets of measurep. The problem of minimizing �(Ah) represents an \integral" version of the isoperimetricproblem in (X; d; �) and in some canonical cases it is equivalent to �nding (1.11). Thesetypes of connections will be further explained in the sequel.To further clarify our �rst two questions, let us see what is the information conveyedby Theorem 1.1 when L(f) = jjf � m(f)jj�, (1 � � < +1) (for � = +1, the resultbelow continue to hold replacing jj � jj� by jj � jj1 and (p�(1 � p) + p(1 � p)�)1=� bymax(p; 1 � p)).Theorem 1.2 Let c � 0, then the following are equivalent:a) for all p 2 (0; 1), I�(p) � c(p�(1� p) + p(1� p)�)1=�;(1.12)b) for all �{integrable, Lipschitz on every ball, function fZX jrf(x)jd�(x) � c �ZX jf(x)�m(f)j�d�(x)�1=� :(1.13)Moreover, the optimal constant is given byc(�) = inf0<p<1 I�(p)(p�(1� p) + p(1 � p)�)1=� :(1.14) 5



Indeed, for p = �(A), jj�A � pjj� = (p�(1 � p) + p(1 � p)�)1=�, hence (1.8) togetherwith (1.11) becomes (1.12). Furthermore, the optimal constant c = c(�) in (1.13) hasthe stated form by the very de�nition of the isoperimetric function. Thus the geometricinformation contained in inequalities like (1.13) is exactly (1.12). Moreover, it may occurthat (1.12) turns into an equality, and then (1.13) expresses (i.e., is equivalent to) theisoperimetric property of some (extremal) sets. For example, let X = R with the usualmetric, and let � be the probability distribution such that�((�1; x]) = 11 + exp(�x);for all x 2 R (in probability and statistics, � is known as the logistic distribution). Itwill be shown (see Section 13) that for the logistic distribution, the intervals (�1; x] areextremal in the isoperimetric problem, and that they moreover possess the isoperimetricproperty in the sense de�ned above. Hence by (1.11), I�(p) = p(1 � p), and for thismeasure (1.12) turns into an equality with � = 1 and c = 1=2. Therefore, in sucha situation, (1.13) is equivalent to the isoperimetric property of the intervals (�1; x].Likewise (see Section 2), for any �xed � � 1, c > 0, there exists a Borel measure � onthe real line for which (1.12) becomes an equality. For instance, if � = 2; c = 1, sucha measure � has density �(dx)=dx = (cosx)=2; jxj � �=2. As it will be seen below, thesame conclusion holds, with some constant c, for the normalized Lebesgue measure on the2{sphere. Of course, in general, the isoperimetric function di�ers from the function onthe right{hand side of (1.12). Therefore (1.13) looses part of the geometric content andcannot provide exact information about the extremal sets in the isoperimetric problem.To further illustrate Theorem 1.2, we apply it to the uniform (i.e., normed Lebesgue)distribution �n on the n{sphere Sn� � Rn+1 of radius � > 0. In this case, the isoperimetricfunction I�n can be found via the L�evy{Schmidt theorem [Lev, pp.219{222], [Sch], onthe extremal property of the balls (caps) on the sphere: I�n(p) = �+n (Ap), where Ap isan arbitrary ball of �n{measure p. For the circle (n = 1), Ap are just intervals on S1� of(Lebesgue) length (2��)p, so by (1.3), �+1 (Ap) = 1=(��), andI�1(p) = 1��; 0 < p < 1;(1.15)is thus constant. As for the best constant in (1.13), one can conclude using (1.14), andas done in Section 7, that:Proposition 1.3 For S1� , the in�mum in (1.14) is attained at p = 1=2 whenever 1 �� � 3, and then c(�) = 2=(��), and is attained at another point p(�) when � > 3, andthen c(�) depends on � decreasing from 2=(��) to 1=(��) at in�nity.6



In other words, the inequalityZS1� jrf(x)j dx2�� � 2��  ZS1� jf(x)�m(f)j� dx2��!1=� ;(1.16)holds for all 1 � � � 3, with (asymptotic) equality (and up to an additive) for f = �A1=2.When � > 3, the optimal constant is smaller, e.g., c(4) = 121=4=(��), and the extremalfunctions are of the form f = �Ap for some p 6= 1=2. For � = 1, (1.16) written for the(usual, non{normalized) Lebesgue measure, is already mentioned in [Oss, p.1205] and in[Rot, p.303] (as Feinberg's Wirtinger{type inequality) and for � = 2, it is obtained in[Rot, p.303] (it is not stressed there that when written with respect to the normalizedmeasure, the optimal constants coincide). Finally, let us note that since I�1 is not of theform (1.12), (1.13) does not involve the isoperimetric inequality on the circle whenever� � 1. On the other hand, Wirtinger's inequalityZS11 jrf(x)j2dx � ZS11 jf(x)�m(f)j2dx;which also holds for all Lipschitz functions, is equivalent to the isoperimetric property ofthe disks on the plane, i.e., to the classical isoperimetric inequality (1.2) for n = 2 ([Oss,p.1184]).For Sn� ; n � 2, and as shown in the present notes, it follows from the L�evy{Schmidttheorem that the isoperimetric function I�n can also be written analytically asI�n(p) = sn�1sn�n (�2 � F�2n (p))n�12 ;(1.17)where sn�1 = 2�n=2=�(n=2) is the area of the unit sphere Sn�11 , and where F�1n : (0; 1) �!(��; �) is the inverse of the distribution function Fn, of densitydFn(x)dx = sn�1sn�n�1 (�2 � x2)n�22 ; jxj < �:(1.18)For the 2{sphere, (1.17) and (1.18) give I�2(p) = qp(1� p)=� which coincides for � = 2,and c = 1=�, with the right{hand side of (1.12). Therefore, the Sobolev{type inequalityZS2� jrf(x)jd�2(x) � 1�  ZS2� jf(x)�m(f)j2d�2(x)!1=2is equivalent to the isoperimetric property of the balls on the 2{sphere.For n � 3, the function I�n does not have a further analytic expression beyond(1.17) and anyway, it is not of the form (1.12). It is nevertheless possible to �nd theoptimal constant and the extremal functions in (1.13) by solving the analytic problemof minimizing (1.14) for the function I de�ned by (1.17){(1.18). To do so, one can �rst7



observe that I�n(p) is asymptotically equivalent to p(n�1)=n as p! 0+, so c(�) > 0, onlyfor 1 � � � n=(n � 1). To �nd a point p of minimum in (1.14), we then suggest thefollowing useful su�cient condition (see Section 8):Lemma 1.4 Let � � 1, and let I be a non{negative function de�ned on (0; 1) such that:(i) I is symmetric about 1=2;(ii) I(0+) = I(1�) = 0;(iii) I is continuously di�erentiable on (0; 1) and dI�=dp is convex on (0; 1=2].Then, the function I�(p)=(p(1 � p)) attains its in�mum at p = 1=2. Therefore, for1 � � � 2, and for functions I� satisfying (i), (ii) and (iii) above, the minimum in(1.14) is attained at p = 1=2, i.e., the in�mum c(�) is equal to 2I(1=2).It turns out that when I = I�n, the isoperimetric function of the n{sphere (n � 2), therequirements (i){(iii) of Lemma 1.4 are ful�lled for the whole range of allowed values of�, i.e., for � 2 [1; n=(n� 1)] (see Section 9). Thus by (1.17),c(�) = 2I�n(1=2) = 2sn�1=(�sn);which does not depend on �. This is somehow unexpected, since for any individual Lip-schitz function f , the L�{norm on the right-hand side of (1.13) is an increasing functionof �, and the left side of (1.13) does not depend on � either. This discussion can besummarized in:Proposition 1.5 Let n � 2 and 1 � � � n=(n� 1). Then, for any Lipschitz function fon Sn� , ZSn� jrf(x)jd�n(x) � cn  ZSn� jf(x)�m(f)j�d�n(x)!1=� ;(1.19)where the constant cn = 2sn�1=(�sn) is optimal. For � > n=(n � 1), there is no positiveconstant satisfying (1.19).For the extremal value � = n=(n� 1), let us rewrite (1.19) with respect to the Lebesguemeasure �n on the sphere Sn� . For any Lipschitz function f with m(f) = RSn� fd�n = 0,and if kfk�;�n denotes the L�{norm with respect to �n, we havekfk�;�n � Knkrfk1;�n;(1.20)where the optimal constant Kn = s(n�1)=nn =(2sn�1) does not depend on �. For smooth fwith m(f) arbitrary, rewrite (1.20) as kfk�;�n � Knkrfk1;�n+�nsnjm(f)j, which implies8



kfk�;�n � Knkrfk1;�n + kfk1;�n:(1.21)However, Kn is now suboptimal. The optimal constant in front of jjrf jj1 in (1.21) isknown, due to Aubin [Aub, p.50], and given by K(n; 1) = 1=(n!1=nn ) = n(1�n)=n=s1=nn�1.Curiously, 1=K(n; 1) is the optimal constant in (1.1) for the Lebesgue measure in Rn. Onthe other hand, it is also clear that the optimal inequality of Aubin, applied to f �m(f)can only give (1.19) with a suboptimal constant.A remark on the cases of equality in (1.19) when n � 2, 1 � � � n=(n � 1). Equalitycan only be asymptotic for a sequence of smooth functions converging, up to an additiveconstant, to the indicator function �A1=2 of the half{sphere A1=2 and 0. Note also thatamong all the functions f with m(f) = 0, only the functions f = const(�A�1=2) (whereA has measure 1=2) are such that jjf jj� does not depend on �.It is also worthwhile to exploit Theorem 1.1 for other types of functionals. One suchfunctional of interest to both probabilists (in connection with the �th mean) and togeometers (in connection with the �rst eigenvalue problem, see Yau [Yau], Li [Li]) isjjjf jjj� = infa2R �ZX jf(x)� aj�d�(x)�1=� :Since 2jjjf jjj� � (RX jf �m(f)j�d�)1=� � jjjf jjj�, (1.13) always impliesZX jrf(x)jd�(x) � djjjf jjj�;(1.22)where d � c(�) and where c(�) is given by (1.14). One might wonder whether or notin (1.22), the constant can be sharpened, i.e., is d > c(�) possible? In many interestingcases, including the n{sphere (n � 2), the answer is negative. Indeed, by Theorem 1.1the inequality (1.22), for all bounded Lipschitz functions on (X; d; �), is equivalent to�+(A) � djjj�Ajjj�;(1.23)for all Borel measurable A � X. Now, if p = �(A), a simple computation shows that for� > 1, jjj�Ajjj�� = p(1�p)=(p 1��1+(1�p) 1��1 )��1, while for � = 1, jjj�Ajjj1 = min(p; 1�p).From (1.23), to �nd the optimal constant d(�) in (1.22) we can now appeal to:Lemma 1.6 Let 1 � � � 2, let the function I satisfy the hypotheses of Lemma 1.4, andlet d(1) = inf0<p<1 I(p)min(p; 1� p) ; � = 1;d(�)� = inf0<p<1 I(p)�p(1 � p) �p 1��1 + (1 � p) 1��1���1 ; 1 < � � 2:Then, d(1) = d(�) = 2I(1=2). 9



In other words, the in�ma above are attained at p = 1=2 and for I = I�, satisfying (i),(ii) and (iii) of Lemma 1.4,d(�) = c(�) = 2I�(1=2); 1 � � � 2:(1.24)Thus, for such isoperimetric functions I� and for 1 � � � 2, (1.13) is stronger than (1.22)when these inequalities are written with optimal constants. Of course, for � = 2, theconverse statement is true. Applying Lemma 1.6 to the sphere Sn� , we haveProposition 1.7 Let n � 2 and 1 � � � n=(n� 1). Then, for any Lipschitz function fon Sn� , ZSn� jrf(x)jd�n(x) � dn infa2R ZSn� jf(x)� aj�d�n(x)!1=� ;(1.25)where the constant dn = 2sn�1=(�sn) is optimal. For � > n=(n � 1), there is no positiveconstant satisfying (1.25).Again, the case of the circle S1� is somehow di�erent since the isoperimetric function isconstant. The optimal constant is independent of � for all values of �, this contrastsProposition 1.3.Proposition 1.8 For any Lipschitz function f on S1� , and for 1 � � � +1,ZS1� jrf(x)jd�1(x) � 2�� infa2R ZS1� jf(x)� aj�d�1(x)!1=� ;(1.26)where the constant 2=(��) is optimal.Let us further comment on Theorem 1.1 and its range of applicability. First, note that2(1��)min(p; 1 � p) � p(1 � p)=(p 1��1 + (1 � p) 1��1 )��1 � min(p; 1 � p); � � 1. Hence,Theorem 1.1 applied, for example, to the functional jjj � jjjn=(n�1) on an n{dimensional,n � 2, compact Riemannian manifold (without boundary) Mn recovers some well knownresults (see [Li, p.452]) and [Yau, p.499]). The case of the n{sphere is doubly important.First, by the L�evy{Gromov isoperimetric inequality ([Gro]), the isoperimetric function ofSn� is a lower bound for the isoperimetric function of classes of Mn. Indeed, let R(Mn)denote the in�mum, over all the unit tangent vectors of Mn, of the Ricci tensor andlet IMn be the isoperimetric function of the manifold (with respect to the normalizedRiemannian measure). If R(Mn) � (n � 1)� > 0, then for all p 2 (0; 1), IMn(p) �I�n;p��1(p), where I�n;p��1 is the isoperimetric function of the n{sphere of radius 1=p�.Thus, for such manifolds, the Sobolev constants appearing in (1.13) and (1.22), 1 � � �n=(n � 1), are bounded below by 2sn�1p�=sn = q2=�p��((n + 1)=2)=�(n=2). We also10



note that the inequalities (1.19) and (1.25) (for � = n=n � 1) are the strongest in thehierarchy of Sobolev inequalities in that they respectively imply (n > p, n integer), ZSn� jrf(x)jpd�n(x)!1=p � c ZSn� jf(x)�m(f)j npn�pd�n(x)!(n�p)=np ; ZSn� jrf(x)jpd�n(x)!1=p � d infa2R ZSn� jf(x)� aj npn�p d�n(x)!(n�p)=np ;where c = d=2 and d are now suboptimal constants (see [Li, p.453] for this last inequalityin case p = 2 and d = (n� 2)cn=2(n � 1) and where cn is as in Proposition 1.5).A second important reason for particularly considering the n{sphere stems from aclassical result usually attributed to Poincar�e. Roughly, this result states that for n large,n the standard Gaussian measure on Rn, of density (2�)�n=2 exp(�jxj2=2), x 2 Rn, issomehow almost concentrated and uniformly distributed on the sphere Sn�1� of radius� = pn� 1 (in particular, as n goes to in�nity, I�n converges pointwise to I1 while� depends on n as above). With the help of the L�evy{Schmidt theorem, Sudakov andTsirel'son ([Sud{Tsi]) as well as Borell ([Bor]) showed that the half{spaces are extremalin the isoperimetric problem for n (see also Ehrhard [Ehr] for a proof not relying on theL�evy{Schmidt theorem). The isoperimetric function for the Gaussian measure is thusgiven by In(p) = '(��1(p)), where ' is the density of the standard Gaussian measureon R, and where ��1 is the inverse of its distribution function. It can easily be checkedthat for � = n, the best constants in (1.13) and in (1.22) are non{zero only when� = 1. Hence, using respectively Lemma 1.4 and Lemma 1.6 we have, c(1) = 2I1(1=2) =q2=� = d(1). Thus, denoting by M(f) a median of f with respect to n, we have:Proposition 1.9 For any Lipschitz function f on Rn, n � 1,ZRn jrf(x)jdn(x) � s2� ZRn jf(x)�m(f)jdn(x);(1.27) ZRn jrf(x)jdn(x) � s2� ZRn jf(x)�M(f)jdn(x);(1.28)where the constant q2=� is optimal.The inequality (1.27) is due to Pisier [Pis, p.178] (with a di�erent method), and it hasalso been independently rederived using isoperimetric methods by Ledoux [Led2]. In fact,(1.19) and (1.25) respectively become (1.27) and (1.28) as n!1 and � = pn� 1. Theoptimal constant q2=� can also be found as limn!+1 2sn�1=(pn� 1sn). A characteristicfeature of the Gaussian measure is that the optimal constants in the above propositionare dimension{free, and so (1.27) and (1.28) continue to hold for in�nite dimensionalGaussian measures. Moreover, inequalities (with suboptimal constants) where both the11



gradient and the function are estimated in Lp(n); 1 < p < +1, instead of L1(n) alsofollow from (1.27) and (1.28).According to Theorem 1.1, (1.27) and (1.28) are respectively equivalent to In(p) �q2=�2p(1 � p) and to In(p) � q2=�min(p; 1 � p). These two estimates only indicatethe exponential character of the tails 1 � n(Ah) as h ! +1, while the true tails haveat most the Gaussian rate of decrease '(h)=(p2�h) (provided n(A) = 1=2). So, theremight exist a space more preferable than L1, e.g., an Orlicz space, in which Sobolev{type inequalities would say more on the isoperimetric problem. Ledoux [Led1] provedan analog of (1.27) with an existential constant for the Orlicz space LN whose norm isgenerated by the function N(x) = jxjq2 log(1 + jxj). By Theorem 1.1, this gives a lowerestimate on In which is, up to constant, asymptotically equivalent to In as p ! 0+.Pellicia and Talenti [Pel{Tal] improved this result by modifying N so that it satis�es2p(1 � p)N(1='(��1(p))) = 1, 0 < p < 1, N is linear on [0;p2�], and showed that forthis N and all smooth f , kf �m(f)kN � ZRn jrf jdn;with asymptotic equality for some sequence of smooth functions. For indicator func-tions f = �A, this inequality becomes +n (A) � k�A � n(A)kN which coincides withthe isoperimetric inequality +n (A) � In(n(A)) in case n(A) = 1=2 and di�ers fromit (and, therefore, is weaker) when n(A) 6= 1=2. So, one might wonder whether or notthere exists an Orlicz space LN (Rn; n) for which an inequality as above becomes theisoperimetric inequality for all p = n(A). This is further explained now, and a nec-essary and su�cient condition for the equivalence of a Sobolev{type inequality and ofisoperimetry is presented.Variational problems and optimal Orlicz spacesWe would now like to have another look at Theorem 1.1 for Orlicz spaces. This lookcorresponds to a probabilistic point of view according to which the variational problemof minimizing the value of RX jrf jd� should preferably be solved in terms of Ff thedistribution function of f with respect to �, i.e., Ff(t) = �ff � tg; t 2 R. From this,other types of estimations which depend on f only via Ff (like the moments of f), maybe of interest. A �rst reduction of the problem (via a co{area inequality obtained inSection 3) leads to the estimateZX jrf(x)jd�(x) � J = Z b(f)a(f) I�(1� Ff(t))dt;(1.29)where f is Lipschitz on every ball in X, a(f) = essinff and b(f) = esssupf . Thisinequality has not yet lost any geometric information, in that it implies the isoperimetric12



inequality �+(A) � I�(p). This is easily seen by applying (1.29) to a sequence of Lipschitzfunctions converging to the indicator function �A (it should also be noted here that (1.29)already appears when � = n in Ledoux [Led1]). The functional J on the right{handside of (1.29) depends only on Ff . Thus, instead of dealing with the notion of gradient,one can study this functional just assuming that f is a measurable function. So, to geta Sobolev{type inequality, for the Orlicz functional L(f) = kf �m(f)kN , one needs tominimize the L1{norm of the modulus of gradient or (equivalently!) minimize J , underthe conditions ZX fd� = a; ZX N(f)d� = b;(1.30)with a = 0 and b = 1. In general, the extremal functions which minimize J under(1.30), take at most three values whenever N is continuous. A remarkable fact explainingTheorem 1.1 for Orlicz spaces is that, for N convex, the extremal functions take at mosttwo values. Moreover, this last statement can be generalized to functions f satisfyingboundary conditions, i.e., k1 � f � k2;(1.31)where in general �1 � k1 < k2 � +1. The extremal functions which minimize Junder (1.30) and (1.31) take at most four values, two of which are k1 and k2 if they are�nite, and at most three values one of which is k1 (in case k1 > �1 and k2 = +1) ork2 (in case k2 < +1 and k1 = �1). The restrictions (1.31) appear naturally in manyinequalities such as kfkN � c1 ZX jrf jd�+ c2 ZX jf jd�;(1.32)a partial case of which is the inequality (1.21). Note that in order to �nd all the optimal(c1; c2) in (1.32), we cannot apply Theorem 1.1 since L(f) = kfkN � c2 RX jf jd� is notof the form (1.5). A possible approach to obtaining (1.32) is �rstly to note that onlynon{negative functions need to be considered in the minimizing problem and secondlyto note that ZX jrf jd�;can be minimized, using (1.29) by minimizing J under the conditions (1.30){(1.31), witharbitrary a � 0; b > N(a), putting also k1 = 0; k2 = +1. However, for our purposes,we do not consider the variational problem with boundary conditions here, although theproof of Theorem 5.1 where we study the in�mum of J carries over without essentialchanges to the boundary conditions case.Returning to our main interest (the case without boundary conditions), we combinethe above observations with (1.29) in the following statement:Let N be a non{linear (not of the form N(x) = cx+ d) convex function on the real lineR. Fix p 2 (0; 1), de�ne x = xp(a; b) as (the only) positive solution ofpN(a+ qx) + qN(a� px) = b;(1.33)and let N�(a; b) = inf0<p<1 I�(p)xp(a; b): 13



Theorem 1.10 For any b > N(a),inf ZX jrf jd� = N�(a; b);(1.34)where the in�mum is taken over all �-integrable Lipschitz (or Lipschitz on every ball)functions f on (X; d; �) satisfying (1.30).Roughly speaking, to minimize the L1{norm of the gradient under (1.30), one needonly consider functions taking two values. Note that no assumption is made on thefunction I�. Also, it is clear that setting a = 0, N(x) = jxj�, (1.33) gives xp(0; b) =(b=(p�(1 � p) + p(1 � p)�))1=�. Hence,N�(0; b) = inf0<p<1 I�(p)(p�(1� p) + p(1 � p)�)1=�b1=�;and Theorem 1.10 recovers Theorem 1.2.Let us now return to the case where N is a Young function. Without loss of generality,putting c = 1 in Theorem 1.1, we see that by (1.10), x = 1=k�A � pkN , where �(A) =p 2 (0; 1), is the only positive solution to (1.33) for a = 0 and b = 1. Therefore, theSobolev-type inequality ZX jrf jd� � kf �m(f)kN ;(1.35)for bounded Lipschitz functions, which by Theorem 1.1 (as well as by Theorem 1.10) isequivalent to the inequality �+(A) � k�A�pkN , coincides with the (exact) isoperimetricinequality �+(A) � I�(p) if and only ifk�A � pkN = I�(p);(1.36)for all p 2 (0; 1), i.e., if and only ifpN  1� pI�(p)!+ (1 � p)N  pI�(p)! = 1:(1.37)In this case and only in this case is (1.35) equivalent to the solution of the isoperimetricproblem. We are now left with the question of �nding a Young function N satisfying(1.36) or equivalently (1.37). Recall that W (X;�) denotes the space (equipped with thenorm jjf jjW = RX jrf jd�) of all �{integrable functions f which are Lipschitz on everyball in X, and such that m(f) = RX fd� = 0. The following completely characterizes theexistence of such Young functions.Theorem 1.11 There exists a Young function N satisfying (1.36) or, equivalently, (1.37)if and only if the isoperimetric function I = I� possesses the following properties:14



1) I(p) > 0; for all p 2 (0; 1); I(0+) = I(1�) = 0;2) I(p) = I(1� p); for all p 2 (0; 1);3) the function p(1 � p)=I(p) is concave on (0; 1):In this case, any Orlicz space LM(X;�), containing W (X;�) as an embedded space,contains LN (X;�) as well.If they exist, there are a lot of functions N satisfying (1.37). For example, when I(p) =p(1 � p), all the N satisfying (1.37) are described by: N(x) = (1 � 2a) + ajxj, jxj � 1,where a 2 [0; 1) is an arbitrary parameter, and where the behavior of N on [�1; 1] canalso be chosen arbitrarily (as long as N remains a Young function). For the 2{sphere ofunit radius, where I(p) = qp(1 � p), one can choose N(x) = x2; x 2 R or (see Remark10.2) N(x) = 8><>: jxj if jxj � 11� jxj+ x2 if jxj � 1.In any case, given a function I with the properties 1){3), all the Young functions Nsatisfying (1.37) generate equivalent Banach spaces. One can therefore say that there isunique minimal Orlicz space containing the Sobolev space W .We now apply this general statement to the uniform distribution on the sphere and tothe standard Gaussian measure on Rn. As a rule, the properties 1){2) are easily veri�edbut, often, 3) is not so simple.Theorem 1.12 The isoperimetric function corresponding to the uniform distribution onthe n{sphere (n � 2) and the one corresponding to the standard Gaussian measure onRn, satisfy the conditions 1){3) of Theorem 1.11.For the n{sphere, (n � 2), all the Orlicz spaces LN with N satisfying (1.37) are equivalent(via Proposition 1.5) to the Lebesgue space Ln=(n�1), which is thus minimal in the sensedescribed above. As already noted, for the circle the isoperimetric function is constant,so 1) fails. Therefore, the extremal property of the intervals on the circle cannot beexpressed via a Sobolev{type inequality (when the gradient is estimated in the L1{norm).The same conclusion is true for the two{sided exponential distribution �, of density(exp�jxj)=2; x 2 R, in which case, I�(p) = min(p; 1 � p), so 1){2) are ful�lled but 3)fails.Isoperimetry and Sobolev Inequalities on the real line.To �nish these notes, our setting is R equipped with a non{atomic Borel probability15



measure. In that context, we study isoperimetry for a class of \regular" �. By \regular",we mean those measures whose distribution function F is concentrated on an interval(�nite or not) (aF = inffF > 0g; bF = supfF < 1g) and such that F is absolutelycontinuous with positive and continuous density f . For those probability measures, wegive necessary and su�cient conditions under which the intervals (�1; x] are extremalin the isoperimetric problem. In this case, these intervals turn out to also be extremal inthe \integral" problem, i.e., they possess the isoperimetric property. The isoperimetricfunction for such � is of the form I�(p) = f(F�1(p)), where F�1 is the inverse of F , and infact, any such � is the Lipschitz image of the double exponential distribution. Symmetric(around a point) log{concave measures satisfy these su�cient conditions. This implies,in particular, that if � is a symmetric log{concave measure, thenZR jf �m(f)jd� � c(�) ZR jf 0jd�;for some �nite, positive constant c(�) and all integrable smooth functions f .Then, to better understand the possible behavior of I�, we look for its analytic expressionwhen � is unimodal (log{concave, not necessarily symmetric, measures are unimodal).An analytic expression for I� can help to �nd the optimal (as previously de�ned) Orliczspace. However, it is possible (as shown in Section 14) to �nd the optimal constant c in(1.9) for L(f) = kf �m(f)kN without knowing I�. To this end, we �nd the \minimal"(for the pointwise order) weight w for which the Sobolev inequalitykf �m(f)kN � ZR jf 0(x)jw(x)dx;holds for all smooth functions f on R. The paper concludes by presenting a simpleinduction process which allow to extend some of these inequalities to product probabilitymeasures on Rn.Organization of the paper.The paper is divided into several sections.Section 2. We discuss here two approaches to the de�nition of the isoperimetricproblem. In particular, we look for an equivalent \integral" form �(Ah) � Rh(�(A)) forthe isoperimetric inequality �+(A) � I�(A).Section 3. A co{area inequality is proved from which Theorem 1.1 follows.Sections 4,5,6. Theorem 1.10 is proved. Although this statement is a partial caseof Theorem 1.1 when N is a convex function, and although its proof is much longerthan that of Theorem 1.1, the arguments developed there are important for probabilistic16



extensions. In Section 4 the equivalence of (1.29) and of the isoperimetric inequality isstated. In Sections 5 and 6 the functional J is minimized under (1.30) (Section 6 onlydeals with the discrete version of Theorem 1.10).Section 7. Proposition 1.3 and 1.8 are proved. In fact, the behavior of the functionI�(p) = ((p�(1 � p) + p(1 � p)�))1=� is studied.Section 8. A partial case of Theorem 1.2 is studied, Lemma 1.4 and 1.6 are proved.Section 9. The isoperimetric function of the n{sphere, n � 2 is found and Proposition1.5 and 1.7 are proved.Section 10. Theorem 1.11 is proved.Section 11 and 12. Theorem 1.12 is respectively proved for the sphere and for Gaussspace.Section 13, 14 and 15. Isoperimetry and Sobolev type inequalities are studied on R.Some extensions of these inequalities from R to Rn are presented.
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2 Some connections between di�erential and inte-gral forms of isoperimetric inequalitiesAgain, let (X; d; �) be a metric space with a separable and non{atomic Borel probabilitymeasure �. Therefore for any p 2 (0; 1), there exist closed sets A � X of �-measure p,so that the function I�(p) = inf�(A)=p �+(A);(2.1)where the in�mum is taken over all Borel measurable sets of measure p, is well-de�nedon (0; 1). This in�mum can also be taken over all closed sets of measure p. Indeed, forarbitrary A � X, Th>0Ah = �A, where �A is the closure of A. Hence if �( �A)� �(A) > 0,�(Ah)� �(A)h � �( �A)� �(A)h ! +1;as h ! 0+, thus �+(A) = +1 and (2.1) can be taken over all sets A such that �( �A) =�(A) = p. But for such sets, and taking into account the identity Ah = �Ah (valid for anyA � X), we have �(Ah) � �(A) = �( �Ah) � �( �A). Therefore �+(A) = �+( �A), and onlyclosed sets of measure p need to be taken in (2.1). In fact, this also applies to all theinequalities of the form �+(A) � I(�(A));(2.2)and, in particular, when I is the isoperimetric function I�.In this section, we look for an inequality of the type�(Ah) � Rh(�(A));(2.3)for some function Rh, which would be equivalent to (2.2). For example, p = �(A), theinequalities �+(A) � 2cp(1 � p); and �+(A) � c(p(1 � p))1=2;(2.4)which are just (1.12) for � = 1 and � = 2, (c is a positive constant), turn out to berespectively equivalent, to�(Ah) � pp+ (1 � p) exp(�2ch) ; h > 0;(2.5)and �(Ah) � 12(1� cos(ch)) + p cos(ch) + (p(1 � p))1=2 sin(ch);(2.6)0 < ch � �=2 � arcsin(2p� 1).Now, let I be a positive and continuous function on (0; 1), and letaI = � Z 1=20 dpI(p) ; bI = Z 01=2 dpI(p) ;18



where �1 � aI < 0 < bI � +1. Let also FI be the unique function from R to [0,1]such that(i) FI is continuous and non{decreasing on R;(ii) FI(a+I ) = 0, FI(0) = 1=2, FI(b�I ) = 1;(iii) FI has a positive continuous derivative fI on (aI; bI) and for all p 2 (0; 1),fI(F�1I (p)) = I(p);(2.7)where F�1I : (0:1) �! (aI ; bI), is the inverse of FI restricted to (aI; bI). Note that FI canbe de�ned on (aI ; bI) as the inverse of the functionF�1I (p) = Z p1=2 dtI(t); 0 < p < 1:(2.8)With the above notation, we now have:Theorem 2.1 Let I be a positive continuous function on (0; 1), then the following state-ments are equivalent:(a) For all h > 0, and for all Borel measurable A with 0 < �(A) < 1,�(Ah) � FI(F�1I (�(A)) + h):(2.9)(b) For all Borel measurable A with 0 < �(A) < 1,�+(A) � I(�(A)):(2.10)(c) For any h > 0, let the h-neighbourhood of any open ball D(x; r) � X be a ball.The inequality (2.10) is satis�ed for all sets A, with 0 < �(A) < 1, which are �niteunions of open balls in X.Before presenting the proof of this theorem, let us provide some comments and examples.If I = I�, is known one can, with the help of (2.9), estimate the best function in (2.3),i.e., the function Rh(p) = inf�(A)=p �(Ah):(2.11)Moreover, if the extremal sets Ap in the isoperimetric problem (2.1) exist and possessthe property �(Ahp) = FI(F�1I (�(A)) + h);(2.12)for all h > 0, then these sets minimize the in�mum in (2.11), thus providing the solutionto the \integral" isoperimetric problem (2.11). The property (2.12) is therefore su�cientto pass from the original problem (2.1) to the \integral" one (2.11).19



Here are some examples of extremal sets which satisfy (2.12): the balls on the spherewith respect to the uniform distribution; the half{spaces for the standard Gaussian mea-sure; the intervals of the form (�1; x] for an arbitrary symmetric log{concave distribu-tion on the real line (see Section 13). On the other hand, the extremal sets in the integralproblem (2.11) for the exponential distribution on [0;+1), of density exp(�x); x � 0,do not satisfy (2.12). They depend on h and are either intervals of the form [0; a] orintervals of the form [b;+1). In this last case, I�(p) = min(p; 1 � p) coincides with theisoperimetric function for the two{sided exponential law of density (exp�jxj)=2; x 2 R(again, see Section 13). It is easily checked that the value Rh(p), de�ned by (2.11) isgreater than the right{hand side of (2.9). Note also that the function I� does not changewhen the metric d is replaced by an equivalent one, but Rh(p) is essentially determinedby the metric.Let us see how to apply the above theorem to the function I(p) = 2cp(1 � p). From(2.8), we get F�1I (p) = (log (p=1 � p))=2c, i.e.,FI(x) = 11 + exp(�2cx); x 2 R;and �nally, FI(F�1I (p) + h) = pp+ (1 � p) exp(�2ch) ; h > 0:This proves the equivalence between (2.5) and the �rst inequality in (2.4). For the otherexample, when I(p) = c(p(1 � p))1=2, we then havecF�1I (p) = Z p1=2 dt(t(1� t))1=2 = arcsin(2p � 1):Therefore FI(x) = (1 + sin(cx))=2, jcxj � �=2, andFI(F�1I (p) + h) = 1 + sin(arcsin(2p � 1) + ch)2= 1 + (2p � 1) cos(ch) + cos(arcsin(2p � 1)) sin(ch)2 ;which clearly coincides with the right{hand side of (2.6). The condition 0 � ch ��=2�arcsin(2p�1) corresponds to F�1I (p)+h � bI = �=2, otherwise FI(F�1I (p)+h) = 1.When � 6= 1; 2, an equivalent form for (1.12) is of more complicated nature.We now formulate the equivalence of part b) and c) of Theorem (2.1) separately tomake further use of it in our next remark.Corollary 2.2 For any h > 0, let the h{neighbourhood of any open ball D(x; r) � Xbe a ball. If (2.10) is satis�ed for the sets A, with 0 < �(A) < 1, which are �nite20



unions of open balls in X, then it is satis�ed for all Borel measurable sets A � X, with0 < �(A) < 1.Example 2.3 Let X = S1� � R2 be the circle of radius � in the plane and let � = �1 bethe uniform distribution on S1� , i.e., � = �1=(2��), where �1 is the Lebesgue measure onthe circle. Then for any set A � X, with 0 < �(A) < 1, representable as a �nite union ofdisjoint open intervals Dk, 1 � k � N , we have that 2���+(A) is the number of pointsof the Dk which do not belong to the closure of other intervals. Anyhow, 2���+(A) � 2,with equality for N = 1. Therefore, by Corollary 2.2, this last inequality remains truefor any Borel measurable A � X, with 0 < �(A) < 1, and we �nally obtain that, for allp 2 (0; 1), I�(p) = 1��:(2.13)Using (2.8) as well as the equivalence of (2.9) and (2.10), (2.13) can also be written as:�(Ah) � min �(A) + h��; 1! ;(2.14)which is valid for any Borel measurable A � X, with 0 < �(A) < 1. (2.14) is a one-dimensional (and, of course, trivial) case of the L�evy{Schmidt theorem on the isoperi-metric property of the balls on the sphere. Note also that, in this case, the inequality�+(A) � I�(�(A)) fails if �(A) = 1 or if A = ;. On the other hand, (2.14) fails only forthe empty set.Proof of Theorem 2.1. The proof of the equivalence of a) and b) does not di�er fromthat of a) and c), so we simply prove the latter. Trivially from (2.7), a) implies c) andone needs only to prove the converse implication. Given h � 0, 0 < p < 1, setRh(p) = F (F�1(p) + h);(2.15)where F = FI , and set also Rh(0) = 0, Rh(1) = 1. Then, Rh forms a family of non{decreasing continuous functions on [0; 1] with the following semi{group property: for allh, h0 � 0: Rh+h0 (p) = Rh(Rh0(p));(2.16)for all p 2 [0; 1]. Indeed, (2.16) is trivial for p = 0. Then let p > 0, and Rh0(p) < 1 (hencep < 1), and by (2.15), Rh0(p) = F (F�1(p) + h0). Since 0 < Rh0(p) < 1, we then haveRh(Rh0(p)) = F (F�1(Rh0(p) + h) = F (F�1(p) + h+ h0) = Rh+h0 (p):If Rh0(p) = 1, then Rh(Rh0(p)) = Rh(1) = 1, and also 1 � Rh+h0(p) � Rh0(p) = 1, sinceRh is a non{decreasing function of h. Thus again, Rh+h0 (p) = Rh0(p) = 1 and (2.16) isestablished.Now we need to show that, for all Borel measurable sets A � X,�(Ah) � Rh(�(A)):(2.17) 21



First, we slightly modify (2.17) by introducing a parameter � > 1 and de�ningR�h(p) = F  F�1(p) + h�! ; 0 � p � 1; h � 0:As for � = 1, the family R�h satis�es (2.16). First, we prove that for �nite unions A ofopen balls in X and for all h > 0,�(Ah) � R�h(�(A)); � > 1:(2.18)Then, letting �! 1 we will obtain (2.17) for the same sets. Fix such a set A of measure0 < �(A) < 1, and put� = fh > 0 : (2:18) is true for all h0 2 (0; h]g:Note that the function h �! R�h(�(A)) is continuous on [0;+1), and that the functionh �! �(Ah) is left continuous on (0;+1). Therefore, to prove that � = (0;+1), itsu�ces to show thati) � 2 �, for � > 0 small enough;ii) If h 2 �, then h+ � 2 �, for � > 0 small enough.For � > 0 small enough, and by the de�nition of �+,�(A�) � �(A) + �+(A)�+ o(�):(2.19)On the other hand, the Taylor expansion of R�h(p) at h = 0 givesR�� (�(A)) = �(A) + f(F�1(�(A)) �� + o(�)= �(A) + I(�(A)) �� + o(�);(2.20)where f = fI . By the assumption (2.10), �+(A) � I(�(A)), and comparing (2.19) and(2.20), we get (2.18) for h > 0 small enough, i.e., we proved i). Suppose now thath 2 �. If �(Ah) > R�h(�(A)), then this inequality remains true for all h + � with �small enough since the function h �! �(Ah) is non{decreasing, and since the functionh �! R�h(�(A)) is continuous. In the other possible case, i.e., when �(Ah) = R�h(�(A)),put B = Ah, and note that Ah+� = B� for all � > 0. If �(B�) = 1, for all � > 0, thenh 2 � automatically. Suppose now that �(B�0) < 1 for some �0 > 0, and let � 2 (0; �0).In particular, 0 < �(B) < 1, and since by assumption, A = D1 [ � � � [Dn is the union ofthe balls Di, then Ah = Dh1 [ : : : [Dhn is also an union of balls. Therefore, (2.10) can beapplied to B and �+(B) � I(�(B)). Again, writing (2.19) and (2.20) for B one gets�(B�) � �(B) + �+(B)�+ o(�);R�� (�(B)) = �(B) + f(F�1(�(B)) �� + o(�)= �(B) + I(�(B)) �� + o(�);22



and thus concludes that �(B�) � R�� (�(B)), for all � > 0 small enough. It remains tonote thatR�h+�(�(A)) = R�� (R�h(�(A))) = R�� (�(Ah)) = R�� (�(B)) � �(B�) = �(Ah+�):Therefore h+� 2 � for all � > 0 small enough. Thus, (2.18) and therefore (2.17) are truefor any set A, with 0 < �(A) < 1, and which is a �nite union of open balls. If �(A) = 0or 1, (2.17) is automatically true.IfA is an arbitrary open set inX, then since � is separable, there exists a sequence of openballsDi � A; i � 1, such that �(An) �! �(A) as n!1, whereAn = D1[� � �[Dn. Since(2.17) is valid for An, it extends to A and (2.17) extends to all open sets. Now, letK � Xbe closed. The set K� is open, hence for all h > 0, �((K�)h) = �(Kh+�) � Rh(�(K�)).Letting � ! 0+, and since T�>0A� = �A, we get � �Kh� � Rh(�(K)), for all h > 0. Butfor all h0 < h, Kh0 � Kh and therefore �(Kh) � � �Kh0� � Rh0(�(K)). Letting h0 ! h�,we obtain �(Kh) � Rh(�(K)). Finally, for an arbitrary Borel measurable set A, thereexists a sequence of closed sets Kn � A such that �(Kn) ! �(A) as n ! 1, hence forall h > 0, �(Ah) � �(Khn ) � Rh(�(Kn))! Rh(�(A));as n!1. Theorem 2.1 is thus proved.
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3 Proof of Theorem 1.1Lemma 3.1 (Co-area Inequality) Let f be a Lipschitz function on X, thenZX jrf(x)jd�(x) � Z +1�1 �+fx 2 X : f(x) > tgdt:(3.1)Remark 3.2 If f is Lipschitz on every ball in X, the function jrf j is Borel measurableand �nite. Indeed, jrf(x)j = limn!1 supd(x;y)<1=n jf(x)� f(y)jd(x; y)is Borel measurable as the monotone limit of a sequence of lower semi{continuous func-tions. Finiteness follows from the Lipschitz property.Remark 3.3 Let A � X be Borel measurable, and let r take only rational values.Whenever h > 0, [0<r<hAr = Ah, hence for any � > 0,inf0<h<� �(Ah)� �(A)h = inf0<r<� �(Ar)� �(A)r :(3.2)Therefore, lim infr!0+ �(Ar)� �(A)r = �+(A):Thus, for any non{increasing family of Borel measurable sets At; t 2 R; the functiont �! �+(At) is Borel measurable (on the real line), and so is the integrand on the righthand side of (3.1).Remark 3.4 Since �+(;) = �+(X) = 0; the second integral in (3.1) is in fact taken overthe interval (a(f); b(f)), where a(f) = ess inf f , and where b(f) = ess sup f .Remark 3.5 It should be noted that the proof of Lemma 3.1 does not require anyassumption on the Borel probability measure � (not even that � is non{atomic). Equalityin (3.1) requires some additional properties of �, such as non{singularity. In fact, letX = R with its usual metric, let � be an arbitrary Borel probability measure on R andlet � denote the absolutely continuous (with respect to the Lebesgue measure) part of�. If f(x) = x, then p(t) = �+fx 2 X : f(x) > tg is a Radon{Nikodym derivative (withrespect to the Lebesgue measure) of �, and (3.1) becomes�(R) � 1:24



Therefore, and for X = R, equality in (3.1) requires that � = �, i.e., that � is absolutelycontinuous. As well known, the \usual" coarea formula tells us that this property is alsosu�cient.To prove Theorem 1.1, we will also need the following result which is an immediateconsequence of Lemma 3.1.Corollary 3.6 Let f be a Lipschitz function on X, such that �fx 2 X : f(x) = 0g = 0.Then,ZX jrf(x)jd�(x) � Z 0�1 �+fx 2 X : f(x) < tgdt+ Z +10 �+fx 2 X : f(x) > tgdt:Proof. It is enough to apply Lemma 3.1 to f+ and f� and to also note that jrf j =jrf+j+ jrf�j on the open set fx 2 X : f(x) 6= 0g.Proof of Lemma 3.1. First, let us assume that f is bounded. Then, without loss ofgenerality one may assume that f � 0, since the left and the right hand side of (3.1)remain unchanged if a constant is added to f . Since f is Lipschitz on X,jf(x)� f(y)j � cd(x; y);(3.3)for some c > 0 and all x; y 2 X. Then, letfh(x) = supd(x;y)<h f(y);where h > 0, and let At = fx 2 X : f(x) > tg: Then, for all t 2 R and h > 0; the setfx 2 X : fh(x) > tg = fx 2 X : f(x) > tgh = Aht is open as the open h{neighbourhoodof At. Therefore fh is lower semi{continuous and in addition,ZX fhd� = Z +10 �fx 2 X : fh(x) > tgdt = Z +10 �(Aht )dt:Since RX fd� = R+10 �(At)dt; we haveZX fh � fh d� = Z +10 �(Aht )� �(At)h dt:(3.4)From (3.3), fh(x) � f(x) � ch, for all x 2 X and h > 0, hence the integrand onthe left hand side of (3.1) is bounded. Therefore, using (3.4), the Lebesgue dominatedconvergence theorem and Fatou's Lemma (via property (3.2)) and noting thatlim suph!0+ fh(x)� f(x)h = lim supy!x f(y)� f(x)d(x; y) � jrf(x)j;25



we get ZX jrf jd� = ZX lim suph!0+ fh � fh d� � lim suph!0+ ZX fh � fh d�� lim infh!0+ ZX fh � fh d� = lim infh!0+ Z +10 �(Aht )� �(At)h dt� Z +10 lim infh!0+ �(Aht )� �(At)h dt = Z +10 �+(At)dt:Thus, (3.1) is established for f Lipschitz and bounded. Let now f be an arbitraryLipschitz function. Let an be an increasing sequence of positive numbers such thatlimn!+1 an = +1, and such that the sets Dn = fx 2 X : jf(x)j = ang have ��measure0, for all n. Let An = fx 2 X : jf(x)j < ang, and de�ne the functionfn(x) = 8>>>>><>>>>>: f(x); if jf(x)j < anan; if f(x) � an�an; if f(x) � �anThat is, fn(x) = maxf�an;minfan; f(x)gg, so fn is also a Lipschitz function (of Lipschitzconstant at most max(c; 1)) and thus one can apply (3.1) to fn. Since on An, which isopen, f = fn, we have jrfn(x)j = jrf(x)j, for any x 2 An. Now, the setsBn = fx 2 X : f(x) < �ang; Cn = fx 2 X : f(x) > angare also open, and fn is constant on both Bn and Cn, so jrfnj = 0 on Bn [ Cn. Inaddition, Dn = X n (An [ Bn [ Cn) has ��measure 0, consequently taking into accountRemark 3.4, (3.1) can be written asZAn jrf(x)jd�(x) � Z an�an �+fx 2 X : f(x) > tgdt:(3.5)Finally, applying Tonelli's monotone convergence theorem, we get (3.1) from (3.5).Proof of Theorem 1.1.a) ) b): Without loss of generality, let c = 1. We only need to consider the case ofsingle pair sets G = f(g1; g2)g. Indeed, ifL(g1;g2)(f) = ZX(f+g1 + f�g2)d� � ZX jrf jd�(3.6)follows from �+(A) � max(L(g1;g2)(�A);L(g1;g2)(��A)), then taking the supremum in(3.6) over all (g1; g2) 2 G will give L(f) � RX jrf jd�, under the condition �+(A) �max(L(�A);L(��A)). Now, let L = L(g1;g2) and assume that�+(A) � max(L(�A);L(��A));(3.7) 26



for any Borel measurable A � X. First assume that �fx 2 X : f(x) = 0g = 0, then byCorollary 3.6, and by (3.7), we have putting At = ff > tg and Bt = ff < tg:ZX jrf(x)jd�(x) � Z +10 L(�At)dt+ Z 0�1 L(��Bt)dt= Z +10 ZX �At(x)g1(x)d�(x)dt+ Z 0�1 ZX �Bt(x)g2(x)d�(x)dt= ZX Z +10 �At(x)g1(x)dtd�(x) + ZX Z 0�1 �Bt(x)g2(x)dtd�(x)= ZX �A0(x)f(x)g1(x)d�(x) + ZX �B0(x)f(x)g2(x)d�(x)= ZX f+g1d� + ZX f�g2d� = L(f):Hence, (3.6) is proved when �fx 2 X : f(x) = 0g = 0, note also that we have appliedFubini's Theorem to change the order of integrations. This is valid since using theintegrability of f+g1 and of f�g2, we have RX R+10 �At(x)jg1(x)jdtd�(x) = RX f+jg1jd� <+1, and RX R 0�1 �Bt(x)jg2(x)jdtd�(x) = RX f+jg2jd� < +1.Let us now show how to get rid of the extra assumption �fx 2 X : f(x) = 0g = 0.Let C = fa 2 X : �(f = a) > 0g, then C is at most countable and by the previousarguments, for any a 62 C,L(f � a) � ZX jr(f � a)jd� = ZX jrf jd�;(3.8)whenever (f � a)+g1 and (f � a)�g2 are �{integrable which is always true by the inte-grability of f+g1; f�g2; g1 and g2. In addition for this same last reason,L(f � a) = ZX(f � a)+g1d� + ZX(f � a)�g2d� �! L(f);as a! 0. Therefore, (3.8) holds for a = 0 and b) is established.b)) a): Again, and without loss of generality, let c = 1. By (1.9), for any boundedLipschitz function f � 0 on X, and for all (g1; g2) 2 G,ZX jrf jd� � ZX fg1d�; ZX jrf jd� = ZX jr(�f)jd� � ZX fg2d�:(3.9)Now we approximate sets A by Lipschitz functions f . Let A � X be a closed set suchthat 0 < �(A) < 1. For any � > 0, there exists a Lipschitz function f � on X with valuesin [0; 1], of Lipschitz constant at most 1=� such that f � = 1 on some open neighbourhoodof A and f � = 0 on X nA�. One may choose, for example,f �(x) = max�1 � 1� d(x;A �2 ); 0� ;27



where for B a non{empty subset of X, d(x;B) = inffd(x; b) : b 2 Bg. By (1.4), jrf �j �1=� everywhere (since the function d(x;B) has Lipschitz constant at most 1 when B ischosen as above), and jrf �j = 0 on X nA�. Hence,ZX jrf �jd� � �(A�)� �(A)� :Taking into account that for all �0 < �, A�0 � A�; we have�+(A) = lim inf�!0+ �(A�)� �(A)� � lim inf�!0+ ZX jrf �jd�:(3.10)On the other hand, since A is closed, f � converges pointwise, as �! 0+, to the indicatorfunction �A, hence whenever g is �-integrable, RX f �gd�! RX �Agd�, as �! 0+. So,lim�!0+ ZX f �g1d� = ZX �Ag1d�; lim�!0+ ZX f �g2d� = ZX �Ag2d�:(3.11)Now (3.10), (3.9) and (3.11) yield�+(A) � ZX �Ag1d�;(3.12) �+(A) � ZX �Ag2d�;(3.13)whenever (g1; g2) 2 G. Taking the supremum over all (g1; g2) 2 G in respectively (3.12)and (3.13) gives �+(A) � L(�A) and �+(A) � L(��A). Thus, a) follows for all closedsets A � X, with 0 < �(A) < 1. If A is Borel measurable but not closed, then twocases occur. Either �(A) > �(A), then as noted in Section 2, �+(A) = +1, hence thereis nothing to prove. Or, �(A) = �(A), then L(�A) = L(�A);L(��A) = L(��A), and�+(A) = �+(A), as again noted in the previous section.We are thus just left with the case �(A) = 0 and �(A) = 1. If �(A) = 0, then byde�nition L(�A) = 0 and (1.8) holds since �+(A) � 0 = L(�A). Let now �(A) = 1, thenapplying (1.9) to f1 = 1 and f2 = �1, we obtain0 = L(f1) = sup(g1;g2)2G ZX g1d�; 0 = L(f2) = sup(g1;g2)2G ZX g2d�:Hence, RX g1d� � 0; RX g2d� � 0 and therefore, �+(A) � 0 � L(�A); �+(A) � 0 �L(��A). The proof of Theorem 1.1 is complete.28



4 The isoperimetric problem as a relation betweenthe distribution of a function and its derivativeLet f be a function on (X; d) which is Lipschitz on every ball, and let Ff(t) = �fx 2 X :f(x) � tg; t 2 R; be its distribution function with respect to the measure �.Theorem 4.1 Let I be a non{negative continuous function on (0; 1). If for all Borel setsA � X, with 0 < �(A) < 1, �+(A) � I(�(A));(4.1)then for any function f which is Lipschitz on every ball in X,ZX jrf(x)jd�(x) � Z b(f)a(f) I(1� Ff(t))dt;(4.2)where a(f) = ess inf f and b(f) = ess sup f . Conversely, if (4.2) holds for all boundedLipschitz functions, then (4.1) also holds for all Borel sets A � X, with 0 < �(A) < 1.Remark 4.2 If I(0+) = I(1�) = 0, then (4.2) takes the formZX jrf(x)jd�(x) � Z +1�1 I(1� Ff (t))dt:Proof. For f bounded and Lipschitz, Lemma 3.1 as well as (4.1) imply (4.2). For fbounded and Lipschitz on ever ball, a truncation argument can be used to prove theresult. Let Tr(x) = 8>>>>><>>>>>: 1; if d(a; x) < rr + 1� d(a; x); if r � d(a; x) � r + 10; if d(a; x) > r + 1;where r > 0, x 2 X, and where a is a �xed point in X. Clearly, the function Tr isLipschitz, of Lipschitz constant at most 1. Let fr(x) = f(x)Tr(x), then fr is a boundedLipschitz function of Lipschitz constant at most dr = f(a)+rCr, where Cr is the Lipschitzconstant of f on the open ball D(a; r). In addition, since the sets D(a; r) and fx 2 X :d(a; x) > r + 1g are open, we have by (1.4):jrfr(x)j = 8><>: jrfr(x)j; if d(a; x) < r0; if d(a; x) > r + 1:29



Let r < d(a; x) < r + 1, r < d(a; y) < r + 1. Then,fr(y)� fr(x) = f(y)(r + 1 � d(a; y))� f(x)(r + 1 � d(a; x))= (f(y)� f(x))(r + 1 � d(a; y)) + f(x)(d(a; x)� d(a; y)):Therefore, jfr(y)� fr(x)j � jf(y)� f(x)j+ jf(x)jd(x; y);hence jrfr(x)j = lim supy!x jfr(y)� fr(x)jd(x; y) � jrf(x)j+ jf(x)j:Note that, �fx : d(a; x) = rg + �fx : d(a; x) = r + 1g = 0, for all r > 0, except maybe,for countably many r. So, not taking such values of r, we haveZX jrfrjd� � ZX jrf jd� + ZX jf(x)j�fr<d(a;x)<r+1g(x)d�(x):(4.3)Now, let ur = 1�Fr, where Fr is the distribution function of fr with respect to �. Whenr ! +1, fr converges to f pointwise and therefore, ur converges to u weakly. Thatis, ur(t) �! u(t), and by the continuity of I, I(ur(t)) �! I(u(t)), for every point ofcontinuity of u. Consequently, since u is non{increasing, this convergence takes place forall t except countably many t. In addition, a(fr) �! a(f), b(fr) �! b(f) as r ! +1:Again, applying Fatou's Lemma to the right hand side of (4.2) with fr and noting that,since f is bounded, the last integral in (4.3) tends to zero as r! +1, we �nally obtainZ b(f)a(f) I(1� Ff (t))dt = Z +1�1 I(u(t))�(a(f);b(f))(t)dt= Z +1�1 lim infr!+1 I(ur(t))�(a(fr);b(fr))(t)dt� lim infr!+1 Z +1�1 I(ur(t))�(a(fr);b(fr))(t)dt� lim infr!+1 ZX jrfrjd�� ZX jrf jd�:The inequality (4.2) is thus proved for f bounded and Lipschitz on every ball. If f isunbounded, one can use a truncation argument similar to the one used in the proof ofLemma 3.1. Let fn(x) = maxf�an;minfan; f(x)gg;where an is an increasing sequence such that an ! +1; and �fx 2 X : jf(x)j = ang =0. Clearly, fn is Lipschitz on every ball, and since jfnj � an, one can apply (4.2) tofn. Finally, letting n ! 1, (4.2) for such f follows by applying Tonelli's monotoneconvergence theorem to the left hand side of (4.2) and Fatou's lemma to the right handside of (4.2). 30



This proves the direct part of the theorem, and it just remains to prove the converse. LetA � X be a closed set such that 0 < �(A) < 1. As in the proof of Theorem 1.1, takingthe family of Lipschitz functions f �, � > 0, which approximate the indicator functionf = �A. We have that ZX jrf �jd� � �(A�)� �(A)� :(4.4)Since f � converges pointwise to f , as �! 0+, F� the distribution function (with respect to�) of f � converges weakly to the distribution function F of f . In other words, F�(t) �!F (t) as � ! 0, for all t except at t = 0 and t = 1 where F is discontinuous. So, thecontinuity of I and once more Fatou's lemma givelim inf��!0 Z 10 I(1� F�(t))dt � Z 10 I(1� F (t))dt = I(�(A)):(4.5)Note that, for all � > 0, ess inf f � � ess inf f = 0; ess inf f � ! 0 as �! 0+, and ess supf � = ess sup f = 1. So, we get from (4.2), (4.4) and (4.5), taking into account that forall �0 < �, A�0 � A�: I(�(A)) � lim inf�!0+ ZX jrf �jd�� lim inf�!0+ �(A�)� �(A)�= lim inf�!0+ �(A�)� �(A)�� �+(A):At noted at the beginning of Section 2 (see (2.2), the inequality �+(A) � I(�(A)) extendsto all Borel sets A of measure 0 < �(A) < 1. This completes the proof of Theorem 4.1.
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5 A variational problemIn order to minimize the value of ZX jrf jd�;(5.1)under the conditions ZX fd� = a; ZX N(f)d� = b;(5.2)where a and b are �xed constants and whereN : R �! R is an arbitrary convex function,the inequality (4.2) will be used. The �rst restriction in (5.2) requires that f should be�{integrable. In this case, the second integral in (5.2) always exists, being �nite or not,because RX max(N(f); 0)d� = RX max(�N(f); 0)d� = +1 cannot occur for N convexand f integrable. Thus, the integrability of f is the only restriction in our problem.If the function N is linear, i.e., of the form N(x) = cx+ d, then b = ca+ d, the in�mumof (5.1) is zero and is attained for the constant function f = a; a:e:�. Otherwise (N notlinear), by Jensen's inequality, b can be any real number such that b � N(a). If b = N(a),only the constant function f = a, a.e., satis�es (5.2), and the integral in (5.1) is againzero.Let b > N(a), and let the function f take only two values, say, a+ qx and a�px, x 2 R,with respective �{probabilities p and q, (0 < p < 1; q = 1 � p). Then, the �rst integralin (5.2) is equal to a and the second integral which is equal toNp;a(x) = pN(a + qx) + qN(a� px);(5.3)is a convex function of the real variable x. This function is non{increasing on (�1; 0],non{decreasing on [0;+1), and Np;a(0) = N(a). Moreover, since N is not linear,Np;a(+1) = Np;a(�1) = +1:Therefore, for any p 2 (0; 1); b > N(a), the equation Np;a(x) = b admits only one positivesolution x = xp(a; b). Furthermore, when p and a are �xed, xp(a; b) is an increasing,concave function of the variable b > N(a). Thus, for any b > N(a), there exist Borelmeasurable functions satisfying (5.2). We will show below that, in fact, there existLipschitz functions on X satisfying (5.2).Given b > N(a), let us now de�neN�I (a; b) = inf0<p<1 (I(p)xp(a; b)) ;(5.4)where I is a non{negative function on (0; 1). In our main case of interest, when I = I�is the isoperimetric for (X; d; �), we simply write N� instead of N�I�.32



For the function f described above (taking only two values), the expression inside thein�mum in (5.4) is easily seen to be exactlyZ b(f)a(f) I(1� Ff (t))dt;(5.5)where Ff denotes the distribution function of f with respect to the measure �, and wherea(f) = essinff , b(f) = esssupf . Thus, N�I (a; b) is the in�mum of such integrals over allfunctions which take two values and satisfy the conditions (5.2) (such in�mum mightonly be attained asymptotically). Note also that, if I(0+) = I(1�) = 0, then the integral(5.5) can be extended to the whole real line.To prove Theorem 1.10, we �rst need to prove the following statement.Theorem 5.1 Let I be a non{negative, continuous function on (0; 1), such that thefunction I(p)=p is non{increasing on (0; 1). Then,inf Z b(f)a(f) I(1� Ff(t))dt = N�I (a; b);(5.6)where the in�mum is taken over all �-integrable functions f on X, which satisfy (5.2).Before proving Theorem 5.1 and Theorem 1.10, we need some preparatory results. ThenTheorem 5.1 and Theorem 1.10 are proved, assuming that Theorem 5.1 has already beenestablished for all probability measures F = Ff with �nite support, i.e., for the classof functions f which take only �nitely many values. The discrete version of Theorem5.1, which is of interest for di�erent applications and is, in particular, a basic key tocomprehend Theorem 1.10, is considered separately in the next section. It should bestressed here that Theorem 5.1, which is used to prove Theorem 1.10, will not be appliedto the isoperimetric function I� which might not satisfy the conditions of Theorem 5.1,but rather to the function I(p) = N�(a; b)=xp(a; b)which satisfy these conditions, serves as a lower estimate for I� and generates the samefunction N�I = N�. Thus, Theorems 4.1 applied, via lemma 3.1, to the function I andTheorem 5.1 will give the estimateZX jrf jd� � N�(a; b):This inequality can become asymptotic equality for Lipschitz functions approximatingindicator functions of sets of measure p. Note that one needs only consider in Theorem5.1 (as well as in in the variational problem (5.1){(5.2)) the case a = 0, because onecan replace N by the function x ! N(x + a) which is also convex. However, to ful�llthe suggested strategy of proof, it will be essential to state some properties of N�I as afunction of the two variables a and b. 33



Let f be a bounded, Borel measurable function on X such that RX fd� = 0, f 6= 0a:e:�and let a be a real number. Generalizing (5.3), we introduce the functionNf;a(x) = ZX N(xf + a)d� = Z +1�1 N(xt+ a)dFf(t)(5.7)of the real variable x. Clearly, if the function f takes only two values q and �p withrespective �{probabilities p and q, (0 < p < 1; q = 1 � p), then Nf;a = Np;a. Note alsothat Nf;a(0) = N(a). Let us now point out the following facts:Lemma 5.2 The function Nf;a is convex, non{increasing on (�1; 0], non{decreasingon [0;+1), with also Nf;a(�1) = Nf;a(+1) = +1. Therefore, for any b > N(a), theequation Nf;a(x) = b admits only one positive solution x = xf(a; b). Moreover, xf (a; b)is an increasing, concave function of the variable b on (N(a);+1).Lemma 5.3 The function xf is concave, hence continuous, on the open convex setf(a; b) 2 R2 : b > N(a)g. Moreover, if a sequence ffng of uniformly bounded func-tions with �{mean zero converges to f a.e., then xfn(a; b)! xf (a; b) for all b > N(a).By Lemma 5.3, N�I is concave as the in�mum over p 2 (0; 1) of the concave functionsI(p)xp. Therefore we also separately state:Corollary 5.4 For any non{negative function I de�ned on (0; 1), the function N�I isconcave, hence continuous, as a function of two variables, in the region b > N(a).Corollary 5.4 will be used to prove Theorem 5.1, while the last statement of Lemma 5.3will be used to prove Theorem 1.10. In addition, we also point out the following corollarywhich asserts that our minimizing problem is non{vacuous.Corollary 5.5 All the bounded functions f satisfying (5.2), are of the form f = xg + a,where g is an arbitrary bounded, non{constant, Borel measurable function with �{meanzero, and where x is the unique value xg(a; b).We �nally state a last lemma which is used in the proof of the variational theorem andin proving the condition 3) of Theorem 1.11.Lemma 5.6 Given b > N(a), the function I(p) = 1=xp(a; b) is continuous, and I(p)=pis decreasing on (0; 1).Note that the function xp is continuous by the last statement of Lemma 5.3 since it is aparticular case of function xf . 34



Proof of Lemma 5.2. LetMC be the space of all signed measures concentrated on somecompact interval [�C;C]. Then M1C �MC , the family of all probability distributions Fconcentrated [�C;C] is a compact symplex (for the topology of weak convergence inMC),and the delta{measures �t; jtj � C, are the extremal points of this symplex. Thereforethe elements of VC , the intersection of the extremal points of M1C with the hyperspacefF 2 MC : R C�C tdF (t) = 0g, lie on the one{dimensional edges of M1C, i.e., take the formp�t + q�s, where p 2 [0; 1]; q = 1 � p; pt + qs = 0, �C � t; s � C. Replacing t and s byqt and �pt, and applying Choquet's theorem, one can represent an arbitrary F 2 VC asa mixture F = ZZRC (p�qt + q��pt) d�(p; t);(5.8)where � is a probability measure concentrated on the set RC = f(p; t) : 0 � p � 1; 0 �t � C=max(p; q)g of all allowed values of (p; t). Of course, VC is not a symplex, i.e., themeasure � in (5.8) is not unique.Let �f be a mixingmeasure for the distribution Ff of the function f and let C = esssupjf j.Then, from the representation (5.8) and using (5.3) and (5.7), we obtainNf;a(x) = ZZRC Np;a(xt) d�f (p; t):(5.9)As itself a mixture of the functions Np;a, the function Nf;a inherits many of their prop-erties. Clearly, it is convex, it is non{increasing on (�1; 0], non{decreasing on [0;+1),and Nf;a(0) = N(a). Moreover,Nf;a(+1) = Nf;a(�1) = +1:Indeed, if this last claim were false and say that Nf;a(+1) < +1, then one wouldhave Nf;a(x) = Nf;a(0) for all x � 0. But, this last statement is possible if and onlyif the measure �f is concentrated on the line t = 0. This means, according to (5.8),that Ff = �0, i.e., that f = 0, a.e., and this contradicts the assumption made on f .Thus, for any b > N(a), there exists only one positive solution x = xf(a; b) to theequation Nf;a(x) = b, and as a function of b, xf is increasing and concave on the interval(N(a);+1). This proves Lemma 5.2.Proof of Lemma 5.3. Since xf is an increasing function of b, we obtain that for allx � 0; b > N(a), ZX N(xf + a)d� � b =) x � xf(a; b):We use this property to establish the concavity of xf . Let b1 > N(a1); b2 > N(a2); 0 �� � 1. Put x1 = xf;a(a1; b1), x2 = xf;a(a2; b2), so thatZX N(x1f + a1)d� = b1; and ZX N(x2f + a2)d� = b2:35



By the convexity of N ,�b1 + (1 � �)b2 � ZX N((�x1 + (1 � �)x2)f + (�a1 + (1 � �)a2))d�:Hence, by the property mentioned above,�x1 + (1� �)x2 � xf(�a1 + (1� �)a2; �b1 + (1 � �)b2);which is exactly concavity.It remains to establish the last statement in Lemma 5.3. Put xn = xfn(a; b), thenZX N(xnfn + a)d� = b:(5.10)There always exists a subsequence fxnkg converging to some x 2 [0;+1]. If x is �nite,then by the Lebesgue dominated convergence theorem, one can take the limit in (5.10)as n!1, and have RX N(xf + a) = b. Necessarily x > 0, since if x = 0 then b = N(a)which contradicts the assumption b > N(a). This implies that x = xf (a; b) and provesthe statement when x is �nite. To prove that indeed x is �nite, it is su�cient to showthat for any sequence xn ! +1,ZX N(xnfn + a)d�! +1;(5.11)as n ! 1. For simplicity (recalling that it is possible to replace N by the functionx ! N(x + a)), one needs only to consider the case a = 0. Put also Nfn;0 = Nfn,�fn = �n. Again using the representation (5.9), one can write the integral (5.11) asNfn(x) = ZZRC Np(xt) d�n(p; t);(5.12)with x = xn. To prove (5.11), it su�ces to estimate (from below) all the functions Nfn,with n large enough, by a function which is unbounded, and non{decreasing on [0;+1).To this end, for a given � 2 (0; 1=2), introduce the setA� = f(p; t) 2 RC : � < p < 1� �; t > 2C�g:Then, the integral (5.12) can be estimated byNfn(x) � T�(2C�x)�n(A�);where T�(x) = inf�<p<1��Np(x). Thus it su�ces to show that for � small enough,T�(x) �! +1;(5.13)as x! +1, and that lim infn!1 �n(A�) > 0.36



To prove that lim infn!1 �n(A�) > 0, let us write down the representation (5.8) for thedistribution function Fn of fn, and for the interval [�2C�; 2C�]:Fn([�2C�; 2C�]) = ZZRC p�qt([�2C�; 2C�])+ q��pt([�2C�; 2C�]) d�n(p; t):(5.14)Then, consider the three inequalities which de�ne the complement RC nA�, noting thatfor all (p; t) 2 RC , we have 0 � t � C=max(p; q) � 2C :(i) If p � �, then pt � 2C�, hence the second term q��pt([�2C�; 2C�]) = q � 1� �.(ii) Analogously, for p � 1 � �, the �rst term p�qt([�2C�; 2C�]) = p � 1 � �. In bothcases (i) and (ii), the integrand in (5.14) is greater or equal to 1 � �.(iii) In a similar way, if t � 2C�, then the integrand is equal to 1.Consequently, (5.14) impliesFn([�2C�; 2C�]) � (1� �)�n(RC nA�);or, in other words, �n(A�) � 1 � 11 � �Fn([�2C�; 2C�]):The functions fn converge to f a.e., hence the sequence Fn converges weakly to thedistribution function F of f . In particular, for all � > 0, lim supn!1 Fn([�2C�; 2C�]) �F ([�2C�; 2C�]). This giveslim infn!1 �n(A�) � 1 � 11 � �F ([�2C�; 2C�]):The right{hand side of this inequality is positive for all � small enough because its limitas �! 0+, is equal to 1 � F (f0g) = �ff 6= 0g > 0, since by assumption f is not a.e. 0.To prove (5.13), introduce the Radon{Nikodym derivative (the density)N 0 of the functionN . It is de�ned a.e., but can be chosen to be non{decreasing with possibly, N(x) = N(0)on some interval (x0; x1), �1 � x0 � 0 � x1 � +1. Let x0 be maximally small and letx1 be maximally large. Then, for all x > x1, N 0(x) > 0, and for all x < x0, N 0(x) < 0.Note that having simultaneously, x0 = �1 and x1 = +1 is impossible, since N is notconstant. By (5.3), the derivative of Np can be chosen to be equal toN 0p(x) = pq(N 0(qx)�N 0(�px)):(5.15)From (5.15), for all x � 0, and for all p 2 [�; 1� �], we obtainN 0p(x) � �(1� �)(N 0(�x)�N 0(��x));N 0p(x) � (N 0((1 � �)x)�N 0((1� �)x))4 :37



These inequalities show that, on any compact interval within (d�;+1), where d� =min(x1=�;�x0=�), the value of the Lipschitz norm of the function Np is bounded. Hence,the function T� is Lipschitz on such intervals. Therefore, T� is absolutely continuous,non{decreasing on (d�;+1), and its Radon{Nikodym derivative clearly satis�es the sameinequalities. In particular, for all x > d�,T 0�(x) � �(1� �)(N 0(�x)�N 0(��x)):The right{hand side of this last inequality is a non{negative, non{decreasing function ofx and, in fact, it is positive for x large enough, because N is not linear. This proves(5.13).Proof of Lemma 5.6. One can assume that a = 0; N(a) = 0, so b > 0. Put y(p) =pxp(a; b). Then one needs to show that the function y is increasing on (0; 1). By theconvexity of N , the function T (x) = N(x)=x is non{increasing on (�1; 0) and non{decreasing on (0;+1). From (5.3),pN(qxp)+ qN(�pxp) = pqxp(T (qxp)�T (�pxp)) = qy(p) T  qy(p)p !� T (�y(p))! = b;where q = 1 � p. Let us now assume that for some p1 < p2, we have y(p1) � y(p2). Letq1 = 1� p1, q2 = 1 � p2. Then, q1 > q2, q1=p1 > q2=p2 and therefore,T  q1y(p1)p1 ! � T  q2y(p2)p2 ! ; T (�y(p1)) � T (�y(p2));since b > 0, T (qy(p)=p)� T (�y(p)) > 0, for all p 2 (0; 1). Thus, we �nally haveq1y(p1)(T (q1y(p1)=p1)� T (�y(p1))) > q2y(p2)(T (q2y(p2)=p2)� T (�y(p2)));i.e., b > b !Proof of Theorem 5.1 (reduction to the discrete case).Let us assume that for all F with �nite support, and for any continuous, non{negativefunction I, such that I(p)=p is non{increasing on (0; 1),Z b(F )a(F ) I(1� F (t))dt � N�I (a; b);(5.16)where F (t) = F ((�1; t]) is the ditribution function of the measure F , a(F ) = infft 2R : F (t) > 0g, b(F ) = supft 2 R : F (t) < 1g, RR tdF (t) = a, RRN(t)dF (t) = b.Step 1. We �rst consider the case where the function I is bounded. Assume that F isconcentrated on [�C;C] (more precisely that [a(F ); b(F )] � [�C;C]). The probability38



measures with �nite support form a dense (for the weak convergence topology) set inM1C . Hence, for any F in M1C there exists a sequence Fn of measures in M1C, with �nitesupport, converging to F weakly, i.e., such that Fn(t)! F (t) at all points t, where F iscontinuous. Therefore, a(Fn)! a(F ), b(Fn)! b(F ), andZ b(Fn)a(Fn) I(1� Fn(t))dt �! Z b(F )a(F ) I(1� F (t))dt;by the Lebesgue dominated convergence theorem, because I is bounded, and I(1 �Fn(t))! I(1� F (t)) at all t except at possibly countably many values. In addition,Z C�C xdFn(x)! a; Z C�C N(x)dFn(x)! b; (n! +1):Thus, one can take the limit on both sides of (5.16) (with F there replaced by Fn). Usingthe continuity of N�I this gives (5.16) for F compactly supported and (recall) I bounded.In order to extend (5.16) to an arbitrary F , a truncation argument is again used. Namely,let f be �{integrable and satisfy (5.2). We need to prove (5.16) for F = Ff . If f isunbounded, de�ne the functionsfn(x) = 8>>>>><>>>>>: �n; if f(x) < �nf(x); if �n � f(x) � nn; if f(x) > n:The distribution function Fn of fn, is bounded, and a(F ) � a(Fn) � b(Fn) � b(F ), hencefrom (5.16): N�I (an; bn) � Z b(Fn)a(Fn) I(1� Fn(t))dt= Z b(Fn)a(Fn) I(1� F (t))dt� Z b(F )a(F ) I(1� F (t))dt;(5.17)where an = RX fnd�, and wherebn = ZX N(fn)d� = N(�n)F (�n�) +N(n)(1 � F (n)) + Z n�n N(t)dF (t):By the integrability of f , an converges to a = RX fd�, and since b = RX N(f)d� is �nite,bn converges to b. In addition, by the continuity of N�I (see Corollary 5.4),N�I (an; bn) �! N�I (a; b);(5.18) 39



as n! +1. Now, (5.18) and (5.17) imply (5.16).Step 2. It remains to remove the boundedness assumption on I and to prove (5.16) for anarbitrary continuous I. De�ne the function In = min(I; n). Clearly, I � In, moreover Inis bounded, non{negative, continuous, and In(p)=p is non{increasing on (0; 1). Therefore,by Step 1, Z b(F )a(F ) I(1� F (t))dt � N�In(a; b);and one needs only to show that N�In �! N�I , as n ! 1. First from (5.4), it is clearthat if I and J are two non{negative functions on (0; 1),N�min(I;J) = min(N�I ; N�J ):Thus taking J(p) = n, we obtain N�In = min(N�I ; cn);where c = inf0<p<1 xp(a; b). The above expression converges pointwise to N�I if and onlyif c > 0. But c = 0 is impossible. Indeed, if for some sequence pn 2 (0; 1) converging top 2 [0; 1], xn = xpn(a; b)! 0, then we would haveb = Npn(xn) = pnN(a+ (1� pn)xn) + (1� pn)N(a� pnxn) ! N(a);i.e., we would have b = N(a) which contradicts the assumption b > N(a). Thus, thereduction of Theorem 5.1 to the discrete case has been achieved.Proof of Theorem 1.10.Denote by Z(a; b), b > N(a), the in�mum of (5.1) under the conditions (5.2). CombiningTheorems 4.1 and 5.1, we immediately have Z(a; b) � N�I (a; b), whenever the functionI � I� is non{negative, continuous, and I(p)=p is non{increasing on (0; 1). Now, takeI(p) = N�(a; b)=xp(a; b). SinceN�(a; b) = inf0<p<1 (I�(p)xp(a; b)) ;we have I(p) � I�(p), for all p 2 (0; 1). By Lemma 5.6, I is continuous, and I(p)=p is non{increasing on (0; 1), so I satis�es the conditions of Theorems 4.1 and 5.1. Furthemore,according to (5.4), N�I (a; b) = inf0<p<1 (I(p)xp(a; b)) = N�(a; b):One thus concludes that Z(a; b) � N�(a; b), and only the reversed inequality needs to beproved. Let 0 < p < 1, and let A � X be a closed set of the measure �(A) = p. Thereexists a sequence �n ! 0+ such that 40



�(A�n)� �(A)�n �! �+(A);(5.19)as n!1. One can then take a sequence gn of Lipschitz functions with values in [0; 1],of Lipschitz constant at most 1=�n, such that gn = 1 on some open neighbourhood of Aand gn = 0 on X nA�n. Thus, gn converges everywhere to the indicator function g = �Aof the set A, and according to the de�nition of the modulus of gradient,ZX jrgnjd� � �(A�n)� �(A)�n :(5.20)Since the sequence fn = gn�an, where an = RX gnd�, converges to the function f = g�p,which takes the value q = 1�p with �{probability p and the value �p with �{probabilityq, by Lemma 5.3 we have xfn(a; b) �! xf(a; b) = xp(a; b);(5.21)as n ! 1. Then, recall that the sequence xn = xfn(a; b) corresponds to the conditionRX N(xnfn + a) = b, i.e., the functions xnfn + a satisfy (5.2). Hence using (5.20), for alln, Z(a; b) � ZX jr(xnfn + a)jd�= xn ZX jrfnjd�= xn ZX jrgnjd�� xn �(A�n)� �(A)�n :By (5.19) and (5.21), this last expression converges, as n!1, to xp(a; b)�+(A). Takingthe in�mum over all possible A, one obtains Z(a; b) � xp(a; b)I�(p), for all p 2 (0; 1).Finally, taking the in�mumover all p 2 (0; 1), on the right hand side of this last inequalityyields Z(a; b) � N�(a; b). This �nishes the proof of the theorem.
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6 The discrete version of Theorem 5.1Let the probability distribution F on the real lineR have �nite support, say, ft1; : : : ; tng,t1 � : : : � tn, n � 2. Hence, F = p1�t1 + : : :+ pn�tn, where as usual �t denotes the unitmass at the point t 2 R, and where pi > 0; p1+ : : :+ pn = 1. Then, the conditions (5.2)take the form p1t1 + : : :+ pntn = a; p1N(t1) + : : :+ pnN(tn) = b;(6.1)The integral (5.5) Z b(F )a(F ) I(1� F (t))dt;(6.2)where a(F ) = infft : F (t) > 0g; b(F ) = supft : F (t) < 1g, and where F (t) = F ((�1; t])denotes the distribution function associated with the measure F , becomesG(t1; : : : ; tn) = n�1Xi=1 ci(ti � ti+1);(6.3)where ci = I(p1 + : : :+ pi). To complete the proof of Theorem 5.1, it remains to showthat among all the discrete measures F , satisfying (6.1), the in�mum of (6.2) is attained(possibly asymptotically) within the family of measures with only two atoms. So, we�x the values pi > 0; p1 + : : : + pn = 1, and minimize the functional G on the (n � 2){dimensional set C+(a; b) = C(a; b)\�+;where C(a; b) � Rn denotes the hypersurface de�ned by (6.1), and where �+ = ft =(t1; : : : ; tn) 2 Rn : t1 � : : : � tng. By Lemma 5.2, the set C+(a; b) is not empty, wheneverb > N(a). Recall that the function I, de�ning the coe�cients ci, is assumed to be suchthat I(p)=p is non{increasing on (0; 1). Of course, the continuity property of I does notmatter in the discrete case. In this section, we extend I to (0; 1] by putting I(1) = 0(I(1�) > 0 is possible). Now, in the discrete case, Theorem 5.1 takes the following form.Lemma 6.1 Let b > N(a). On C+(a; b), the functional G in (6.3) attains its minimumat a point (t1; : : : ; tn) such that only two of its coordinates ti are distinct.Using an induction over n, we can reduce the above statement to the three{dimensionalcase where a proposition a little bit more general is proved:Lemma 6.2 Let p1; p2; p3 > 0; p1 + p2 + p3 � 1, ci = I(p1 + : : : + pi), i = 1; 2; 3. For42



any u; a; b 2 R, and if it is not empty, letC+u (a; b) = f(t1; t2; t3) : 3X1 piti = a; 3X1 piN(ti) = b; t1 � t2 � t3 � ug:Then on C+u (a; b), the functionalG(t1; t2; t3) = c1(t1 � t2) + c2(t2 � t3) + c3(t3 � u)attains its minimum at a point (t1; t2; t3) such that t1 = u, or t2 = t1, or t3 = t2.First, by induction, we show how Lemma 6.1 follows from Lemma 6.2. Let n = 3, sincep1 + p2 + p3 = 1 and I(1) = 0, we have c3 = 0, and therefore the functional G fromLemma 6.2 is of the form G(t1; t2; t3) = c1(t1 � t2) + c2(t2 � t3), i.e., it coincides with(6.3). Letting u ! �1 in Lemma 6.2, we get the statement of Lemma 6.1 for n = 3.Now, let n > 3, and assume that the statement of Lemma 6.1 is valid for all dimensionslower or equal to n � 1, and for all admissible functions I. Let (t1; � � � ; tn) 2 C+(a; b).We �x the values t4; : : : ; tn; but t1; t2 and t3 vary. Since the sumsp4t4 + � � �+ pntn = a0; p4N(t4) + � � �+ pnN(tn) = b0;are also �xed, the �rst three variables can vary arbitrarily under the conditionsp1t1 + p2t2 + p3t3 = a� a0; p1N(t1) + p2N(t2) + p3N(t3) = b� b0;and t1 � t2 � t3 � u = t4. This means that the triple (t1; t2; t3) belongs to the setC+u (a00; b00) from Lemma 6.2 with a00 = a� a0; b00 = b� b0.Therefore, one can apply Lemma 6.2 according to which the functionalG, as a functionof (t1; t2; t3) 2 C+u (a00; b00), attains its minimum at a point (t1; t2; t3) such that t1 = u, ort2 = t1, or t3 = t2. In all these cases, we decrease the number of di�erent coordinates ofthe vector (t1; � � � ; tn) and again we need to minimize G under the additional restrictionti = ti+1 for some i = 1; � � � ; n � 1. But, when ti = ti+1, we obtain the original (n � 1){dimensional problem since the conditions (6.1) as well as the functional (6.3) remainof the same type, and since a and b do not change. Thus, one can use the inductionassumption and Lemma 6.1 is proved.The proof of Lemma 6.2 will occupy the rest of this section. For the reader's conveniencewe also present two pictures illustrating our minimizing problem.Proof of Lemma 6.2. Without loss of generality, we assume that u = 0 since otherwiseN can be replaced by a shifted version x �! N(x � u). Now change notations and setx = t1; y = t2; z = t3, p = p1; q = p2; r = p3. So, we �x the values p; q; r > 0, p+q+r � 1,and minimize the functional 43



G = c1(x� y) + c2(y � z) + c3z(6.4)on the curve C+0 (a; b) de�ned by the conditions (6.1) and the restrictions x � y � z � 0.From (6.1), z = a� px� qyr ;(6.5)therefore we can treat the problem of minimizing G as a problem in the plane R2. Sorede�ne C+0 (a; b) as a curve in the plane:C+0 (a; b) = f(x; y) 2 R2 : x � y � z � 0; pN(x) + qN(y) + rN(z) = bg;where z is always understood to be as in (6.5). Necessarily, a � 0, since otherwiseC+0 (a; b) would be empty. If a = 0, C+0 (a; b) = f(0; 0)g, and there is nothing to prove.Thus, one can assume in the following that a > 0.The inequalities x � y � z de�ne in the plane, the sector Sec(a) with vertex P which isthe point of intersection of the lines x = y and y = z. Note also thaty = z () y = a� px� qyr () y = a� pxq + r :Thus, the line y = z has the equation y = (a � px)=(q + r), and the vertex P hascoordinates (a=(p + q + r); a=(p + q + r)).Furthemore, the line z = 0 (i.e., px + qy = a) intersects the line x = y at a point Q ofcoordinates (a=(p+q); a=(p+q)) and intersects the line y = z at a point R of coordinates(a=p; 0).Thus, the restrictions x � y � z � 0 determine the triangle Tri(a) with vertices P;Q,and R, and C+0 (a; b) is the intersection of the curveC(a; b) = f(x; y) 2 R2 : pN(x) + qN(y) + rN(z) = bgwith Tri(a). We thus need to show that a point of minimum of G on C+0 (a; b) lies onone of the sides of the triangle Tri(a).Put a0 = a=(p+q+r). By the convexity of N , there exists a point b � (p+q+r)N(a0),since otherwise C+0 (a; b) would be empty. Let us �rst treat the case b = (p+ q+ r)N(a0)and present a picture illustrating our minimizing problem in this case.44
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The case b = (p+q+r)N(a/(p+q+r))

The equality b = (p + q + r)N(a0), is only possible if there exists a non{degenerateinterval containing a0 and where the function N is linear, i.e., has the formN(x) = cx+d.Let [a1; a2] � (�1;+1) be the maximal (possibly in�nite) interval containing a0 wherethe function N is linear. Then, the two conditions pN(x) + qN(y) + rN(z) = b, andpx+ qy + rz = a, are equivalent to x; y; z 2 [a1; a2], soC+0 (a; b) = f(x; y) 2 R2 : x � y � z � 0; x; y; z 2 [a1; a2]g:Since a0 2 [a1; a2], and since for all points (x; y) 2 Tri(a), one has x � a0, z � a0, theconditions x � y � z � 0 and x; y; z 2 [a1; a2] reduce to x � a2; z � a+1 = max(a1; 0).Therefore, C+0 (a; b) = f(x; y) 2 R2 : a2 � x � y � z � a+1 g:This set is either a triangle Tri0 with vertices P;Q0; R0 such that Q0 and R0 respectivelylie on the segments [P;Q] and [P;R], the lines (Q;R) and (Q0; R0) being parallel (this45



case corresponds to a=p � a2), or is the intersection of Tri0 with the half{plane x � a2.In the �rst case, all three extremal points of C+0 (a; b) lie on the sides of Tri(a), and thelinear functional G attains its minimum at one of these points. Therefore, a point ofminimum of G lies on a side of Tri(a). In the second case, where a=p > a2 (i.e., the pointR is on the right of the line x = a2), C+0 (a; b) has a fourth extremal point P 0, inside Tri0,which lies on the line (Q0; R0) and has x{coordinate a2. So one needs show that,G(P 0) � minfG(P ); G(Q0); G(R0)g:To prove this, it su�ces to see that given y, G(x; y) is a non{decreasing function of x.Then, taking for P 00 the intersection of the line y = const containing the point P 0 withthe segment [P;Q] or [P;R], we will have that G(P 00) � G(P 0). This means that a pointof minimum of G lies on these segments. Let us now see that, indeed, G is monotone inx. From (6.4) and (6.5), and using the de�nition of the coe�cients ci, we haveG(x; y) = c1(x� y) + c2(y � z) + c3a� px � qyr= �c1 + (c2 � c3)pr�x+ �(c2 � c1) + (c2 � c3)qr� y + (c3 � c2)ar :So G is a non{decreasing function of x if and onlyc1 + (c2 � c3)pr � 0:Recalling the de�nition of the coe�cients ci, this last condition can be rewriten asrI(p) + pI(p + q) � pI(p + q + r):When p+q+r = 1, this last inequality is obviously true since I(1) = 0. When p+q+r < 1,introduce the function J(p) = I(p)=p which by assumption is non{increasing on (0; 1).In terms of J , the monotonicity of G is thus equivalent toprJ(p) + p(p + q)J(p+ q) � p(p + q + r)J(p + q + r):This is clearly true since J(p) � J(p + q + r), J(p + q) � J(p + q + r). The caseb = (p + q + r)N(a=(p + q + r)) has thus been resolved.We now consider the case b > (p+ q + r)N(a=(p + q + r)). To briey describe the mainideas used in minimizing G on C+0 (a; b), we point out the following steps which are alsoillustrated with the following picture. 46



P

Q

x=y
z=0

R

The case b > (p+q+r)N(a/(p+q+r))

x_2x_1

P_1

P_2

D_3

L_1
Q_1 =

y=z

L_2y(x)

L_1
Q_1

S

Q_2 = L_2

Q_2

D_1

v a/p

Rect

Rect

Step 1). On the half{plane x � a (which contains Sec(a)), the curve C(a; b) respectivelyintersects the line x = y and the line y = z at the (unique) point P1(x1; y1) (hencey1 = x1) and P2(x2; y2) (hence y2 = (a� px2)=(q + r)).Step 2). a < x1 < x2.Step 3). There is a non{increasing, concave, continuous function y = y(x), de�ned on[x1; x2], such that the graph of y is situated inside the sector Sec(a), and the curveC+(a; b) = C(a; b)\ Sec(a) is representable asC+(a; b) = f(x; y(x)) : x1 � x � x2g [ f(x2; y) : y2 � y � y(x2)g:Thus, C+(a; b) is the graph of y = y(x) plus a vertical segment S connecting the points(x2; y2) and the right end point (x2; y(x2)) of that graph. The function y automaticallysatis�es the equation pN(x) + qN(y) + rN(z) = b.47



Let now C+0 (a; b) be the part of C+(a; b) which is on the left of the line z = 0, i.e., letC+0 (a; b) = f(x; y(x)) : x1 � x � x2; px+ qy(x) � ag [ f(x2; y) 2 S : px2 + qy � ag :Step 4). C+0 (a; b) is made of one or two pieces of C+(a; b). The case of one piece is onlypossible if C+0 (a; b) = C+(a; b). The case of two pieces is possible only if one of these twopieces is a left piece of C+(a; b) and the other one is a right piece of C+(a; b). Thus, theleft piece should have the formD1 = f(x; y(x)) : x1 � x � v; px+ qy(x) � ag;(6.6)for some x1 � v < x2; and the right piece has either the formD2 = f(x; y(x)) : w � x � x2; px+ qy(x) � ag [ S(6.7)for some x1 < w < x2, or the formD3 = f(x2; y) 2 S : px2 + qy � ag:(6.8)In all the above cases, the end points of these pieces are on the sides of the triangleTri(a).Let us see how to �nish the proof of Lemma 6.1, provided the steps 1){4) have beendone. It then remains to show that for any curve D of either type (6.6){(6.8), with endpoints Q1 and Q2, the functional G attains its minimum on D at either Q1 or Q2. Sincethe function y is concave and non{increasing, the curve D is situated on the right ofthe segment [Q1; Q2]. Moreover, D is a subset of the in�nite rectangle Rect which isdeliminated by the line (Q1; Q2) and the two lines `1 and `2 which are parallel to thex{axis and respectively contain the points Q1 and Q2. Because G is a linear functional,its in�mum on Rect is attained at an extremal point of Rect. Two of these points, Q1and Q2, belong to D. The other ones are in�nite points on the lines `1 and `2. But asnoted before, G is a non{decreasing function of x (again, we use the fact that I(p)=p isnon{increasing). Hence, Q1 is the point of minimum of G on `1, and Q2 is the point ofminimum of G on `2. So G attains its minimum on Rect either at Q1 or at Q2. SinceD � Rect, and Q1; Q2 2 D, these points are also points of minimum of G on the curveD. This completes this part of the proof, and only the statements claimed in 1){4) needto be established.Before proving these statements, we would like to give the reader a simple, intuitivelyclear explanation for some of them. Introduce the function48



�(x; y) = pN(x) + qN(y) + rN(z);(6.9)where as usual, z = (a � px � qy)=r, and assume that N has a continuous, increasingderivative N 0. Clearly, � is convex and the curve C(a; b) = f(x; y) : �(x; y) = bg sur-rounds the convex set Vb = f(x; y) : �(x; y) � bg. Furthermore, inside the open sectorSec0(a) = f(x; y) : x > y > zg,@�@x = p(N 0(x)�N 0(z)) > 0; @�@y = q(N 0(y)�N 0(z)) > 0:Therefore, � increases on Sec0(a) as a function of two variables. Hence, the convexityof C+(a; b) = C(a; b) \ Sec(a) is directed to the right. Now, let us �x a point (x; y) 2C(a; b)\Sec0(a) and �nd the tangent line y = bx+ c at this point. One can di�erentiatethe equality � = b and getpN 0(x) + bqN 0(y)� (p + bq)N 0(z) = 0;that is b = � q(N 0(y)�N 0(z))p(N 0(x)�N 0(z)):Since x > y > z and since N 0 is increasing, we obtain that b < 0, i.e., y is a decreasingfunction of x. This function is also concave since C+(a; b) is a part of the boundary ofVb. We prove next the above claims in a more careful manner. Since the Steps 1){4)concern the shape of the set C+0 (a; b) where G is minimized, one may assume in thefollowing that p+ q + r = 1. Thus, the assumption on b becomes b > N(a).Step 1). Let �1 and �2 be the restrictions of the function �, de�ned by (6.9), to thelines x = y and y = z (y = (a� px)=(q + r)). In other words, let�1(x) = �(x; x) = (p + q)N(x) + rN  a� (p + q)xr ! ;(6.10) �2(x) = � x; a� pxq + r ! = pN(x) + (q + r)N  a� pxq + r ! :(6.11)As restrictions of a convex function, these functions are convex too. Let N 0 be a non{decreasing Radon{Nikodym derivative of N . Then, the function�01(x) = (p + q) N 0(x)�N 0  a� (p+ q)xr !!49



can also serve as a non{decreasing Radon{Nikodym derivative for �1. Since x � (a�(p+q)x)=r () x � a, we have �01 � 0 on (�1; a) and �01 � 0 on (a;+1), i.e., �1 is non{increasing on (�1; a) and non{decreasing on (a;+1). It is possible to have �1 = �1(a) (aconstant) on some (maximal) interval [�1; �1] 3 a, but in view of its convexity, �1 shouldincrease on [�1;+1). In addition, since N is not a�ne, �1(+1) = �1(�1) = +1.Finally, let us note that �1(a) = N(a). Hence, for any b > N(a), there is unique solutionx = x1 to the equation �1(x) = b on (�1;+1). In particular, x1 > a.The same type of reasoning can be applied to the function �2. Again,�02(x) = p N 0(x)�N 0  a� pxq + r !!can serve as a non{decreasing Radon{Nikodym derivative of �2, and x � (a� px)=(q +r) () x � a. Analogously, �2 is non{increasing on (�1; a) and non{decreasing on(a;+1); �2(+1) = �2(�1) = +1, �2(a) = N(a). If [�2; �2] 3 a is the maximalinterval where �2 = �2(a), then �2 increases on (�2;+1). Therefore, there is uniquesolution x = x2 to the equation �2(x) = b on (�2;+1). In particular, x2 > a.Step 2). Let T (x) = N(x)�N(a)x� a = Z 10 N 0(a+ t(x� a))dt;which, trivially, is a non{decreasing function on the whole real line. The above integraldoes not depend on the choice of the Radon{Nikodym derivativeN 0, which is thus alwaysassumed to be non{decreasing, while for x = a, one can also set T (x) = N 0(a). From(6.10), and since p+ q + r = 1, we have�1(x) = N(a) + (p+ q)(x� a)T (x) + r  a� (p+ q)xr � a!T  a� (p + q)xr != N(a) + (p+ q)(x� a) T (x)� T  a� (p+ q)xr !! :Analogously, from (6.11)�2(x) = N(a) + p(x� a)T (x) + (q + r) a� pxq + r � a!T  a� pxq + r != N(a) + p(x� a) T (x)� T  a� pxq + r !! :50



Note that the functions,T1(x) = T (x)� T  a� (p + q)xr ! ; T2(x) = T (x)� T  a� pxq + r ! ;are non{negative on (a;+1), since(p+ q)T1(x) = �1(x)� �1(a)x� a ; pT2(x) = �2(x)� �2(a)x� a ;and since, as noted on step 1), �1 and �2 are non{decreasing, convex functions on (a;+1).Moreover, �1 and �2 respectively increase on the intervals (�1;+1) and (�2;+1). There-fore, T1 and T2 are positive on these intervals and, in particular, T2(x2) > 0.To �nish the proof of Step 2), we proceed by contradiction and assume that x1 � x2.Since x1; x2 > a, then T (x1) � T (x2). Moreover,a� (p+ q)x1r � a� px2q + r < a:Indeed, (a � (p + q)x1)=r � (a � (p + q)x2)=r < a, and (a � (p + q)x2)=r � (a �px2)=(q+ r)() (q+ r)a� (p+ q)(q+ r)x2 � ra� prx2 () qa � (pq + q2+ qr)x2 ()a � (p + 1 + r)x2 = (2 � q)x2 which is true since x2 > a; q < 1 (recall that p; q; r > 0,p + q + r = 1). Since T is non{increasing on (�1; a), we thus getT  a� (p+ q)x1r ! � T  a� px2q + r ! :But, p + q > p, x1 � a � x2 � a > 0, and T1(x1) � T2(x2) > 0. Thus, we �nally getb = �1(x1) = N(a) + (p + q)(x1 � a)T1(x1)> N(a) + p(x2 � a)T2(x2) = �2(x2) = b!Step 3). Existence and uniqueness of the solution to � = b.First, we �x x � a and show that, above the line y = z (i.e., for y � (a� px)=(q + r)),the equation gx(y) = �(x; y) = b has a unique solution, y = y(x), when x < x2, and nosolution when x > x2. In addition, we need to show that when x = x2, the solution togx(y) = b above the line y = z forms a segment [y2; y(x�2 )]. First, recall that gx2(y2) = b.Again using a non{decreasing Radon{Nikodym derivative N 0, one can construct a non{decreasing Radon{Nikodym derivative for the convex function gx, di�erentiating (6.9)with respect to y: g0x(y) = q �N 0(y)�N 0 �a� px� qyr �� :51



Clearly, sinceN 0 is non{decreasing, gx is non{increasing in the interval y � (a�px�qy)=r,i.e., for y � y0(x) = (a � px)=(q + r), and is non{decreasing for y � y0(x). Since N isnot linear, we have (and similarly for the functions Np of which gx is a particular case)that gx(�1) = gx(+1) = +1. Therefore, gx = gx(y0) on some maximal interval[�(x); �(x)] 3 0 (with possibly, �(x) = �(x) = y0(x)), and gx increases on [�(x);+1).Thus, if b > gx(y0(x)) then, on the interval [y0(x);+1) there is only one solution y =y(x) > �(x) to gx(y) = b. If b = gx(y0(x)), then on the interval [y0(x);+1) the solutionto that equation represents the segment [y0(x); �(x)]. When b < gx(y0(x)), there is nosolution on the interval [y0(x);+1).Now observe that gx(y0(x)) = pN(x) + (q + r)N  a� pxq + r ! = �2(x);and recall, as shown in the previous steps, that the inequality �2(x) � b is equivalent tox � x2, provided x � a. Therefore,if x > x2, then �2(x) > b, and the equality gx(y) = b is impossible.If x = x2, then �2(x) = b, and the equality gx(y) = b, provided y � y2, is equivalentto y2 � y � �(x2).If a � x < x2, then �2(x) < b, and the equality gx(y) = b is attained only aty = y(x) � (a� px)=(q+ r). Moreover, y(x) > �(x). In this case, we also note that sincethe function gx increases on [�(x);+1), and since gx(�(x)) = gx(y0(x)) = �2(x) < b, forany x 2 [a; x2), we have: gx(y) � b =) y � y(x);(6.12)whenever y 2 R:Concavity of y. Let a � u; v < x2 and let t 2 [0; 1]. By the convexity of �,b = tb+ (1� t)b = t�(u; y(u)) + (1 � t)�(v; y(v))� �(tu+ (1� t)v; ty(u) + (1 � t)y(v)):Since tu+ (1� t)v 2 [a; x2), we get by (6.12) thatty(u) + (1 � t)y(v) � y(tu+ (1� t)v):Thus, y is concave on [a; x2). In particular, y is continuous on (a; x2), hence continuouson [x1; x2).Monotonicity of y. We prove here that y is non{increasing on [a; x2). Given y 2 R,the function x ! �(x; y) = pN(x) + qN(y) + rN(z) is convex, and its non{decreasingRadon{Nikodym derivative can be chosen to be@�@x = p(N 0(x)�N 0(z)):52



This derivative is non{negative for x � z = (a � px � qy)=r, i.e., for x such that thepoints (x; y) are above the line x = z, i.e., y = (a� (p+r)x)=q. Clearly, this line containsthe points (0; a=q) and P (a; a), therefore the half{plane f(x; y) : x � zg contains the areaH(a) = f(x; y) : x � a; y � (a� px)=(q + r)g, where the graph f(x; y(x)) : a � x < x2gis situated. Thus, when y is �xed and y � (a � px)=(q + r), � is non{decreasing withrespect to x � a.Now, let a � u < v < x2. To prove that y is non{increasing on [a; x2), proceed bycontradiction and assume that y(u) < y(v). Since gu increases on (�(u);+1) and sincey(u) > �(u), we haveb = gu(y(u)) < gu(y(v)) = �(u; y(v)) � �(v; y(v)) = b!We thus proved that inside the area H(a), the equation �(x; y) = b has only one solutiony = y(x) when a � x < x2, has no solution when x > x2, and has the interval fx2g �[y2; �(x2)] for solutions when x = x2. Now, the function y is concave and non{increasingon [a; x2). In particular, it is continuous on (a; x2), and moreover for all x 2 [a; x1),y(x) � y(x1) = x1 > x:Hence, when restricted to [a; x1), the graph of y is outside of the sector Sec(a). On thecontrary, for x 2 [x1; x2), y(x) � y(x1) = x1 � x:Thus, when restricted to [x1; x2), the graph of y is inside the sector Sec(a). In addition, iteasy to see that only when �(x2) = y(x�2 ), is the graph f(x; y(x)) : x1 � x < x2g plus thesegment fx2g�[0; �(x2)] a part the boundary of the convex set Vb = f(x; y) : �(x; y) � bg.Therefore,C+(a; b) = C(a; b) \Ang(a)= f(x; y(x)) : x1 � x < x2g [ f(x2; y) : y2 � y � y(x�2 )g:To complete the proof of this step, it just remains to set y(x2) = y(x�2 ) so that thefunction y should be de�ned on the closed interval [x1; x2].Step 4). Note that, for any continuous, concave function g de�ned on a segment[x1; x2], the set of solutions S � [x1; x2] to the inequality g(x) � 0 has only of one of thefollowing �ve possible descriptions.1. S = ;.2. S = [x1; x2].3. S = [x1; x3], for some x3 2 [x1; x2).4. S = [x4; x2], for some x4 2 (x1; x2].5. S = [x1; x3] [ [x4; x2], for some x1 � x3 < x4 � x2.53



Applying this observation to the function g(x) = px+ qy(x)� a, one concludes that theabove cases correspond to the following possible curves C+0 (a; b):1. C+0 (a; b) is empty. This case is excluded by the assumptions of Lemma 6.2.2. C+0 (a; b) = C+(a; b), i.e., the curve C+(a; b) is a subset of the triangle Tri(a)and connects the segments [P;Q] and [P;R]. Then, necessarily, P1(x1; y1) 2 [P;Q],P2(x2; y2) 2 [P;R].3. C+0 (a; b) is a \left" part (truncation) of C+(a; b) and connects the segments [P;Q]and [Q;R], with possibly, C+0 (a; b) = fQg.4. C+0 (a; b) is a \right" part (truncation) of C+(a; b) and connects the segments[Q;R] and [P;R], with possibly, C+0 (a; b) = fRg.5. C+0 (a; b) consists of two disjoint parts of C+(a; b) which respectively connect[P;Q] with [Q;R] and [Q;R] with [P;R]. A middle part of C+(a; b) is on the right of thesegment [Q;R].In these �ve cases (except for the �rst one), C+0 (a; b) consists of one or two pieces ofC+(a; b) of one of three types (6.6){(6.8), and the ends of these pieces lie on the sides ofthe triangle Tri(a). This completes the proof of Lemma 6.2.
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7 Proof of Proposition 1.3 and 1.8We start by stating some elementary properties of the functionI�(p) = (p�q + pq�)1=�; 0 � p � 1; q = 1 � p:(7.1)When p 2 (0; 1), p 6= 1=2, is �xed, I�(p) is an increasing function of �. This can easilybe seen from the identity I� = (Ej� �E�j�)1=�;where � (de�ned on some probability space) is a Bernoulli random variable with param-eter p, i.e., � takes the value 1 with probability p and the value 0 with probability q, andwhere E is the mathematical expectation. The value p = 1=2 is the only one in (0; 1)for which j� � E�j = const (= 1=2) almost surely. Note also that for all � � 1, I� issymmetric around 1=2, i.e., I�(p) = I�(q), and that I�(0) = I�(1) = 0, I�(1=2) = 1=2.Furthermore, when �! +1, I�(p) converges pointwise on (0; 1) to the convex functionmax(p; q).To minimize I�=I�, when the isoperimetric function I� is constant, and thus to proveProposition 1.3, we establish the following:Lemma 7.1 The function I� is concave if and only if 1 � � � 3, and it then attains itsmaximum at 1=2. For � � 3, max0<p<1 I�(p) is an increasing function of � varying from1=2 to 1 at in�nity.For example, if � = 4 we have that p4q + pq4 = pq(1 � 3pq) attains its maximum atpq = 1=6, i.e., at p = 1=2 �q1=12, and the maximum of I4 is equal to (1=12)1=4 > 1=2.Proof. We beging by introducing several functions of the variable p 2 [0; 1], where againq = 1� p. u�(p) = p�q + pq�;(7.2) v�(p) = p� + q�; w�(p) = p� � q�;(7.3) x = pq:(7.4)Step 1: 2 � � � 3:We show that u� is concave for such values of �. Via (7.2), the �rst and second derivativesof u� are given by u0�(p) = �(p��1q � pq��1)� (p� � q�):u00�(p) = �(� � 1)(p��2q + pq��2)� 2�(p��1 + q��1):(7.5) 55



If 0 � � � 1, then from (7.5), u00�(p) � 0, for all p 2 (0; 1), therefore, u� is concave onthe same interval. Rewriting (7.5) as u00�(p) = �(� � 1)u��2 � 2�v��1 and noting thatv� is convex for all � � 1, we obtain that, for all � 2 [2; 3], u00� is concave. Since u00� issymmetric around 1=2; it attains its maximum at this point. But,u00� �12� = �(� � 1)2��+2 � 2�2��+2= �(� � 3)2��+2 � 0;(7.6)Consequently, for all p 2 (0; 1), u00�(p) � 0, and u� is concave and so is I� = u1=�� whichis the composition of an increasing concave function with a concave one.Remark. The function u� is not concave if 1 < � < 2, since from (7.5), limp!0+ u00�(p) =+1. Thus for such �, the preceding arguments do not work.Step 2: 1 � � � 2:It is clear that any function I of the form I = u1=�, where � > 0 and where u is positivewith continuous second derivative, is concave if and only if�uu00 � (� � 1)(u0)2:(7.7)Let us check that the functions u� satisfy the condition (7.7). First, as direct consequencesof (7.2){(7.4), the following identities are true:u� = v� � v�+1; v0� = �w��1; w0� = �v��1;(7.8) u0� = �w��1 � (�+ 1)w�;(7.9) u00� = �(� � 1)v��2 � �(� � 1)v�+1:(7.10)In addition, for � � �, v�v� = v�+� + x�v���;(7.11) w�w� = v�+� � x�v���:(7.12)Using (7.8){(7.12), we get�u�u00� = �2(�� 1)v�v��2 + �2(�+ 1)v�+1v��1 � �2(�� 1)v�+1v��2 � �2(�+ 1)v�v��1= �2(� � 1)(v2��2 + x��2v2) + �2(�+ 1)(v2� + x��1v2)��2(�� 1)(v2��1 + x��2v3)� �2(� + 1)(v2��1 + x��1v1)= �2(� + 1)v2� � 2�3v2��1 + �2(� � 1)v2��2 � �2(�� 1)x��2v3+[�2(�� 1)x��2 + �2(�+ 1)x��1]v2 � �2(�+ 1)x��1v1:(7.13)In a similar way,(�� 1)(u0�)2 = �2(� � 1)w2��1 + (�+ 1)2(� � 1)w2� � 2�(� + 1)(� � 1)w��1w�56



= �2(��1)(v2��2�x��1v0)+(� + 1)2(��1)(v2��x�v0)�2�(�+1)(��1)(v2��1�x��1v1)= (�+ 1)2(�� 1)v2� � 2�(� + 1)(� � 1)v2��1 + �2(�� 1)v2��2+ 2�(� + 1)(�� 1)x��1v1 � [�2(�� 1)x��1 � (�+ 1)2(� � 1)x�]v0:(7.14)Now, we need to show that (7.13) is dominated by (7.14). Considering the di�erence(7.14){(7.13) and noting that v0 = 2; v1 = 1, we collect the coe�cients of1) v2� : (� + 1)2(�� 1)� �2(� + 1) = �(�+ 1);2) v2��1 : �2�(� + 1)(� � 1) + 2�3 = 2�;3) v2��2 : �2(� � 1)� �2(�� 1) = 0;4) x��1 : �2�2(�� 1) + 2�(� + 1)(�� 1) + �2(�+ 1) = �(�2 + 3�� 2):Therefore, the domination of (7.13) by (7.14) takes the form:��2(� � 1)x��2v3 + [�2(� � 1)x��2 + �2(�+ 1)x��1]v2 � �(�2 + 3� � 2)x��1� �(�+ 1)v2� + 2�v2��1:(7.15)One can simplify the left hand{side of (7.15) with the help of the identities:v2 = 1 � 2x; v3 = 1� 3x:Indeed, v2 = p2+q2 = (p2+2pq+q2)�2pq = 1�2x; v3 = p3+q3 = (p+q)(p2�pq+q2) =1� 2x� x. Now, we get that the left hand side of (7.15) is equal to:� �2(�� 1)x��2(1� 3x) + [�2(�� 1)x��2 + �2(� + 1)x��1](1� 2x)��(�2 + 3�� 2))x��1= �2�2(�+ 1)x� + [3�2(� � 1) + �2(�+ 1) � 2�2(�� 1) � �(�2 + 3� � 2)]x��1+(��2(�� 1) + �2(�� 1))x��1= �2�2(�+ 1)x� + �(� � 1)(� � 2)x��2:Therefore, (7.15) takes the �nal form� 2�2(�+ 1)x� + �(� � 1)(� � 2)x��1 � �(�+ 1)v2� + 2�v2��1:(7.16)Both terms on the left of (7.16) are non{positive for 1 � � � 2. Therefore, it su�ces toshow that (�+ 1)v2� � 2�v2��1:This last inequality follows from �+1 � 2� and v2� � v2��1 (v� is a decreasing functionof �).Step 3: � > 3:First, we use (7.6) to prove that I� is not concave for � > 3. For such values of �, we have57



u00�(1=2) > 0. Hence, by the continuity of the second derivative, this inequality holds insome neighborhood of p = 1=2, i.e., the �rst derivative u0� increases inside some intervalcontaining the point 1=2. Since u0�(1=2) = 0, we therefore obtain that u0�(p) > 0, for pclose enough (from the right) to 1=2. Hence, u� and therefore I� are increasing in someinterval [1=2; 1=2 + �]. But I� is symmetric around 1=2 and consequently is not concaveon (0; 1). In addition, I� attains its maximum on [0; 1] at some point p(�) 6= 0; 1=2; 1.Hence, for all 3 < � < �, using the monotonicity of the function � �! I�(p); � � 1,with p 2 (0; 1=2) [ (1=2; 1), we obtain thatmax0<p<1 I�(p) = I�(p(�)) < I�(p(�)) � I�(p(�)) = max0<p<1 I�(p):Thus, max0<p<1 I�(p) is an increasing function of � > 3. Lemma 7.1 is proved, andProposition 1.3 follows.Proof of Proposition 1.8.Since for p 2 (0; 1); p 6= 1=2, I� is an increasing function of �, it is enough to notice that2pq��pq � (p ���1 q + pq ���1 )��1���pq = (p 1��1 + q 1��1 )��1���(pq) 1� � max(p; q)��pq = 1��min(p; q) ;and then to take the in�mum.
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8 A special case of Theorem 1.2Proofs of Lemma 1.4 and 1.6 are presented in this section. As a consequence, we have aversion of Theorem 1.2 which will be applied to the uniform distribution on the n{sphereSn� with n � 2. Assume that the isoperimetric function I = I� satis�es the followingproperties:(i) I is symmetric around 1=2, i.e., for all p 2 (0; 1),I(1� p) = I(p):(ii) I(0+) = I(1�) = 0.(iii) I is continuously di�erentiable on (0; 1) and dI�=dp is convex on (0; 1=2].Proposition 8.1 Let 1 � � � 2. Then, under the conditions (i), (ii) and (iii) above,for any �{integrable, Lipschitz on every ball, function f ,ZX jrf(x)jd� � c (ZX jf(x)�m(f)j�d�) 1� ;ZX jrf(x)jd� � c infa2R(ZX jf(x)� aj�d�) 1� ;where c = 2I�(1=2) is the optimal constant.To prove Proposition 8.1 and thus Lemma 1.4 and 1.6, it is in fact enough to only considera partial case of these results.Lemma 8.2 If a non-negative function I de�ned on (0; 1) satis�es the conditions (i),(ii), and (iii) above, with � = 1, then the in�mum of I(p)=p(1 � p) on the interval (0; 1)is attained at p = 1=2.Provided this statement is proved, one can apply it to the function I�, and obtain thatthe in�mum of I�(p)=(p(1 � p)) is attained at p = 1=2. Then, the function w(p) =p��1+(1� p)��1, 1 � � � 2, has its maximum at p = 1=2 since it is concave, symmetricaround 1=2 with also w(0) = w(1) = 1. Therefore,I�(p)p�(1 � p) + p(1 � p)� = I�(p)(p(1 � p))w(p)also attains its minimum at p = 1=2. Similarly, since the functions max(p; 1 � p)and (p1=(��1) + (1 � p)1=(��1))��1; 1 < � � 2, are convex, symmetric around 1=2 andare equal to one at 0 and at 1, the respective minimum of I(p)=min(p; 1 � p) and ofI�(p)(p1=(��1) + (1� p)1=(��1))��1=p(1 � p) is attained at p = 1=2.59



Proof of lemma 8.2. Let us �rst extend the function I to the interval [0; 1] by settingI(0) = I(1) = 0, and let us de�ne the functionu(p) = I(p)� 4I �12� p(1 � p); 0 � p � 1:We need to show that u(p) � 0 for all p 2 (0; 1). In view of (8.1), it is enough to onlyconsider the case 0 < p � 12 . The function u has the following properties:a) u(0) = u (1=2) = 0:b) The derivative u0(p) = I 0(p)� 4I (1=2) (1� 2p) is a convex, continuous function on(0; 1=2].c) u0 (1=2) = 0:The equality in c) follows from the I 0(1 � p) = �I 0(p) (applied at 1=2) which itselffollows from (i). The property b) follows from (iii): u0 is a sum of convex functions.Formally, u0(0+) has three possible behaviors.1) u0(0+) < 0:By b), u0 is non{decreasing on (0; 1=2], while by c) u0(1=2) = 0. Hence, u0(p) � 0for all 0 < p < 1=2 with strict inequality in a neighbourhood of p = 0. Therefore, u isnon{increasing on [0; 1=2] and decreases in a neighborhood of p = 0, hence u(1=2) < u(0).This contradicts a), and thus u0(0+) � 0:2) u0(0+) = 0:An argument as in 1) can also be applied here. This does not lead to a contradictiononly when u0 = 0 on [0; 1=2]. But, by a) this gives u = 0, thus I(p) = 4I(1=2)p(1 � p)for all p 2 [0; 1=2], and for such I there is nothing to prove.3) u0(0+) > 0:Since u0(0+) > 0, since u0(1=2) = 0, and since u0 is convex and continuous on (0; 1=2],two formal possibilities have to be considered. First, let u0(p) � 0, for all 0 < p < 1=2,and for some p0 2 (0; 1=2], u0(p) > 0 for all 0 < p < p0, and u0(p) = 0 for all p0 � p < 1=2.Again, we get the contradiction:0 = u�12� = u(p0) > u(0) = 0:Thus, only the second possibility can take place, i.e., there is a unique p0 2 (0; 1=2] suchthat u0(p) > 0 for all 0 < p < p0, u0(p0) = 0, and u0(p) < 0 for all p0 < p < 1=2. Inaddition, u(0) = u(1=2) = 0, and u(p) > 0 for p > 0 small enough by the assumption3) and by the continuity of u0. Clearly, for functions u possessing these properties, theinequality u � 0 on [0; 1=2] has to hold, since otherwise u0 would be zero at two or morepoints in (0; 1=2). This �nishes the proof of Lemma 8.2.60



9 The uniform distribution on the sphereWe show here how to apply Proposition 8.1 to the uniform distribution �n on the sphereSn� � Rn+1 of radius � > 0, and thus to prove Proposition 1.5 and 1.7. For simplicity, wemay assume that the center of the sphere is at the origin. Denote by �n the Lebesguemeasure on Sn� , i.e., �n = �nsn�n. The isoperimetric property of the balls on Sn� states(see [Lev], [Sch]) that, for any h > 0, among all the Borel sets A � Sn� of �xed volume�n(A) = �nsnp; 0 < p < 1, the value of �n(Ah)is minimal if A is an arbitrary ball on the sphere and, in particular, if A is the ballBn(t) = fx 2 Sn� : x1 � tg; jtj < �:Here t is chosen so that Fn(t) = �n(Bn(t)) = p; jtj < �:(9.1)That is, t = F�1n (p) is the quantile of order p of the distribution function Fn of therandom variable �(x) = x1 de�ned on the probability space (Sn� ; �n), where as usual F�1ndenotes the inverse of Fn. From the very de�nition of the isoperimetric function, we thenhave I�n(p) = �+n (Bn(t)):(9.2)To apply Proposition 8.1, we need two elementary results which for the sake of complete-ness are derived below. From now on, we assume that n � 2.Lemma 9.1 For all p 2 (0; 1),I�n(p) = sn�1sn�n (�2 � F�2n (p))n�12 :(9.3)Proof. By (1.3) and (9.2),I�n(p) = lim infh!0+ �n(Bhn(t))� �n(Bn(t))h= lim infh!0+ �n(Bhn(t))� �n(Bn(t))�nsnh ;(9.4)where t = F�1n (p). Note that for t 2 (��; �), the boundary@Bn(t) = Sn�1r (t) = fx 2 Sn� : x1 = tg61



is the (n�1) dimensional sphere of radius r such that r2+ t2 = �2. Therefore, the lim infin (9.4) can be replaced by lim which is equal to�n�1(Sn�1r )�nsn = rn�1sn�1�nsn ;and which coincides with the right hand side of (9.3).Lemma 9.2 The distribution function Fn is absolutely continuous with densityfn(t) = sn�1�n�1sn (�2 � t2)n�22 ; jtj < �:(9.5)Proof. First note that the geodesic metric as well as the Euclidean metric on the spherecan be used. For the geodesic metric, the h{neighborhood Bhn(t); jtj < �, if it is not thewhole sphere, is the ball Bn(s), t < s < �, where s is de�ned by� arccos(t)� � arccos(s) = h:Hence, h = �(s� t)q(1� t2) + O((s� t)2) = �(s� t)r +O((s� t)2); s! t�;(9.6)where r is de�ned as in Lemma 9.1, i.e., r2 + t2 = �2. Taking small positive values of h,we get by (9.6) and arguments similar to the one used in Lemma 9.1, thatFn(s)� Fn(t) = �n(Bn(s))� �n(Bn(t))= �n(Bhn(t))� �n(Bn(t))= �n�1(Sn�1r )h�nsn +O(h2)= rn�1snh�nsn +O(h2)= rn�2sn�1(s� t)�n�1sn +O((s� t)2):Therefore, fn(t) = lims!t� Fn(s)� Fn(t)s� t = rn�2sn�1�n�1sn ;which coincides with (9.5).Let us now check the conditions (i), (ii) and (iii) required in Proposition 8.1. The �rsttwo are trivially veri�ed and only (iii) requires some proof. Without loss of generality,let � = 1. Let I(p) = (1 � F�2� (p))� ;(9.7) 62



where � � 0; � � 0, and where F�1� : (0; 1) �! (�1; 1) is the inverse of the distributionF� of density f�(t) = d�(1 � t2)�; jtj < 1:(9.8)The normalizing constant d� corresponds to the condition F�(1) = 1.Lemma 9.3 If � � �+1� , then the derivative of I� is convex on the interval (0; 12].Proof. Di�erentiating (9.7), we have�dI(p)dp = 2� (1 � F�2� (p))��1F�1� (p)f�(F�1� (p))= 2�d�1� F�1� (p)(1� F�2� (p))����1:Hence, � dI�(p)dp = 2��d�1� F�1� (p)(1� F�2� (p))�;(9.9)where � = (� � 1)� + (� � � � 1) = �� � � � 1. Note that whenever � � 0, thefunction x(1 � x2)� is increasing and convex on [0; 1]. From (9.8), F� is increasing andconcave on [0; 1], therefore F�1� is increasing and convex on [1=2; 1]. Thus, when � � 0,the right hand side of (9.9) is non{decreasing and convex on [1=2; 1], as the compositionof two functions with the same properties. In addition, since f� is symmetric around 0,F�1� (1�p) = �F�1� (p) and the right hand side in (9.9) is odd around p = 1=2. Taking intoaccount the minus sign in (9.9), we obtained that dI�=dp is convex on (0; 1=2] provided� = �� � �� 1 � 0, i.e., � � (� + 1)=� . This completes the proof.We can now apply Lemma 9.3 to prove Proposition 1.5 and 1.7. Indeed, applying itto the function I�n, i.e., taking � = (n� 1)=2; � = (n� 2)=2, we see that the functiondI��n=dp (� � 1) is convex on (0; 12 ] if� � � + 1� = nn� 1 :Note also, that the condition � � 2 is automatically satis�ed since n � 2. By Proposition8.1, we thus obtain (1.19) and (1.25) for the measure � = �n; n � 2, where according to(9.3) the best constant is given bycn = 2I�n �12� = 2sn�1�sn :To prove the last parts of Proposition 1.5 and 1.7, we note that near p = 0,In(p) � pn�1n :63



Indeed, it is easily seen that for �1 � x � 0 and � � 0,d��+ 1(1 + x)�+1 � F�(x) � 2�d�(1 + x)�+1:Therefore, setting x = F�1� (p), we get if I(p) is as in (9.7),d� 241 �  � p2�d�� 1�+1 � 1!235� � I(p) � d� 2641� 0@ p(� + 1)d� ! 1�+1 � 11A2375� ;from which we conclude that as p ! 0+, I(p) � p ��+1 . Finally, setting � = (n �1)=2; � = (n� 2)=2, we see that for � > n=n � 1, zero is the best non{negative constantin Proposition 1.5 and 1.7.
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10 Existence of optimal Orlicz spacesRecall that a convex function N on the real line is said to be a Young function if it isnon{negative, even, and if N(x) = 0 only for x = 0. Given a measurable space (X;�)(as usual for us, X is a metric space with metric d and � is a separable and non{atomicBorel probability measure), such a function N generate the Orlicz space LN (X;�) of�-measurable real valued functions f equipped with the normkfkN = inf (� > 0 : ZX N  f(x)� ! d�(x) � 1) :(10.1)In particular, for any Borel measurable set A � X of measure �(A) = p 2 (0; 1); thevalue I(p) = k�A � pkN is the only positive one which satis�espN  qI(p)!+ qN  pI(p)! = 1; q = 1� p:(10.2)First part of Theorem 1.11 Given a positive function I on (0; 1); there exists a Youngfunction N satisfying (10.2) for all p 2 (0; 1) if and only if1) I(0+) = I(1�) = 0;2) I(p) = I(q); for all p 2 (0; 1);3) the function pq=I(p) is concave on (0; 1):Proof. Necessity. In (1.33) of Section 1 and (5.3) of Section 5, we introduced the functionxp = xp(0; 1) of the variable p 2 (0; 1) as the positive solution of the equationpN(qx) + qN(px) = 1; q = 1� p:(10.3)So, xp = 1=I(p): By (10.3), xp = xq; and the property 2) follows. By Lemma 5.6, thefunction y(p) = pxpincreases on (0; 1), therefore ` = limp!1� y(p) exists, being �nite or not. If ` < +1, thensince xp = xq, rewriting (10.3) aspN(y(q)) + qN(y(p)) = 1(10.4)and letting p ! 0+, we get N(y(0+)) = 1. But then, we obtain by (10.4) that, for allp 2 (0; 1), 1 > pN(y(0+)) + qN(y(0+)) = N(y(0+)) = 1:Therefore, ` = +1, i.e., I(p)! 0, as p! 1�, and the property 1) is proved. It remainsto establish 3). 65



Introducing the function z(p) = pq=I(p) where as usual q = 1 � p, let us rewrite (10.2)in the form pN  z(p)p !+ qN  z(q)q ! = 1:(10.5)We now show that (10.5) implies that z = z(p) is a concave function. Since N is anon{negative, convex function on [0;+1) and N(0) = 0, N(x) > 0 for x > 0, N can berepresented on (0;+1) in the formN(x) = sup(c;d)2T(cx� d);(10.6)for some T � (0;+1) � [0;+1) with the following property: whenever x > 0, (10.6) isattained at some (c; d) 2 T . From (10.5) and (10.6), noting that z(p) = z(q), we havepN  zp!+ qN  zq! = p sup(c;d)2T  czp � d!+ q sup(c0;d0)2T  c0 zq � d0!(10.7) = sup(c;d)2T; (c0;d0)2T[(c+ c0)z � (dp+ d0q)] = 1:In particular, for all (c; d) 2 T and (c0; d0) 2 T , we have (c+ c0)z � (dp + d0q) � 1, i.e.,z � inf(c;d)2T; (c0;d0)2T 1 + dp + d0qc+ c0 :(10.8)Conversely, since (10.6) is attained at some (c; d) 2 T , (10.7) and therefore, (10.8) arealso attained at some (c; d); (c0; d0) 2 T . Hence, the inequality in (10.8) is in fact anequality, and the function z is thus concave as the in�mum of a family of a�ne functions.To prove the su�ciency part of the result, we �rst stateLemma 10.1 If a positive function I on (0; 1) satis�es the properties 1){3), then thefunction y(p) = p=I(p) is increasing on (0; 1).Proof. Since z is concave and positive on (0; 1), z(0+) is �nite and non{negative. Letz0 be a non{increasing Radon{Nikodym derivative of z. Since y(p) = z(q)=q, whereq = 1� p, one can write y(p) = z(0+)q + Z 10 z0(tq)dt:The functions p �! 1=q and p �! z0(tq) is non{decreasing and so is y as the sum ofnon{decreasing functions. Moreover, if z(0+) > 0, then, since p �! 1=q is increasing on(0; 1), y is also increasing on (0; 1). Let now z(0+) = 0, and thusy(p) = Z 10 z0(tq)dt:66



Assume that y(p0) = y(p1), for some 0 < p1 < p0 < 1. Thenz0(tq1) = z0(tq0);for almost all (with respect to Lebesgue measure) t 2 (0; 1), where q0 = 1�p0, q1 = 1�p1.But then, as easily seen, z0 is constant on (0; q0), hence z is of the form z(s) = a + bs,for all 0 < s < q0, and since z(0+) = 0, we have z(s) = bs, for some b > 0 and for alls 2 (0; q0). If such is the case, we getI(s) = s(1 � s)z(s) = 1� sb ;hence I(0+) = 1=b > 0, which contradicts the assumption 1). Lemma 10.1 is proved.Su�ciency. From Lemma 10.1, we know that the function y(p) = p=I(p) is increasingon (0; 1), and by the assumption 1) that y(1�) = +1. Without loss of generality, onecan assume that y(1=2) = 1. Then, c0 = y(0+) < 1;so y is an increasing bijection from (0; 1=2] to (c0; 1], and from [1=2; 1) to [1;+1). Denoteby y�1 : (c0;+1) �! (0; 1) its inverse.We need to �nd a convex function N : (0;+1) �! (0;+1) satisfying (10.2) and suchthat N(0+) = 0. Then, N will be extended to the whole real line by putting N(�x) =N(x), for x > 0. To de�ne N on (0;+1), we �rst set N(x) = x, for 0 < x � 1. Forx > 1, we de�ne N(x) (in a unique way) in according (10.4). First, for 0 < p � 1=2,from the above discussion we have N(y(p)) = y(p). Therefore (10.4) becomesN(y(q)) = 1 � qy(p)p ; 0 < p � 1=2; q = 1� p;hence letting x = y(q), we haveN(x) = 1� y�1(x)y(1� y�1(x))1 � y�1(x) ; x � 1:(10.9)Clearly, the function N de�ned in (10.9) is increasing and continuous on [1;+1), andin addition, N(1) = 1. So, it just remains to show that N is convex on [1;+1), andthat the right derivative N 0(1+) � 1. Then, the extended function N will be convex on[0;+1).To obtain the �rst requirement, we give instead of (10.9), another representation forN . Note that, by the de�nition of N , any of the identities (10.2), (10.4) and (10.5)(which are equivalent to one another) are ful�lled. Recall also that, by the assumption67



2), z(p) = z(q). For 0 < p � 1=2, z(p)=q = y(p) � 1, hence N(z(p)=q) = z(p)=q, and theidentity (10.5) becomes N  z(p)p ! = 1p � z(p)p ; 0 < p � 1=2;or in terms of the function �(p) = z(p)p = y(q);we obtain the identity N(�(p)) = 1p � �(p); 0 < p � 1=2:(10.10)Note that � decreases on (0,1/2] and satis�es �(1=2) = 1, �(0+) = y(1�) = +1. Let��1 : [1;+1) �! (0; 1=2] be the inverse of �. Then, putting x = �(p), (10.10) can berewriten as N(x) = 1��1(x) � x; x � 1:(10.11)Therefore, N is convex on the interval x � 1 if and only if the function 1=��1(x) is convexon the same interval. Since this last function is increasing, continuous on [1;+1) andsatis�es, by (10.11), 1=��1(1) = 2, 1=��1(+1) =1, the convexity of 1=��1 is equivalentto the concavity of its inverse function R on [2;+1). Let us �nd R. For any t � 2,1��1(x) = t , ��1(x) = 1t , x = ��1t� = tz �1t� :Thus, R(t) = tz �1t� ; t � 2:By the assumption 3), z is a concave function, hence can be represented in the formz(p) = inf(c;d)2S(cp+ d);for some S � R�R. Therefore,R(t) = tz �1t� = t inf(c;d)2S�ct + d� = inf(c;d)2S(c+ dt)is concave as the in�mum of a family of a�ne functions.To obtain the second requirement, i.e., to show that N 0(1+) � 1, one needs to check,according to (10.11), that the right derivative" 1��1(x)#0x=1+ � 2;68



or, equivalently, that R0(2+) � 1=2. As a concave function, z is di�erentiable at all pointsp except, maybe, on a countable set U � (0; 1). For t > 2 such that 1=t does not belongto U , we have R0(t) = �tz �1t��0 = z �1t�� z0 �1t �t :(10.12)Letting in (10.12) t! 2, t > 2, we getR0(2+) = z �12�� z0 ��12���2 � z �12� = 12 ;because, by the assumptions 2) and 3), z0((1=2)�) � 0. The �rst part of Theorem 1.11is thus proved.Remark 10.2 In general, when c = 2I(1=2) is an arbitrary positive constant (not nec-essarily 1), a function N satisfying (10.2) is constructed in the same way, by putting:(i) N(1c ) = 1;(ii) N(x) = cx, for all 0 � x � 1c ;(iii) N(x) = 11�q(x) � cx, for all x � 1c , where q(x) 2 [1=2; 1) is the only solution ofq = I(q)x.The condition (i) necessarily follows from (10.2) when p = 1=2, while given (ii), (iii)follows from (10.2) by putting x = q=I(q), 1=2 � q < 1 there.Now, given a function I satisfying 1){3), assume that another Young function N0 isde�ned by the equality 2pqN0  1I(p)! = 1; q = 1� p;so that N0(2=c) = 2, and N0 is linear on [0; 2=c], that is as in (ii), N0(x) = cx, for all0 � x � 2=c. As noted in the introductory section, such a function N0 was studied byPellicia and Talenti ([Pel{Tal]) when I(p) = '(��1(p)) (the isoperimetric function of thecanonical Gaussian measure).Let us now compare the Orlicz norms (with respect to N and N0) of the function �A�p,where A is a Borel set in X of ��measure p. In addition to satisfying (i){(iii), N isalso assumed to be strictly convex on [1=c;+1) (which is certainly the case of I(p) ='(��1(p))). Since for any p 2 (0; 1) and x � 0, N(px) � pN(x) with strict inequality forx 2 (1=c;+1), we have putting x = 1=I(p), q = 1 � p,2pqN0(x) = 1 = pN(qx) + qN(px) � 2pqN(x)with strict inequality for x > 1=c. Therefore, N0(x) < N(x) for all x � infp 1=I(p) = 2=c.Also, N0(x) = cx < N(x) for all x 2 (1=c; 2=c], by the strict convexity of N on [1=c;+1).69



Moreover, N0(x) = N(x) for all x 2 [0; 1=c]. Now �x p 2 (0; 1) and putx = k�A � pkN ; x0 = k�A � pkN0 :By the very de�nition of the Orlicz norm, we have pN(qx)+qN(px) = 1. Hence pN0(qx)+qN0(px) � 1 with strict inequality if and only if px > 1=c or qx > 1=c. Since the functiony(p) = px is strictly increasing, and y(1=2) = 1=c, this is possible if and only if p > 1=2or q > 1=2. Therefore, x0 < x when p 6= 1=2, and x = x0 when p = 1=2. Thus, oneconcludes that the inequalitykf �m(f)kN0 � ZRn jrf jdnbecomes the isoperimetric inequality for the indicator functions f = �A if and only if thesets A have measure p = 1=2, and is weaker otherwise.Second part of Theorem 1.11 Let the conditions 1)-3) be ful�lled for the isoperimetricfunction I = I�, and let N be a Young function satisfying (10.2). Then, for any Youngfunction M such that LM (X;�) contains W (X;�) as an embedded space, LM (X;�) alsocontains LN (X;�) as an embedded space.We recall that W (X;�) denotes the space of �{integrable functions f , which areLipschitz on every ball in X, such that RX fd� = 0, equipped with normkfkW = ZX jrf jd�:Proof. To prove that LN(X;�) is embedded in LM(X;�), i.e., to prove that for somec > 0 and all f 2 LN (X;�), kfkM � ckfkN ;it su�ces to �nd constants c; d > 0 (below and above c might denote two di�erentabsolute constant) such that M(x) � 1dN(cx);(10.13)for all x > 0 large enough.By assumption, for some c > 0, kfkM � ckfkW ;(10.14)for all f 2 W , where kfkM is de�ned as in (10.1). By Theorem 1.1 (or, Theorem 1.10),(10.14) implies k�A � pkM � cI(p);70



where A � X is an arbitrary Borel set of measure �(A) = p 2 (0; 1). By de�nition (10.1),this means that for all p 2 (0; 1),pM �qxpc �+ qM �pxpc � � 1;(10.15)where, as usual, xp = 1=I(p); q = 1 � p. We get from (10.15) that, for all 0 < p � 1=2,pM �qxpc � � 1:Hence, since q � 1=2 and since M is increasing on [0;+1),xp � 2cM�1  1p! ; 0 < p � 1=2;(10.16)where M�1 is the inverse of M restricted to [0;+1).Let us return to the function N and to the identity (10.4) which is equivalent to (10.2).Since the function y(p) = pxp is strictly increasing on (0; 1), we must have N(c0) < 1where c0 = c0(�) = limp!0+ pxp;since otherwise we would have1 = pN(qxp) + qN(pxp) > pN(c0) + qN(c0) = N(c0) � 1Letting in (10.4) p! 0+, we obtain that for all small enough p 2 (0; 1=2],pN(qxp) � d = 1 �N(c0)2 > 0:Hence for such p, pN(xp=2) � d, i.e.,xp � 2N�1  dp! ;(10.17)where N�1 is the inverse of N restricted to [0;+1). Comparing (10.16) and (10.17), wehave that for all small enough p 2 (0; 1=2],N�1  dp! � cM�1  1p! ;(10.18)and (10.13) follows from (10.18) by putting y = 1=p, x = M�1(y) and sinceN is increasingon [0;+1). 71



11 Proof of Theorem 1.12 (the case of the sphere)Given two non{negative parameters � and �, letI(p) = (1� F�2(p))� ; 0 < p < 1;(11.1)where F�1 : (0; 1) �! (�1; 1) is the inverse of the distribution function F which isconcentrated in (�1; 1) and has densityF 0(x) = d�(1� x2)�; jxj < 1;(11.2)where d� is a normalizing constant. As we saw in Section 9, I�n the isoperimetric functioncorresponding to the uniform distribution on the n{sphere Sn1 ; n � 2, (in the sequel, andfor simplicity � = 1) has up to a constant the form (11.1){(11.2) with� = n � 12 ; � = n� 22 :(11.3)In this section we verify that I�n (n � 2) satis�es the conditions 1){3) of Theorem 1.11.The properties 1) and 3) are trivially satis�ed, and only 3) requires some proof. Notethat the case n = 2 was studied in Section 1: I�2(p) = ppq (q = 1� p), so the functionpqI�2(p) = ppqis clearly concave on (0,1).Lemma 11.1 If 1 � � � � � � + 1; � � 2, then the functionz(p) = pqI(p) ; q = 1� p;is concave on (0; 1).If � and � are of the form (11.3), then the assumptions of Lemma 11.1 are only ful�lledfor n � 5, so this result gives the proof of Theorem 1.12 for the n{sphere only whenn � 5. The cases n = 3 and n = 4 are treated separately after the proof of Lemma 11.1.Proof. Let us �rst give another equivalent wording (with arbitrary � and �) of thestatement of the lemma. Introduce the functionH�(x) = Z x0 (s(1� s))�ds; 0 < x < 1:(11.4)By (11.2), making the change of variables t = 2s � 1, we haveF (x) = d� Z x�1(1� t2)�dt = d�22�+1 Z 1+x20 (s(1 � s))�ds = d�22�+1H�(1 + x2 ):72



Hence, by (11.1) and taking into account the symmetry identity 1 � F (x) = F (�x), weget z(F (x)) = F (x)(1� F (x))I(F (x)) = F (x)F (�x)(1 � x2)�(11.5) = d2�42�+1�� H�(1+x2 )H�(1�x2 )(1+x2 )� (1�x2 )�= c H�(y)H�(1� y)y�(1 � y)� ;where y = (1 + x)=2, and where c is a constant depending only on � and �. Di�erentiating(11.5) (note that dy=dx = 1=2) givesz0(F (x))F 0(x) = ddy "H�(y)H�(1� y)y�(1� y)� # :Therefore using (11.2) and since 1� x2 = 4y(1� y), we obtain the identityz0(F (x)) = c(y(1� y))�� ddy "H�(y)H�(1� y)(y(1� y))� # ;(11.6)where again, c depends only on � and �. Note that the function z = z(p) is symmetricaround 1=2, z(0+) = z(1�) = 0, and that it is easy to see that z0(1=2) = 0. Therefore, toprove that z is concave on (0; 1), it su�ces to show the concavity of z on (0; 1=2). In otherwords, it is enough to show that its derivative z0(p) is non{increasing on (0,1/2). Since Fis increasing and continuous on (�1; 1), this is in turn equivalent to showing that z0(F (x))is non{increasing on (�1; 0), i.e., that the right{hand side of (11.6) is non{increasing for0 < y < 1=2. Thus, one has:Lemma 11.2 The function z is concave on (0; 1) if and only if the function(x(1� x))�� ddx "H�(x)H�(1� x)(x(1 � x))� #is non{increasing on (0; 1=2).We now need some further preparatory work.Lemma 11.3 Consider the two functions:H�(x)H�(1� x)(x(1� x))2�+1 ; H�(x)H�(1� x)(x(1� x))�+1 :For � � 1, the �rst function decreases on (0; 1=2], while for � � 0, the second oneincreases on (0; 1=2]. 73



Proof. By (11.4), making the change of variables t = sx, where x 2 (0; 1) is �xed, wehave H�(x) = Z x0 (t(1� t))�dt = x�+1 Z 10 (s(1� sx))�ds:Hence, H�(x)x2�+1 = Z 10 s� �1x � s�� ds;and thereforeH�(x)x2�+1 H�(1� x)(1� x)2�+1 = Z 10 t��1x � t�� dt Z 10 t� � 11� x � t�� dt = T (u)T (v);where u = 1=x; v = 1=(1 � x), T (u) = R 10 t�(u� t)�dt.Note that (u�1)(v�1) = 1, and that u = u(x) � 2 is a decreasing function of x 2 (0; 1=2].Therefore, replacing u by u+ 1 and v by v + 1, we getH�(x)H�(1� x)(x(1� x))2�+1 = S(u)S �1u� ;where S(u) = T (u+ 1) = Z 10 t�(u+ (1� t))�dt= Z 10 (1� t)�(u+ t)�dt= Z 10 (u+ t)�p(t)dt;p(t) = (1 � t)�. To prove the �rst part of the lemma, we thus need to show that thefunction S(u)S(1=u) increases on [1;+1). But,S(u)S �1u� = Z 10 Z 10 (u+ t)� �1u + s�� p(t)p(s)dtds= 2Z Z 0<t<s<1 "(u+ t)� �1u + s)� + (u+ s�� �1u + t��# p(t)p(s)dtds:Consequently, it su�ces to show that the functionf(u) = (u+ t)� �1u + s�� + (u+ s)� �1u + t��which is within the square brackets in the integral, is an increasing function of u � 1, forany �xed 0 < t < s < 1. Rewriting f(u) asf(u) = �(1 + ts) + us+ tu�� + �(1 + ts) + ut+ su�� ;74



we obtain that its derivative�f 0(u) = �(1 + ts) + us+ tu���1 �s� tu2�+ �(1 + ts) + ut+ su���1 �t� su2� > 0if and only if " (1 + ts) + us+ tu(1 + ts) + ut+ su #��1 > � t� su2s� tu2 :(11.7)Now, it is easy to see that the right{hand side of (11.7) is strictly less than one and thatthe expression in the square brackets on the left{hand side of (1.17) is strictly greaterthan one, when u > 1. Indeed, �rst note that s� t=u2 > 0, because s > t. Therefore,� t� su2s� tu2 < 1 , �t+ su2 < s� tu2 , s+ tu2 < s+ twhich is, of course, true. Analogously,(1 + ts) + us+ tu(1 + ts) + ut+ su > 1, (1 + ts) + us+ tu > (1 + ts) + ut+ su , u(s� t) > s � tuwhich is also true when u > 1. Since � � 1 � 0, the �rst part of Lemma 11.3 follows.To establish the second part of the lemma, leth�(x) = H�(x)x�+1 = 1x�+1 Z x0 t�(1� t)�dt = Z 10 s�(1� sx)�ds:A di�erentiation and an integration by parts giveh0�(x) = �� Z 10 s�+1(1 � sx)��1ds= 1x Z 10 s�+1d(1 � sx)�= (1� x)�x � �+ 1x Z 10 s�(1� sx)�ds:Therefore, h� sati�es the following di�erential equation:h0�(x) = (1� x)�x � �+ 1x h�(x):(11.8)By (11.8), the derivative of the second function in Lemma 11.3 is(h�(x)h�(1� x))0= h0�(x)h�(1� x)� h�(x)h0�(1� x)= "(1� x)�x � � + 1x h�(x)#h�(1� x) � " x�1 � x � � + 11 � xh�(1� x)#h�(x)= (1� x)�x h�(1� x) � x�1 � xh�(x) + (� + 1)(1 � 2x)x(1� x) h�(x)h�(1 � x):75



The third term in this last expression is positive, since 1� 2x > 0. Hence, to prove that(h�(x)h�(1 � x))0 > 0, it is enough to show that(1� x)�x h�(1 � x) � x�1 � xh�(x):(11.9)Multiplying (11.9) by x(1� x), leads to the inequality (1� x)�+1h�(1� x) � x�+1h�(x),which is equivalent to H�(1� x) � H�(x). Now, this last inequality holds true since H�increases on (0; 1) and since by assumption, 0 < x � 1=2. Lemma 11.3 is thus proved.Continuation of the proof of Lemma 11.1.According to Lemma 11.2, we need show that(x(1� x))�� ddx "H�(x)H�(1� x)(x(1 � x))� #is non{increasing on (0; 1=2). Let � = x(1 � x), so that d� = (1 � 2x)dx, and let� = � � � + 1. By assumption, 0 � � � 1 (note that, in the case of the sphere, i.e.,when � and � are de�ned by (11.3), we have � = 1=2). For � � 0, by Lemma 11.3, thefunction V (x) = H�(x)H�(1 � x)��+1increases on (0; 1=2]. Rewriting the function in the square brackets above asH�(x)H�(1 � x)�� = ��V (x);we have for its derivative:ddx "H�(x)H�(1 � x)�� # = ����1V (x)(1� 2x) + ��V 0(x):Therefore,(x(1 � x))�� ddx "H�(x)H�(1 � x)�� # = � V (x)��+1�� (1 � 2x) + V 0(x)����= �H�(x)H�(1 � x)�2�+2�� (1� 2x) + V 0(x)���� :For � � 1, and by Lemma 11.3, the �rst term in this last expression rewriten as� H�(x)H�(1 � x)�2�+1 1�1�� (1 � 2x);76



is the product of decreasing functions, and so is a decreasing function on (0; 1=2]. Tostudy the second term, we �rst �nd the derivative of V . Noting that H 0�(x) = ��, we get:V 0(x) = H�(1� x)�H�(x)� � (�+ 1)H�(x)H�(1 � x)�� :From this one concludes that the functionV 0(x)� = H�(1� x)�H�(x)�2 � (� + 1)V (x)decreases as the di�erence of a decreasing function and, as already proved in Lemma11.3, of an increasing function. Therefore,V 0(x)���� = V 0(x)� 1�����1decreases since by assumption, � � �� 1 = � � 2 � 0:Lemma 11.1 is proved.Lemma 11.4 (the case n = 4) The function pq=I�4(p), (q = 1� p), is concave on (0; 1).Proof. When n = 4, � = n� 1=2 = 3=2, and � = n � 2=2 = 1. According to Lemma11.2, one should verify that(x(1� x))�1 ddx "H1(x)H1(1� x)(x(1� x))3=2 #is non{increasing on (0; 1=2). As above, we set � = x(1� x). By (11.4),H1(x) = Z x0 t(1� t)dt = 16x2(3� 2x);hence, 36 H1(x)H1(1 � x) = �2(3 � 2x)(1 + 2x) = �2(3 + 4�):Therefore, 36H1(x)H1(1� x)�3=2 = 3� 12 + 4� 32 ;so 36 ddx " H1(x)H1(1 � x)�3=2 # = �32��12 + 6� 12� (1 � 2x);and 36��1 ddx "H1(x)H1(1� x)�3=2 # = �32��32 + 6��12 � (1� 2x):(11.10) 77



The right hand side of (11.10) is the product of two non{negative, non{increasing func-tions on (0; 1=2) and Lemma 11.4 is proved.Lemma 11.5 (the case n = 3) The function pq=I�3(p), (q = 1� p), is concave on (0; 1).Proof. When n = 3, � = n� 1=2 = 1, � = n � 2=2 = 1=2, and we set H(x) = H1=2(x).Again, using Lemma 11.2, we just need to verify that(x(1� x))�1=2 ddx "H(x)H(1 � x)(x(1� x)) #is non{increasing on (0; 1=2). By (11.4),H(x) = Z x0 qt(1� t)dt:(11.11)Noting that H 0(x) = �1=2, (where again, � = x(1� x)) we have(H(x)H(1� x) ��1)0 = (H(1 � x)�H(x))��1=2 � H(x)H(1 � x)��2(1 � 2x);henceg(x) = (�)�1=2 ddx "H(x)H(1 � x)� # = (H(1�x)�H(x))��1�H(x)H(1�x)��5=2(1�2x);is non{increasing on (0; 1=2), if its derivative is non{positive, i.e., ifg0(x) = �2��1=2 � (H(1� x)�H(x))��2(1� 2x)(11.12) � [�2H(x)H(1� x)��5=2 + (H(1 � x)�H(x))��2(1� 2x)+ 52H(x)H(1 � x)��7=2(1� 2x)] � 0:Multiplying (11.12) by �7=2, we obtain the inequality2H(x)H(1 � x)� � 2�3 + 2(H(1 � x)�H(x))�3=2(1� 2x)+ 52H(x)H(1 � x)(1� 2x):Since the middle term on the above right{hand side is positive for x 2 (0; 1=2), it su�cesto show that 2H(x)H(1 � x)� � 2�3 + 52H(x)H(1 � x)(1 � 2x);i.e., that H(x)H(1 � x)(4�� 5(1� 2x)) � 4�3:(11.13) 78



Now from (11.11) we immediately have, noting that qt(1� t) increases on (0; 1=2) andthat its maximum on (0; 1) is 1=2, that for all x 2 (0; 1=2),H(x) � x�1=2; H(1 � x) � (1 � x)2 :Therefore, H(x)H(1 � x) � �3=2=2 � �=4. Applying this to (11.13), it is enough to seethat 4� � 5(1 � 2x) � 16�2:(11.14)Changing variables (� = x�x2 = s=4, 0 < s < 1), we have 1� 2x = p1� s, and (11.14)takes the form s� 5p1� s � s2;i.e., the form sp1 � s � 5. Again, this last inequality is trivially true, and Lemma 11.5is proved.
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12 Proof of Theorem 1.12 (the Gaussian case)The half{spaces Ap = fx 2 Rn : x1 � tg are extremal in the isoperimetric problem for thestandard Gaussian measure n (see [Sud{Tsi] and [Bor]), i.e., the value n(Ah) is minimalamong all Borel sets A � Rn of measure n(A) � p, if A = Ap. The value of t is chosen sothat n(Ap) = 1((�1; t]) � �(t) = p, i.e., t = ��1(p) is the inverse of the distributionfunction � of the standard univariate Gaussian density '(x) = (2�)�1=2 exp(�x2=2).Since, fx 2 Rn : x1 � tgh = fx 2 Rn : x1 � t+ hg;the isoperimetric function corresponding to n has the formIn(p) = +n (Ap) = '(��1(p)):Note that In does not depend on the dimension, so it can simply be denoted by I. Theproperties 1) and 2) of Theorem 1.11 are trivially true for I. To complete the proof ofTheorem 1.12, it remains to stateLemma 12.1 The function z(p) = pqI(p) ; q = 1 � p;is concave on (0; 1).Indirect proof. It is easy to check by (1.17){(1.18) (or (9.3) and (9.5)) that the sequenceI�n(p) of isoperimetric functions corresponding to the uniform distributions on the n{spheres of radius � = pn converges pointwise to I(p), as n!1. Therefore, by Lemma11.1, pq=I is concave as a limit of concave functions.Direct proof. Clearly, z is concave if it is concave on (0; 1=2), i.e., ifg(x) = z0(�(x)) = (1 � 2�(x))'(x) + �(x)(1 � �(x))x'2(x)does not increase on (�1; 0), i.e., if g0(x) � 0. After di�erentiating and with the helpof the identity '0(x) = �x'(x), this last inequality takes the formu(x) = (1 + 2x2)�(x)(1 ��(x))� '2(x) + 2x(1 � 2�(x))'(x) � 0:Another di�erentiation givesu0(x) = 4x�(x)(1 ��(x)) + 4x'(x)(1� '(x)) + 3'(x)(1� 2�(x)):80



Let v(x) = 4x(1 � '(x)) + 3(1 � 2�(x)), so thatu0(x) = 4x�(x)(1 � �(x)) + '(x)v(x):(12.1)Then, v0(x) = 4 + '(x)(x2 � 10);(12.2)and v00(x) = x(12 � x2)'(x) � 0, for 0 � x � p12. Therefore, v is convex on [0;p12].In addition, v(0) = 0, v0(0) = 4� 10'(0) = p32� � 10p2� > 0;hence v0 > 0 on [0;p12]. By (12.2), v0 > 0 on [p10;+1), thus since v0 is even, v0 > 0on the whole real line. Since v increases, and v(0) = 0, we have v(x) < 0 on (�1; 0),therefore by (12.1), u0 < 0 on (�1; 0). Consequently, in order to prove that u � 0 on(�1; 0), it is enough to check that u(�1) � 0. To prove this, noting that the middleterm in the de�nition of u is negative, it is in turn enough to show that�x�(x)(1� �(x)) � (1� 2�(x))'(x);for all x < 0 with jxj large enough. But this follows from the well{known asymptoticexpansion �x�(x)'(x) = 1 � 1x2 +O� 1x4� ; x! �1:The direct proof of Lemma 12.1 is obtained.
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13 The isoperimetric problem on the real lineIn this section we study the isoperimetric problem for a class of \regular" �. To any Borelmeasure � on the real line is associated its distribution function F (x) = �((�1; x]), x 2R. Denote by F the family of those measure (with distribution functions F ) which areconcentrated on some (�nite or not) interval (aF ; bF ) (aF = inffF > 0g; bF = supfF <1g) where F is absolutely continuous with continuous, and positive density f = F 0. Suchfunctions F are strictly increasing on (aF ; bF ), and we introduce the continuous, positivefunction J�(p) = f(F�1(p)); 0 < p < 1;where F�1 : (0; 1) �! (aF ; bF ) is the inverse of F restricted to (aF ; bF ). We extend J�to [0; 1] by putting J�(0) = J�(1) = 0:Note that, under a shift transformation, we obtain the measure �(A) = �(A+h) and thatJ� = J�. So, in the sequel, one can think of � in terms of J�, up to the shift parameterh. The map � �! J� is a bijection from F onto the family of all continuous, positivefunctions on (0; 1). If 0 is the median of �, i.e., if F (0) = 1=2, then F is expressed viaJ� as the inverse of the functionF�1(p) = Z p1=2 dtJ�(t); 0 < p < 1;(13.1)where aF = F�1(0+), and bF = F�1(1�). The isoperimetric function I� can be found viaJ� as follows:Proposition 13.1 Let F 2 F . Then, for any p 2 (0; 1),I�(p) = inf nXk=1 (J�(p2k�1) + J�(p2k));(13.2)where the in�mum is taken over all possible 0 � p1 < p2 < : : : < p2n�1 < p2n � 1 suchthat Pnk=1(p2k � p2k�1) = p.Proof. Put f(x) = 0 for x 2 (�1; aF ][ [bF ;+1), so that f is continuous on (�1;+1)except, possibly, at x = aF or x = bF . Denote by T the family of all sets A � R whichare �nite unions A = [ni=1�i of open (�nite or not) intervals �i = (ai; bi) with disjointboundaries. Clearly, for an open (�nite or not) interval � = (a; b) with p1 = F (a) andp2 = F (b), we have �+(�) = f(a�) + f(b+) = J�(p1) + J�(p2):82



Therefore, (13.2) just says that in the de�nition of the isoperimetric functionI�(p) = inf �+(A);(13.3)the in�mum can be taken over all A 2 T of measure p. In fact, this property holdstrue for any non{atomic � de�ned the real line without assuming that F 2 F . With thehelp of this statement, we now claim that an analogous property also holds true for theintegral isoperimetric problem, namely, ifRh(p) = inf �(Ah); h > 0; 0 < p < 1;(13.4)where A runs over all Borel measurable A � R of measure p, then the in�mum in (13.4)can be restricted to the class T .To prove this claim, we represent the h{neighbourhood of A,Ah = [n�1(cn; dn);as the union of (at most) countably many disjoint open intervals (cn; dn). Then, letan = cn + h, bn = dn � h. Clearly, an � bn, dist((ai; bi); (aj; bj)) � 2h (i 6= j), hence any�nite interval (�c; c) contains only �nitely many of the (cn; dn). In addition, if we takeB = [n�1(an; bn), then A � [n�1[an; bn]; and Ah = Bh:Therefore, using the continuity of F , �(B) � p, �(Ah) = �(Bh). Now, letB(c) = B [ (�1;�c) [ (c;+1); c > 0;where as noted above, B(c) 2 T . In addition,�(B(c)) � p; �(Bh(c)) �! �(Bh) = �(Ah);as c! +1. Hence, for any � > 0, there exists B1 2 T (B1 = B(c) with c large enough)such that �(B1) � p, �(Bh1 ) � �(Ah) + �. Decreasing the length of the intervals whoseunion is B1, one gets a set B2 � B1 such that �(B2) = p, and we also have that B2 2 T ,and that �(Bh2 ) � �(Ah) + �. Thus, the in�mum in (13.4) can be restricted to the classT .To complete the proof of the proposition, let us return to the abstract triple (X; d; �).Let B(X) be the Borel sets in X, and let R � B(X) contains sets of any measure. LetR�h(p) = inf �(Ah); I�(p) = inf �+(A); (h > 0; 0 < p < 1);where the in�ma are taken over all A 2 R. In particular, when R = B(X), we haveR�h(p) = Rh(p), and I�(p) = I�(p). Then, it directly follows from above thatI�(p) = lim infh!0+ R�h(p) � ph :(13.5) 83



We therefore have the following statement: if for all h > 0,R�h(p) = Rh(p); then I�(p) = I�(p):Now, on the real line, taking R = T completes the proof.Remark 13.2 In a similar way, one can substitute the real variable h in (13.5) with arational variable r. An important consequence of this possible substitution, is the factthat the isoperimetric function I� is always Borel measurable on (0; 1) as the limit of asequence of measurable functions (note that Rh(p) is a non{decreasing function of p).Remark 13.3 It can also be proved (as in Proposition 13.1, and this will be used in theproof of Theorem 14.1), that if � is a non{atomic �nite Borel probability measure on thereal line, then inf�(A)=p2(0;1)�+(A) = infA2T ;�(A)=p2(0;1)�+(A)Let us return to the real line R equipped with the measure � whose distribution functionF belongs to the class F . As shown above, the in�mum (13.3) can be taken over allA 2 T of �-measure p. Note that the interior of R nA belongs to T , and that�(R nA) = 1 � p; �+(R nA) = p:Therefore, the isoperimetric function I� is symmetric around 1=2, i.e., for all p 2 (0; 1),I�(1� p) = I�(p):Since I�(p) � J�(p);(13.6)we then have that I�(p) � minfJ�(p); J�(1� p)g:(13.7)A natural question arising from (13.6) and (13.7) is: \does there exist necessary andsu�cient conditions, in terms of F or of J�, to have I� = J� ?" Equivalently, \whenare the intervals (�1; x] extremal in the isoperimetric problem (13.3)?" In turn thislast statement is equivalent to the extremality of these same intervals in the \integral"problem (13.4) (i.e., to the isoperimetric property of the intervals (�1; x]).Proposition 13.4 Let F 2 F . The following properties are equivalent:a) for any p 2 (0; 1), the in�mum (13.3) is attained at the interval (�1; x], wherex = F�1(p), and then I� = J�; 84



b) for any p 2 (0; 1) and h > 0, the in�mum (13.4) is attained at the interval (�1; x],where x = F�1(p), and then Rh(p) = F (F�1(p) + h);c) the measure � is symmetric around its median, i.e., J� is symmetric around 1=2,and for all p; q > 0 such that p+ q < 1,J�(p + q) � J�(p) + J�(q):(13.8)Before coming to the proof of the above equivalences, let us state two corollaries. Forthe �rst, one can easily verify using (13.1), that � is log{concave if and only if J� isconcave on (0; 1). But concave functions clearly satisfy (13.8).Corollary 13.5 If the measure � is log-concave, i.e, if the function log f is concave on(aF ; bF ), and if � is symmetric around its median, then � satis�es the above conditions.Corollary 13.6 Let the measure � with F 2 F satis�es one of the above conditions a),b), or c), then there exists a positive constant c such that,J�(p) � cminfp; 1 � pg;(13.9)whenever p 2 (0; 1), that is for all x 2 (aF ; bF ),minfF (x); 1� F (x)g � 1cf(x):Equivalently, the increasing map U : R �! (aF ; bF ), which transforms the two{sidedexponential distribution �, of density f�(x) = d�(x)=dx = (exp�jxj)=2, x 2 R, into �(i.e., �U�1 = �), is a Lipschitz function, of Lipschitz constant at most 1=c. In particular,the \tails" F (�h), 1�F (h) have at least an exponential rate of decrease (as h! +1).Proof of Corollary 13.6. We �rst note that since J� is continuous, (13.8) extends tocountable families, that is, for any sequence pn > 0 such that Pn pn < 1,J�(Xn pn) � Xn J�(pn):(13.10)Since J� is symmetric, positive and continuous, it su�ces to show thatc = lim infp!0+ J�(p)=p > 0:From this, (13.9) follows with, perhaps, a smaller constant. To prove that this lim inf ispositive, assume the contrary. Then, for any c > 0, the set S(c) of points p 2 (0; 1) withJ�(p) � cp is at least countable, and moreover, 0 2 S(c). Hence, for any p 2 (0; 1), there85



exists a sequence pn 2 S(c) such that Pn pn = p. By (13.10), we then have J�(p) � cp.Since c > 0 can be arbitrarily small, this gives J� = 0, which is impossible. To completethe proof of the corollary, let F� be the distribution function of the double exponential�, i.e., let F�(x) = 8><>: expx2 ; if x < 01� exp(�x)2 ; if x � 0:Then, by a direct application of the de�nition,J�(p) = f�(F�1� (p)) = minfp; 1� pg:Since U(x) = F�1(F�(x)), we obtain after di�erentiation:U 0(F�1� (p)) = J�(p)J�(p) :Therefore, U is Lipschitz, of Lipschitz constant at most 1=c, if and only if J�(p) � cJ�(p),for all 0 < p < 1. This coincides with (13.9), and the corollary is proved.Proof of Proposition 13.4. That a) and b) are equivalent immediately follows fromTheorem 2.1 applied to I = J�. Assume now that the property c) is ful�lled. Then, forany 0 < p < q < 1, we have p+ (1 � q) < 1, henceJ�(p) + J�(q) = J�(p) + J�(1 � q) � J�(p + (1� q)) = J�(q � p):These inequalities remain true also when p = 0 and/or q = 1, so for any 0 � p < q � 1,J�(p) + J�(q) � J�(q � p):Applying this last inequality to (13.2) and using (13.8) with the notations of Proposition13.1, we getnXk=1 (J�(p2k�1) + J�(p2k)) � nXk=1 J�(p2k � p2k�1) � J�( nXk=1(p2k � p2k�1)) = J�(p):Therefore, by Proposition 13.1, I�(p) � J�(p). Together with (13.7), this gives I�(p) =J�(p), i.e., (13.2) is attained when n = 2, p1 = 0, p2 = p. This corresponds to theextremal case A = (�1; x] with x = F�1(p) in (13.3). Thus, c) implies a).Conversely, assume that a) is true. Let A = (�1; x], and B = [y;+1) be intervals of�{measure p, i.e., x = F�1(p), and y = F�1(1 � p). By assumption, �+(A) = f(x) ��+(B) = f(y), that is J�(p) � J�(1 � p). Replacing p by 1 � p, we get the opposite86



inequality, and combining these two inequalities gives J�(p) = J�(1 � p). Consider nowin (13.2) the case n = 1. Replacing there (since a) is assumed), I� by J�, leads toJ�(p) � J�(p1) + J�(p2) = J�(p1) + J�(1� p2);whenever 0 � p1 < p2 � 1, p = p2� p1. Putting p0 = p1, q0 = 1� p2, so p0+ q0 = p, turnsthis last inequality into (13.9), and �nishes the proof of the proposition.Let us try to say something more about the isoperimetric function I� for non{log{concave measures. As noted before, I� should be symmetric around 1/2. In addition, byProposition 13.1, we have that if a symmetric (around 1/2) function I on (0; 1), satis�es(13.8) and is majorized by J�, then I� � I. This might naturally inspire the conjecturethat the isoperimetric function I� is maximal among all the functions I which satisfy thecondition c) in Proposition 13.4 and which are majorized by J�. This is not so. To seethat, we consider the isoperimetric problem for unimodal distributions.Assume F 2 F . We say that the measure � (or its distribution function F ) is uni-modal, if for some x0 2 [aF ; bF ], the density f is non{decreasing on the interval (aF ; x0),and is non{increasing on the interval (x0; bF ). An equivalent wording for unimodalityis: for some p0 2 [0; 1], the function J� is non{decreasing on the interval (0; p0), andnon{increasing on the interval (p0; 1). In this de�nition, f is allowed to be monotone,say, non{increasing on (aF ; bF ). In this case, x0 = aF , and p0 = 0, so the left intervals(aF ; x0) and (0; p0) are empty. This is the case, for example, of the standard (one-sided)exponential distribution � of density f(x) = exp(�x), x > 0, for which J�(p) = 1 � p,whenever 0 < p < 1.Note that the class of unimodal distributions is not larger than the class de�ned inProposition 13.3 c). Take for example, the measure � with J�(p) = maxfp; 1 � pg, and,for simplicity, x0 = 0. From (13.1), we �nd that its density is: f(x) = (exp jxj)=2,jxj < log 2. So, f decreases on (� log 2; 0) and increases on (0; log 2), hence � is notunimodal. On the other hand, for this measure, (13.8) is ful�lled.Proposition 13.7 Let F 2 F be unimodal. Then, for any p 2 (0; 1), the in�mum(13.3) is attained either at an interval (�nite or not) A = (a; b) of measure p, or at thecomplement A = R n (a; b) of an interval of measure 1� p. Therefore, for all p 2 (0; 1),I�(p) = inf (J�(p1) + J�(p2));(13.11)where the in�mum is taken over all possible 0 � p1 < p2 � 1 such that p2 � p1 = p andsuch that p2 � p1 = 1 � p.We give the proof of this proposition at the end of the section and provide now someimportant partial cases where (13.11) simpli�es (the proofs of these partial results arealso given at the end of the section). Again, let F 2 F be the distribution function of87



a unimodal measure �. As usual, f denotes a continuous density of �. Note also thatlog{concave distributions are unimodal.Corollary 13.8 If the measure � is log{concave, or if f is monotone on (aF ; bF ), thenfor all p 2 (0; 1), I�(p) = minfJ�(p); J�(1� p)g:(13.12)In other words, the in�mum (13.3) is attained either at the interval (�1; x], or at theinterval [x;+1) of measure p (in either case).Thus, for symmetric log{concave �, (13.12) recovers the statement of Corollary 13.5. Forgeneral (not necessarily symmetric) log{concave �, we get equality in (13.7).Remark 13.9 It can be shown that if � satis�es either one of the assumptions of Corol-lary 13.8, then the last statement of Corollary 13.8 can be extended to the \integral"isoperimetric problem: the in�mum (13.4) is attained either at the interval (�1; x], orat the interval [x;+1) of measure p (in either case).Corollary 13.10 Let F 2 F be unimodal and let also assume that the measure � issymmetric around a point x0 (which should be its median and mode simultaneously).Then, for all p 2 (0; 1),I�(p) = min(J�(p); 2J�  min(p; 1� p)2 !) :(13.13)This means that the in�mum (13.3) is attained either at (�1; x], or at (x0� h; x0+ h),or at (�1; x0 � g) [ (x0 + g;+1), of measure p (in all the cases).Examples and comments1) As already noted, for the two{sided exponential distribution �, of density f�(x) =(exp�jxj)=2, x 2 R, we have J�(p) = minfp; 1�pg. Since � is log{concave and symmetricaround 0, by Corollary 13.5, I�(p) = J�(p). For the standard (one{sided) exponentialdistribution of density f(x) = exp(�x), x > 0, we have as also noted before, J�(p) = 1�p,0 < p < 1. By Corollary 13.8,I�(p) = minfJ�(p); J�(1� p)g = minfp; 1 � pg:Therefore, the one{sided and the two{sided exponential distributions have the sameisoperimetric function. On the other hand, the solutions to the integral isoperimetricproblem di�er for these distributions. Indeed, one may apply Proposition 13.3 b) to �and get: for any h > 0, 0 < p < 1,Rh;�(p) = inf�(A)=p �(Ah) = F�(F�1� (p) + h):88



A direct calculation of the right{hand side above gives, putting also � = exp(�h) :Rh;�(p) = 8>>>>><>>>>>: p=�; if p � �=21� �=(4p); if �=2 � p � 1=21� �(1 � p); if p � 1=2Applying Remark 13.9 to the measure � of density f(x) = exp(�x), x > 0Rh;�(p) = inf�(A)=p �(Ah) = minfF�(F�1� (p) + h); 1 � F�(F�1� (p)� h)g:Another calculation (setting also � = exp(�h), givesRh;�(p) = 8><>: p=�; if p � �=21 � �(1 � p); if p � �=2Hence, Rh;�(p) � Rh;�(p) with strict inequality when �=2 < p < 1=2.2) Another interesting example is provided by a probability measure � of densityf(x) = 1(jxj+ 2)2 :Clearly, � is unimodal and symmetric around 0, so one can apply Corollary 13.10 inorder to �nd the isoperimetric function I�. The distribution function of � is F (x) =(x + 1)=(x + 2), for x � 0, and an easy calculation shows that J�(p) = (1 � p)2, forp � 1=2. Since J� is symmetric around 1/2, we getJ�(p) = minfp2; (1� p)2g; 0 < p < 1:Applying (13.13), we �nally �ndI�(p) = 12 minfp2; (1 � p)2g = 12J�(p):Note that, whenever 0 < p < 1, the interval (�1; x], of measure p, is not an extremalset in (13.3). Note also that there does not exist a positive function I which would bemajorized by J� and would satisfy the condition c) in Proposition 13.4: otherwise, byCorollary 13.6, 1� F (x) would decrease exponentially to zero at in�nity.Proof of Proposition 13.7. Set J = J�, and for � = [p; q) de�ne J(�) = J(p) + J(q),0 � p < q � 1, while for p = q put J(;) = 0. Then, (13.2) can be written asI�(p) = inf nXk=1 J(�k);(13.14) 89



where the in�mum is taken over �nite unions of disjoint intervals �k � [0; 1), 1 � k � n,of total length p. Note that since I� is symmetric around 1=2, one can also take in (13.14)sets of total length 1 � p.By assumption, for some p0 2 [0; 1], the function J is non{decreasing on the interval[0; p0], and non{increasing on the interval [p0; 1]. Take all the intervals �k, k 2 V �f1; : : : ; ng, which are situated on the left of p0. Then, by the above,Xk2V J(�k) � J(p1);(13.15)where p1 is the total length of the �k; k 2 V . In the same way, if we take all the �k,k 2 W � f1; : : : ; ng, which are situated on the right of p0, and denote by p2 their totallengths, then Xk2W J(�k) � J(1� p2):(13.16)Therefore, all the �k, k 2 V (resp., k 2 W ), can be substituted in (13.14) by a singleinterval [0; p1) (resp., [1�p2; 1)). Note that one of the sets V or W is empty when p0 = 0,or p0 = 1. In addition, at most one of the �k covers the point p0. Therefore, to minimize(13.14), one needs only consider unions of three disjoint intervals, more precisely:�1 = [0; p1); �2 = [1� p2; 1); �3 = [p3; p4);where in general, 0 � p1 < p3 � p0 � p4 < 1 � p2 � 1; p1 + p2 + (p4 � p3) = p (and/or= 1� p:)The middle interval �3 can be excluded from our considerations by putting p3 = p4(this is explained in a short while). Then (excluding �3), the right side of (13.14) becomesJ(�1) + J(�2) = J(p1) + J(1� p2);under the assumption p1+ p2 = p (and/or = 1� p), i.e., under the assumption (1� p2)�p1 = 1� p (and/or = p), and p1 � p0 � 1� p2. This gives the right{hand side of (13.11)taking into account the following remark: In (13.11), the case 0 < p1 < p2 < 1, wherealso p1 and p2 lie on the same side of p0 is non{extremal. Indeed, let 0 < p1 < p2 � p0(of course, p2� p1 = p (or, = 1� p)). Then, since J is non{decreasing on [0; p0], we haveJ(p1) + J(p2) � J(p2 � p1):Thus, the pair (0; p2 � p1) is \better" than the pair (p1; p2) which is thus non{extremal.It remains to explain why the middle interval �3 can be excluded from our consid-erations. Let 0 � p1 < p3 � p0 � p4 < 1 � p2 � 1 and p3 < p4. Then, take thecomplementary intervals �4 = [p1; p3) and �5 = [p4; 1 � p2). �4 is situated on the leftof p0, while �5 is on the right of p0, their total length is 1� p (and/or p) with, �nally,J(�4) + J(�5) = J(�1) + J(�2) + J(�3):(13.17) 90



By (13.15) and (13.16), these two intervals can be respectively replaced by [0; p3 � p1)and by [1� p2� p4; 1), so the left, hence the right hand{side of (13.17) can be decreased.Thus, we decrease the number of intervals (from three to two), and therefore completethe proof.Proof of Corollary 13.8. The function gp(t) = J�(t)+J�(t+ p), 0 � t � 1� p, attainsits minimum at one of end points t = 0 or t = 1 � p, because gp is concave when � islog{concave (in which case J� is concave), and gp is monotone when f is monotone (inwhich case J� is monotone).Proof of Corollary 13.10. It su�ces to consider the case p � 1=2. If t � 1=2, thensince J� is non{increasing on [1=2; 1], gp attains its minimum on [1=2; 1� p] at t = 1� p,and that minimum is equal to J�(1�p) = J�(p). In the same way, gp attains its minimumon [0; 1=2 � p] at t = 0, and that minimum is equal to J�(p). In case 1=2 � p � t � 1=2,we use another representation for gp, namely,gp(t) = J�(t) + J�(1 � (t+ p)):Clearly, gp attains its minimum on the middle interval at t where t = 1 � (t + p),i.e., t = (1 � p)=2, and the minimum is equal to 2J�((1 � p)=2). Since by (13.11),I�(p) = minfinft gp(t); inft g1�p(t)g, we obtain (13.13).
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14 Isoperimetry and Sobolev{type inequalities onthe real lineHere we return to Theorem 1.1 in order to better understand the situation on the realline. Again, given a non{atomic probability measure � on R, and a Young function N ,we estimate the Orlicz{norm of g �m(g), where g is a \smooth" function de�ned on R,with �{mean m(g) = RR gd�, in terms of the �rst power of their derivative g0 :kg �m(g)kN � c�(N) Z +1�1 jg0jd�:(14.1)If one wishes to �nd an \optimal" N (which satis�es (1.36) when (14.1) becomes equiva-lent to the isoperimetric problem for �), then it is necessary (at least formally) to �nd theisoperimetric function I� and the results of the previous section can be used. Moreover,the optimal constant c in (14.1), is given by:c�(N) = sup0<p<1 IN (p)I�(p) ;(14.2)where IN(p) = k�A � pkN , and where A � R has �{measure p, i.e., xp = 1=IN (p) is thepositive solution of pN((1 � p)xp) + (1� p)N(pxp) = 1:(14.3)Recall that such functions IN are completely characterized by the conditions 1){3) ofTheorem 1.11. When N(x) = jxj�, 1 � � < +1, the function IN is simply I� and (14.2)is just (1.14). Note also that IN is determined by N but not by �.According to (14.2), in order to �nd c�(N), we have to solve the isoperimetric problemfor � so as to �nd I�. In fact, as explained below, for � absolutely continuous there is noneed to do so, since for such probability measures the isoperimetric function I� in (14.2)can be replaced by the function J�(p) = f(F�1(p)). Moreover, (14.1) can be essentiallyimproved if one wishes to �nd the minimal \weight" w such thatkg �m(g)kN � Z +1�1 jg0(x)jw(x)dx:(14.4)Below, and as usual, F (x) = �((�1; x]) is the distribution function of � which is con-tinuous on R, since � is.Theorem 14.1 For any locally Lipschitz function g,kg �m(g)kN � Z +1�1 jg0(x)jIN(F (x))dx:(14.5) 92



More precisely: if the right{hand side of (14.5) is �nite, then g 2 LN (R; �), hence gis �{integrable, and (14.5) holds. Moreover, the function w(x) = IN(F (x)) is minimal(for the pointwise order and up to a set of Lebesgue measure zero) among all the locallyintegrable (with respect to the Lebesgue measure) functions w which satisfy (14.4), for alllocally Lipschitz g.Before proceeding to the proof of this theorem, let us present some examples and conse-quences.Example 14.2 When N(x) = jxj�, 1 � � < +1, (14.5) takes the form�Z +1�1 jg(x)�m(g)j�dF (x)�1=� � Z +1�1 jg0(x)jI�(F (x))dx:(14.6)In particular, for � = 1 and � = 2, we respectively have I1(p) = 2p(1 � p), I2(p) =qp(1� p), and (14.6) becomesZ +1�1 jg(x)�m(g)jdF (x) � 2 Z +1�1 jg0(x)jF (x)(1� F (x))dx:(14.7) sZ +1�1 jg(x)�m(g)j2dF (x) � Z +1�1 jg0(x)jqF (x)(1� F (x))dx:(14.8)When � = +1, then I1(p) = max(p; 1� p), and we getkg �m(g)k1 � Z +1�1 jg0(x)jmax(F (x); (1� F (x)))dx:Theorem 14.1 also allows to �nd the optimal constant in (14.1) c�(N) provided � isabsolutely continuous with respect to the Lebesgue measure. Indeed,Proposition 14.3 Assume that � is absolutely continuous with density f , and that (14.1)is satis�ed. Then, c�(N) = ess supx2R IN(F (x))f(x) :(14.9)Therefore, c�(N) < +1 if and only ifd�(N) = ess infx2R f(x)N�1  1F (x)(1� F (x))! > 0;(14.10)where N�1 : [0;+1) �! [0;+1) is the inverse of N restricted to [0;+1).It is reasonable to give another wording for the above statement by comparing � tosome canonical distribution as this was done in the last part of Corollary 13.6. Here weassume for a while that f is continuous and positive on an interval (aF ; bF ) (�nite or not)where � is concentrated. Thus, in the terminology of Section 13, F 2 F .93



Any Young function N corresponds to a (symmetric around 0) probability measure �N ,de�ned via the identity J�N = IN . Its distribution function FN and density fN cantentatively be found via (13.1). As already observed in Section 2, when N(x) = jxj, wehave FN(x) = 11 + exp(�2x); x 2 R:Likewise when N(x) = jxj2, we haveFN(x) = (1 + sin x)2 ; jxj < �=2:A big di�erence between these two important examples is that the second distributionhas compact support. In general, putbN = Z 11=2 1IN(t)dt; aN = �bN ;so that �N is concentrated on (aN ; bN). With these notations, and if � is concentratedon (aF ; bF ), we state:Proposition 14.4 Let the probability measure � have distribution function F 2 F .Then, c�(N) < +1, if and only if the increasing map U : (aN ; bN ) �! (aF ; bF ), whichtransforms �N into �, is Lipschitz, of Lipschitz constant at most c�(N).From this proposition, and if F 2 F , we also conclude:Corollary 14.5 Suppose that bN < +1, that isZ +12 N�1(t)t2 dt < +1:If c�(N) < +1, then � has compact support.In particular, the probability distributions � with F 2 F and for which (14.1) holds truefor the Lebesgue spaces L�(R; �); � > 1, and for a �nite constant c�(N), are concentratedon �nite intervals.Remark 14.6 Of course, in Proposition 14.4, the characterizing property of c�(N) <+1, can also be expressed via any probability distributions �, di�erent but equivalentto �N , in that: 0 < inf0<p<1 J�(p)IN(p) � sup0<p<1 J�(p)IN (p) < +1:For example, when N(x) = jxj, �N can be replaced in the statement of the proposition(changing also the Lipschitz constant) by the two{sided exponential distribution � forwhich J�(p) = minfp; 1 � pg. 94



Proof of Theorem 14.1Step 1: In this step, (14.5) is proved for all g bounded and Lipschitz, provided also thatZ +1�1 IN(F (x))dx < +1:By this assumption, the measure � of density d�(x)=dx = IN(F (x)) is �nite. Therefore,by Theorem 1.1 with L(g) = kg �m(g)kN , the inequality (14.5) holds for all g boundedand Lipschitz, if and only if, for any Borel measurable set A � R, with �(A) = p,�+(A) � k�A � pkN = IN(p):(14.11)According to Remark 13.3, to prove this, it su�ces to check (14.11) for the sets A whichare �nite unions of open intervals �1; : : : ;�n and whose boundaries are disjoint. Notethat the function IN possesses the following property: for any p; q � 0, such that p+q � 1,IN(p+ q) � IN(p) + IN(q):(14.12)Indeed, taking disjoint sets A and B of respective measure p and q, we have, by the veryde�nition of IN :IN(p+ q) = k�A[B � (p+ q)kN � k�A � pkN + k�B � qkN = IN(p) + IN (q):Now, assume for a while that (14.11) has already been shown for open intervals. Then,we will have for the sets A described above, applying (14.12) to a �nite sum of pi = �(�i)such that Pni=1 pi = p:�+(A) = nXi=1 �+(�i) � nXi=1 IN(pi) � IN( nXi=1 pi) = k�A � pkN = IN(p):So, (14.11) holds for all A, provided it is true for the intervals A = (a; b), �1 � a < b �+1. For such intervals A, �+(A) = IN(F (a)) + IN(F (b)):Using IN (1�p) = IN(p) and again (14.12), we �nally get (note that �(A) = F (b)�F (a) =p): IN(F (a)) + IN(F (b)) = IN(F (a)) + IN(1 � F (b))� IN(1 � (F (b)� F (a)))= IN(F (b)� F (a))= IN(p):Step 2: In this step, (14.5) is proved for all Lipschitz g which are constant outside a �niteinterval, say [a; b], and no assumption on the �niteness of � is made.95



Take a sequence �n of Borel probability measures on R whith compact supports, whichconverge weakly to �, i.e., such that for any bounded, continuous function h,ZR hd�n �! ZR hd�;as n!1. Then, applying the results of step 1 to g and �n:kg � ZR gd�nkLN (�n) � �n = Z +1�1 jg0(x)jIN(Fn(x))dx;(14.13)where Fn is the distribution function of �n. Since � is non{atomic, F is continuous andFn converges to F pointwise. Hence I(Fn(x)) �! I(F (x)) for all x 2 R, as n ! 1.Since IN is bounded on [0; 1], jg0j is bounded by its Lipschitz seminorm, and since theright integral in (14.3) is taken over [a; b], the Lebesgue dominated convergence theoremgives �n �! � = Z +1�1 jg0(x)jIN(F (x))dx:Let us now rewrite (14.13) in the formZRN �g �mn�n �d�n � 1;(14.14)where mn = RR gd�n. Since g is bounded and continuous, mn ! m(g), as n ! 1. Inorder to take the limit in (14.14), we use the following property of weak convergence(see Billingsley [Bil, Theorem 5.5]): if �n ! � weakly and if hn is a uniformly boundedsequence of continuous functions such that hn(xn)! h(x) whenever xn ! x, where h isa continuous function, then ZR hnd�n �! ZR hd�;as n!1. Applying this result to hn = N((g �mn)=�n), h = N((g �m(g))=�), we get(assuming that � > 0): ZRN  g �m(g)� ! d� � 1;that is kg �m(g)kLN (�) � �:This last inequality coincides with (14.5). The case � = 0 is trivial: g becomes constanton (aF ; bF ), and the left{hand side in (14.5) is zero.Step 3: In this step, (14.5) is extended to all g locally Lipschitz. Before verifying thisclaim, we �rst note that if the right{hand side of (14.5) is �nite, then g is ��integrableand moreover, g 2 LN (R; �). Indeed, if g is locally Lipschitz,96



de�ne the functions gn(x) = 8>>>>><>>>>>: g(x); if an � x � bng(bn); if x � bng(an); if x � anwhere an !�1, bn ! +1, as n!1. Clearly, gn is Lipschitz and constant outside of[an; bn], so applying the result of step 2 and writing (14.5) for gn we get:kgn � ZR gnd�kN � Z bnan jg0(x)jIN(F (x))dx;and therefore, kgn � ZR gnd�kN � � = Z +1�1 jg0(x)jIN(F (x))dx:(14.15)Assume now that � < +1. The space L1(�) is the largest of all the Orlicz spaces,moreover there exists a constant A = A(N) such that, for all g 2 LN (�),kgk1 � AkgkN :Hence, (14.15) implies kgn �m(gn)k1 � A�:Therefore, estimating jgn(x)� gn(y)j via jgn(x)�m(gn)j+ jgn(y)�m(gn)j, we obtainZR ZR jgn(x)� gn(y)jd�(x)d�(y) � 2A�:(14.16)Applying Fatou's lemma to the left{hand side of (14.16) givesZR ZR jg(x)� g(y)jd�(x)d�(y) � 2A�;and g is �{integrable. Now,m(gn) = Z bnan g(x)d�(x) + g(an)�((�1; an]) + g(bn)�([bn;+1)):(14.17)Since g is �{integrable, the �rst term on the right{hand side of (14.17) converges to m(g).The second and the third terms will also converge to 0, if an and bn are chosen in anappropriate way. The existence of such appropriate sequences follows frominfx>b jg(x)j�([b;+1)) � Z +1b jg(x)jd�(x)! 0 (b! +1);infx<a jg(x)j�((�1; a]) � Z a�1 jg(x)jd�(x)! 0 (a! �1):97



Thus, m(gn)! m(g). Let us rewrite (14.15), assuming again that � > 0 :ZRN  gn �m(gn)� ! d� � 1:(14.18)Applying, once more, Fatou's lemma to (14.18), we �nally getZRN  g �m(g)� ! d� � 1;that is, g �m(g) 2 LN (�), and moreover, kg �m(g)kN � �. This coincides with (14.5).For � = 0, the result is trivially true and Step 3 is complete.Step 4: In this step, we prove the minimality (for the pointwise order and up to a setof Lebesgue measure zero) of IN(F (x)) among all the locally integrable (with respect tothe Lebesgue measure) functions w which satisfy (14.4) for all locally Lipschitz g.Approximating the indicator function g = �(�1;x), x 2 R, by Lipschitz functions, (14.4)yields IN(F (x)) = kg �m(g)kN � w1(x);(14.19)where w1(x) = lim inf�!0+ 12� Z x+�x�� w(t)dt:Since w1(x) = w(x) almost everywhere, the result follows.Proof of Proposition 14.3. The identity (14.9) follows directly from the statement onthe minimal weight in Theorem 14.1. Then, from (14.3), one can easily obtain two{sidedestimates for xp and show that, for any p 2 (0; 1), q = 1 � p,N�1  12pq! � xp � 2N�1  12pq! :(14.20)Indeed, assuming that 0 < p � 1=2, so that 2q � 1, it follows from (14.3) that pN(qxp) �1, hence xp � 1qN�1  1p! � 2N�1  12pq! ;since N�1 is concave. On the other hand, let T (x) = N(x)=x, x > 0. Since N is convex,T is non{decreasing. Again by (14.3),1 = pqxp(T (qxp) + T (pxp)) � 2pqxpT (xp) = 2pqN(xp);and the left inequality in (14.20) follows. Since IN(p) = 1=xp, (14.10) is equivalent to(14.9), and Proposition 14.3 is proved. 98



Proof of Proposition 14.4. It su�ces to note thatU 0(F�1(p)) = IN(p)J�(p) :Proof of Corollary 14.5. Since N�1 is concave and increasing, by (14.20), N�1(1=2pq)behaves, up to a constant, like N�1(1=p), as p ! 0+. Therefore, bN is �nite if and onlyif the integral Z 1=20 N�1  1p! dpis �nite. The change of variables t = 1=p and Proposition 14.4 �nish the proof, since theLipschitz image of a compactly supported measure is also compactly supported.
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15 Extensions of Sobolev{type inequalities to prod-uct measures on RnFor the space L1(�), the inequality (14.1) is easily extends, by induction on the dimensionn, to product measures � = �1 
 � � � 
 �n whose marginals distributions are absolutelycontinuous. Let fi be a density (with respect to the Lebesgue measure) of �i, again weare looking for conditions on � for the existence of a constant c such thatZRn jg �m(g)jd� � c ZRn jrgjd�;(15.1)for all locally Lipschitz functions f on Rn. Note that jrgj depends on the metric don Rn. Of course, the metric dependence is only important in �nding the optimal cin (15.1). Below, we �nd the optimal constant in case d is the `1{metric in Rn, i.e.,d1(x; y) = Pni=1 jxi � yij.Let us denote by Fi(x) = �i((�1; x]) the distribution function of �i, and let alsoc(�) = max1�i�n ess supx2R 2Fi(x)(1� Fi(x))fi(x) :(15.2)Proposition 15.1 The inequality (15.1) is satis�ed for some c < +1 and all boundedLipschitz functions if and only if c(�) < +1. If it is so, then (15.1) holds for all locallyLipschitz function g in the following sense: if the right hand side of (15.1) is �nite theng is �{integrable, and moreover (15.1) holds. In addition, for the `1{metric in Rn, c(�)is optimal.Proof. Taking in (15.1) bounded Lipschitz functions g(x) = g(xi) which only depend onthe ith variable, (15.1) reduces to (14.1) in L1(�i). Therefore by Proposition 14.3, thecondition ci = ess supx2R 2Fi(x)(1� Fi(x))fi(x) < +1;is necessary and in addition c � max1�i�n ci. Let now assume that c(�) < +1. We provethe result by induction on the dimension. By Theorem 14.1 and Proposition 14.3, theresult holds for n = 1. Then, let g be a bounded Lipschitz function on Rn and assumethat (15.1) is true for the dimension n� 1; n � 2. Fixing xn 2 R and applying (15.1) tothe function h(x1; � � � ; xn�1) = g(x1; � � � ; xn�1; xn) and to the measure � = �1
� � �
�n�1we get: ZRn�1 jhjd� � ����ZRn�1 hd����� + max1�i�n�1 ci ZRn�1 jrhjd�:(15.3)Note that the function h is Lipschitz, hence di�erentiable almost everywhere (with respect100



to the Lebesgue measure). So,jrhj = ����� @g@x1 �����+ � � �+ ����� @g@xn�1 ����� ;for almost all (x1; � � � ; xn�1) 2 Rn�1. Let us now introduce the function '(xn) =RRn�1 hd�. Clearly, ' is Lipschitz, so again, one can apply (14.1) for L1(R; �n) andget: ZR j'jd�n � ����ZR 'd�n����+ cn ZR j'0jd�n:(15.4)Integrating (15.3) with respect to �n over R, using (15.4) and noting that RR 'd�n =RRn gd�, we have by Fubini's TheoremZRn jgjd� � ����ZRn gd����� + cn ZR j'0jd�n + max1�i�n�1 ci ZRn X1�i�n�1 ����� @g@xi ����� d�:(15.5)It now remains to note that '0(xn) = RRn�1 @g@xnd�, hencej'0(xn)j � ZRn�1 ����� @g@xn ����� d�;and ZR j'0(xn)jd�n(xn) � ZRn ����� @g@xn ����� d�:Since cn � c(�), max1�i�n�1 ci � c(�), (15.5) gives (15.1) for all bounded Lipschitz gwith c = c(�). Then, a truncation argument extends (15.1) to all locally Lipschitz g, asstated in the proposition.Remark 15.2 In a particular case, Proposition 15.1 gives the solution to the isoperimetricproblem when Rn is equipped with the supremum distance d1(x; y) = max1�i�n jxi�yij.Indeed, let � be the n{th power of the logistic distribution F (x) = 1=(1+exp(�x)); x 2 Rof density f . Clearly, f is such that f(x) = F (x)(1�F (x)). Hence, by Proposition 15.1,the inequality (15.1) is satis�ed with c = 2. Thus, by Theorem 1.2 for � = 1, (15.1) isequivalent to �+(A) � p(1�p); p = �(A). But, by Theorem 2.1, this is in turn equivalentto the \integral" inequality �(Ah) � p=(p + (1 � p) exp(�h)) (see the equivalence of(2.4) and (2.5)) where the enlargement Ah is taken with respect to the d1 metric, i.e.,Ah = A+ hB1, where B1 is the `1 unit ball in Rn. We thus have:Corollary 15.3 Let � be the n{th power of the logisitic distribution. For any h > 0,the minimal value of �(Ah), when �(A) = p is �xed, is attained at a standard half{spacefx 2 Rn : x1 � const:g of measure p. 101



Remark 15.4 Proposition 15.1 implies thatZRn jg �m(g)jd� � c(�)pn ZRnvuut nXi=1 ����� @g@xi �����2d�;(15.6)where now, the constant c(�)pn is suboptimal. For the `1{metric, the optimal constantdoes not tend to in�nity with n. One might thus wonder, even when �i = �1 for alli, whether or not, when the gradient is estimated in the Euclidian metric, the optimalconstant tends to in�nity with n.Let us rewrite (15.6) with a constant K and the product measure �n = � 
 � � � 
 �:ZRn jg �m(g)jd�n � 2K ZRn vuut nXi=1 ����� @g@xi �����2d�n;(15.7)where m(g) = RRn gd�n. As we know (Theorem 1.2), (15.7) is equivalent to(�n)+(A) � 1Kp(1 � p); �n(A) = p:(15.8)In turn, this is equivalent (see (2.5)) to�n(Ah) � pp+ (1 � p) exp(�h=K) = R hK (p);(15.9)where h > 0 and where Ah is the Euclidian h{neighboorhood of A. Let us now supposethat � has a continuous positive density f on (a; b) where � is concentrated. Then, byProposition 14.4 and Remark 14.6, (15.1) for n = 1, is equivalent to: � is a Lipschitzimage of the two{sided exponential distribution �. It is thus natural to conjecture thatthis last requirement on � (which is necessary) is also a su�cient condition for the validityof (15.7), i.e., of (15.9), in the n{dimensional case and for some constant K = K(�)independent of n. It is easy to see that if (15.9) holds for some measure �, then it holdsfor all its Lipschitz images �U�1. Therefore the above conjecture is equivalent to (15.9)for � = �. So only one distribution (the double exponential) needs to be consider tosolve this problem. To date, the closest form to (15.9) is an inequality due to Talagrand[Tal1, p.95] (see also [Tal2, Chap.2]):�n(A+ hB1 +phB2) � F�  F�1� (p) + hK! ;(15.10)where K is some universal constant and where B1 and B2 are respectively the `1 and`2 unit balls in Rn. In Example 1 of Section 13, an expression for the right{hand sideof (15.10) was found. On the other hand, the right{hand side of (15.8) is equivalentto Kmin(p; 1 � p) which is (up to a constant) the isoperimetric function of the one (ortwo) sided exponential distribution. Hence, the right hand side of (15.10) is equivalent102



(uniformly in p and h) to Rh=K(p), where Rh(p) = F�(F�1� (p)+h), where F�(x) = 1=(1+exp(�x)); x 2 R is the logistic distribution. Finally, note that (15.10) is stronger than(15.9) for h large. Unfortunately, for h small (important in estimating the isoperimetricfunction), (15.10) does not imply (15.9) and in fact becomes weaker. Thus, the questionof the existence of necessary and su�cient conditions for the validity of (15.7) with someconstant independent of n remains open.
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