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1 Introduction

Motivation, Examples, Statements of Results

It is well known that the Sobolev inequality
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where f is a compactly supported smooth function on the Euclidean space R™, where u
is the Lebesgue measure in R™, and where w,, is the volume of the unit ball in R"?, is
equivalent to the isoperimetric property of the balls in R™. This isoperimetric property
states that, among all the compact sets of a fixed volume, the balls have the least surface
area. This can also be written as

(1.2) WH(A) > muol(u(A))7,

n

where A C R™ is compact, and where p* is the surface measure.

With the best constant ¢ = nw!/™ (1.1) is due to Federer and Fleming [Fed-Fle,
Remark 6.6] and to Maz’ya [Mal, Theorem 6] who apparently were the first to point
out the equivalence between (1.1) and (1.2) (see Osserman [Oss, p.1192], Federer [Fed,
p.510], [Ma2, p.69]). Equality in (1.1) is only possible asymptotically for a sequence of
smooth functions converging to the indicator function of an arbitary ball.

Rothaus [Rot, Theorem 1] found a natural extension of the equivalence between (1.1)
and (1.2) for (X, d, u) where X is a Riemannian manifold equipped with its Riemannian
metric d and its Riemannian measure p. His approach which, as the one in [Fed-Fle],
is based on Federer’s co—area formula will be generalized to an abstract setting. Be-
fore presenting such a generalization, let us introduce our framework and recall some
definitions.

Throughout the paper, (X, d, 1) is a metric space equipped with a separable non—atomic
Borel probability measure p, i.e., u(X1) = 1 for some separable Borel set X; C X and

p({z}) =0, forallz € X.

Let A C X be a Borel set, and let u*(A) denotes the surface measure of A. More
precisely, and as suggested in [Oss, p.1189], p*(A) is the lower outer I-dimensional

Minkowski p—content of the boundary of A, (see also Burago and Zalgaller [Bur-Zal,
p.69]) which is defined by

(1.3) pt(4) = liminf p(A) = p(A)

h—07t h ’

where A" = {z € X : Ja € A,d(z,a) < h} is the open h-neighbourhood of A. Analo-



gously, the appropriate definition of the modulus of gradient is

e @) )
(14) |Vf(111)| - dl(z,y)—>(]);‘)|' d(m,y) .

The function |V f| is always Borel measurable whenever f is continuous on X. Of course,
if the function f, defined on X = R™ or on a submanifold X C R", is differentiable at
a point z € X, then (1.4) defines |V f(z)| in the usual sense. Conversely, by Stepanoff’s
theorem [Fed, p.218], if for almost all z € X (with respect to the Lebesgue measure), the
right side in (1.4) is finite, then f is differentiable almost everywhere. Thus, (1.4) may
be used without any confusion for locally Lipschitz functions, i.e., for functions f such
that for any « € X, there exists a ball around z where the restriction of f to this ball
is Lipschitz. In our abstract framework, we apply the definition (1.4) to functions which
are Lipschitz on every ball, i.e., functions whose restriction to any ball is Lipschitz; and
when X is locally compact, locally Lipschitz functions are Lipschitz on every ball.

Next, following [Rot], let G be a non-empty set of pairs (g1, 92) of u-integrable func-
tions on X, and let £(-) be a functional generated by G via

(1.5) L(f) = sup /X(f+91+f‘gz)dﬂ,

(91,92)€G

where we used the standard notation f+ = max(f,0), f~ = max(—f,0). The value L(f),

finite or not, is defined for all f such that fTg; and f~g, are u-integrable whenever
(91,92) € G. If g1 = —g», then (1.5) becomes

(1.6) L(f) = sup [ fgdu,

geG v X

where the sup is now taken over some set G of p—integrable functions. Examples of
functionals (1.6) include norms || - || in many Riesz (Banach ideal) spaces B such as
Lebesgue spaces B = Lo(X, ) with L(f) = ||fll« = (Jx |f|°‘d,ud)%,1 <a< 0. We
remind the reader the following definition: a Banach space B of y—measurable functions
(with the usual identification of functions which coincide almost everywhere) is called
a Riesz (or a Banach ideal) space, if for all y—measurable f, g such that |f| < |g| and
g € B, we have f € B and ||f|lz < |lg/lz- In a Riesz space, the existence of the
representation (1.6) is equivalent to the property of order semicontinuity of the norm
(see, e.g., Kantorovich and Akilov [Kan—-Aki, Theorem 6, p.190]): for any pointwise
non—decreasing sequence {f,} C B, converging pointwise to a function f € B, one has
|fzllz = ||fl|g. In particular, any Orlicz norm can be represented in the form (1.6).
Another class of functionals which admit this representation is the one given by

(1.7) L(f) =Ilf =m(f)lls,



where m(f) = [y fdu. This last class of functionals is of particular interest for probability
measures because it is shift invariant, i.e., L(f + const) = L(f) and such is also the
modulus of gradient functional. It is also clear that (1.7) corresponds to (1.6) for the
functions ¢ — m(g),g € G. Another interesting example of representation (1.6) is the
functional L(f) = infser ||f — @||la- On the other hand, the functional

£(f) = [ |fllog |fldu — [ |fldulog [ Ifldn = sup [ srauc [ |flgdh

admit the representation (1.5), but cannot be expressed in the form (1.6).

For (X, d, 1), and if x 4 is the indicator function of the set A, the extension of Rothaus’
theorem can now be formulated as:

Theorem 1.1 Let ¢ > 0, then the follounng are equivalent:
a) for all Borel measurable (or closed) sets A C X,

(1.8) pT(A) > cmax(L(xa), L(—xa4));
b) for all bounded Lipschitz functions f,

(1.9) J 1V Sldn > eL(f)

Under (1.8), if f is Lipschitz (not necessarily bounded) and if L(f) is defined, then it is
finite and moreover (1.9) holds.

Often, the inequality (1.9) extends to functions which are Lipschitz on every ball in
X. So, roughly speaking, (1.9) is true for all functions if and only if it is true for indicator
functions. It will also be clear that the above result, as well as many others, continue to
hold for two measures, i.e., if g in the right hand sides of (1.8) and (1.9) is replaced by
another (non—atomic, separable) Borel probability measure v. In fact, often, our results
also continue to hold for infinite measures pu.

Part of our attention will be devoted to Theorem 1.1 for Orlicz spaces Ly = Ly(X, p)
with norm || - ||& given by:

(1.10) Wflly = inf{bo:/xzv(@) d,u,(a:)gl},

where N is a non—negative, even, convex function on the real line such that N(z) = 0 only
for z = 0 (such N will be called a Young function, although no polynomial behavior at
infinity is assumed). Below, we will, in particular, discuss the following three questions:

e How to find the optimal constant ¢ in (1.9) via (1.8), if L(f) = ||f — m(f)||n?
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e Does there exists a function N, as above, for which the (analytic) inequality (1.9)
with L(f) = ||f —m(f)||n becomes equivalent to the (geometric) isoperimetric inequality
in (X,d,p). In other words, can (1.9) be equivalent to the isoperimetric problem in
(X,d, u) or, more precisely, to the extremal property of some sets in the isoperimetric
problem?

o Does there exists a minimal Orlicz space which contains the Sobolev space W =
W(X,p) as an embedded space? So as not to consider problems of completeness, by
W we mean the space (equipped with the norm ||f||lw = [x |V fldp) of all y—integrable
functions f which are Lipschitz on every ball in X, and such that m(f) = [x fdp = 0.

To precise our second question, let us explain what is meant here by the isoperimetric
problem. In its classical form to solve the isoperimetric problem, one needs to minimize
the “surface area” p*(A) when the “volume” u(A) = p € (0,1) is constant. In other
words, one needs to find the isoperimetric function

(1.11) L(p) = inf u™(A),
#(A)=p

where the infimum is taken over all Borel measurable (or, equivalently, closed) sets A C X
of measure u(A) = p, and where by our separable and non-atomic assumptions, the
value of I,(p) is defined for all p € (0,1). The sets A,, of measure p, which attain
the infimum in (1.11) are called exztremal. Moreover, a set A, is said to possess the
isoperimetric property, if for all b > 0, A, minimizes u( A") among all the sets of measure
p. The problem of minimizing u(A") represents an “integral” version of the isoperimetric
problem in (X, d, 4) and in some canonical cases it is equivalent to finding (1.11). These
types of connections will be further explained in the sequel.

To further clarify our first two questions, let us see what is the information conveyed
by Theorem 1.1 when L(f) = ||f — m(f)||a; (1 < a < +0) (for @ = +00, the result
below continue to hold replacing || - ||a by || - |leo and (p*(1 — p) + p(1 — p)*)*/* by

max(p,1 — p)).

Theorem 1.2 Let ¢ > 0, then the follounng are equivalent:

a) for all p € (0,1),
(1.12) L(p) > c(p*(1 —p)+p(1—p)*)"/=

b) for all p—integrable, Lipschitz on every ball, function f

(113) [ VAEnte) = e ([, 156) - mipiant)

Moreover, the optimal constant 1s given by

= in ()
(1.14) c(a) = jinf °(1—p) + p(l —p)a)i/a
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Indeed, for p = u(A), |[xa — plla = P*(1 — p) + p(1 — p)*)'/, hence (1.8) together
with (1.11) becomes (1.12). Furthermore, the optimal constant ¢ = ¢(a) in (1.13) has
the stated form by the very definition of the isoperimetric function. Thus the geometric
information contained in inequalities like (1.13) is exactly (1.12). Moreover, it may occur
that (1.12) turns into an equality, and then (1.13) expresses (i.e., is equivalent to) the
isoperimetric property of some (extremal) sets. For example, let X = R with the usual
metric, and let p be the probability distribution such that

1

M(=o0,2]) = ey

for all z € R (in probability and statistics, x4 is known as the logistic distribution). It
will be shown (see Section 13) that for the logistic distribution, the intervals (—oo, z] are
extremal in the isoperimetric problem, and that they moreover possess the isoperimetric
property in the sense defined above. Hence by (1.11), I,(p) = p(1 — p), and for this
measure (1.12) turns into an equality with @ = 1 and ¢ = 1/2. Therefore, in such
a situation, (1.13) is equivalent to the isoperimetric property of the intervals (—oo, z].
Likewise (see Section 2), for any fixed a@ > 1, ¢ > 0, there exists a Borel measure y on
the real line for which (1.12) becomes an equality. For instance, if @ = 2,¢ = 1, such
a measure y has density u(dz)/dz = (cosz)/2, |z| < w/2. As it will be seen below, the
same conclusion holds, with some constant ¢, for the normalized Lebesgue measure on the
2-sphere. Of course, in general, the isoperimetric function differs from the function on
the right-hand side of (1.12). Therefore (1.13) looses part of the geometric content and
cannot provide exact information about the extremal sets in the isoperimetric problem.

To further illustrate Theorem 1.2, we apply it to the uniform (i.e., normed Lebesgue)
distribution o, on the n—sphere S} C R™"! of radius p > 0. In this case, the isoperimetric
function I, can be found via the Lévy—Schmidt theorem [Lev, pp.219-222], [Sch], on
the extremal property of the balls (caps) on the sphere: I, (p) = o} (A,), where 4, is
an arbitrary ball of o,—measure p. For the circle (n = 1), A, are just intervals on S; of

(Lebesgue) length (27 p)p, so by (1.3), o7 (4,) = 1/(7p), and
1
(1.15) I,,(p)=—, 0<p<l,

is thus constant. As for the best constant in (1.13), one can conclude using (1.14), and
as done in Section 7, that:

Proposition 1.3 For S}, the infimum in (1.14) is attained at p = 1/2 whenever 1 <
a < 3, and then c(a) = 2/(7p), and is attained at another point p(a) when o > 3, and
then c(o) depends on o decreasing from 2/(wp) to 1/(np) at infinity.



In other words, the inequality

dz 2

do \'*
(116 i@ = 2 ([ 1) -mine)

holds for all 1 < a < 3, with (asymptotic) equality (and up to an additive) for f = x4, ,-
When a > 3, the optimal constant is smaller, e.g., ¢(4) = 121/4/(7p), and the extremal
functions are of the form f = x4, for some p # 1/2. For a = 1, (1.16) written for the
(usual, non-normalized) Lebesgue measure, is already mentioned in [Oss, p.1205] and in
[Rot, p.303] (as Feinberg’s Wirtinger—type inequality) and for a = 2, it is obtained in
[Rot, p.303] (it is not stressed there that when written with respect to the normalized
measure, the optimal constants coincide). Finally, let us note that since I,, is not of the
form (1.12), (1.13) does not involve the isoperimetric inequality on the circle whenever
a > 1. On the other hand, Wirtinger’s inequality

V@R > [ (@)~ m(f)Fd,

which also holds for all Lipschitz functions, is equivalent to the isoperimetric property of
the disks on the plane, i.e., to the classical isoperimetric inequality (1.2) for n = 2 ([Oss,
p.1184]).

For 57,n > 2, and as shown in the present notes, it follows from the Lévy—Schmidt
theorem that the isoperimetric function I, can also be written analytically as

Sn— _ n=l
(1.17) L.(p) = - pi(/’z —-F )T,
where s,_1 = 27™2/?(n/2) is the area of the unit sphere S77*, and where F*: (0,1) —
(—p, p) is the inverse of the distribution function F,, of density
an(ZIJ) STL—]. n—2

(1.18) = e - el <o

For the 2—sphere, (1.17) and (1.18) give I,,(p) = 4/p(1 — p)/p which coincides for a = 2,
and ¢ = 1/p, with the right-hand side of (1.12). Therefore, the Sobolev-type inequality

] ; 1/2
[ Vi@)ate) 2L ([ 110~ m(Pdonte)

is equivalent to the isoperimetric property of the balls on the 2—sphere.

For n > 3, the function I, does not have a further analytic expression beyond
(1.17) and anyway, it is not of the form (1.12). It is nevertheless possible to find the
optimal constant and the extremal functions in (1.13) by solving the analytic problem
of minimizing (1.14) for the function I defined by (1.17)—(1.18). To do so, one can first
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observe that I, (p) is asymptotically equivalent to p(®~1)/™ as p — 0%, so ¢(a) > 0, only
for 1 < a <nf/(n—1). To find a point p of minimum in (1.14), we then suggest the
following useful sufficient condition (see Section 8):

Lemma 1.4 Let o > 1, and let I be a non—negative function defined on (0,1) such that:
(1) I is symmetric about 1/2;
(1) I(0T) = I(17) =0;
(113) I is continuously differentiable on (0,1) and dI*/dp is convez on (0,1/2].

Then, the function I*(p)/(p(l — p)) attains its infimum at p = 1/2. Therefore, for
1 < a < 2, and for functions I, satisfying (i), (1) and (Wii) above, the minimum in
(1.14) is attained at p = 1/2, i.e., the infimum c(a) is equal to 21(1/2).

It turns out that when I = I, , the isoperimetric function of the n—sphere (n > 2), the
requirements (i)—(iii) of Lemma 1.4 are fulfilled for the whole range of allowed values of

a, i.e., for a € [1,n/(n — 1)] (see Section 9). Thus by (1.17),

(@) = 21, (1/2) = 251/ (psn),

which does not depend on «. This is somehow unexpected, since for any individual Lip-
schitz function f, the L,—norm on the right-hand side of (1.13) is an increasing function
of a, and the left side of (1.13) does not depend on « either. This discussion can be
summarized in:

Proposition 1.5 Letn > 2 and 1 < a <n/(n —1). Then, for any Lipschitz function f
on S?
p7

(1.19) |, 195 @)don(z) 2 e ( fo, @) - m(f)l“dan(w)>1/a,

where the constant ¢, = 28,_1/(pss) is optimal. For oo > n/(n — 1), there is no positive
constant satisfying (1.19).

For the extremal value @ = n/(n — 1), let us rewrite (1.19) with respect to the Lebesgue
measure fi, on the sphere S7. For any Lipschitz function f with m(f) = fs;; fdo, =0,

and if || f||a,u, denotes the L,—norm with respect to p,, we have

(1.20) [ lloin < EnlIV 1,105

where the optimal constant K, = s{*~1)/"/(2s, ) does not depend on p. For smooth f
with m(f) arbitrary, rewrite (1.20) as || f|laun < Knl|V 14 + 0" sn|m(f)|, which implies

8



(1.21) [ fllecn < EnllV 1 + [ F 1,00

However, K, is now suboptimal. The optimal constant in front of ||V f||; in (1.21) is
known, due to Aubin [Aub, p.50], and given by K(n,1) = 1/(nw}/™) = n(l_”)/”/s,ll/_z.
Curiously, 1/K(n, 1) is the optimal constant in (1.1) for the Lebesgue measure in R*. On
the other hand, it is also clear that the optimal inequality of Aubin, applied to f —m(f)
can only give (1.19) with a suboptimal constant.

A remark on the cases of equality in (1.19) when n > 2, 1 < a < n/(n — 1). Equality
can only be asymptotic for a sequence of smooth functions converging, up to an additive
constant, to the indicator function x4,,, of the half-sphere A4,/, and 0. Note also that
among all the functions f with m(f) = 0, only the functions f = const(xa —1/2) (where
A has measure 1/2) are such that ||f||. does not depend on a.

It is also worthwhile to exploit Theorem 1.1 for other types of functionals. One such
functional of interest to both probabilists (in connection with the ath mean) and to
geometers (in connection with the first eigenvalue problem, see Yau [Yau], Li [Li]) is

1/
flle = inf ([ 17() - al"duz))
Since 2|fllla > (x | = m(£)du)/ > [|flllay (1:13) always implies

(1.22) [ IVi@)duz) > dllifllla

where d > ¢(a) and where ¢(«) is given by (1.14). One might wonder whether or not
n (1.22), the constant can be sharpened, i.e., is d > ¢(a) possible? In many interesting
cases, including the n-sphere (n > 2), the answer is negative. Indeed, by Theorem 1.1
the inequality (1.22), for all bounded Lipschitz functions on (X, d, i), is equivalent to

(1.23) pt(A) = dlllxallla,

for all Borel measurable A C X Now, if p

a>1,||Ixalllz = p(1—p)/(p= +(1—p)= )", while for & = 1, |||xal||s = min(p, 1—p).
From (1.23), to find the optimal constant d(«) in (1.22) we can now appeal to:

(A), a simple computation shows that for

Lemma 1.6 Let 1 < a < 2, let the function I satisfy the hypotheses of Lemma 1.4, and

let
) = imf 2B,
0<p<1 min(p,1 — p)’ ’
« I(p)* Lyl
i) :Ogv}ilp(l— )(p“1+(1_p)“1) , l<ax?

Then, d(1) = d(a) = 21(1/2).



In other words, the infima above are attained at p = 1/2 and for I = I, satisfying (i),
(ii) and (iii) of Lemma 1.4,

(1.24) dla) = ¢(a) = 21,(1/2), 1 <a<2.

Thus, for such isoperimetric functions I, and for 1 < a < 2,(1.13) is stronger than (1.22)
when these inequalities are written with optimal constants. Of course, for @ = 2, the
converse statement is true. Applying Lemma 1.6 to the sphere ST, we have

Proposition 1.7 Letn > 2 and 1 < a <n/(n —1). Then, for any Lipschitz function f
on S?
p7

(1.25) [ 1V o) > dn o ([ 156 - a|“dan<m>)1/a,

where the constant d,, = 2s,_1/(psn) is optimal. For a > n/(n — 1), there is no positive
constant satisfying (1.25).

Again, the case of the circle S; is somehow different since the isoperimetric function is
constant. The optimal constant is independent of « for all values of «, this contrasts
Proposition 1.3.

Proposition 1.8 For any Lipschitz function [ on S;, and for 1 < a < +o00,

(1.26) /s:, IV f(2)|dor(2) > — inf (/S f(z) - a|°‘d01(az)>1/a,

Tp aeR

where the constant 2/(mp) is optimal.

Let us further comment on Theorem 1.1 and its range of applicability. First, note that
20-2) min(p,1 — p) < p(1 — p)/(p= + (1 — p)a7)*"* < min(p,1 — p),a > 1. Hence,
Theorem 1.1 applied, for example, to the functional ||| - |||n/(n—1) on an n-dimensional,
n > 2, compact Riemannian manifold (without boundary) M™ recovers some well known
results (see [Li, p.452]) and [Yau, p.499]). The case of the n—sphere is doubly important.
First, by the Lévy-Gromov isoperimetric inequality ([Gro]), the isoperimetric function of
Sy is a lower bound for the isoperimetric function of classes of M™. Indeed, let R(M™)
denote the infimum, over all the unit tangent vectors of M™, of the Ricci tensor and
let Ips» be the isoperimetric function of the manifold (with respect to the normalized
Riemannian measure). If R(M™) > (n — 1)k > 0, then for all p € (0,1), Ipn(p) >
I, -=(p), where I /— is the isoperimetric function of the n—sphere of radius 1/y/k.
Thus, for such manifolds, the Sobolev constants appearing in (1.13) and (1.22), 1 < a <

n/(n — 1), are bounded below by 2s,_1v/k/sn = \/2/7\/E7 ((n+1)/2)/7(n/2). We also
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note that the inequalities (1.19) and (1.25) (for @ = n/n — 1) are the strongest in the
hierarchy of Sobolev inequalities in that they respectively imply (n > p, n integer),

(n—p)/np

|V f(z)Pdon (=) 7 _1f(@) = m(f)|>7 don(a) ,
(k ) =e(l, )

([, wsran) = amg (/[

p (n—p)/np
) - aFdn)
where ¢ = d/2 and d are now suboptimal constants (see [Li, p.453] for this last inequality

in case p=2 and d = (n — 2)¢,/2(n — 1) and where ¢, is as in Proposition 1.5).

A second important reason for particularly considering the n—sphere stems from a
classical result usually attributed to Poincaré. Roughly, this result states that for n large,
Yn the standard Gaussian measure on R™, of density (27)~™2 exp(—|z|?/2), z € R™, is
somehow almost concentrated and uniformly distributed on the sphere S,’}_l of radius
p = v/n—1 (in particular, as n goes to infinity, I,, converges pointwise to I, while
p depends on n as above). With the help of the Lévy-Schmidt theorem, Sudakov and
Tsirel’son ([Sud-Tsi]) as well as Borell ([Bor|) showed that the half-spaces are extremal
in the isoperimetric problem for +,, (see also Ehrhard [Ehr| for a proof not relying on the
Lévy-Schmidt theorem). The isoperimetric function for the Gaussian measure is thus
given by I, (p) = ¢(®7!(p)), where ¢ is the density of the standard Gaussian measure
on R, and where ®~! is the inverse of its distribution function. It can easily be checked
that for g = <., the best constants in (1.13) and in (1.22) are non-zero only when
a = 1. Hence, using respectively Lemma 1.4 and Lemma 1.6 we have, ¢(1) = 2I,,(1/2) =

\/2/m =d(1). Thus, denoting by M(f) a median of f with respect to ~,, we have:

Proposition 1.9 For any Lipschitz function f on R*, n > 1,

(1.27) S IVF(@)lda(a) > \f [ 15(@) = m(Dldm(a)
(1.28) S IVF(@)lda(a) = \f [, 1f(@) = M(Dldn(a)

where the constant (/2/m is optimal.

The inequality (1.27) is due to Pisier [Pis, p.178] (with a different method), and it has
also been independently rederived using isoperimetric methods by Ledoux [Led2]. In fact,

(1.19) and (1.25) respectively become (1.27) and (1.28) as n — oo and p = /n — 1. The

optimal constant \/2/7 can also be found as lim,—, 100 25n-1/(v/7 — 1s,,). A characteristic
feature of the Gaussian measure is that the optimal constants in the above proposition
are dimension—free, and so (1.27) and (1.28) continue to hold for infinite dimensional
Gaussian measures. Moreover, inequalities (with suboptimal constants) where both the
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gradient and the function are estimated in Ly(y5),1 < p < 400, instead of Li(y,) also
follow from (1.27) and (1.28).

According to Theorem 1.1, (1.27) and (1.28) are respectively equivalent to I, (p) >

\/2/721)(1 — p) and to I, (p) > \/2/7min(p,1 — p). These two estimates only indicate
the exponential character of the tails 1 — v,(A") as A — +o00, while the true tails have
at most the Gaussian rate of decrease @(h)/(+/27h) (provided v,(A4) = 1/2). So, there
might exist a space more preferable than L;, e.g., an Orlicz space, in which Sobolev-
type inequalities would say more on the isoperimetric problem. Ledoux [Ledl] proved
an analog of (1.27) with an existential constant for the Orlicz space Ly whose norm is

generated by the function N(z) = |z|4/21log(1 + |z|). By Theorem 1.1, this gives a lower

estimate on I,, which is, up to constant, asymptotically equivalent to I, as p — 0%.
Pellicia and Talenti [Pel-Tal] improved this result by modifying N so that it satisfies
2p(1 — p)N(1/(®7(p))) =1, 0 < p < 1, N is linear on [0,/27], and showed that for
this N and all smooth f,

If =m(f)llw < [, IVl

with asymptotic equality for some sequence of smooth functions. For indicator func-
tions f = x4, this inequality becomes v (A) > ||xa — Yn(A)||ny which coincides with
the isoperimetric inequality 7,7 (A) > I, (7.(A4)) in case y,(A) = 1/2 and differs from
it (and, therefore, is weaker) when v,(A4) # 1/2. So, one might wonder whether or not
there exists an Orlicz space Ly(R™,7,) for which an inequality as above becomes the
isoperimetric inequality for all p = 4,(A). This is further explained now, and a nec-
essary and sufficient condition for the equivalence of a Sobolev-type inequality and of
isoperimetry is presented.

Variational problems and optimal Orlicz spaces

We would now like to have another look at Theorem 1.1 for Orlicz spaces. This look
corresponds to a probabilistic point of view according to which the variational problem
of minimizing the value of [y |V f|dy should preferably be solved in terms of Fy the
distribution function of f with respect to g, i.e., Fy(t) = p{f < t},t € R. From this,
other types of estimations which depend on f only via Fy (like the moments of f), may
be of interest. A first reduction of the problem (via a co-area inequality obtained in
Section 3) leads to the estimate

b(f)
(1.29) [ V@) du(@) > T = [ 10~ Fy())d,

where f is Lipschitz on every ball in X, a(f) = essinff and b(f) = esssupf. This

inequality has not yet lost any geometric information, in that it implies the isoperimetric
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inequality ut(A) > I,(p). This is easily seen by applying (1.29) to a sequence of Lipschitz
functions converging to the indicator function x4 (it should also be noted here that (1.29)
already appears when u = ~, in Ledoux [Ledl]). The functional J on the right-hand
side of (1.29) depends only on Fy. Thus, instead of dealing with the notion of gradient,
one can study this functional just assuming that f is a measurable function. So, to get
a Sobolev-type inequality, for the Orlicz functional L£(f) = ||f — m(f)||n, one needs to
minimize the L'-norm of the modulus of gradient or (equivalently!) minimize J, under
the conditions

(1.30) [ fdn=a, [ N(fdu=1

with @ = 0 and b = 1. In general, the extremal functions which minimize J under
(1.30), take at most three values whenever N is continuous. A remarkable fact explaining
Theorem 1.1 for Orlicz spaces is that, for N convez, the extremal functions take at most
two values. Moreover, this last statement can be generalized to functions f satisfying
boundary conditions, i.e.,

(1.31) by < f < ks,

where in general —oco < k; < ky < +00. The extremal functions which minimize J
under (1.30) and (1.31) take at most four values, two of which are k; and k, if they are
finite, and at most three values one of which is k; (in case k; > —oco and ky = +0) or

ks (in case ky < 400 and k; = —o0). The restrictions (1.31) appear naturally in many
inequalities such as
(1.52) Ifly < e [V fldutca [ 1fide,

a partial case of which is the inequality (1.21). Note that in order to find all the optimal
(c1,¢2) in (1.32), we cannot apply Theorem 1.1 since L(f) = ||f|lv — c2 [x |fldu is not
of the form (1.5). A possible approach to obtaining (1.32) is firstly to note that only
non-negative functions need to be considered in the minimizing problem and secondly
to note that

[ 1V 51du,

can be minimized, using (1.29) by minimizing J under the conditions (1.30)—(1.31), with
arbitrary ¢ > 0, b > N(a), putting also k; = 0,ky = +00. However, for our purposes,
we do not consider the variational problem with boundary conditions here, although the
proof of Theorem 5.1 where we study the infimum of J carries over without essential
changes to the boundary conditions case.

Returning to our main interest (the case without boundary conditions), we combine
the above observations with (1.29) in the following statement:

Let N be a non-linear (not of the form N(z) = cz + d) convex function on the real line
R. Fix p € (0,1), define z = z,(a, b) as (the only) positive solution of

(1.33) pN(a +qz) +¢N(a —pz) = b,
and let N*(a,b) = inf I,(p)z,(a,bd).

0<p<1

13



Theorem 1.10 For any b > N(a),
(1.34) inf/ IVfldy = N*(a,b),
X

where the infimum is taken over all u-integrable Lipschitz (or Lipschitz on every ball)

functions f on (X,d, ) satisfying (1.30).

Roughly speaking, to minimize the L;—norm of the gradient under (1.30), one need
only consider functions taking two values. Note that no assumption is made on the
function I,. Also, it is clear that setting a = 0, N(z) = |z|*, (1.33) gives z,(0,b) =

(6/(p*(1 — p) + p(1 — p)*))"/*. Hence,

I
N*(O; b) — 0i<nf<'1 - ﬂ(p) - 1/ab1/a
P<l (p*(1 —p) +p(1 —p))

and Theorem 1.10 recovers Theorem 1.2.

?

Let us now return to the case where N is a Young function. Without loss of generality,
putting ¢ = 1 in Theorem 1.1, we see that by (1.10), z = 1/||x4 — p||w~, where u(A) =
p € (0,1), is the only positive solution to (1.33) for @ = 0 and b = 1. Therefore, the
Sobolev-type inequality

(1.35) J 1V Hldn > |If =m($)l,

for bounded Lipschitz functions, which by Theorem 1.1 (as well as by Theorem 1.10) is
equivalent to the inequality p™(A) > ||xa — p||w, coincides with the (exact) isoperimetric
inequality ut(A4) > I.(p) if and only if

(1.36) Ixa — pllv = Lu(p),

for all p € (0,1), i.e., if and only if

(37 Py (Hpj;) TN (fu?p)> -

In this case and only in this case is (1.35) equivalent to the solution of the isoperimetric
problem. We are now left with the question of finding a Young function N satisfying
(1.36) or equivalently (1.37). Recall that W (X, u) denotes the space (equipped with the
norm ||f|lw = [x |V fldp) of all u—integrable functions f which are Lipschitz on every
ball in X, and such that m(f) = [x fdu = 0. The following completely characterizes the
existence of such Young functions.

Theorem 1.11 There ezists a Young function N satisfying (1.36) or, equivalently, (1.37)
if and only if the isoperimetric function I = I, possesses the following properties:
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1) I(p) > 0, for all p € (0,1); I(0%) = I(17) = 0;
2) I(p) = I(1 — p), for all p € (0,1);
3) the function p(1 — p)/1(p) is concave on (0,1).

In this case, any Orlicz space Lpy(X,p), containing W(X,p) as an embedded space,
contains Ly(X, p) as well.

If they exist, there are a lot of functions N satisfying (1.37). For example, when I(p) =
p(1 — p), all the N satisfying (1.37) are described by: N(z) = (1 — 2a) + a|z|, || > 1,
where a € [0,1) is an arbitrary parameter, and where the behavior of N on [—1,1] can
also be chosen arbitrarily (as long as N remains a Young function). For the 2—sphere of

unit radius, where I(p) = 4/p(1 — p), one can choose N(z) = z* z € R or (see Remark
10.2)
|z| if |z] <1
N(z) =
1—|z|+2* if|z| > 1.

In any case, given a function I with the properties 1)-3), all the Young functions N
satisfying (1.37) generate equivalent Banach spaces. One can therefore say that there is
unique minimal Orlicz space containing the Sobolev space W.

We now apply this general statement to the uniform distribution on the sphere and to
the standard Gaussian measure on R™. As a rule, the properties 1)-2) are easily verified
but, often, 3) is not so simple.

Theorem 1.12 The isoperimetric function corresponding to the uniform distribution on

the n—sphere (n > 2) and the one corresponding to the standard Gaussian measure on
R", satisfy the conditions 1)-8) of Theorem 1.11.

For the n—sphere, (n > 2), all the Orlicz spaces Ly with N satisfying (1.37) are equivalent
(via Proposition 1.5) to the Lebesgue space L, /n—1), which is thus minimal in the sense
described above. As already noted, for the circle the isoperimetric function is constant,
so 1) fails. Therefore, the extremal property of the intervals on the circle cannot be
expressed via a Sobolev—type inequality (when the gradient is estimated in the L;—norm).
The same conclusion is true for the two—sided exponential distribution p, of density
(exp —|z|)/2,z € R, in which case, I,(p) = min(p,1 — p), so 1)-2) are fulfilled but 3)
fails.

Isoperimetry and Sobolev Inequalities on the real line.

To finish these notes, our setting is R equipped with a non-atomic Borel probability
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measure. In that context, we study isoperimetry for a class of “regular” u. By “regular”,
we mean those measures whose distribution function F' is concentrated on an interval
(finite or not) (ar = inf{F > 0},bF = sup{F < 1}) and such that F' is absolutely
continuous with positive and continuous density f. For those probability measures, we
give necessary and sufficient conditions under which the intervals (—oo, z]| are extremal
in the isoperimetric problem. In this case, these intervals turn out to also be extremal in
the “integral” problem, i.e., they possess the isoperimetric property. The isoperimetric
function for such y is of the form I,,(p) = f(F~*(p)), where F~! is the inverse of F, and in
fact, any such p is the Lipschitz image of the double exponential distribution. Symmetric
(around a point) log—concave measures satisfy these sufficient conditions. This implies,
in particular, that if g is a symmetric log—concave measure, then

J 1 =m(Dld < ew) [ 171

for some finite, positive constant ¢(x) and all integrable smooth functions f.

Then, to better understand the possible behavior of I,,, we look for its analytic expression
when p is unimodal (log—concave, not necessarily symmetric, measures are unimodal).
An analytic expression for I, can help to find the optimal (as previously defined) Orlicz
space. However, it is possible (as shown in Section 14) to find the optimal constant ¢ in

(1.9) for L(f) = ||f — m(f)||n without knowing I,. To this end, we find the “minimal”
(for the pointwise order) weight w for which the Sobolev inequality

If =m(H)llw < [ 1F(@)w(2)de,

holds for all smooth functions f on R. The paper concludes by presenting a simple
induction process which allow to extend some of these inequalities to product probability
measures on R™.

Organization of the paper.
The paper is divided into several sections.

Section 2. We discuss here two approaches to the definition of the isoperimetric
problem. In particular, we look for an equivalent “integral” form u(A*) > Rp(u(A)) for
the isoperimetric inequality p™(A4) > I,(A).

Section 8. A co—area inequality is proved from which Theorem 1.1 follows.

Sections 4,5,6. Theorem 1.10 is proved. Although this statement is a partial case
of Theorem 1.1 when N is a convex function, and although its proof is much longer
than that of Theorem 1.1, the arguments developed there are important for probabilistic
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extensions. In Section 4 the equivalence of (1.29) and of the isoperimetric inequality is
stated. In Sections 5 and 6 the functional J is minimized under (1.30) (Section 6 only
deals with the discrete version of Theorem 1.10).

Section 7. Proposition 1.3 and 1.8 are proved. In fact, the behavior of the function
Io(p) = ((#*(1 — p) + p(1 — p)*))"/* is studied.
Section 8. A partial case of Theorem 1.2 is studied, Lemma 1.4 and 1.6 are proved.

Section 9. The isoperimetric function of the n—sphere, n > 2 is found and Proposition
1.5 and 1.7 are proved.

Section 10. Theorem 1.11 is proved.

Section 11 and 12. Theorem 1.12 is respectively proved for the sphere and for Gauss
space.

Section 13, 14 and 15. Isoperimetry and Sobolev type inequalities are studied on R.
Some extensions of these inequalities from R to R™ are presented.
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2 Some connections between differential and inte-
gral forms of isoperimetric inequalities

Again, let (X, d, 1) be a metric space with a separable and non-atomic Borel probability
measure p. Therefore for any p € (0,1), there exist closed sets A C X of y-measure p,
so that the function

(2.1) I(p) = inf u¥(A),

#(A)=p
where the infimum is taken over all Borel measurable sets of measure p, is well-defined
on (0,1). This infimum can also be taken over all closed sets of measure p. Indeed, for

arbitrary A C X, Npso A" = A, where A is the closure of A. Hence if u(A) — p(A) > 0,
hy _ A
WA~ p(A) | A )
h - h
as h — 0%, thus p™(A4) = 400 and (2.1) can be taken over all sets A such that u(A) =
1(A) = p. But for such sets, and taking into account the identity A* = A" (valid for any
A C X), we have pu(A") — p(A) = p(A*) — p(A4). Therefore pt(A) = p*(A), and only

closed sets of measure p need to be taken in (2.1). In fact, this also applies to all the

inequalities of the form
(2.2) pH(A) > I(u(A)),

and, in particular, when I is the isoperimetric function I,,.

In this section, we look for an inequality of the type

(2:3) u(A*) > Ri(u(A)),

for some function R, which would be equivalent to (2.2). For example, p = u(A), the
inequalities

(2.4) p(A) > 2ep(1 - p), and p*(A) > o(p(1 —p))'’?,

which are just (1.12) for @« = 1 and a = 2, (c is a positive constant), turn out to be
respectively equivalent, to

h P
(25) HAD) 2 T pyexp(2ehy "7
and
(2.6) W(A") > (1~ cos(ch) + peos(ch) + (p(1 — p))"/*sin(ch),

0 < ch <7m/2— arcsin(2p — 1).

Now, let I be a positive and continuous function on (0,1), and let

/1/2 dp b /0 dp
ar = — —, = —,
! o I(p) ' 2 I(p)
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where —oo < ay < 0 < by < 400. Let also Fr be the unique function from R to [0,1]
such that

(i) Fr is continuous and non—decreasing on R;

(i) Fy(a?) =0, Fy(0)=1/2, Fy(b7)=1;

iii) Fr has a positive continuous derivative f; on (ay, bs) and for all p € (0,1),

(2.7 FH(Fr (p)) = I(p),

where F; ' :(0.1) — (ar, br), is the inverse of Fy restricted to (az, br). Note that Fy can
be defined on (ay, b;) as the inverse of the function

(28 e = [ 1

With the above notation, we now have:

0<p<l.

Theorem 2.1 Let I be a positive continuous function on (0,1), then the following state-
ments are equivalent:

(a) For all h > 0, and for all Borel measurable A with 0 < u(A) < 1,

(2.9) u(A") > Fi(F7(u(A)) + k).

(b) For all Borel measurable A with 0 < u(A) <1,
(2.10) WH(A) > I(u(A)

(c) For any h > 0, let the h-neighbourhood of any open ball D(z,r) C X be a ball.
The inequality (2.10) is satisfied for all sets A, with 0 < u(A) < 1, which are finite
untons of open balls in X.

Before presenting the proof of this theorem, let us provide some comments and examples.
If I = 1,, is known one can, with the help of (2.9), estimate the best function in (2.3),
i.e., the function

(2.11) Ri(p) = inf u(AM).

#(A)=p
Moreover, if the extremal sets A, in the isoperimetric problem (2.1) exist and possess
the property
(2.12) w(Ay) = Fi(Fr*(u(A)) + h),

for all A > 0, then these sets minimize the infimum in (2.11), thus providing the solution
to the “integral” isoperimetric problem (2.11). The property (2.12) is therefore sufficient
to pass from the original problem (2.1) to the “integral” one (2.11).
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Here are some examples of extremal sets which satisfy (2.12): the balls on the sphere
with respect to the uniform distribution; the half-spaces for the standard Gaussian mea-
sure; the intervals of the form (—oo, z] for an arbitrary symmetric log-concave distribu-
tion on the real line (see Section 13). On the other hand, the extremal sets in the integral
problem (2.11) for the exponential distribution on [0, +00), of density exp(—z),z > 0,
do not satisfy (2.12). They depend on h and are either intervals of the form [0, a] or
intervals of the form [b, +00). In this last case, I,(p) = min(p,1 — p) coincides with the
isoperimetric function for the two-sided exponential law of density (exp —|z|)/2,z € R
(again, see Section 13). It is easily checked that the value Rp(p), defined by (2.11) is
greater than the right-hand side of (2.9). Note also that the function I,, does not change
when the metric d is replaced by an equivalent one, but Rp(p) is essentially determined
by the metric.

Let us see how to apply the above theorem to the function I(p) = 2¢p(1 — p). From
(2.8), we get Fy'(p) = (log (p/1 — p))/2¢, ie.,

1

F —
() 1 4 exp(—2cz)’

z €R,

and finally,

FiF0) + 1) = s oy P> 0

This proves the equivalence between (2.5) and the first inequality in (2.4). For the other
example, when I(p) = ¢(p(1 — p))*/?, we then have

1 P dt :
cFri(p) = /1/2 W = arcsin(2p — 1).

Therefore Fi(z) = (1 + sin(cz))/2, |cz| < 7/2, and

1 + sin(arcsin(2p — 1) + ch)
2
1+ (2p — 1) cos(ch) + cos(arcsin(2p — 1)) sin(ch)
2 ?

Fi(Fy'(p) +h) =

which clearly coincides with the right-hand side of (2.6). The condition 0 < ch <
7/2—arcsin(2p— 1) corresponds to F; *(p)+h < by = 7/2, otherwise Fr(F;'(p)+h) = 1.
When a # 1,2, an equivalent form for (1.12) is of more complicated nature.

We now formulate the equivalence of part b) and c) of Theorem (2.1) separately to
make further use of it in our next remark.

Corollary 2.2 For any h > 0, let the h—neighbourhood of any open ball D(z,7) C X
be a ball. If (2.10) is satisfied for the sets A, with 0 < p(A) < 1, which are finite
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untons of open balls in X, then it is satisfied for all Borel measurable sets A C X, with
0<u(Ad) <.

Example 2.3 Let X = S; C R? be the circle of radius p in the plane and let y = o, be
the uniform distribution on S}, i.e., u = p1/(27p), where y; is the Lebesgue measure on
the circle. Then for any set A C X, with 0 < pu(A4) < 1, representable as a finite union of
disjoint open intervals Dg, 1 < k < N, we have that 2rpp*(A) is the number of points
of the Dy which do not belong to the closure of other intervals. Anyhow, 2rput(A4) > 2,
with equality for N = 1. Therefore, by Corollary 2.2, this last inequality remains true
for any Borel measurable A C X, with 0 < p(A4) < 1, and we finally obtain that, for all

pc (07 1)7
(2.13) ) = =

Using (2.8) as well as the equivalence of (2.9) and (2.10), (2.13) can also be written as:

h - h
(2.14) p(A™) > min (,u(A) + p’ 1) )

which is valid for any Borel measurable A C X, with 0 < p(A4) < 1. (2.14) is a one-
dimensional (and, of course, trivial) case of the Lévy-Schmidt theorem on the isoperi-

metric property of the balls on the sphere. Note also that, in this case, the inequality
pt(A) > I(p(A)) fails if w(A) =1 or if A = (. On the other hand, (2.14) fails only for
the empty set.

Proof of Theorem 2.1. The proof of the equivalence of a) and b) does not differ from
that of a) and ¢), so we simply prove the latter. Trivially from (2.7), a) implies ¢) and
one needs only to prove the converse implication. Given h > 0, 0 < p < 1, set

(2.15) Ru(p) = F(F~'(p) + k),
where F' = Fr, and set also Rp(0) = 0, Rp(1) = 1. Then, R forms a family of non—

decreasing continuous functions on [0, 1] with the following semi-group property: for all

h, ' > 0:

(2.16) Rhiw(p) = Ru(Ru(p)),

for all p € [0, 1]. Indeed, (2.16) is trivial for p = 0. Then let p > 0, and Ru/(p) < 1 (hence

p < 1), and by (2.15), Ru(p) = F(F~'(p) + h’). Since 0 < Ru/(p) < 1, we then have
Ru(Rw(p)) = F(F™(Rw(p) + h) = F(F'(p) + h + h') = Rpsn(p)-

If Rp(p) =1, then Ru(Rp(p)) = Ru(1l) =1, and also 1 > Rpiw(p) > Ru(p) = 1, since
Ry, is a non-decreasing function of h. Thus again, Ruin/(p) = Rp(p) = 1 and (2.16) is
established.

Now we need to show that, for all Borel measurable sets A C X,

(2.17) u(A") > Ra(u(A)).
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First, we slightly modify (2.17) by introducing a parameter o > 1 and defining
h
B = F(F0)+ 1) 0sp<1 20
o

As for o = 1, the family R satisfies (2.16). First, we prove that for finite unions A of
open balls in X and for all A > 0,

(2.18) W(AP) = RE(u(A)), o > 1.

Then, letting o — 1 we will obtain (2.17) for the same sets. Fix such a set A of measure
0 < u(A) <1, and put

A ={h>0:(2.18) is true for all A’ € (0, h]}.

Note that the function A — Rj(u(A)) is continuous on [0, +00), and that the function
h — u(A") is left continuous on (0,+co). Therefore, to prove that A = (0, +o00), it
suffices to show that

i) e € A, for € > 0 small enough;
i) If h € A, then h+ € € A, for € > 0 small enough.
For € > 0 small enough, and by the definition of ™,

(2.19) B(A) > u(A) + u* (A)e + ofe).

On the other hand, the Taylor expansion of RJ(p) at h = 0 gives

RI(u(A)) = w(A)+ F(F7(u(A)= +ole)
(2.20) = p(A) + I(B(A) = +o(e),

where f = fr. By the assumption (2.10), u*(A) > I(u(A)), and comparing (2.19) and
(2.20), we get (2.18) for h > 0 small enough, i.e., we proved i). Suppose now that
h € A. If u(A") > RI(u(A)), then this inequality remains true for all & + € with e
small enough since the function A — u(A") is non—decreasing, and since the function
h — Rg(u(A)) is continuous. In the other possible case, i.e., when u(A") = R(u(A4)),
put B = A" and note that A" = B¢ for all € > 0. If u(B¢) = 1, for all € > 0, then
h € A automatically. Suppose now that u(B¢) < 1 for some € > 0, and let € € (0, €').
In particular, 0 < u(B) < 1, and since by assumption, A = D; U---U D,, is the union of
the balls D;, then A* = D* U...U D! is also an union of balls. Therefore, (2.10) can be
applied to B and p*(B) > I(p(B)). Again, writing (2.19) and (2.20) for B one gets

W(BY) > u(B)+u*(B)e+ole),
RZ(u(B)) = w(B)+ f(F'(i(B))= +ofe)

k(B) + I(u(B))~ + ofe),
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and thus concludes that u(B€) > R?Z(u(B)), for all € > 0 small enough. It remains to
note that

R, (#(A)) = RZ(R(u(A))) = RZ(p(AM)) = RZ(u(B)) < u(B<) = u(AM).

Therefore h+¢€ € A for all € > 0 small enough. Thus, (2.18) and therefore (2.17) are true
for any set A, with 0 < p(A) < 1, and which is a finite union of open balls. If u(A) =0
or 1, (2.17) is automatically true.

If Ais an arbitrary open set in X, then since p is separable, there exists a sequence of open
balls D; C A,7 > 1, such that u(A,) — p(A) asn — oo, where A, = D;U---UD,,. Since
(2.17) is valid for A,,, it extends to A and (2.17) extends to all open sets. Now, let K C X
be closed. The set K¢ is open, hence for all h > 0, p((K*)*) = p(K"*¢) > Ru(u(K*)).

Letting € — 07, and since Mo A° = A, we get p (ﬁ) > Rup(p(K)), for all A > 0. But
for all ' < h, K¥ C K" and therefore u(K") > p (ﬁ) > Rp(p(K)). Letting o' — b,
we obtain u(K") > Rp(u(K)). Finally, for an arbitrary Borel measurable set A, there

exists a sequence of closed sets K,, C A such that u(K,) — p(A) as n — oo, hence for
all A >0,

u(A*) > w(K7) > Ru(uw(Kn)) — Ra(u(A)),

as n — 0o. Theorem 2.1 is thus proved.
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3 Proof of Theorem 1.1

Lemma 3.1 (Co-area Inequality) Let f be a Lipschitz function on X, then

(3.1) /X |V f(z)|du(z) > /-:o pt{z € X : f(z) > t}dt.

Remark 3.2 If f is Lipschitz on every ball in X, the function |V f| is Borel measurable

and finite. Indeed,
Vi) = lim  syp L& =S
n=%0 yp<i/n AT, Y)

is Borel measurable as the monotone limit of a sequence of lower semi—continuous func-
tions. Finiteness follows from the Lipschitz property.

Remark 3.3 Let A C X be Borel measurable, and let r take only rational values.
Whenever h > 0, Upcr<p A" = A", hence for any € > 0,

(3.2)

Therefore,

Thus, for any non-increasing family of Borel measurable sets A;, ¢ € R, the function
t — pt(A;) is Borel measurable (on the real line), and so is the integrand on the right

hand side of (3.1).

Remark 3.4 Since gt (0) = pt(X) = 0, the second integral in (3.1) is in fact taken over
the interval (a(f), b(f)), where a(f) = ess inf f, and where b(f) = ess sup f.

Remark 3.5 It should be noted that the proof of Lemma 3.1 does not require any
assumption on the Borel probability measure p (not even that p is non-atomic). Equality
in (3.1) requires some additional properties of y, such as non-singularity. In fact, let
X = R with its usual metric, let ¢ be an arbitrary Borel probability measure on R and
let v denote the absolutely continuous (with respect to the Lebesgue measure) part of
p. If f(z) =z, then p(t) = pt{z € X : f(z) >t} is a Radon-Nikodym derivative (with
respect to the Lebesgue measure) of v, and (3.1) becomes

v(R) < 1.
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Therefore, and for X = R, equality in (3.1) requires that 4 = v, i.e., that u is absolutely
continuous. As well known, the “usual” coarea formula tells us that this property is also
sufficient.

To prove Theorem 1.1, we will also need the following result which is an immediate
consequence of Lemma 3.1.

Corollary 3.6 Let f be a Lipschitz function on X, such that p{z € X : f(z) = 0} = 0.
Then,

0 +oo
/X IV f()|du(z) > /_oo pte e X flz) < t}dt—l—/o uHz e X : f(z) > thdt.

Proof. It is enough to apply Lemma 3.1 to f* and f~ and to also note that |V f| =
IVfT|4 |[Vf~| on the open set {z € X : f(z) #£ 0}.

Proof of Lemma 3.1. First, let us assume that f is bounded. Then, without loss of
generality one may assume that f > 0, since the left and the right hand side of (3.1)
remain unchanged if a constant is added to f. Since f is Lipschitz on X,

(3.3) f (@) = f(y)] < cd(=,y),
for some ¢ > 0 and all z,y € X. Then, let

/n(z) = sup [(y),

d(z,y)<h

where A > 0, and let A; = {z € X : f(z) > t}. Then, for all t € R and h > 0, the set
{z€X: fu(z) >t} ={z € X: f(z) > t}" = AP is open as the open h-neighbourhood
of A;. Therefore f; is lower semi—continuous and in addition,

+o0 too
/thdﬂ — /0 wle € X ¢ fu(z) > t}dt = /0 u(AP)dt.
Since [y fdu = [ u(A;)dt, we have

(3.4) R S

From (3.3), fu(z) — f(z) < ch, for all z € X and h > 0, hence the integrand on
the left hand side of (3.1) is bounded. Therefore, using (3.4), the Lebesgue dominated

(
convergence theorem and Fatou’s Lemma (via property (3.2)) and noting that

lim sup M = lim sup M

< |V f(z)],
h—07t h y—x d(m,y) o | f(m)|
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we get

/ |V fldp = | limsup Jn = d,u > 11msup/ Jof f
b b

h—0t h—0*t

—f oo p(A}) — M(At)

> =
mint [ e = mipt T
oo wAY) — p(As) ,  fre |
>/ 11hr£1)(1)£1f . dt—/o pr(Ag)dt.

Thus, (3.1) is established for f Lipschitz and bounded. Let now f be an arbitrary
Lipschitz function. Let a, be an increasing sequence of positive numbers such that

limy, 400 @n = +00, and such that the sets D, = {z € X : |f(z)| = an} have y—measure
0, for all n. Let A, = {z € X :|f(z)| < an}, and define the function

f(z), if [f(z)| < an
f”(m) = Qn, if f(:IJ) > an
—an, if f(z) < —ap

That is, fn(z) = max{—an, min{a,, f(z)}}, so f, is also a Lipschitz function (of Lipschitz
constant at most max(c, 1)) and thus one can apply (3.1) to f,. Since on A,, which is

open, f = fn, we have |V f,(z)| = |V f(z)|, for any z € A,. Now, the sets
B,={z€X:f(z)<—an}, Cn={z€X: f(z)>an}

are also open, and f, is constant on both B, and C,, so |Vf,] = 0 on B, UC,. In
addition, D, = X \ (A, U B, U C,,) has p—measure 0, consequently taking into account
Remark 3.4, (3.1) can be written as

(3.5) /. Vi@)du(a) > / “a’; wHo € X : f(z) > t}dt.

Finally, applying Tonelli’s monotone convergence theorem, we get (3.1) from (3.5).
Proof of Theorem 1.1.

a) = b). Without loss of generality, let ¢ = 1. We only need to consider the case of
single pair sets G = {(g1,92)}. Indeed, if

(3.6) Lg1,:)(f) Z/X(Fgl + f7g2)dn < /XIVfIdM

follows from pt(A) > max(Lig 4)(X4)s L(g1,9:)(—X4)), then taking the supremum in
(3.6) over all (g1,92) € G will give L(f) < [x|Vf|dy, under the condition p*(A) >
max(L(xa), £L(—xa)). Now, let £ = L, 4,) and assume that

(3.7) pT(A) > max(L(xa), L(—xa)),
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for any Borel measurable A C X. First assume that p{z € X : f(z) = 0} = 0, then by
Corollary 3.6, and by (3.7), we have putting A; = {f > ¢t} and B; = {f < t}:

[ Vi@t > [ Lo+ [ L(-xm )i
_ /+OO/XAt 2)g1(z)dp(z dt+/ /th z)g2(z)dp(z)dt
- /. /*“XAtmglmdth )+ [ [ xml@)(e)dtdute)
= [ xao(@)f@)an()dp(e) + [ x5,(0)f(@)g(2)d(2)
= [ frodut /X Fgads = L().

Hence, (3.6) is proved when p{z € X : f(z) = 0} = 0, note also that we have applied
Fubini’s Theorem to change the order of integrations. This is valid since using the

integrability of f*g, and of f~g,, we have [y [y xa,(z)|g1(z)|dtdu(z) = [x FH|g1|dp <
+oo, and [x [2o, x8.(2)|g2(z)|dtdu(z) = [x f*]galdp < +oo.

Let us now show how to get rid of the extra assumption p{z € X : f(z) = 0} = 0.
Let C = {a € X : p(f = a) > 0}, then C is at most countable and by the previous
arguments, for any a & C,

(3.8) L(f—a)< [ IV(f—a)ldu= [ Vfldp,

whenever (f —a)tg; and (f — a)"g» are p—integrable which is always true by the inte-
grability of f*g1, f~g2,91 and g,. In addition for this same last reason,

Lf—a)= [ (= grdu+ [ (f =) gadu — £(F),

as a — 0. Therefore, (3.8) holds for a = 0 and b) is established.

b) = a). Again, and without loss of generality, let ¢ = 1. By (1.9), for any bounded
Lipschitz function f > 0 on X, and for all (¢1,92) € G,

39 [ Vfldu> [ fodu, [ 1Vfldu= [ [V(=Pldp> [ foadn.

Now we approximate sets A by Lipschitz functions f. Let A C X be a closed set such
that 0 < pu(A) < 1. For any € > 0, there exists a Lipschitz function f¢ on X with values
in [0, 1], of Lipschitz constant at most 1/e such that f¢ = 1 on some open neighbourhood
of Aand f¢=0o0n X \ A°. One may choose, for example,

f¢(z) = max (1 - %d(m,A?ﬁ),O) ,
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where for B a non-empty subset of X, d(z, B) = inf{d(z,b): b € B}. By (1.4), |[Vf¢| <
1/e everywhere (since the function d(z, B) has Lipschitz constant at most 1 when B is

chosen as above), and |V f¢| = 0 on X \ A¢. Hence,

Taking into account that for all € < €, A C A€, we have

(3.10) WH(A) = limipr AT HA) liminf [ |9 f|dp
X

e—0t € e—0

On the other hand, since A is closed, f€ converges pointwise, as € — 07, to the indicator
function x4, hence whenever g is p-integrable, [y f<9dp — [y xagdy, as e — 0%, So,

(3.11) lim [ fiqdpy = /XAgldM; lim/ fegadp = /XAgsz-
X X e—0t JXx X

e—0t

Now (3.10), (3.9) and (3.11) yield

(3.12) pHA) > [ xagidu,

(3.13) pHA) > [ Xagadn,

whenever (g1, 92) € G. Taking the supremum over all (g1, 92) € G in respectively (3.12)
and (3.13) gives p™(A) > L(xa) and pt(A) > L(—x4). Thus, a) follows for all closed
sets A C X, with 0 < p(A) < 1. If A is Borel measurable but not closed, then two

cases occur. Either u(A4) > u(A), then as noted in Section 2, u*(A) = +oo, hence there

is nothing to prove. Or, u(A) = p(A), then L(xa) = L(xz), L(—xa) = L(—x7z), and
pt(A) = pt(A), as again noted in the previous section.

We are thus just left with the case u(A) = 0 and p(A) = 1. If u(A) = 0, then by
definition £(x4) = 0 and (1.8) holds since u™(A) > 0 = L(xa). Let now p(A) =1, then
applying (1.9) to f1 = 1 and f» = —1, we obtain

0=L(fi)= sup gidp, 0=L(f)= sup g2dp.

(91,92)EG VX (91,92)€GYX

Hence, [y g1dp < 0, fx godp < 0 and therefore, pt(A4) > 0 > L(xa),uT(4) > 0 >
L(—xa). The proof of Theorem 1.1 is complete.
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4 The isoperimetric problem as a relation between
the distribution of a function and its derivative

Let f be a function on (X, d) which is Lipschitz on every ball, and let Ff(t) = puf{z € X :
f(z) <t},t € R, be its distribution function with respect to the measure p.

Theorem 4.1 Let I be a non—negative continuous function on (0,1). If for all Borel sets
ACX, with0 < p(A) <1,
(4.1) ph(A) > I(p(4)),
then for any function f which is Lipschitz on every ball in X,
b(f)
(4.2) [ V@) > [T~ (),

where a(f) = ess inf f and b(f) = ess sup f. Conversely, if (4.2) holds for all bounded
Lipschitz functions, then (4.1) also holds for all Borel sets A C X, with 0 < pu(A) < 1.

Remark 4.2 If I(07) = I(17) = 0, then (4.2) takes the form

[ 1V4(@)ldu(a) > /+°°I(1—Ff(t))dt.

— o0

Proof. For f bounded and Lipschitz, Lemma 3.1 as well as (4.1) imply (4.2). For f
bounded and Lipschitz on ever ball, a truncation argument can be used to prove the
result. Let

) if d(a,z) <r
To(z) =4 r+1—d(a,z), ifr<d(a,z)<r+1
0, if d(a,z) >r+1,

where r > 0, z € X, and where a i1s a fixed point in X. Clearly, the function 7, is
Lipschitz, of Lipschitz constant at most 1. Let f.(z) = f(z)T.(z), then f, is a bounded
Lipschitz function of Lipschitz constant at most d, = f(a)+7C,, where C, is the Lipschitz
constant of f on the open ball D(a,r). In addition, since the sets D(a,r) and {z € X :
d(a,z) > r + 1} are open, we have by (1.4):

IV fe(@)l, if d(a,z) <7

|V fo(@)| = { ,
0, if d(a,z) >r+ 1.
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Let r < d(a,z) <r+1,7 <d(a,y) <7+ 1. Then,

@)= f(@) = fy)(r+1-da,y)) - f(z)(r+1-da,z))
= (f(y) = f(@))r +1—d(a,y)) + f(z)(d(a,z) — d(a,y)).
Therefore,
fe(y) = fr(@)] < [f(y) — F(@)| + [f(=)]d(=,y),

hence

. T — Jr T
V£ (2)| = limsup T =IO 19 00 4 1))
y—x d(m,y)
Note that, u{z : d(a,z) = r} + p{z : d(a,z) =7+ 1} = 0, for all » > 0, except maybe,
for countably many r. So, not taking such values of r, we have

(43) J 1V 5du < [ 19 fldp+ [ 15(@) Xir<dtamrcrsa(@)dule).

Now, let u, = 1 — F,, where F, is the distribution function of f, with respect to . When
r — 400, f, converges to f pointwise and therefore, u, converges to u weakly. That
is, u,(t) — wu(t), and by the continuity of I, I(u.(t)) — I(u(t)), for every point of
continuity of u. Consequently, since u is non—increasing, this convergence takes place for
all ¢ except countably many ¢. In addition, a(f,) — a(f), b(fr) — b(f) as r — +oo.
Again, applying Fatou’s Lemma to the right hand side of (4.2) with f, and noting that,
since f is bounded, the last integral in (4.3) tends to zero as r — 400, we finally obtain

/Mﬂﬂl—FHﬂﬂt==/:fﬂwﬂﬂwmﬂmﬁﬂt

a(f)
+oo
= / _ lminf ICur (£))X(a( )00 (£)dE
+oo
< lminf [ T(un(8))X(a(0)005)) (E)dE
<

1mnﬁ/|VﬁuM
r—+oo Jx
< [ IVfidp.

X

The inequality (4.2) is thus proved for f bounded and Lipschitz on every ball. If f is
unbounded, one can use a truncation argument similar to the one used in the proof of
Lemma 3.1. Let

fu(z) = max{—an, min{ay, f(z)}},
where a,, is an increasing sequence such that a, — +o0, and p{z € X : |f(z)| = an} =
0. Clearly, f, is Lipschitz on every ball, and since |f,| < an, one can apply (4.2) to
fn- Finally, letting n — oo, (4.2) for such f follows by applying Tonelli’s monotone

convergence theorem to the left hand side of (4.2) and Fatou’s lemma to the right hand
side of (4.2).
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This proves the direct part of the theorem, and it just remains to prove the converse. Let
A C X be a closed set such that 0 < pu(A) < 1. As in the proof of Theorem 1.1, taking
the family of Lipschitz functions f¢, € > 0, which approximate the indicator function

f = xa. We have that
A¢) — u(A
(4.4) L9 < 2D

Since f€ converges pointwise to f, as € — 01, F, the distribution function (with respect to
p) of f€ converges weakly to the distribution function F of f. In other words, Fi(t) —
F(t) as € — 0, for all ¢ except at t = 0 and ¢ = 1 where F' is discontinuous. So, the
continuity of I and once more Fatou’s lemma give

(4.5) lim inf

1
e—0 0

I(1 — F.(t))dt > /0 I = F($))dt = I(u(A)).

Note that, for all € > 0, ess inf f€ > ess inf f = 0, ess inf f¢ — 0 as € — 0T, and ess sup
f¢=esssup f = 1. So, we get from (4.2), (4.4) and (4.5), taking into account that for
all € <€, A C A%

I(p(A)) < liminf [ |V foldp

e—0

< liminf M
e—0+t €

lLiminf pA%) — w(A4)
e—0t €

< u(4).

At noted at the beginning of Section 2 (see (2.2), the inequality u*(A) > I(u(A)) extends
to all Borel sets A of measure 0 < u(A) < 1. This completes the proof of Theorem 4.1.
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5 A variational problem

In order to minimize the value of

(5.1) /. 19 1dp,

under the conditions

(5.2) | fdu=a, [ N(H)du=b,

where a and b are fixed constants and where N : R — R is an arbitrary convex function,
the inequality (4.2) will be used. The first restriction in (5.2) requires that f should be
p—integrable. In this case, the second integral in (5.2) always exists, being finite or not,
because [y max(N(f),0)dy = [y max(—N(f),0)dp = +oo cannot occur for N convex
and f integrable. Thus, the integrability of f is the only restriction in our problem.

If the function N is linear, i.e., of the form N(z) = cz + d, then b = ca + d, the infimum
of (5.1) is zero and is attained for the constant function f = a,a.e.p. Otherwise (N not
linear), by Jensen’s inequality, b can be any real number such that 6 > N(a). If b = N(a),
only the constant function f = a, a.e., satisfies (5.2), and the integral in (5.1) is again
Zero.

Let b > N(a), and let the function f take only two values, say, a + gz and a — pz, z € R,
with respective u—probabilities p and ¢, (0 < p < 1,9 = 1 — p). Then, the first integral
in (5.2) is equal to a and the second integral which is equal to

(5.3) Npo(z) = pN(a + qz) + gN(a — pz),

is a convex function of the real variable z. This function is non-increasing on (—o0, 0],
non—decreasing on [0, +0), and Np4(0) = N(a). Moreover, since N is not linear,

Npo(+00) = Npo(—0) = +00.

Therefore, for any p € (0,1),b > N(a), the equation N, ,(z) = b admits only one positive
solution ¢ = z,(a,b). Furthermore, when p and a are fixed, z,(a,b) is an increasing,
concave function of the variable b > N(a). Thus, for any b > N(a), there exist Borel
measurable functions satisfying (5.2). We will show below that, in fact, there exist
Lipschitz functions on X satisfying (5.2).

Given b > N(a), let us now define

(5.4) Ni(a,b) = inf (I(p)zy(a,b)),

0<p<1

where I is a non-negative function on (0,1). In our main case of interest, when I = I,
is the isoperimetric for (X, d, ), we simply write N* instead of N

32



For the function f described above (taking only two values), the expression inside the
infimum in (5.4) is easily seen to be exactly

b(f)
(5.5) / I(1 — Fy())dt,

a(f)
where Fy denotes the distribution function of f with respect to the measure p, and where
a(f) = essinff, b(f) = esssupf. Thus, Nj(a,b) is the infimum of such integrals over all
functions which take two values and satisfy the conditions (5.2) (such infimum might
only be attained asymptotically). Note also that, if 7(07) = I(17) = 0, then the integral
(5.5) can be extended to the whole real line.

To prove Theorem 1.10, we first need to prove the following statement.

Theorem 5.1 Let I be a non-negative, continuous function on (0,1), such that the
function I(p)/p is non—increasing on (0,1). Then,

o)
(5.6) mf/(f) (1— Fy(t))dt = N¥(a,b),

where the infimum is taken over all p-integrable functions f on X, which satisfy (5.2).

Before proving Theorem 5.1 and Theorem 1.10, we need some preparatory results. Then
Theorem 5.1 and Theorem 1.10 are proved, assuming that Theorem 5.1 has already been
established for all probability measures F' = Fy with finite support, i.e., for the class
of functions f which take only finitely many values. The discrete version of Theorem
5.1, which is of interest for different applications and is, in particular, a basic key to
comprehend Theorem 1.10, is considered separately in the next section. It should be
stressed here that Theorem 5.1, which is used to prove Theorem 1.10, will not be applied
to the isoperimetric function I, which might not satisfy the conditions of Theorem 5.1,
but rather to the function

I(p) = N*(a, b)/zp(a, b)

which satisfy these conditions, serves as a lower estimate for I, and generates the same
function Ny = N*. Thus, Theorems 4.1 applied, via lemma 3.1, to the function I and
Theorem 5.1 will give the estimate

| IVldu > N*(ab).

This inequality can become asymptotic equality for Lipschitz functions approximating
indicator functions of sets of measure p. Note that one needs only consider in Theorem
5.1 (as well as in in the variational problem (5.1)—(5.2)) the case a = 0, because one
can replace N by the function £ — N(z + a) which is also convex. However, to fulfill
the suggested strategy of proof, it will be essential to state some properties of N as a
function of the two variables a and .
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Let f be a bounded, Borel measurable function on X such that fy fdu =0, f # Oa.e.p

and let a be a real number. Generalizing (5.3), we introduce the function

+ o0

(5.7) Nyalz) = /X N(ef + a)dy = / N(zt + a)dFy(t)

of the real variable z. Clearly, if the function f takes only two values ¢ and —p with
respective y—probabilities p and ¢, (0 < p < 1,9 = 1 — p), then Ny, = N,,. Note also
that N;,(0) = N(a). Let us now point out the following facts:

Lemma 5.2 The function N;, is convezr, non—increasing on (—oo,0], non—decreasing
on [0,400), with also Nj4(—00) = Nfo(+00) = +00. Therefore, for any b > N(a), the
equation Ny (z) = b admits only one positive solution © = z4(a,b). Moreover, z4(a,b)
is an increasing, concave function of the variable b on (N(a), +00).

Lemma 5.3 The function x5 is concave, hence continuous, on the open conver set
{(a,b) € R%Z : b > N(a)}. Moreover, if a sequence {f,} of uniformly bounded func-
tions with p—mean zero converges to f a.e., then =y, (a,b) — z¢(a,bd) for all b > N(a).

By Lemma 5.3, N is concave as the infimum over p € (0, 1) of the concave functions
I(p)zp. Therefore we also separately state:

Corollary 5.4 For any non-negative function I defined on (0,1), the function N} is
concave, hence continuous, as a function of two variables, in the region b > N(a).

Corollary 5.4 will be used to prove Theorem 5.1, while the last statement of Lemma 5.3
will be used to prove Theorem 1.10. In addition, we also point out the following corollary
which asserts that our minimizing problem is non-vacuous.

Corollary 5.5 All the bounded functions f satisfying (5.2), are of the form f = zg + a,
where g is an arbitrary bounded, non—constant, Borel measurable function with p—mean
zero, and where z is the unique value z4(a,b).

We finally state a last lemma which is used in the proof of the variational theorem and
in proving the condition 3) of Theorem 1.11.

Lemma 5.6 Given b > N(a), the function I(p) = 1/z,(a,b) is continuous, and I(p)/p
is decreasing on (0,1).

Note that the function z, is continuous by the last statement of Lemma 5.3 since it is a
particular case of function z;.
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Proof of Lemma 5.2. Let M¢ be the space of all signed measures concentrated on some
compact interval [—C, C]. Then M} C Mg, the family of all probability distributions F
concentrated [—C, C] is a compact symplex (for the topology of weak convergence in M¢),
and the delta—measures &, |t| < C, are the extremal points of this symplex. Therefore
the elements of Vi, the intersection of the extremal points of M} with the hyperspace
{F € Mg : [°,tdF(t) = 0}, lie on the one-dimensional edges of M, i.e., take the form
pés + qbs, where p € [0,1],g =1 —p,pt + gs =0, —C < t,s < C. Replacing ¢t and s by
gt and —pt, and applying Choquet’s theorem, one can represent an arbitrary F' € Vi as
a mixture

(5.8) F= // (Pgt + q6_p) dm(p,t),

where 7 is a probability measure concentrated on the set Rg = {(p,t) : 0 <p < 1,0 <
t < C/max(p,q)} of all allowed values of (p,t). Of course, V¢ is not a symplex, i.e., the
measure 7 in (5.8) is not unique.

Let 75 be a mixing measure for the distribution Fy of the function f and let C' = esssup|f|.
Then, from the representation (5.8) and using (5.3) and (5.7), we obtain

(5.9) Nya(e) = [[ Npalat) drs(p,2).

As itself a mixture of the functions N, ,, the function Ny, inherits many of their prop-
erties. Clearly, it is convex, it is non—increasing on (—o0, 0], non—decreasing on [0, +00),

and Ny,(0) = N(a). Moreover,
Njo(+00) = Njo(—00) = +o0.

Indeed, if this last claim were false and say that Nj,(4+00) < 400, then one would
have Nyq(z) = Nfo(0) for all z > 0. But, this last statement is possible if and only
if the measure 74 is concentrated on the line ¢ = 0. This means, according to (5.8),
that Fy = &g, i.e., that f = 0, a.e., and this contradicts the assumption made on f.
Thus, for any b > N(a), there exists only one positive solution z = zf(a,bd) to the
equation Ny,(z) = b, and as a function of b, z; is increasing and concave on the interval

(N(a),+o0). This proves Lemma 5.2.

Proof of Lemma 5.3. Since z5 is an increasing function of b, we obtain that for all

z>0,b> N(a),
/N(mf—l—a)d,u <b = z <za,bd).
b

We use this property to establish the concavity of zs. Let by > N(ay1),bs > N(as),0 <
a<1. Put z; = z54(a1,b1), 22 = zf4(az,b2), so that

/X N(z1f + a1)dp = by, and /X N(zof + az)dp = by.
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By the convexity of N,
aby + (1 — a)by > /X N((azs + (1 — a)a2)f + (aar + (1 — a)as))dp.
Hence, by the property mentioned above,

az; + (1 —a)zy < zg(aa; + (1 — a)ag, ab; + (1 — a)by),

which is exactly concavity.

It remains to establish the last statement in Lemma 5.3. Put z, = z4,(a,b), then

(5.10) /X N(zpfn+a)du =b.

There always exists a subsequence {z,, } converging to some z € [0, +o0]. If z is finite,
then by the Lebesgue dominated convergence theorem, one can take the limit in (5.10)
as n — 00, and have [y N(zf + a) = b. Necessarily z > 0, since if z = 0 then b = N(a)
which contradicts the assumption b > N(a). This implies that z = z¢(a,b) and proves
the statement when z is finite. To prove that indeed x is finite, it is sufficient to show
that for any sequence z,, — +00,

(5.11) /X N(@nfn+ a)dp — +o0o,

as n — oo. For simplicity (recalling that it is possible to replace N by the function
z — N(z + a)), one needs only to consider the case a = 0. Put also Ny, o = Ny,

T§, = Tn. Again using the representation (5.9), one can write the integral (5.11) as

n

(5.12) Npu(@) = [[ Nyat) dralp,2),

with z = z,. To prove (5.11), it suffices to estimate (from below) all the functions Ny, ,
with n large enough, by a function which is unbounded, and non-decreasing on [0, 4+ 0c0).
To this end, for a given € € (0,1/2), introduce the set

Ac = {(p,t) ERc:e<p<l—e¢ t>2C¢€}.
Then, the integral (5.12) can be estimated by
Npu(s) > T.(20e)m(AL)
where Te(z) = infecpci—e Np(z). Thus it suffices to show that for € small enough,
(5.13) T(z) — +oo,

as ¢ — —+00, and that liminf, . m,(A4c) > 0.
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To prove that liminf, . mn(Ae) > 0, let us write down the representation (5.8) for the
distribution function F,, of f,, and for the interval [—2C¢, 2C¥¢]:

(5.14) Fo([-2C¢,20¢]) = // p8,:([~20€,2C¢]) + g6_pi([—2C¢, 2C¢]) drn(p, ).

Then, consider the three inequalities which define the complement R¢ \ A, noting that
for all (p,t) € R¢, we have 0 <t < C/max(p,q) <2C :

(i) If p < ¢, then pt < 2C¢, hence the second term gé_p:([—2C¢€,2Ce]) =g > 1 — €.

(ii) Analogously, for p > 1 — ¢, the first term pdy([—2C€,2C¢]) = p > 1 — €. In both
cases (i) and (ii), the integrand in (5.14) is greater or equal to 1 —e.

(iii) In a similar way, if ¢ < 2C¢, then the integrand is equal to 1.
Consequently, (5.14) implies

Fo.([-2C¢€,2C¢]) > (1 — €)mu(Re \ Ae),

or, in other words,

ra(A) > 1—iFn([—ZCe,ZCe]).

The functions f,, converge to f a.e., hence the sequence F;, converges weakly to the
distribution function F' of f. In particular, for all € > 0, lim sup,,_,o, Fn([—2C¢,2C¢]) <
F([-2C¢,2C¢]). This gives

liminf7r,(4e) > 1 — 1 ! F([-2C¢,2C¢]).

n—oo — €
The right-hand side of this inequality is positive for all € small enough because its limit
as € > 0%, is equal to 1 — F({0}) = p{f # 0} > 0, since by assumption f is not a.e. 0.

To prove (5.13), introduce the Radon-Nikodym derivative (the density) N’ of the function
N. Tt is defined a.e., but can be chosen to be non—decreasing with possibly, N(z) = N(0)
on some interval (zg, 1), —00 < 2o < 0 < z; < 4+00. Let 2o be maximally small and let
z; be maximally large. Then, for all z > @1, N'(z) > 0, and for all z < z, N'(z) < 0.

Note that having simultaneously, zo = —oc0 and z; = 400 is impossible, since N is not
constant. By (5.3), the derivative of N, can be chosen to be equal to
(5.15) Ny(z) = pg(N'(qz) — N'(—pz)).

From (5.15), for all > 0, and for all p € [¢,1 — €], we obtain
Ny(z) > (1 — €)(N'(ex) — N'(—ez)),

Ni(a) < VL= 9z) = N'(1 — )2))
P — 4 :
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These inequalities show that, on any compact interval within (de, +o0), where d. =
min(z1 /€, —zo/€), the value of the Lipschitz norm of the function N, is bounded. Hence,
the function T is Lipschitz on such intervals. Therefore, T, is absolutely continuous,
non—decreasing on (de, +00), and its Radon—Nikodym derivative clearly satisfies the same
inequalities. In particular, for all z > d.,

T!(z) > €(1 — €)(N'(ex) — N'(—ex)).

€

The right-hand side of this last inequality is a non—negative, non—decreasing function of
z and, in fact, it is positive for z large enough, because N is not linear. This proves

(5.13).

Proof of Lemma 5.6. One can assume that a = 0, N(a) = 0, so b > 0. Put y(p) =
pzy(a,b). Then one needs to show that the function y is increasing on (0,1). By the
convexity of N, the function T(z) = N(z)/z is non—increasing on (—o0,0) and non-

decreasing on (0, +00). From (5.3),

PN (azy) + aN(—pes) = pazs(L (o)~ T(-p2y) = o) (17 (22 ~ 1(a(p)) =,

where ¢ = 1 — p. Let us now assume that for some p; < p,, we have y(p1) > y(p2). Let
g1 =1—p1,92=1—py. Then, 1 > g2, ¢1/p1 > g2/p> and therefore,

r(2ed) > 7 (B2 r ) < 2(-v(e),
since b > 0, T'(qy(p)/p) — T(—y(p)) > 0, for all p € (0,1). Thus, we finally have

ay(m )T (qy(p1)/p1) — T(—y(p1))) > q2y(p2)(T(q2y(p2)/p2) — T(—y(p2))),

ie,b>b!

Proof of Theorem 5.1 (reduction to the discrete case).

Let us assume that for all F' with finite support, and for any continuous, non-negative
function I, such that I(p)/p is non-increasing on (0, 1),

(5.16) / '(’:) I(1 — F(£))dt > Ni(a,b),

where F(t) = F((—o0,t]) is the ditribution function of the measure F', a(F') = inf{t €
R:F(t)>0},b(F)=sup{t e R: F(t) <1}, JgtdF(t) = a, f[g N(t)dF(t) =b.

Step 1. We first consider the case where the function I is bounded. Assume that F' is
concentrated on [—C, C] (more precisely that [a(F'),b(F)] C [-C,C]). The probability
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measures with finite support form a dense (for the weak convergence topology) set in
M}. Hence, for any F in M} there exists a sequence F,, of measures in M}, with finite
support, converging to F' weakly, i.e., such that F,(¢) — F(t) at all points ¢, where F is
continuous. Therefore, a(F,) — a(F), b(F,) — b(F), and

b(F)

b(Fr)
/a oy 0= Falt))dt — / oy T F()ds

by the Lebesgue dominated convergence theorem, because I is bounded, and I(1 —
Fo(t)) = I(1 — F(t)) at all t except at possibly countably many values. In addition,

/CC zdF,(z) — a, /C N(z)dF,(z) — b, (n — +00).

-C

Thus, one can take the limit on both sides of (5.16) (with F' there replaced by F,). Using
the continuity of N this gives (5.16) for F' compactly supported and (recall) I bounded.

In order to extend (5.16) to an arbitrary F', a truncation argument is again used. Namely,
let f be p—integrable and satisfy (5.2). We need to prove (5.16) for F' = Fy. If f is

unbounded, define the functions

—n, if f(z) < —-n
fa(2) =19 flz), if —n < f(z)<n
n, if f(z) > n.

The distribution function F, of f,, is bounded, and a(F') < a(F,) < b(F,) < b(F), hence
from (5.16):

b(Fy)
N¥(an,bn) < /( (1~ Fu(e))de
a(Fn

_ / N O

(Fn)

/ 10 - pea,

5.17
(5.17) ")

IA

where a, = [y fndp, and where
o= [ N(fa)dp = N(-m)F(~n") + N(n)(1 = F(m)) + [~ N($)dF(2).

By the integrability of f, a, converges to a = [y fdu, and since b = [, N(f)dy is finite,
b, converges to b. In addition, by the continuity of N} (see Corollary 5.4),

(5.18) N} (an, b) — Ni(a,b),
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as n — +o0o. Now, (5.18) and (5.17) imply (5.16).

Step 2. It remains to remove the boundedness assumption on I and to prove (5.16) for an
arbitrary continuous I. Define the function I, = min(I,n). Clearly, I > I,,, moreover I,

is bounded, non—negative, continuous, and I,,(p)/p is non-increasing on (0, 1). Therefore,
by Step 1,
b(F)
[ 1= F(t))dt > Nj (a,b),
a(F)
and one needs only to show that N; — Ny, as n — oco. First from (5.4), it is clear
that if I and J are two non—negative functions on (0,1),

:nin(I,J) = min(N7, Nj).
Thus taking J(p) = n, we obtain
N; = min(Nj,cn),

where ¢ = infocp<1 Zp(a, d). The above expression converges pointwise to N if and only
if ¢ > 0. But ¢ = 0 is impossible. Indeed, if for some sequence p, € (0,1) converging to
p € 10,1], zn = zp,(a,b) — 0, then we would have

b= Np,(2n) = pnN(a + (1 — pn)an) + (1 — pn)N(a — puzn) — N(a),

i.e., we would have b = N(a) which contradicts the assumption b > N(a). Thus, the
reduction of Theorem 5.1 to the discrete case has been achieved.

Proof of Theorem 1.10.

Denote by Z(a,b), b > N(a), the infimum of (5.1) under the conditions (5.2). Combining
Theorems 4.1 and 5.1, we immediately have Z(a,b) > Nj(a,b), whenever the function
I < I, is non-negative, continuous, and I(p)/p is non-increasing on (0,1). Now, take

I(p) = N*(a,b)/zp(a,b). Since

N'(a,b) = ind (L(p)ey(a,b)),
we have I(p) < I,
increasing on (0,

(p), for all p € (0,1). By Lemma 5.6, I is continuous, and I(p)/p is non—
(0,1),
according to (5.4),

so I satisfies the conditions of Theorems 4.1 and 5.1. Furthemore,
NI(a’7 b) = ngiil (I(p)mp(a’7 b)) = N (a’7 b)

One thus concludes that Z(a,b) > N*(a,b), and only the reversed inequality needs to be
proved. Let 0 < p < 1, and let A C X be a closed set of the measure u(A) = p. There
exists a sequence €, — 07 such that
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(5.19) uAT) =AY ),

€n

as n — o0. One can then take a sequence g, of Lipschitz functions with values in [0, 1],
of Lipschitz constant at most 1/e,, such that g, = 1 on some open neighbourhood of A
and g, = 0 on X \ A*. Thus, g, converges everywhere to the indicator function g = x4
of the set A, and according to the definition of the modulus of gradient,

B — p(A)

€n

(5.20) / Vgnldp <
X

Since the sequence f, = g, —an, where a,, = [y gndp, converges to the function f = g—p,
which takes the value ¢ = 1 —p with y—probability p and the value —p with py—probability
q, by Lemma 5.3 we have

(5.21) zs,(a,b) — zf(a,b) = zp(a,d),

as n — o0o0. Then, recall that the sequence z,, = z,(a,b) corresponds to the condition
Jx N(znfn + a) = b, i.e., the functions @, f, + a satisfy (5.2). Hence using (5.20), for all

7,

Zab) < [ [V(@nfata)lds
= @ [ IV fuldu

= n /XIVgnIdM
wAw) — p(A)

€n

Ln

By (5.19) and (5.21), this last expression converges, as n — 0, to zp(a, b)p™(A). Taking
the infimum over all possible A, one obtains Z(a,b) < z,(a,b)l,(p), for all p € (0,1).
Finally, taking the infimum over all p € (0, 1), on the right hand side of this last inequality
yields Z(a,b) < N*(a,b). This finishes the proof of the theorem.
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6 The discrete version of Theorem 5.1

Let the probability distribution F' on the real line R have finite support, say, {¢1,...,tn},
t1> ... 2 ty,n > 2. Hence, F' = p1és, + ...+ pnbs,, where as usual é; denotes the unit
mass at the point ¢ € R, and where p; > 0,p; + ...+ p, = 1. Then, the conditions (5.2)
take the form

(6.1) pit1+ ...+ Dutn=0a, piN(t1)+ ...+ N(tn) = b,

The integral (5.5)

B(F)
(6.2) / oy T F()ds
where o(F') = inf{t : F(¢) > 0}, b(F) = sup{t : F(t) < 1}, and where F(t) = F((—o0,t])

denotes the distribution function associated with the measure F', becomes

n—1

(6.3) G(t1,. . tn) = D citi — tiyr),

=1

where ¢; = I(p1 + ...+ pi). To complete the proof of Theorem 5.1, it remains to show
that among all the discrete measures F, satisfying (6.1), the infimum of (6.2) is attained
(possibly asymptotically) within the family of measures with only two atoms. So, we
fix the values p; > 0,p; + ... + p, = 1, and minimize the functional G on the (n — 2)-
dimensional set
C*t(a,b) = Cla,b)N A,

where C(a,b) C R™ denotes the hypersurface defined by (6.1), and where A, = {t =
(t1,...,tn) ER™ 1t > ... > t,}. By Lemma 5.2, the set C*(a,b) is not empty, whenever
b > N(a). Recall that the function I, defining the coeflicients ¢;, is assumed to be such
that I(p)/p is non—increasing on (0,1). Of course, the continuity property of I does not
matter in the discrete case. In this section, we extend I to (0,1] by putting I(1) = 0
(I(17) > 0 is possible). Now, in the discrete case, Theorem 5.1 takes the following form.

Lemma 6.1 Let b > N(a). On C*(a,b), the functional G in (6.3) attains its minimum
at a point (t1,...,t,) such that only two of its coordinates t; are distinct.

Using an induction over n, we can reduce the above statement to the three-dimensional
case where a proposition a little bit more general is proved:

Lemma 6.2 Let p1,p2,p3 >0, ;i +p2+p03 <1, c;=I(p1+...+m),t=1,2,3. For
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any u,a,b € R, and if 1t 1s not empty, let

3 3
CH(a,b) = {(t1,t2,t3) : Y _pits = a, Y_piN(t;) = b, t1 > t5 > t3 > u}.
1 1

Then on C}(a,b), the functional
G(t1,t2,t3) = ci1(ts —t2) + c2(ta — t3) + ca(ts — u)

attains its minimum at a point (t1,1ta,t3) such that t; = u, or ty = t1, or t3 = t.

First, by induction, we show how Lemma 6.1 follows from Lemma 6.2. Let n = 3, since
p1+p2+ps = 1 and I(1) = 0, we have ¢ = 0, and therefore the functional G from
Lemma 6.2 is of the form G(¢1,t2,t3) = c1(t1 — t2) + ca(ta — t3), i.e., it coincides with
(6.3). Letting u — —oo in Lemma 6.2, we get the statement of Lemma 6.1 for n = 3.
Now, let n > 3, and assume that the statement of Lemma 6.1 is valid for all dimensions
lower or equal to n — 1, and for all admissible functions I. Let (¢1,---,tn) € C*(a,bd).
We fix the values t4,...,%,, but ¢1,%, and 3 vary. Since the sums

P4t4 + .4 pntn = a,’7 p4N(t4) 4+ 4 pnN(tn) — bl7
are also fixed, the first three variables can vary arbitrarily under the conditions
pity + pats + pats = a — a'; piN(th) + paN(t2) + paN(ts) = b — b,

and t; > ty > t3 > u = ty. This means that the triple (¢1,1s,%3) belongs to the set
Cl(a",b") from Lemma 6.2 with " =a —d/, 0" =b- V.

Therefore, one can apply Lemma 6.2 according to which the functional G, as a function
of (t1,t2,t3) € Cf(a",b"), attains its minimum at a point (¢1,s,t3) such that ¢; = u, or
ty = tq1, or t3 = t5. In all these cases, we decrease the number of different coordinates of
the vector (¢1,---,t,) and again we need to minimize G under the additional restriction
t; = tiy1 for some ¢ = 1,---,n — 1. But, when ¢, = ¢;;1, we obtain the original (n — 1)-
dimensional problem since the conditions (6.1) as well as the functional (6.3) remain
of the same type, and since a and b do not change. Thus, one can use the induction
assumption and Lemma 6.1 is proved.

The proof of Lemma 6.2 will occupy the rest of this section. For the reader’s convenience
we also present two pictures illustrating our minimizing problem.

Proof of Lemma 6.2. Without loss of generality, we assume that v = 0 since otherwise
N can be replaced by a shifted version ¢ — N(z — u). Now change notations and set
z =1,y =13,2=13,p = Pp1,q = p2,7 = Pp3. S0, we fix the values p,q,7 > 0, p+q+r <1,
and minimize the functional
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(6.4) G=c(z—y)+cy—2)+ cz2

on the curve Oy (a,b) defined by the conditions (6.1) and the restrictions z >y > z > 0.
From (6.1),

(6.5) = w)

T

therefore we can treat the problem of minimizing G as a problem in the plane R2. So
redefine C (a,b) as a curve in the plane:

Cq(a,b) = {(z,y) eR*:2 >y >22>0, pN(z) +¢N(y) +rN(2) = b},

where z is always understood to be as in (6.5). Necessarily, a > 0, since otherwise
Ci(a,b) would be empty. If a = 0, C(a,b) = {(0,0)}, and there is nothing to prove.
Thus, one can assume in the following that a > 0.

The inequalities > y > z define in the plane, the sector Sec(a) with vertex P which is
the point of intersection of the lines = y and y = 2. Note also that

a— pr — a — px
y:z@y:M@y: p'
r g-+r

Thus, the line y = z has the equation y = (¢ — pz)/(q¢ + r), and the vertex P has
coordinates (a/(p+ g+ 7r),a/(p+ qg+7)).

Furthemore, the line z = 0 (i.e., pz + gy = a) intersects the line z = y at a point @ of
coordinates (a/(p+¢),a/(p+¢q)) and intersects the line y = z at a point R of coordinates

(a/p,0).
Thus, the restrictions « > y > z > 0 determine the triangle T'ri(a) with vertices P, @,
and R, and C{(a,b) is the intersection of the curve

C(a,b) = {(z,y) € R* : pN(z) + qN(y) +rN(2) = b}

with Tri(a). We thus need to show that a point of minimum of G on Cf (a,b) lies on
one of the sides of the triangle Tri(a).

Put ag = a/(p+q+7). By the convexity of N, there exists a point b > (p+g+7)N(ao),
since otherwise Cf (a, b) would be empty. Let us first treat the case b = (p+ q +7)N(ao)
and present a picture illustrating our minimizing problem in this case.
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The case b = (p+a+r)N(a/(p+ar))

y = const.

a1l alprg) al(p+q) a2 alp

The equality b = (p + ¢ + r)N(ao), is only possible if there exists a non—degenerate
interval containing ag and where the function N is linear, i.e., has the form N(z) = cz+d.
Let [a1, as] C (—o00, +00) be the maximal (possibly infinite) interval containing aq where
the function N is linear. Then, the two conditions pN(z) + ¢N(y) + rN(z) = b, and

pz + qy + 7z = a, are equivalent to z,y, 2z € [a;, as], so

C(—)l—(aﬁb) = {(:Il,y) € R2 ‘T Z Yy Z z Z 07 L,Y,%2 € [0,170,2]}.
Since ag € [a1, az], and since for all points (z,y) € Tri(a), one has z > ag, z < ag, the

conditions z > y > z > 0 and z,y, 2 € [ay,as] reduce to z < ay,2 > af = max(as,0).

Therefore,

Ci(a,b) = {(z,y)eER*:ay >z >y >2>af}

This set is either a triangle T'r2’ with vertices P, @', R' such that @' and R' respectively
lie on the segments [P, Q] and [P, R], the lines (@, R) and (Q’, R') being parallel (this

45



case corresponds to a/p < ay), or is the intersection of T'r¢’ with the half-plane z < a,.
In the first case, all three extremal points of C (a, b) lie on the sides of Tri(a), and the
linear functional G attains its minimum at one of these points. Therefore, a point of
minimum of G lies on a side of T'ri(a). In the second case, where a/p > a (i.e., the point
R is on the right of the line z = a,), Cf (a, b) has a fourth extremal point P, inside T'r7’,
which lies on the line (@', R') and has z—coordinate a;. So one needs show that,

G(P") > min{G(P),G(Q"), G(R")}.

To prove this, it suffices to see that given y, G(z,y) is a non—decreasing function of z.
Then, taking for P” the intersection of the line y = const containing the point P’ with
the segment [P, Q] or [P, R, we will have that G(P") < G(P’). This means that a point
of minimum of G lies on these segments. Let us now see that, indeed, G is monotone in
z. From (6.4) and (6.5), and using the definition of the coefficients ¢;, we have

G(z,y) = ale—y)+ely—2)+o— Y

a

= (c1 + (c2 — 03)2) T+ ((Cz —c1)+ (e — Cs)g) y+(cs— 02)T

So G is a non—decreasing function of z if and only

c1+ (e2 — Cs)§ > 0.

Recalling the definition of the coefficients ¢;, this last condition can be rewriten as

ri(p)+pl(p+4q) > pl(p+q+r)

When p+q+r = 1, this last inequality is obviously true since I(1) = 0. When p+g+r < 1,
introduce the function J(p) = I(p)/p which by assumption is non—increasing on (0,1).
In terms of J, the monotonicity of G is thus equivalent to

prd(p)+pp+a)J(p+q) > plp+g+r)Jp+qg+r)

This is clearly true since J(p) > J(p+q+7r), J(p+¢q) > J(p+ g+ r). The case
b=(p+q+7)N(a/(p+ q+r)) has thus been resolved.

We now consider the case > (p+ ¢ +7)N(a/(p+ g+ 7r)). To briefly describe the main
ideas used in minimizing G on C{ (a,b), we point out the following steps which are also
illustrated with the following picture.
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The case b > (p+g+r)N(a/(p+a+r))

L1
Rect
& y(x) L2
y=z
=)
D 3
L1
Q1
S Rect
Q2=P2 L
T T T —
x_1 v X_2 alp

Step 1). On the half-plane z > a (which contains Sec(a)), the curve C(a, b) respectively
intersects the line ¢ = y and the line y = z at the (unique) point Pi(z1,y1) (hence

y1 = ¢1) and Pa(za,y2) (hence y, = (@ — pza)/(q +7)).

Step 2). a < z1 < @3.

Step 3). There is a non-increasing, concave, continuous function y = y(z), defined on
[z1, 2], such that the graph of y is situated inside the sector Sec(a), and the curve
C*(a,b) = C(a,b)N Sec(a) is representable as

Ct(a,b) = {(z,y(z)): 21 <z <z} U {(z2,7) : y2 <y < y(z2)}.

Thus, C*(a,b) is the graph of y = y(z) plus a vertical segment S connecting the points
(z2,y2) and the right end point (zs,y(z2)) of that graph. The function y automatically
satisfies the equation pN(z) + ¢N(y) + rN(z) = b.
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Let now C{ (a,b) be the part of C*(a,b) which is on the left of the line z = 0, i.e., let

Ci(a,b) = {(z,y(z)): 21 <z < 2y, pz + qy(z) < a}U{(z2,y) € S : pza + qy < a}.

Step 4). Cf(a,b) is made of one or two pieces of C*(a,b). The case of one piece is only
possible if Cg(a,b) = C*(a,b). The case of two pieces is possible only if one of these two
pieces is a left piece of C*(a,b) and the other one is a right piece of C*(a,b). Thus, the

left piece should have the form

(66) D, = {(m7y(m)) tzp <z <w, pz+ qy(:IJ) < CL},

for some z; < v < @4, and the right piece has either the form

(6.7) Dy = {(z,y(z)):w <z < 2y, pr+qy(z)<a}US

for some z; < w < 3, or the form

(6.8) Dy = {(22,y) € S:pz2 + qy < a}.

In all the above cases, the end points of these pieces are on the sides of the triangle

Tri(a).

Let us see how to finish the proof of Lemma 6.1, provided the steps 1)-4) have been
done. It then remains to show that for any curve D of either type (6.6)-(6.8), with end
points 1 and ()5, the functional G attains its minimum on D at either ); or ¢),. Since
the function y is concave and non-increasing, the curve D is situated on the right of
the segment [@Q1,Q2]. Moreover, D is a subset of the infinite rectangle Rect which is
deliminated by the line (Q1,Q2) and the two lines ¢; and #; which are parallel to the
z—axis and respectively contain the points ¢); and @),. Because G is a linear functional,
its infimum on Rect is attained at an extremal point of Rect. Two of these points, @1
and @),, belong to D. The other ones are infinite points on the lines £; and £;. But as
noted before, G is a non—decreasing function of z (again, we use the fact that I(p)/p is
non—-increasing). Hence, @; is the point of minimum of G on ¢;, and @ is the point of
minimum of G on ;. So G attains its minimum on Rect either at ¢); or at @),. Since
D C Rect, and Q1,Q2 € D, these points are also points of minimum of G on the curve
D. This completes this part of the proof, and only the statements claimed in 1)-4) need
to be established.

Before proving these statements, we would like to give the reader a simple, intuitively
clear explanation for some of them. Introduce the function
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(6.9) ¢(z,y) = pN(z)+ qN(y)+rN(z2),

where as usual, z = (a — pz — qy)/r, and assume that N has a continuous, increasing
derivative N'. Clearly, ¢ is convex and the curve C(a,b) = {(z,y) : ¢(z,y) = b} sur-
rounds the convex set V;, = {(z,y) : ¢(z,y) < b}. Furthermore, inside the open sector

Seco(a) = {(z,y) : 2 >y > z},

o ’ 0¢
%_p(N(:IJ)—N(Z))>O, 8_3/

Therefore, ¢ increases on Seco(a) as a function of two variables. Hence, the convexity
of C*(a,b) = C(a,b) N Sec(a) is directed to the right. Now, let us fix a point (z,y) €
C(a,b)N Seco(a) and find the tangent line y = bz + ¢ at this point. One can differentiate
the equality ¢ = b and get

— g(N'(y) — N'(2)) > 0.

pN'(z) + bgN'(y) — (p + bg)N'(2) =0,

that is
,_ V() - N()
p(N'(z) — N'(z))
Since z > y > z and since N' is increasing, we obtain that b < 0, i.e., y is a decreasing
function of z. This function is also concave since C*(a,b) is a part of the boundary of

V.

We prove next the above claims in a more careful manner. Since the Steps 1)-4)
concern the shape of the set Cf(a,b) where G is minimized, one may assume in the
following that p + ¢ + » = 1. Thus, the assumption on b becomes b > N(a).

Step 1). Let ¢; and ¢, be the restrictions of the function ¢, defined by (6.9), to the
linesz =y andy =z (y = (a — pz)/(q + r)). In other words, let

610 h(e) = doe) = (NG +oy (SO0,

(6.11) ha) = 6 (2,222 = o)+ g (22

As restrictions of a convex function, these functions are convex too. Let N’ be a non-
decreasing Radon—Nikodym derivative of N. Then, the function

K@) = G+ (@) - (2-E102)

T
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can also serve as a non—decreasing Radon-Nikodym derivative for ¢;. Since z < (a—(p+
q)z)/r <= = < a, we have ¢; < 0 on (—o0,a) and ¢} > 0 on (a,+00), i.e., ¢; is non—
increasing on (—o0, a) and non—decreasing on (a, +00). It is possible to have ¢; = ¢1(a) (a
constant) on some (maximal) interval [é1,71] O a, but in view of its convexity, ¢; should
increase on [, +o0). In addition, since N is not affine, ¢1(+00) = ¢1(—o0) = +o0.
Finally, let us note that ¢;1(a) = N(a). Hence, for any b > N(a), there is unique solution
z = z; to the equation ¢;(z) = b on (71, +0). In particular, z; > a.

The same type of reasoning can be applied to the function ¢,. Again,

#(@) = o (V@) - (222))

can serve as a non—decreasing Radon—-Nikodym derivative of ¢,, and z < (a — pz)/(q +

r) <= z < a. Analogously, ¢, is non—increasing on (—o0,a) and non-decreasing on
(a,40); ¢a(+0) = ¢a(—00) = 400, ¢2(a) = N(a). If [€2,72] S a is the maximal
interval where ¢y = ¢s(a), then ¢, increases on (72, +00). Therefore, there is unique
solution z = z to the equation ¢s(z) = b on (72, +00). In particular, z» > a.

Step 2). Let

T(z) = M) =Na) _ /1 N'(a + t(z — a))dt,
z—a 0
which, trivially, is a non—decreasing function on the whole real line. The above integral
does not depend on the choice of the Radon—Nikodym derivative N', which is thus always
assumed to be non-decreasing, while for z = a, one can also set T'(z) = N'(a). From
(6.10), and since p+ ¢+ r = 1, we have

T T

= N(a)+(p+a)(z—a) (T(m) -1 (M» '

T

#i(e) = N<a>+<p+q><m—a)T(m)+r(M_Q>T<w>

Analogously, from (6.11)

q+r q+r
= N(a)+p(z — a) (T(m) —T (“q;i“;)) .
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Note that the functions,

Ty(z) = T(z) - T (M) , To(z)=T(z)—T (“ _pm> :

r g+r

are non-negative on (a, +0), since
¢2(z) — ¢2(a)

¢1(m) — ¢1(a)7 pT2(:E) = )

r—a z—a

(p+ ¢)Ta(z) =

and since, as noted on step 1), ¢; and ¢, are non—decreasing, convex functions on (a, +00).
Moreover, ¢; and ¢, respectively increase on the intervals (71, +o0) and (72, +o0). There-
fore, Ty and T, are positive on these intervals and, in particular, T5(zs) > 0.

To finish the proof of Step 2), we proceed by contradiction and assume that z; > ;.
Since z1,z2 > a, then T(z1) > T'(z3). Moreover,

a—(ptglen _ a—pz
r - qg+rT

Indecd, (a — (p + q)on)/r < (a— (p+ Q)es)/r < a and (a— (p+ q)os)/r < (a—
pz2)/(g+7) == (g+r)a—(p+q)(g+r)z: < ra—prz, <= qa < (pg +¢° + qr)z; <
a <(p+1+r)zy = (2 — q)zs which is true since 5 > a, ¢ < 1 (recall that p,q,7 > 0,
p+q+r=1). Since T is non—-increasing on (—o0,a), we thus get

T (ﬂ) < T (aq_f:z) .

But,p+qg>p, 21 —a>2z2—a>0,and Ti(z1) > Ta(zz) > 0. Thus, we finally get

b = ¢i(z1) = N(a)+(p+4q)(z1—a)Ti(z)
> N(a)+p(zy — a)Ta(z2) = ¢a(zs) = b

Step 8). Ezistence and uniqueness of the solution to ¢ = b.

First, we fix z > a and show that, above the line y = z (i.e., for y > (a — pz)/(q + 7)),
the equation g,(y) = ¢(z,y) = b has a unique solution, y = y(z), when ¢ < z,, and no
solution when z > z5. In addition, we need to show that when z = z,, the solution to
9z(y) = b above the line y = z forms a segment [y,,y(z; )]. First, recall that g,,(y2) = b.

Again using a non-decreasing Radon—Nikodym derivative N’ one can construct a non—
decreasing Radon—-Nikodym derivative for the convex function g,, differentiating (6.9)

9:(y) =g (N'(y) - N (7a_pm — qy)) :

T

with respect to y:
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Clearly, since N’ is non—decreasing, g, is non-increasing in the interval y < (a—pz—qy)/r,
ie., for y < yo(z) = (a — pz)/(q + r), and is non—decreasing for y > yo(z). Since N is
not linear, we have (and similarly for the functions N, of which g, is a particular case)
that gz(—o0) = gz(+o0) = 4o0o0. Therefore, g, = g.(yo) on some maximal interval
[€(z),n(z)] > 0 (with possibly, é(z) = n(z) = yo(z)), and g, increases on [(z),+o0).
Thus, if b > g(yo(z)) then, on the interval [yo(z), +o0) there is only one solution y =
y(z) > n(z) to g-(y) = b. If b = g.(yo(z)), then on the interval [yo(z), +o0) the solution
to that equation represents the segment [yo(z),n(z)]. When b < g.(yo(z)), there is no
solution on the interval [yo(z), +00).

Now observe that

a — pzx

qg+r

9o(yo(2)) = pN(2) + (g + )N ( ) = ha(a),

and recall, as shown in the previous steps, that the inequality ¢(z) < b is equivalent to
z < xo, provided z > a. Therefore,

if > z,, then ¢(z) > b, and the equality ¢,(y) = b is impossible.

If z = z,, then ¢o(z) = b, and the equality g,(y) = b, provided y > y», is equivalent
to y2 <y < (z2).

If a < z < @, then ¢y(z) < b, and the equality g,(y) = b is attained only at
y=1vy(z) > (a—pz)/(g+7). Moreover, y(z) > n(z). In this case, we also note that since
the function g, increases on [n(z),+0), and since g,(7(z)) = g=(yo(z)) = ¢2(z) < b, for
any ¢ € [a,zs), we have:

(6.12) 9:(y) < b = y <y(z),

whenever y € R.
Concavity of y. Let a <wu,v < z; and let ¢t € [0,1]. By the convexity of ¢,

b=th-+ (1 — )b = td(u, y(u) + (1 — )(v, y(v)) = $(tu+ (1 — t)w, ty(u) + (1 — t)y(v)).

Since tu + (1 — t)v € [a, z2), we get by (6.12) that

ty(u) + (1 —t)y(v) < y(u+(1—1t)v).
Thus, y is concave on [a,z3). In particular, y is continuous on (a, z3), hence continuous
on [z1,Z2).

Monotonicity of y. We prove here that y is non-increasing on [a,z;). Given y € R,
the function z — ¢(z,y) = pN(z) + ¢N(y) + rN(z) is convex, and its non—decreasing
Radon-Nikodym derivative can be chosen to be

00 = p(N'(a) ~ N'(2).
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This derivative is non-negative for ¢ > z = (e — pz — qy)/r, i.e., for = such that the
points (z,y) are above the line z = z,i.e.,y = (a — (p+r)z)/q. Clearly, this line contains
the points (0,a/q) and P(a,a), therefore the half-plane {(z,y) : > 2z} contains the area
H(a) ={(z,y) : ¢ > a,y > (a — pz)/(q + r)}, where the graph {(z,y(z)):a <z < z,}
is situated. Thus, when y is fixed and y > (@ — pz)/(q + r), ¢ is non—decreasing with
respect to z > a.

Now, let a < u < v < z,. To prove that y is non-increasing on [a, z2), proceed by
contradiction and assume that y(u) < y(v). Since g, increases on (n(u), +00) and since
y(u) > n(u), we have

b= gu(y(u)) < gu(y(v)) = ¢(u,y(v)) < ¢(v,y(v)) = b!

We thus proved that inside the area H(a), the equation ¢(z,y) = b has only one solution
y = y(z) when ¢ < & < 2, has no solution when z > z,, and has the interval {z,} x
[y2, n(z2)] for solutions when z = z,. Now, the function y is concave and non—increasing
on [a,z,). In particular, it is continuous on (a, ), and moreover for all z € [a, z1),

y(z) > y(z1) = 21 > z.

Hence, when restricted to [a, 1), the graph of y is outside of the sector Sec(a). On the
contrary, for z € [z1, z2),
y(z) <y(z1) =z1 < z.

Thus, when restricted to [@1, z2), the graph of y is inside the sector Sec(a). In addition, it
easy to see that only when 7(z2) = y(=3 ), is the graph {(z,y(z)): z1 < z < z,} plus the
segment {z2} X [0,7(z2)] a part the boundary of the convex set V, = {(z,y) : ¢(z,y) < b}.
Therefore,

C*(a,b) = C(a,b)N Ang(a)
= {(z,y(2)) : 21 <z <z} U{(2,9) : 92 <y < y(z;)}-
To complete the proof of this step, it just remains to set y(z2) = y(z3) so that the
function y should be defined on the closed interval [z, z,).

Step 4). Note that, for any continuous, concave function g defined on a segment
[z1, Z2], the set of solutions & C [z1, z2] to the inequality g(z) < 0 has only of one of the
following five possible descriptions.

1. §=0.

2. S = [z, z2].

3. 8§ = [z1, z3], for some z3 € [z1, ).

4. 8 = [z4, 2], for some z4 € (21, z5].

5. 8 = [@1, 23] U [24, T3], for some z; < 23 < 24 < z5.
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Applying this observation to the function g(z) = pz + qy(z) — a, one concludes that the
above cases correspond to the following possible curves Cy (a, b):

1. C§(a,b)is empty. This case is excluded by the assumptions of Lemma 6.2.

2. Cf(a,b) = CT(a,b), i.e., the curve C*(a,b) is a subset of the triangle T'ri(a)
and connects the segments [P, Q] and [P, R]. Then, necessarily, Pi(z1,y1) € [P, @],
P2($2;y2) € [P, R]

3. Cf(a,b)is a “left” part (truncation) of C*(a,b) and connects the segments [P, Q]
and [Q, R], with possibly, Cg (a,b) = {Q}.

4. Ci(a,b) is a “right” part (truncation) of CT(a,b) and connects the segments
(@, R] and [P, R], with possibly, Ci (a,b) = {R}.

5. Cf(a,b) consists of two disjoint parts of C"(a,b) which respectively connect
[P, Q] with [@, R] and [@, R] with [P, R]. A middle part of C*(a,b) is on the right of the
segment [Q, R].

In these five cases (except for the first one), Cg(a,b) consists of one or two pieces of
C*(a,b) of one of three types (6.6)-(6.8), and the ends of these pieces lie on the sides of
the triangle T'ri(a). This completes the proof of Lemma 6.2.
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7 Proof of Proposition 1.3 and 1.8

We start by stating some elementary properties of the function

(7.1) L(p) = (pq + pg*)"/*, 0<p<1,g=1-p.

When p € (0,1), p # 1/2, is fixed, I,(p) is an increasing function of a. This can easily
be seen from the identity

I = (E|¢ — E¢[*)Ye,

where ¢ (defined on some probability space) is a Bernoulli random variable with param-
eter p, i.e., ¢ takes the value 1 with probability p and the value 0 with probability ¢, and
where E is the mathematical expectation. The value p = 1/2 is the only one in (0,1)
for which |£ — E€| = const (= 1/2) almost surely. Note also that for all & > 1, I, is
symmetric around 1/2, i.e., I,(p) = Ia(q), and that I,(0) = I,(1) = 0, I,(1/2) = 1/2.
Furthermore, when o — +00, I,(p) converges pointwise on (0,1) to the convez function
max(p, q).

To minimize I,,/I,, when the isoperimetric function I, is constant, and thus to prove
Proposition 1.3, we establish the following:

Lemma 7.1 The function I, is concave if and only if 1 < a < 3, and it then attains its
mazimum at 1/2. For o > 3, maXo<p<1 lo(p) is an increasing function of o varying from
1/2 to 1 at infinity.

For example, if @ = 4 we have that p*q + pg* = pg(1 — 3pq) attains its maximum at
pg=1/6,1e.,at p=1/2+4/1/12, and the maximum of I, is equal to (1/12)1/4 > 1/2.

Proof. We beging by introducing several functions of the variable p € [0, 1], where again

g=1-p

(7.2) ua(p) = p*q + pq”,

(7.3) va(p) = p* + ¢%, wa(p) = p* — ¢,
(7.4) T = pq.

Step 1: 2 < a< 3.
We show that u, is concave for such values of a. Via (7.2), the first and second derivatives
of u, are given by

!

ul(p) = a(p* g — pg® ") — (p™ — ¢%).
(7.5) ul(p) = aa — 1)(p* %q + pg® %) — 2a(p* " + ¢*7M).
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If 0 < a <1, then from (7.5), ul(p) <0, for all p € (0,1), therefore, u, is concave on
the same interval. Rewriting (7.5) as u/(p) = a(a — 1)ua—2 — 2av4-1 and noting that
Vo 18 convex for all @ > 1, we obtain that, for all a € [2,3], u! is concave. Since u/ is
symmetric around 1/2, it attains its maximum at this point. But,

1
u” (5) = ofa-— 1)2_“‘"2 — 2a272t?

(7.6) = afa—13)27? <0,
Consequently, for all p € (0,1), u”(p) < 0, and u, is concave and so is I, = u}/® which
is the composition of an increasing concave function with a concave one.

Remark. The function u, is not concave if 1 < o < 2, since from (7.5), lim,_,o+ ul(p) =
+00. Thus for such a, the preceding arguments do not work.

Step 2: 1 < a<2.
It is clear that any function I of the form I = u'/*, where a > 0 and where u is positive
with continuous second derivative, is concave if and only if

(7.7) avu” < (a—1))2.

Let us check that the functions u, satisfy the condition (7.7). First, as direct consequences
of (7.2)—-(7.4), the following identities are true:

(7.8) Uy = Vg — Vi1, U = QWg_1, W, = QUg_1,
(7.9) UL, = awa—1 — (@ + 1w,
(7.10) up = afa — 1)vg—s — a(a — 1)vatr.

In addition, for a < 3,

(711) 'Ua’UIB = fUa_l_IB _I_ mavﬂ_a7
(712) 'LUa’LUIB e fUa_l_IB _ mavﬂ_a.
USlIlg (78)—(712)7 we get
auaug = az(Oé — 1)’Ua’Ua—2 + az(a + 1)’Ua_|_1’l)a_1 _ az(a . 1)'Ua-|-1’Ua_2 _ az(a n 1)rUana_1
= a’(a—1)(vza-z + 2% %) + &’(a + 1)(vaa + 2% vs)
~a*(@— 1)(vaa-1 + 8% 2va) — a*(a + 1)(vaa-1 + o*0n)
= az(a + 1)'U2a - 2a3,U2a—1 + a2(a — 1)U2a—2 _ az(a _ 1)$a—2v3

(7.13) +Ha?(a—1)2* 2 + P (a+ 1)z oy — &®(a+ 1)z ;.

In a similar way,

(o — 1)(u!

03

)2 = az(a — 1)wi_1 + (a4 1)2((1 — 1)wi —2a(a+1)(a — 1)we—1wa
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= a*(a—1)(vza—2a—z* tvo)+(a + 1)2(a—1)(v2a—mavo)—2a(a+1)(a—1)(v2a_1 —z* ;)
= (a+1)*(a = 1)vza — 2a(a + 1)(@ — 1)vaa-1 + a*(a — 1)vaa-—2
(7.14) +2a(a+ 1)(a — 1)aza_1v1 — [az(a — 1)a:°‘_1 —(a+ 1)2((1 — 1)z%vo.
Now, we need to show that (7.13) is dominated by (7.14). Considering the difference
(7.14)~(7.13) and noting that vo = 2,v; = 1, we collect the coeflicients of
) v (et 12— 1)~ a(a+1) = —(at 1)
2) vaq-1: —2a(a+1)(a—1)+2a® = 2¢;
) vraz e 1) a¥(a— 1) = 0;
gt —2a%(a—1)42a(a+1)(a—1)+*(a+1)=ala® +3a—2).
Therefore, the domination of (7.13) by (7.14) takes the form:
—a?(a— 1z v + [&®(a — 1)z*? + &*(a + 1)z* vy — a(a® + 3a — 2)z*
(7.15) < —(a+ 1)vag + 20024 -1.

One can simplify the left hand-side of (7.15) with the help of the identities:
vo=1—-2z;, v3=1-—3z.

Indeed, v = p*+q” = (p* +2pg+q°) —2pg = 1 —2z;v3 = p*+¢° = (p+q)(p* —pg+4¢°) =
1 — 2z — z. Now, we get that the left hand side of (7.15) is equal to:
— az(a — 1)a:°‘_2(1 —3z) + [az(a — 1)a:°‘_2 + az(a + 1)ma_1](1 — 2z)
—a(a2 + 3a — 2))az°‘_1
= —2a2(a + 1)z™ + [3a2(a -+ az(a +1)— 2a2(a —-1)— a(a2 + 3a — 2)]3:0‘_1
+(—a2(a -1+ az(a — 1))a:°‘_1
= —2a2(a +1)z* + a(a—1)(a— 2)&:“—2.

Therefore, (7.15) takes the final form
(7.16) —2a%(a+1)z* + ala—1)(a—2)z*" < —(a+1)vge + 20v94_1.

Both terms on the left of (7.16) are non—positive for 1 < a < 2. Therefore, it suffices to
show that
(a+ v < 20vq-1.

This last inequality follows from o+ 1 < 2a and vyq < vaa—1 (Vo is a decreasing function

of a).

Step 3: a > 3.
First, we use (7.6) to prove that I, is not concave for o > 3. For such values of a, we have
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ul(1/2) > 0. Hence, by the continuity of the second derivative, this inequality holds in
some neighborhood of p = 1/2, i.e., the first derivative u/, increases inside some interval
containing the point 1/2. Since u!(1/2) = 0, we therefore obtain that v/ (p) > 0, for p
close enough (from the right) to 1/2. Hence, u, and therefore I, are increasing in some
interval [1/2,1/2 + €]. But I, is symmetric around 1/2 and consequently is not concave
on (0,1). In addition, I, attains its maximum on [0,1] at some point p(a) # 0,1/2,1.
Hence, for all 3 < a < 8, using the monotonicity of the function o — I(p),a > 1,
with p € (0,1/2) U (1/2,1), we obtain that

max Io(p) = Ia(p(a)) < Is(p(c)) < Is(p(8)) = max Is(p).

0<p<1 0<p<1

Thus, maxocp<1 [o(p) is an increasing function of @ > 3. Lemma 7.1 is proved, and
Proposition 1.3 follows.

Proof of Proposition 1.8.
Since for p € (0,1),p # 1/2, I, is an increasing function of «, it is enough to notice that

a—1 a—1

_a _a _1 _1
2pq _ (p*Tgtpg>T) = (P 4 g°T) o max(pg) _ 1

Tppq Tppq mp(pg)s  ~  Tppq 7pmin(p,q)’

and then to take the infimum.
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8 A special case of Theorem 1.2

Proofs of Lemma 1.4 and 1.6 are presented in this section. As a consequence, we have a
version of Theorem 1.2 which will be applied to the uniform distribution on the n—sphere
Sy with n > 2. Assume that the isoperimetric function I = I, satisfies the following
properties:

(i) I is symmetric around 1/2, i.e., for all p € (0,1),
I(1 - p) = I(p)-
(i1) I(0t) = I(17) = 0.
(iii) I is continuously differentiable on (0,1) and dI*/dp is convex on (0, 1/2].

Proposition 8.1 Let 1 < a < 2. Then, under the conditions (i), (11) and (iit) above,
for any p—integrable, Lipschitz on every ball, function f,

| 1Vi@)du = e ([ If(2) = m(H)I"dn)z,

Q=

Q=

SV i@)dn= e g ([ 17(@) = al*dw)%,

where ¢ = 21,(1/2) is the optimal constant.

To prove Proposition 8.1 and thus Lemma 1.4 and 1.6, it is in fact enough to only consider
a partial case of these results.

Lemma 8.2 If a non-negative function I defined on (0,1) satisfies the conditions (i),
(11), and (iii) above, with o = 1, then the infimum of I(p)/p(1 — p) on the interval (0,1)
is attained at p = 1/2.

Provided this statement is proved, one can apply it to the function 7%, and obtain that
the infimum of I%*(p)/(p(1 — p)) is attained at p = 1/2. Then, the function w(p) =
P+ (1—-p)* 1, 1 <a <2 hasits maximum at p = 1/2 since it is concave, symmetric
around 1/2 with also w(0) = w(1) = 1. Therefore,

1*(p) _ 1*(p)
p(I1—p)+p(l—p)*  (p(1 —p))u(p)
also attains its minimum at p = 1/2. Similarly, since the functions max(p,1 — p)

and (pl/(a_l) + (1 — p)l/(a_l))“_l,l < a < 2, are convex, symmetric around 1/2 and
are equal to one at 0 and at 1, the respective minimum of /(p)/min(p,1 — p) and of
I%(p)(p/ =1 4 (1 — p)/(@=1))a=1 /p(1 — p) is attained at p = 1/2.
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Proof of lemma 8.2. Let us first extend the function I to the interval [0, 1] by setting
I(0) = I(1) = 0, and let us define the function

u(p) = I(p) — 41 (%) p(l-p), 0<p<1.

We need to show that u(p) > 0 for all p € (0,1). In view of (8.1), it is enough to only
consider the case 0 < p < % The function u has the following properties:

a) u(0) =u(1/2) =0.

b) The derivative u'(p) = I'(p) —41(1/2) (1 — 2p) is a convex, continuous function on
(0,1/2].

c)u' (1/2) =0.

The equality in c) follows from the I'(1 — p) = —I'(p) (applied at 1/2) which itself
follows from (i). The property b) follows from (iii): u' is a sum of convex functions.

Formally, u/(0%) has three possible behaviors.

1) «'(0%) < 0.

By b), u' is non-decreasing on (0,1/2], while by ¢) v/(1/2) = 0. Hence, u'(p) < 0
for all 0 < p < 1/2 with strict inequality in a neighbourhood of p = 0. Therefore,  is

non—increasing on [0, 1/2] and decreases in a neighborhood of p = 0, hence u(1/2) < u(0).
This contradicts a), and thus «'(0%) > 0.

2) ¥'(0%) = 0.
An argument as in 1) can also be applied here. This does not lead to a contradiction

only when v’ = 0 on [0,1/2]. But, by a) this gives u = 0, thus I(p) = 41(1/2)p(1 — p)
for all p € [0,1/2], and for such I there is nothing to prove.

3) w/(0+) > 0.

Since u'(0%) > 0, since w/(1/2) = 0, and since u’ is convex and continuous on (0,1/2],
two formal possibilities have to be considered. First, let u'(p) > 0, for all 0 < p < 1/2,
and for some py € (0,1/2], w/(p) > 0for all 0 < p < po, and uw'(p) = 0forall po <p < 1/2.
Again, we get the contradiction:

0=u (%) — u(p) > u(0) = 0.

Thus, only the second possibility can take place, i.e., there is a unique po € (0,1/2] such
that w/(p) > 0 for all 0 < p < po, v'(po) = 0, and u'(p) < 0 for all py < p < 1/2. In
addition, u(0) = u(1/2) = 0, and u(p) > 0 for p > 0 small enough by the assumption
3) and by the continuity of u'. Clearly, for functions u possessing these properties, the
inequality u > 0 on [0,1/2] has to hold, since otherwise ' would be zero at two or more
points in (0,1/2). This finishes the proof of Lemma 8.2.
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9 The uniform distribution on the sphere

We show here how to apply Proposition 8.1 to the uniform distribution o,, on the sphere
Sy C R™"! of radius p > 0, and thus to prove Proposition 1.5 and 1.7. For simplicity, we
may assume that the center of the sphere is at the origin. Denote by p, the Lebesgue
measure on S}, i.e., fln = p"Sp0n. The isoperimetric property of the balls on 57 states
(see [Lev], [Sch]) that, for any A > 0, among all the Borel sets A C S} of fixed volume
pn(A) = p"spp, 0 < p < 1, the value of

pn(A®)
is minimal if A is an arbitrary ball on the sphere and, in particular, if A is the ball
Bu(t)={zc Sy z1 < t}, [t] <p.
Here t is chosen so that
(9.1) Fo(t) = on(Ba(t)) = p, [t] <p.

That is, ¢t = F;'(p) is the quantile of order p of the distribution function F,, of the
random variable £(z) = z; defined on the probability space (57, 0 ), where as usual F;*
denotes the inverse of F,,. From the very definition of the isoperimetric function, we then
have

(9.2) Lo (p) = 0 (Bn(?))-
To apply Proposition 8.1, we need two elementary results which for the sake of complete-
ness are derived below. From now on, we assume that n > 2.

Lemma 9.1 For all p € (0,1),

(9.3) L.(p) = 2=X(p* — F*(p))"7 .

Proof. By (1.3) and (9.2),

L.(p) = i it On(Ba(t)) = on(Ba(1))

h—0t h
0. o m(B(D) — m(Bul®)
' R0+ I ) ’

where t = F7!(p). Note that for ¢t € (—p, p), the boundary

OBu(t) =S (t)={z € S} : 21 =t}
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is the (n — 1) dimensional sphere of radius 7 such that r? +¢? = p?. Therefore, the lim inf
in (9.4) can be replaced by lim which is equal to

Nn—l(ST_l) __Tn_lsn—l

P75, P75,

and which coincides with the right hand side of (9.3).

?

Lemma 9.2 The distribution function F, is absolutely continuous with density

(9.5) Falt) = (g2 — )5, Jt] < p.

-1
P 8n

Proof. First note that the geodesic metric as well as the Euclidean metric on the sphere
can be used. For the geodesic metric, the h-neighborhood B!(t),|t| < p, if it is not the
whole sphere, is the ball B,(s), t < s < p, where s is defined by

parccos(t) — parccos(s) = h.

Hence,

(9.6) he 2820 L ogs— 1) = 2B Lo — 1), s ot
(1-12) r

where 7 is defined as in Lemma 9.1, i.e., 72 + t? = p%. Taking small positive values of A,
we get by (9.6) and arguments similar to the one used in Lemma 9.1, that

Fo(s) = Fa(t) = oa(Bn(s)) — on(Bn(t))
= on(Bp(t)) — on(Ba(t))
Nn—l(ST_l)h

= R L o)
p"5n
r"ls,h
— n h2
YR O(h%)
™ 25, 1(s — 1)
= pn—lsn + O((S - t)z)

Therefore,
_ n—2
£i(t) = lim Fr8) = Fult) _ 1"

s—t— s—1 p”_lsn

?

which coincides with (9.5).

Let us now check the conditions (i), (ii) and (iii) required in Proposition 8.1. The first
two are trivially verified and only (iii) requires some proof. Without loss of generality,
let p=1. Let

(9.7) I(p) = (1 = F5*(p)),
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where 7 > 0,X > 0, and where Fy':(0,1) — (—1,1) is the inverse of the distribution
F of density
(9.8) A)=d(1 -, [t <1.

The normalizing constant dy corresponds to the condition Fi(1) = 1.

Lemma 9.3 If a < %, then the derivative of I® is convez on the interval (0, %]

Proof. Differentiating (9.7), we have

dI(p) 27(1 — Fy%(p)) ' Fy ' (p)
dp A (p))
= 27y Fy(p)(1 - Fx?(p))

Hence,

dI*(p)
9.9 —
(0:9) .
where 8 = (a— 1)1+ (1 — A —=1) = ar — A — 1. Note that whenever § < 0, the

function z(1 — z?)P is increasing and convex on [0,1]. From (9.8), Fy is increasing and
concave on [0, 1], therefore Fy ' is increasing and convex on [1/2,1]. Thus, when 8 < 0,

— 207d; Fi(p)(1 — Fi%(p))°,

the right hand side of (9.9) is non—-decreasing and convex on [1/2,1], as the composition
of two functions with the same properties. In addition, since fy is symmetric around 0,
F;*(1—p) = —Fy*(p) and the right hand side in (9.9) is odd around p = 1/2. Taking into
account the minus sign in (9.9), we obtained that dI%/dp is convex on (0,1/2] provided
B=ar—A—-1<0,ie,a<(A+1)/7. This completes the proof.

We can now apply Lemma 9.3 to prove Proposition 1.5 and 1.7. Indeed, applying it
to the function I,,, i.e., taking 7 = (n — 1)/2,A = (n — 2)/2, we see that the function
dI2 /dp (a > 1) is convex on (0, 3] if

<)\—|—1: n

a :
T n—1

Note also, that the condition a < 2 is automatically satisfied since n > 2. By Proposition
8.1, we thus obtain (1.19) and (1.25) for the measure g = o,,n > 2, where according to
(9.3) the best constant is given by

1) B 2311—1

cn =21, (— .
2 PSn

To prove the last parts of Proposition 1.5 and 1.7, we note that near p = 0,

L(p) <p~ .
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Indeed, it is easily seen that for —1 <z <0 and A > 0,

dx
A+1

(1+ a:)A‘"l < Fy(z) < 2>‘d>\(1 + a:)>‘+1.

Therefore, setting = = Fy *(p), we get if I(p) is as in (9.7),

da [1—((25’@)‘%—1)2 ' 1((7’(’\;:1)>A1+11)T,

from which we conclude that as p — 0%, I(p) x< p*1. Finally, setting 7 = (n —
1)/2,X = (n—2)/2, we see that for & > n/n — 1, zero is the best non-negative constant
in Proposition 1.5 and 1.7.

< I(p) < d»
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10 Existence of optimal Orlicz spaces

Recall that a convex function N on the real line is said to be a Young function if it is
non-negative, even, and if N(z) = 0 only for z = 0. Given a measurable space (X, )
(as usual for us, X is a metric space with metric d and p is a separable and non-atomic
Borel probability measure), such a function N generate the Orlicz space Ly(X,u) of
p-measurable real valued functions f equipped with the norm

(10.1) 1y = inf{)\ >0 /XN (@) du(z) < 1}.

In particular, for any Borel measurable set A C X of measure pu(A) = p € (0,1), the
value I(p) = ||xa — p||w is the only positive one which satisfies

(10.2) pN (%) +gN (%) —1, g=1-p.

First part of Theorem 1.11 Given a positive function I on (0,1), there ezists a Young
function N satisfying (10.2) for all p € (0,1) if and only if

1) I(0Y)=1(17) = 0;
2) I(p) = I(q), for allp € (0,1);
3) the function pq/I(p) is concave on (0,1).

Proof. Necessity. In (1.33) of Section 1 and (5.3) of Section 5, we introduced the function
zp = z,(0,1) of the variable p € (0,1) as the positive solution of the equation

(10.3) pN(qz) +qN(pz) =1, ¢=1-p.

So, z, = 1/I(p). By (10.3), z, = z,4, and the property 2) follows. By Lemma 5.6, the
function

y(p) = pzp
increases on (0, 1), therefore £ = lim,, ,;- y(p) exists, being finite or not. If £ < 400, then
since z, = x4, rewriting (10.3) as

(10.4) pN(y(q)) + q¢N(y(p)) =1

and letting p — 0%, we get N(y(0%)) = 1. But then, we obtain by (10.4) that, for all
p€(0,1),
L > pN(y(0")) + ¢N(y(0%)) = N(y(0*)) = 1.

Therefore, £ = +o0, i.e., I(p) — 0, as p — 17, and the property 1) is proved. It remains
to establish 3).
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Introducing the function z(p) = pq/I(p) where as usual ¢ = 1 — p, let us rewrite (10.2)
in the form

(10.5) pN (z;p)> +qN (@) ~1.

We now show that (10.5) implies that z = 2(p) is a concave function. Since N is a
non-negative, convex function on [0, 400) and N(0) = 0, N(z) > 0 for z > 0, N can be
represented on (0, +00) in the form

(10.6) N(z) = sup (cz —d),
(c,d)eT

for some T' C (0, +00) X [0, +00) with the following property: whenever z > 0, (10.6) is
attained at some (¢,d) € T. From (10.5) and (10.6), noting that z(p) = z(q), we have

(10.7)  pN <5> +qN <5> = p sup (ci —d> +4q sup (c’i —d’)
P q (e,d)eT \ P (¢, d)eT q

= sup  [(c+c)z—(dp+dq)] = L.
(¢, d)ET, (c!,d')eT

In particular, for all (¢,d) € T and (¢/,d') € T, we have (¢ + ')z — (dp + d'q) < 1, i.e.,

!
(10.8) z < in w
(c,d)eT, (¢!, d")eT c+c

Conversely, since (10.6) is attained at some (¢,d) € T, (10.7) and therefore, (10.8) are
also attained at some (c,d),(c’,d’) € T. Hence, the inequality in (10.8) is in fact an
equality, and the function z is thus concave as the infimum of a family of affine functions.

To prove the sufficiency part of the result, we first state

Lemma 10.1 If a positive function I on (0,1) satisfies the properties 1)-3), then the
function y(p) = p/I(p) is increasing on (0,1).

Proof. Since z is concave and positive on (0,1), 2(0%) is finite and non-negative. Let
z' be a non-increasing Radon—-Nikodym derivative of z. Since y(p) = 2(q)/q, where
g = 1 — p, one can write

z(((j") + /01 2'(tq)dt.

The functions p — 1/q and p — 2'(tq) is non—decreasing and so is y as the sum of
non—decreasing functions. Moreover, if z(0%) > 0, then, since p — 1/q is increasing on
(0,1), y is also increasing on (0,1). Let now z(0") = 0, and thus

y(p) =

y(p) = [ eyt
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Assume that y(po) = y(p1), for some 0 < p; < po < 1. Then

Zl(t(h) = ZI(tC_Io);

for almost all (with respect to Lebesgue measure) t € (0,1), where go = 1 —po, g1 = 1 —p;.
But then, as easily seen, 2z’ is constant on (0, o), hence z is of the form z(s) = a + bs,
for all 0 < s < qo, and since z(0") = 0, we have z(s) = bs, for some b > 0 and for all
s € (0,90). If such is the case, we get

_s(l—s) 1-s

I{s) = 2(s) b

hence I(0") = 1/b > 0, which contradicts the assumption 1). Lemma 10.1 is proved.

Sufficiency. From Lemma 10.1, we know that the function y(p) = p/I(p) is increasing
on (0,1), and by the assumption 1) that y(17) = +00. Without loss of generality, one
can assume that y(1/2) = 1. Then,

o = y(O"’) <1,

so ¥ is an increasing bijection from (0,1/2] to (co, 1], and from [1/2,1) to [1, 4 00). Denote
by y! : (co, +00) — (0,1) its inverse.

We need to find a convex function N : (0,+00) — (0, +00) satisfying (10.2) and such
that N(07) = 0. Then, N will be extended to the whole real line by putting N(—z) =
N(z), for £ > 0. To define N on (0,+00), we first set N(z) = ¢, for 0 < z < 1. For
z > 1, we define N(z) (in a unique way) in according (10.4). First, for 0 < p < 1/2,
from the above discussion we have N(y(p)) = y(p). Therefore (10.4) becomes

(@) = 2, g <p i g=1-g,

hence letting z = y(q), we have

Ly 2yl -y (=) _
1 -y~ () LT

Clearly, the function N defined in (10.9) is increasing and continuous on [1,+00), and
in addition, N(1) = 1. So, it just remains to show that N is convex on [1,+o0), and
that the right derivative N’(1%) > 1. Then, the extended function N will be convex on
[0, +00).

To obtain the first requirement, we give instead of (10.9), another representation for
N. Note that, by the definition of N, any of the identities (10.2), (10.4) and (10.5)

(which are equivalent to one another) are fulfilled. Recall also that, by the assumption

(10.9) N(z) =
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2), 2(p) = 2(q). For 0 < p <1/2, 2(p)/q = y(p) < 1, hence N(z(p)/q) = z(p)/q, and the
identity (10.5) becomes

N<Z(p)>:l_%’ 0<p<1/2,

p p

or in terms of the function

we obtain the identity

1
(10.10) N(@p) = o = &), 0<p<1/2
Note that § decreases on (0,1/2] and satisfies §(1/2) = 1, §(0") = y(17) = 4oo. Let
6§71 :[1,400) — (0,1/2] be the inverse of §. Then, putting z = §(p), (10.10) can be
rewriten as

(10.11) N) = —

i)

Therefore, N is convex on the interval z > 1 if and only if the function 1/§7*(z) is convex

z > 1.

on the same interval. Since this last function is increasing, continuous on [1,+00) and
satisfies, by (10.11), 1/67%(1) = 2, 1/§ ' (+00) = o0, the convexity of 1/§7" is equivalent
to the concavity of its inverse function R on [2,+00). Let us find R. For any t > 2,

5—11(3:) =t & 5_1(3:):% o :1::5(%) =tz (%)

Thus,
1
R(t) = tz (—) >0

t

By the assumption 3), z is a concave function, hence can be represented in the form

2p) = jnf (ep+d),

for some § C R x R. Therefore,

R(t) =tz (l) =1t inf (E + d) = inf (c+ dt)

t (c;d)es \ 't (c,d)€S
is concave as the infimum of a family of affine functions.

To obtain the second requirement, i.e., to show that N'(17) > 1, one needs to check,
according to (10.11), that the right derivative

lé—}(m)];zﬁ =%
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or, equivalently, that R'(27) < 1/2. As a concave function, z is differentiable at all points
p except, maybe, on a countable set U C (0,1). For ¢t > 2 such that 1/¢ does not belong

to U, we have
1

(1012 roy =i ()] =+ (1) - 1)

t t

Letting in (10.12) t — 2, ¢t > 2, we get
# ()
RI(2+) =z (l) _ & S z (l) — l)
2 2 2 2

because, by the assumptions 2) and 3), 2/((1/2)~) > 0. The first part of Theorem 1.11
is thus proved.

Remark 10.2 In general, when ¢ = 21(1/2) is an arbitrary positive constant (not nec-
essarily 1), a function N satisfying (10.2) is constructed in the same way, by putting:

i) N3E)=1;

(ii) N(z) = cz, for all 0 < z < %;

(iii) N(z) = 1—;(7;) — cz, for all z > 1, where g(z) € [1/2,1) is the only solution of
q=1I(q)z.

The condition (i) necessarily follows from (10.2) when p = 1/2, while given (ii), (iii)
follows from (10.2) by putting z = ¢/I(q), 1/2 < g < 1 there.

Now, given a function I satisfying 1)-3), assume that another Young function Ny is
defined by the equality

1
2pq Ny <@> =1, ¢g=1-p,

so that No(2/c) = 2, and N is linear on [0,2/c], that is as in (ii), No(z) = cz, for all
0 <z < 2/c. As noted in the introductory section, such a function Ny was studied by
Pellicia and Talenti ([Pel-Tal]) when I(p) = ¢(®'(p)) (the isoperimetric function of the
canonical Gaussian measure).

Let us now compare the Orlicz norms (with respect to N and Np) of the function x4 — p,
where A is a Borel set in X of p—measure p. In addition to satisfying (i)—(iii), N is
also assumed to be strictly convex on [1/¢,+00) (which is certainly the case of I(p) =
©(®7(p))). Since for any p € (0,1) and z > 0, N(pz) < pN(z) with strict inequality for
z € (1/¢,+00), we have putting z = 1/I(p), ¢ =1 — p,

2pgNo(z) = 1 = pN(gz) + qN(pz) < 2pgN(z)

with strict inequality for « > 1/c. Therefore, No(z) < N(z) for all z > inf, 1/I(p) = 2/ec.
Also, No(z) = cz < N(z) for all z € (1/c,2/c|, by the strict convexity of N on [1/¢, +00).
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Moreover, No(z) = N(z) for all z € [0,1/c]. Now fix p € (0,1) and put

T = ||XA - P||N, To = ||XA - P||No-

By the very definition of the Orlicz norm, we have pN(qz)+qN(pz) = 1. Hence pNo(gz)+
gNo(pz) < 1 with strict inequality if and only if pz > 1/c or gz > 1/c. Since the function
y(p) = pz is strictly increasing, and y(1/2) = 1/¢, this is possible if and only if p > 1/2
or ¢ > 1/2. Therefore, zg < z when p # 1/2, and z = z, when p = 1/2. Thus, one
concludes that the inequality

I =m(F)lwe < [ 1V Fldrn

becomes the isoperimetric inequality for the indicator functions f = x4 if and only if the
sets A have measure p = 1/2, and is weaker otherwise.

Second part of Theorem 1.11 Let the conditions 1)-8) be fulfilled for the isoperimetric
function I = 1,, and let N be a Young function satisfying (10.2). Then, for any Young
function M such that Ly (X, ) contains W(X, ) as an embedded space, Lpy(X, 1) also
contains Ly(X, ) as an embedded space.

We recall that W (X, u) denotes the space of u—integrable functions f, which are
Lipschitz on every ball in X, such that [y fdu = 0, equipped with norm

Iflw = [ 1Vldp.

Proof. To prove that Ly(X,u) is embedded in Lp(X, p), i.e., to prove that for some
¢>0and all f € Ly(X,u),

[ fllar < cllfllw,

it suffices to find constants ¢,d > 0 (below and above ¢ might denote two different
absolute constant) such that

1

(10.13) M(z) < EN(ca:),
for all z > 0 large enough.

By assumption, for some ¢ > 0,

(10.14) [ fll2r < el fllw,

for all f € W, where || f||a is defined as in (10.1). By Theorem 1.1 (or, Theorem 1.10),
(10.14) implies
Ixa =Pl < cl(p),
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where A C X is an arbitrary Borel set of measure u(A) = p € (0,1). By definition (10.1),
this means that for all p € (0, 1),

(10.15) pM (&) Y qM (&) <1,
c c
where, as usual, z, = 1/1(p),q = 1 — p. We get from (10.15) that, for all 0 < p < 1/2,

pM (&) < 1.

C

Hence, since ¢ > 1/2 and since M is increasing on [0, +0),
1 f1
(10.16) z, < 2M7 (=), 0<p<1/2
p

where M ™! is the inverse of M restricted to [0, 4+00).

Let us return to the function N and to the identity (10.4) which is equivalent to (10.2).
Since the function y(p) = pz, is strictly increasing on (0,1), we must have N(¢p) < 1
where

co = co(p) = pl_igg DTy,

since otherwise we would have
1 = pN(qz,) + ¢N(pzp) > pN(co) + gN(co) = N(co) > 1
Letting in (10.4) p — 0T, we obtain that for all small enough p € (0,1/2],

1 - N(co)

pN(qz,) < d= — > 0.
Hence for such p, pN(z,/2) < d, i.e.,
1 (d
(10.17) z, > oN (),
p

where N~ is the inverse of N restricted to [0, +o0). Comparing (10.16) and (10.17), we
have that for all small enough p € (0,1/2],

(10.18) N (g) < eM (%)

and (10.13) follows from (10.18) by puttingy = 1/p, z = M~!(y) and since N is increasing
on [0, +00).
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11 Proof of Theorem 1.12 (the case of the sphere)

Given two non—negative parameters 7 and A, let
(11.1) I(p) = (1-F2(p)), 0<p<l,

where F~' : (0,1) — (—1,1) is the inverse of the distribution function F which is
concentrated in (—1,1) and has density

(11.2) Fl(z) = da(1 -2, |z| <1,

where d) is a normalizing constant. As we saw in Section 9, I, the isoperimetric function
corresponding to the uniform distribution on the n—sphere S7,n > 2, (in the sequel, and
for simplicity p = 1) has up to a constant the form (11.1)-(11.2) with

-1 -2
(11.3) r=""° ="

2 2
In this section we verify that I, (n > 2) satisfies the conditions 1)-3) of Theorem 1.11.
The properties 1) and 3) are trivially satisfied, and only 3) requires some proof. Note
that the case n = 2 was studied in Section 1: I,,(p) = /pq (¢ = 1 — p), so the function

pq
I,(p) Ve

is clearly concave on (0,1).

Lemma 11.1 If 1 <A <7 < A+ 1,7 > 2, then the function
pq
2(p) =

- ) q:]-_p7
I(p)

is concave on (0,1).

If 7 and ) are of the form (11.3), then the assumptions of Lemma 11.1 are only fulfilled
for n > b, so this result gives the proof of Theorem 1.12 for the n-sphere only when
n > 5. The cases n = 3 and n = 4 are treated separately after the proof of Lemma 11.1.

Proof. Let us first give another equivalent wording (with arbitrary 7 and A) of the
statement of the lemma. Introduce the function

(11.4) Hy(z) = /Oz(sa ~s)ds, 0<z<1.

By (11.2), making the change of variables t = 2s — 1, we have

r l-|2-m 1
(1 2Pdt = 21 [ 7 (s(1 — 5)Pds = dﬂ”“Hﬂ%).

0

F(z) = dy /

-1
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Hence, by (11.1) and taking into account the symmetry identity 1 — Fi(z) = F(—=z), we
get

F(z)1-F(z)) _ F(z)F(-2)
1(F(2)) [—at)y
gamme )

(11.5) 2(F(z))

Hy(y)Hx(1 —y
yT(l _ y)T
wherey = (1 4+ z)/2, and where cis a constant depending only on 7 and A. Differentiating
(11.5) (note that dy/dz = 1/2) gives

?

APFE) = 4 |

yT(l _ y)T
Therefore using (11.2) and since 1 — z? = 4y(1 — y), we obtain the identity

(116 A(P@) = - 4 [BEE]

where again, ¢ depends only on 7 and A. Note that the function z = z(p) is symmetric
around 1/2, z(0") = 2(17) = 0, and that it is easy to see that 2’(1/2) = 0. Therefore, to
prove that z is concave on (0, 1), it suffices to show the concavity of z on (0,1/2). In other
words, it is enough to show that its derivative z’(p) is non—increasing on (0,1/2). Since F'
is increasing and continuous on (—1, 1), this is in turn equivalent to showing that 2'( F(z))

Hy(y)H(1 —y)] ‘

is non—increasing on (—1,0), i.e., that the right-hand side of (11.6) is non—increasing for
0 <y < 1/2. Thus, one has:

Lemma 11.2 The function z is concave on (0,1) if and only if the function

Y d HA(:IJ)HA(:[ — :IJ)
(=l =) d_l (w(1 - 2)) ]

is non—increasing on (0,1/2).
We now need some further preparatory work.

Lemma 11.3 Consider the two functions:
HA(:IJ)HA(:[ — :IJ) HA(:IJ)HA(:[ — :IJ)
(L) ' (el -2

For A > 1, the first function decreases on (0,1/2], while for A > 0, the second one
increases on (0,1/2].
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Proof. By (11.4), making the change of variables ¢ = sz, where z € (0,1) is fixed, we
have

x 1
Hy(z) = /(t(l—t))’\dt - a:>‘+1/ (s(1 — sz)) ds.
0 0
HA(:IJ) 1 A 1 A
i = [ (5 0)
and therefore

Hy(z) Hy\(1—=) _ /Oltx (l_t)Adt/oltf\( 1 _t)/\dt = T(u)T(v),

21 (1 — z)2 1 T 11—z

Hence,

where u = 1/z, v = 1/(1 — z), T(u) = fy t*(u — t) dt.
Note that (u—1)(v—1) = 1, and that u = u(z) > 2 is a decreasing function of z € (0,1/2].
Therefore, replacing u by v + 1 and v by v + 1, we get

A(z)Ha(1 — =)
Ij([a:(l & m)l)ml = sws (),

where
S(w) = T(ut+1) = /Olt’\(u—|-(1—t))Adt
_ /01(1—t)>‘(u—|—t)>‘dt

— /Ol(u + ) p(t)dt,

p(t) = (1 —t)*. To prove the first part of the lemma, we thus need to show that the
function S(uw)S(1/u) increases on [1,+0o0). But,

S(u)S (l) = /01 /Ol(u + )} (% + s)Ap(t)p(s)dtds

U
A

— 9 / /0<t<s<1 [(UH)A (%+3)A+(u+s) (%H)A] p(t)p(s)dtds.

Consequently, it suffices to show that the function
A

Flu) = (utt) (%+s)k+(u+s)k (5 +¢)

which is within the square brackets in the integral, is an increasing function of u > 1, for
any fixed 0 < ¢t < s < 1. Rewriting f(u) as

flu) = ((1—|—ts)—|—us—|—£)>‘—|— ((1—|—ts)—|—ut—|—§)>‘,
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we obtain that its derivative

f,?u) = ((1—|—ts)—|—us—|—§)>‘_1 (s—%)+((1+t8)+ut+§)A_l (t__z) >0

if and only if

(11.7)

(1—|—ts)—|—us—|—5>‘_1 . t— =
(1+ts)+ut+ 2

Now, it is easy to see that the right-hand side of (11.7) is strictly less than one and that

the expression in the square brackets on the left-hand side of (1.17) is strictly greater

than one, when u > 1. Indeed, first note that s — ¢/u? > 0, because s > ¢t. Therefore,
t— =% 1 s+t

S
u

i 2
— u u

§— 2z

u

which is, of course, true. Analogously,

(1—|—ts)—|—us—|—5
(1+ts) +ut+ 2

which is also true when v > 1. Since A — 1 > 0, the first part of Lemma 11.3 follows.

s —1t

U

t
>1<:>(1—|—ts)—|—us—|——>(1—|—ts)—|—ut—|—£<:>u(s—t)>
U U

To establish the second part of the lemma, let

Hy(z) 1 oA A s A
preeali a:>‘+1/c) (1 —¢)Ndt = /0 s*(1 — sz)*ds.

A differentiation and an integration by parts give

hA(:IJ) =

1
Ri(z) = —)\/0 21 — sz)*ds

I A
= —/s"’d(l—sm)
z Jo

1—2z)* A+1 1
— ( z) _ At / s>‘(1 — sm)Ads.
0

Z Z

Therefore, h) satifies the following differential equation:

(1—a:)>‘ A+1

Z Z

(11.8) By(z) =

hA(:IJ)
By (11.8), the derivative of the second function in Lemma 11.3 is

(ha(z)ha(l — z))’
= h\(2)hr(1 — z) — ha(z)R)(1 — z)

- [ M| e e - [ - i - o) )
= 0 - o - P -0
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The third term in this last expression is positive, since 1 — 2z > 0. Hence, to prove that
(ha(z)ha(1 —z)) > 0, it is enough to show that

Mfu(l—m) > z”

Z — T

(11.9)

hA(:IJ)

Multiplying (11.9) by z(1 — z), leads to the inequality (1 — z)*hy(1 — z) > z 1A, (z),
which is equivalent to Hy(1 — z) > Hj(z). Now, this last inequality holds true since H)
increases on (0, 1) and since by assumption, 0 < z < 1/2. Lemma 11.3 is thus proved.

Continuation of the proof of Lemma 11.1.

According to Lemma 11.2, we need show that

HA(:IJ)HA(:[ — :IJ)]
(z(1 —=z))

is non-increasing on (0,1/2). Let x = z(l — z), so that ds = (1 — 2z)dz, and let
a =X —7+ 1. By assumption, 0 < a < 1 (note that, in the case of the sphere, i.e.,
when A and 7 are defined by (11.3), we have @ = 1/2). For A > 0, by Lemma 11.3, the
function

-2 |

HA(:IJ)HA(:[ — :IJ)

K/A—I—l

V(iz) =

increases on (0,1/2]. Rewriting the function in the square brackets above as

HA(:IJ)HA(:[ — :IJ)

K'/T

— KV(a),

we have for its derivative:

di [H,\(a:)H,\(l—a:)] _

oma_lV(a:)(l —2z) 4 £*V'(z).

Therefore,
(111(1 . :IJ))_A% [HA(m)zi(l — :IJ)] _ a/;:_ff_)a(l . 2:1;) i Z;(_fl;)
BB, Vi)

For A > 1, and by Lemma 11.3, the first term in this last expression rewriten as

o HA(:IJ)HA(:[ —:11) 1

2A+1 Kl-a (1 B 23:),
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is the product of decreasing functions, and so is a decreasing function on (0,1/2]. To
study the second term, we first find the derivative of V. Noting that H}(z) = &*, we get:

HA(l —:IJ)—HA(:IJ) HA(:IJ)HA(:[ —:11)

/ — — (A+1 .
V'(z) ) (4 2
From this one concludes that the function
V'(z) Hy(1—2z)— Hx(z)
- : — O+ DV()

K K

decreases as the difference of a decreasing function and, as already proved in Lemma
11.3, of an increasing function. Therefore,

Vi)  V'(z) 1

K/)\—a K K/)\—a—l

decreases since by assumption,
A—a—1=7-22>0.

Lemma 11.1 is proved.

Lemma 11.4 (the case n = 4) The function pq/I,,(p), (¢ =1 —p), is concave on (0,1).

Proof. Whenn =4, 7=n—-1/2=3/2,and A =n —2/2 = 1. According to Lemma
11.2, one should verify that

, d [Hi(z)Hqi(1 — 2)
(=1 =) d_l (2l — )P ]

is non—increasing on (0,1/2). As above, we set k = z(1 — z). By (11.4),

Hi(z) = /Ozt(l—t)dt — %m2(3—2m),

hence,
36 Hi(z)Hi(1 —2z) = n2(3 —2z)(14+2z) = n2(3 + 4k).
Therefore,
H Hi{(1l - 1 3
36 1(:13) 31( m) — 3/4/5 —|‘4:K/57
K3/2
" d [ Hi(e)H(1 )]
Hl Z Hl 1—2z 3 =1 1
36 T l P = (§/€2 —|—6/€2)(1—2m),
and p .
H Hi{(1l - _3 —1
(11.10) 36k — [ 1(2) H( z) = (énT + 6&7) (1 —2z).
dz K3/2




The right hand side of (11.10) is the product of two non—negative, non-increasing func-
tions on (0,1/2) and Lemma 11.4 is proved.

Lemma 11.5 (the case n = 3) The function pq/I,,(p), (¢ =1 —p), is concave on (0,1).

Proof. Whenn=3,7=n—-1/2=1,A=n—-2/2=1/2, and we set H(z) = Hy»(x).

Again, using Lemma 11.2, we just need to verify that

|

H(z)H(1 — m)]
(z(1—z))

is non—-increasing on (0,1/2). By (11.4),
11.11 H(z) = [ /(1 t)dt.
(11.11) @ = [ Vi-1

Noting that H'(z) = x'/2, (where again, k = z(1 — z)) we have
(H(z)H1 —z) ™) = (H1 —z)— H(m))n_l/z — H(z)H(1 —z)k?(1 — 2z),

hence

d

_ ~1/2 H(z)H(1 —z)
o) = ()7L |

K

] = (H(1—2z)—H(z))x ' —H(z)H(1—z)s"5/%(1-2z),

is non—increasing on (0,1/2), if its derivative is non—positive, i.e., if

(11.12) ¢'(z) = —2&"Y2 — (H(1—2)— H(z))s %(1 — 2z)
— [-2H(z)H(1 — m)n_5/2 +(H(l —=z)— H(m))n_2(1 — 2z)

—|—gH(az)H(1—m)n_7/2(1—2m)] <o

Multiplying (11.12) by «7/2, we obtain the inequality

2H(z)H(1 —z)k < 2k + 20H(1 —z) — H(m))ns/z(l — 2z)
5
+ §H(m)H(1 —z)(1 — 2z).
Since the middle term on the above right-hand side is positive for z € (0,1/2), it suffices
to show that

QH(z)H(1 — 2)e < 2% + gH(m)H(l ~ o)1 - 20),
i.e., that
(11.13) H(z)H(1 — z)(4k — 5(1 — 22)) < 4k°
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Now from (11.11) we immediately have, noting that /t(1 — ¢) increases on (0,1/2) and
that its maximum on (0,1) is 1/2, that for all z € (0,1/2),

(1-2)

H(z) < zx'?, H(l—2z) < 5

Therefore, H(z)H(1 — z) < x*?/2 < k/4. Applying this to (11.13), it is enough to see
that
(11.14) 4k — 5(1 —2z) < 16k,

Changing variables (k = z — 2% = 5/4, 0 < s < 1), we have 1 — 2z = 4/1 — s, and (11.14)

takes the form
s — 51— 5<%

i.e., the form s4/1 — s < 5. Again, this last inequality is trivially true, and Lemma 11.5
is proved.
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12 Proof of Theorem 1.12 (the Gaussian case)

The half-spaces A, = {z € R™ : z; < t} are extremal in the isoperimetric problem for the
standard Gaussian measure v, (see [Sud—Tsi] and [Bor]), i.e., the value «y,(A") is minimal
among all Borel sets A C R” of measure v, (A) > p, if A = A,. The value of ¢ is chosen so
that y.(4,) = 71((—o00,t]) = ®(¢) = p, i.e., t = ®7(p) is the inverse of the distribution
function ® of the standard univariate Gaussian density ¢(z) = (27)~'/2exp(—2?/2).
Since,

{zcR":2; <t}"={x € R™:x; < t+h},
the isoperimetric function corresponding to -, has the form
L.(p) = 14 (4p) = (27 (p))-
Note that I, does not depend on the dimension, so it can simply be denoted by I,. The

properties 1) and 2) of Theorem 1.11 are trivially true for I,. To complete the proof of
Theorem 1.12, it remains to state

Lemma 12.1 The function

is concave on (0,1).

Indirect proof. It is easy to check by (1.17)—(1.18) (or (9.3) and (9.5)) that the sequence
I,,(p) of isoperimetric functions corresponding to the uniform distributions on the n-
spheres of radius p = 4/n converges pointwise to I,(p), as n — oco. Therefore, by Lemma
11.1, pg/I, is concave as a limit of concave functions.

Direct proof. Clearly, z is concave if it is concave on (0,1/2), i.e., if
(1 —2%(z))p(z) + $(z)(1 — ¥(z))=
?(z)

does not increase on (—o0,0), i.e., if g'(z) < 0. After differentiating and with the help
of the identity ¢'(z) =

g(z) = #(¥(z)) =

— (), this last inequality takes the form

w(z) = (1+22°)8(2)(1 — (2)) — 0*(z) + 22(1 — 28(z))p(z) < 0.
Another differentiation gives

u(z) = 4z®(z)(1 - &(z)) + dze(z)(1 — @(z)) + 3p(z)(1 - 2&(z)).
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Let v(z) = 4z(1 — ¢(z)) + 3(1 — 2®(x)), so that

(12.1) u'(z) = 42®(z)(1 — () + ¢(z)v(z).
Then,
(12.2) v(z) =4+ cp(a:)(a:z —10),

and v"(z) = z(12 — z?)p(z) > 0, for 0 < z < /12. Therefore, v is convex on [0,1/12].
In addition, v(0) = 0,
Vv32r — 10 >0

V2T ’
hence v' > 0 on [0,v/12]. By (12.2), v' > 0 on [v/10, +00), thus since v’ is even, v’ > 0
on the whole real line. Since v increases, and v(0) = 0, we have v(z) < 0 on (—o0,0),
therefore by (12.1), v’ < 0 on (—o0,0). Consequently, in order to prove that v < 0 on

(—00,0), it is enough to check that u(—o0) < 0. To prove this, noting that the middle
term in the definition of u is negative, it is in turn enough to show that

—z®(z)(1 - &(z)) < (1 -2%(z))p(z),

for all z < 0 with |z| large enough. But this follows from the well-known asymptotic

expansion
—z® 1 1
p(z) @’ zt

The direct proof of Lemma 12.1 is obtained.

v'(0) = 4 — 10(0) =

), T — —o0.
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13 The isoperimetric problem on the real line

In this section we study the isoperimetric problem for a class of “regular” p. To any Borel
measure g on the real line is associated its distribution function F(z) = p((—o0,z]), z €
R. Denote by F the family of those measure (with distribution functions F') which are
concentrated on some (finite or not) interval (ap, bp) (ap = inf{F > 0},br = sup{F <
1}) where F' is absolutely continuous with continuous, and positive density f = F'. Such
functions F' are strictly increasing on (ar, br), and we introduce the continuous, positive
function

Ju(p) = f(F7'(p)), 0<p<lI,
where F~!: (0,1) — (ar, br) is the inverse of F' restricted to (ar,br). We extend J,
to [0,1] by putting
J”(O) = Ju(l) = 0.

Note that, under a shift transformation, we obtain the measure v(A) = u(A+h) and that
Jy = Ju. So, in the sequel, one can think of g in terms of J,, up to the shift parameter
h. The map 4 — J, is a bijection from F onto the family of all continuous, positive
functions on (0,1). If 0 is the median of g, i.e., if F(0) = 1/2, then F is expressed via
J, as the inverse of the function

(13.1) Fl(p) = /,,  <p<l,
172 Ju(t)

where ap = F~*(0%), and by = F~!(17). The isoperimetric function I, can be found via
J, as follows:

Proposition 13.1 Let F € F. Then, for any p € (0,1),

(13.2) L(p) = inf zj: (Ju(p2r-1) + Ju(p2z)),

where the infimum is taken over all possible 0 < p; < Py < ... < Pan_1 < Pan < 1 such
that 35, (pak — Pak—1) = P

Proof. Put f(z) =0 for z € (—o0, ap|U[br, +0), so that f is continuous on (—oo, +00)
except, possibly, at £ = ap or z = br. Denote by 7 the family of all sets A C R which
are finite unions A = U ;A; of open (finite or not) intervals A; = (a;, ;) with disjoint
boundaries. Clearly, for an open (finite or not) interval A = (a,b) with p; = F(a) and
p2 = F(b), we have

pt(A) = fla7)+ f(b7) = Ju(pr) + Julp2).
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Therefore, (13.2) just says that in the definition of the isoperimetric function
(13.3) I(p) = infu*(A),

the infimum can be taken over all A € 7 of measure p. In fact, this property holds
true for any non—atomic g defined the real line without assuming that £ € F. With the
help of this statement, we now claim that an analogous property also holds true for the
integral isoperimetric problem, namely, if

(13.4) Ru(p) = infu(4™), >0, 0<p<1,
where A runs over all Borel measurable A C R of measure p, then the infimum in (13.4)
can be restricted to the class 7.

To prove this claim, we represent the A—neighbourhood of A4,
A* = Upnsi(cn, dn),

as the union of (at most) countably many disjoint open intervals (cn,d,). Then, let
Un = Cn + h, by = d, — h. Clearly, a, < by, dist((a;, b;), (a;,b;)) > 2k (2 # 7), hence any
finite interval (—c, ¢) contains only finitely many of the (¢,,d,). In addition, if we take
B = Up>1(an, by), then

A C Up>1lan, by, and AP = B,

Therefore, using the continuity of F, u(B) > p, u(A*) = u(B"). Now, let
B(¢)=BU(—0c0,—c)U (¢, +), ¢>0,
where as noted above, B(c) € 7. In addition,

u(B(c)) > p, p(B"(c)) — u(B") = p(A"),

as ¢ — +oo. Hence, for any € > 0, there exists B; € 7 (B; = B(c) with ¢ large enough)
such that u(B;) > p, u(B") < u(A") + €. Decreasing the length of the intervals whose
union is By, one gets a set By C B such that u(B;) = p, and we also have that B, € 7,
and that u(B2) < u(A") + €. Thus, the infimum in (13.4) can be restricted to the class
7.

To complete the proof of the proposition, let us return to the abstract triple (X,d, p).
Let B(X) be the Borel sets in X, and let R C B(X) contains sets of any measure. Let

Ri(p) = infu(4"), I'(p) = infu*(4), (>0, 0<p<1),

where the infima are taken over all A € R. In particular, when R = B(X), we have
R;(p) = Ru(p), and I*(p) = I,(p). Then, it directly follows from above that

(13.5) I*(p) = liminf%.

h—0*t
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We therefore have the following statement: if for all A > 0,

Ri(p) = Ru(p), then I'(p)= I.(p)

Now, on the real line, taking R = 7 completes the proof.

Remark 13.2 In a similar way, one can substitute the real variable A in (13.5) with a
rational variable r. An important consequence of this possible substitution, is the fact
that the isoperimetric function I, is always Borel measurable on (0,1) as the limit of a
sequence of measurable functions (note that Ry(p) is a non—decreasing function of p).

Remark 13.3 It can also be proved (as in Proposition 13.1, and this will be used in the
proof of Theorem 14.1), that if A is a non—atomic finite Borel probability measure on the
real line, then

inf  AT(A) = inf AT (A)

1 =
n(4)=p€(0,1) A€T,u(A)=pe(0,1)

Let us return to the real line R equipped with the measure y whose distribution function
F belongs to the class F. As shown above, the infimum (13.3) can be taken over all
A € T of y-measure p. Note that the interior of R \ A belongs to 7, and that

pBRNA)=1-p, p'(R\A)=p

Therefore, the isoperimetric function I, is symmetric around 1/2, i.e., for all p € (0,1),

Iu(l_P) = IM(P)-

Since

(13.6) L(p) < Ju(p),

we then have that

(13.7) I(p) < min{Ju(p), Ju(l —p)}-

A natural question arising from (13.6) and (13.7) is: “does there exist necessary and
sufficient conditions, in terms of F' or of J,, to have I, = J, 7”7 Equivalently, “when
are the intervals (—oo, z] extremal in the isoperimetric problem (13.3)?” In turn this
last statement is equivalent to the extremality of these same intervals in the “integral”
problem (13.4) (i.e., to the isoperimetric property of the intervals (—oo, z]).

Proposition 13.4 Let F € F. The following properties are equivalent:

a) for any p € (0,1), the infimum (13.3) is attained at the interval (—oo,z|, where
z = F~Y(p), and then I, = J,;
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b) for anyp € (0,1) and h > 0, the infimum (13.4) is attained at the interval (—o0, z],
where z = F~Y(p), and then Ru(p) = F(F~'(p) + h);

c) the measure p is symmetric around its median, i.e., J, is symmetric around 1/2,
and for all p,q > 0 such that p+ q < 1,

(13.8) Julp+q9) < Ju(p) + Ju(e).

Before coming to the proof of the above equivalences, let us state two corollaries. For
the first, one can easily verify using (13.1), that p is log—concave if and only if J, is
concave on (0,1). But concave functions clearly satisfy (13.8).

Corollary 13.5 If the measure u 1s log-concave, 1.e, if the function log f is concave on
(ar,br), and if p is symmetric around its median, then u satisfies the above conditions.

Corollary 13.6 Let the measure p with F' € F satisfies one of the above conditions a),
b), or c), then there exists a positive constant ¢ such that,

(13.9) Ju(p) > cmin{p,1 — p},

whenever p € (0,1), that is for all z € (aF, br),

min{ F(z),1 — F(z)} < %f(a:).

FEquivalently, the increasing map U : R — (ap,bp), which transforms the two-sided
ezponential distribution v, of density f,(z) = dv(z)/dz = (exp—|z|)/2, z € R, into u
(i.e., vU™' = p), is a Lipschitz function, of Lipschitz constant at most 1/c. In particular,
the “tails” F(—h), 1 — F(h) have at least an ezponential rate of decrease (as h — +o0).

Proof of Corollary 13.6. We first note that since J,, is continuous, (13.8) extends to
countable families, that is, for any sequence p,, > 0 such that >, p, <1,

(13.10) T(Y ) < Y Tulpn).

Since J, 1s symmetric, positive and continuous, it suffices to show that

¢ = liminfJ,(p)/p > 0.

p—0*+

From this, (13.9) follows with, perhaps, a smaller constant. To prove that this liminf is
positive, assume the contrary. Then, for any ¢ > 0, the set S(c) of points p € (0,1) with

Ju(p) < cp is at least countable, and moreover, 0 € S(c). Hence, for any p € (0, 1), there
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exists a sequence p, € S(c) such that }°, p, = p. By (13.10), we then have J,(p) < cp.
Since ¢ > 0 can be arbitrarily small, this gives J, = 0, which is impossible. To complete
the proof of the corollary, let F, be the distribution function of the double exponential
v, l.e., let

?

oxpo if o <0
Ble) = (<2) -
1— % iz >0.

Then, by a direct application of the definition,

J(p) = f(F;'(p)) = min{p,1—p}.

Since U(z) = F~*(F,(z)), we obtain after differentiation:

Therefore, U is Lipschitz, of Lipschitz constant at most 1/¢, if and only if J,.(p) > ¢J.(p),
for all 0 < p < 1. This coincides with (13.9), and the corollary is proved.

Proof of Proposition 13.4. That a) and b) are equivalent immediately follows from
Theorem 2.1 applied to I = J,. Assume now that the property c) is fulfilled. Then, for
any 0 < p < g <1, we have p+ (1 — q) < 1, hence

Ju(p) +Ju(q) = Julp) +Ju(1 —¢q) > Julp+(1—14q)) = Julg—p)

These inequalities remain true also when p = 0 and/or ¢ =1, soforany 0 <p < ¢g<1,

Ju(p) + Jule) > Julg —p)

Applying this last inequality to (13.2) and using (13.8) with the notations of Proposition
13.1, we get

n n n

> (Julpor-1) + Julp2e)) > > Julpee — par-1) > Ju(D_(pok — p2k-1)) = Ju(p).
k=1 k=1 k=1
Therefore, by Proposition 13.1, I,(p) > Ju(p). Together with (13.7), this gives I,(p) =
Ju(p), ie., (13.2) is attained when n = 2, py = 0, p» = p. This corresponds to the
extremal case A = (—o0,z] with z = F~!(p) in (13.3). Thus, c) implies a).
Conversely, assume that a) is true. Let A = (—o0,z], and B = [y, +00) be intervals of
p-measure p, i.e., z = F1(p), and y = F~*(1 — p). By assumption, pt(4) = f(z) <
pt(B) = f(y), that is J,(p) < Ju(1 — p). Replacing p by 1 — p, we get the opposite
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inequality, and combining these two inequalities gives J,(p) = J,(1 — p). Consider now
in (13.2) the case n = 1. Replacing there (since a) is assumed), I, by J,, leads to

Ju(P) < Ju(pl) + Ju(p2) = Ju(pl) + Ju(l - P2);

whenever 0 < p; < py <1, p=py —p;. Putting p’ = p1, ¢ =1 —ps, s0o p’' +q' = p, turns
this last inequality into (13.9), and finishes the proof of the proposition.

Let us try to say something more about the isoperimetric function I, for non-log-
concave measures. As noted before, I, should be symmetric around 1/2. In addition, by
Proposition 13.1, we have that if a symmetric (around 1/2) function I on (0, 1), satisfies
(13.8) and is majorized by J,, then I, > I. This might naturally inspire the conjecture
that the isoperimetric function I, is maximal among all the functions I which satisfy the
condition c) in Proposition 13.4 and which are majorized by J,. This is not so. To see
that, we consider the isoperimetric problem for unimodal distributions.

Assume F' € F. We say that the measure p (or its distribution function F') is uni-
modal, if for some zg € [aF, br|, the density f is non-decreasing on the interval (ar, zo),
and is non-increasing on the interval (zo,br). An equivalent wording for unimodality
is: for some py € [0, 1], the function J, is non—decreasing on the interval (0,po), and
non—increasing on the interval (po,1). In this definition, f is allowed to be monotone,
say, non—increasing on (ag, bp). In this case, zg = ar, and py = 0, so the left intervals
(ar,z0) and (0, po) are empty. This is the case, for example, of the standard (one-sided)
exponential distribution u of density f(z) = exp(—=z), z > 0, for which J,(p) = 1 — p,
whenever 0 < p < 1.

Note that the class of unimodal distributions is not larger than the class defined in
Proposition 13.3 ¢). Take for example, the measure g with J,(p) = max{p,1 — p}, and,
for simplicity, zo = 0. From (13.1), we find that its density is: f(z) = (exp|z|)/2,
|z| < log2. So, f decreases on (—log2,0) and increases on (0,log2), hence p is not
unimodal. On the other hand, for this measure, (13.8) is fulfilled.

Proposition 13.7 Let F' € F be unimodal. Then, for any p € (0,1), the infimum
(18.8) is attained either at an interval (finite or not) A = (a,b) of measure p, or at the
complement A = R\ (a,b) of an interval of measure 1 — p. Therefore, for all p € (0,1),

(13.11) L(p) = inf (Ju(p1) + Ju(p2)),
where the infimum is taken over all possible 0 < p; < py < 1 such that py — p; = p and

such that p, —p; =1 — p.

We give the proof of this proposition at the end of the section and provide now some
important partial cases where (13.11) simplifies (the proofs of these partial results are
also given at the end of the section). Again, let F' € F be the distribution function of
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a unimodal measure p. As usual, f denotes a continuous density of x. Note also that
log—concave distributions are unimodal.

Corollary 13.8 If the measure p is log—concave, or if f is monotone on (ap,br), then
for all p € (0,1),
(13.12) 1(p) = min{Ju(p), Ju(1— )}

In other words, the infimum (13.8) is attained either at the interval (—oo,z], or at the
interval [z, +00) of measure p (in either case).

Thus, for symmetric log—concave y, (13.12) recovers the statement of Corollary 13.5. For
general (not necessarily symmetric) log—concave u, we get equality in (13.7).

Remark 13.9 It can be shown that if u satisfies either one of the assumptions of Corol-
lary 13.8, then the last statement of Corollary 13.8 can be extended to the “integral”
isoperimetric problem: the infimum (13.4) is attained either at the interval (—o0,z], or
at the interval [z, 400) of measure p (in either case).

Corollary 13.10 Let F' € F be unimodal and let also assume that the measure u is
symmetric around a point zo (which should be its median and mode simultaneously).

Then, for all p € (0,1),
(13.13) L(p) = min{J”(p),ZJ” (W)}

This means that the infimum (13.8) is attained either at (—oo,z], or at (zo — h,zo + k),
or at (—o0,zo — g) U (o + g, +00), of measure p (in all the cases).

Examples and comments

1) As already noted, for the two—sided exponential distribution v, of density f.(z) =
(exp —|z|)/2, z € R, we have J,(p) = min{p, 1 —p}. Since v is log—concave and symmetric
around 0, by Corollary 13.5, I,(p) = J.(p). For the standard (one-sided) exponential
distribution of density f(z) = exp(—z), z > 0, we have as also noted before, J,(p) = 1—p,
0 < p< 1. By Corollary 13.8,

Iu(p) = min{Ju(p),Ju(1 —p)} = min{p,1 —p}.
Therefore, the one—sided and the two-sided exponential distributions have the same
isoperimetric function. On the other hand, the solutions to the integral isoperimetric
problem differ for these distributions. Indeed, one may apply Proposition 13.3 b) to v
and get: for any A >0, 0 < p < 1,
Ruu(p) = inf w(A") = F(F(p) +h).

v(A)=p
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A direct calculation of the right-hand side above gives, putting also o = exp(—h) :

p/e, if p < a/2
Rp.(p) = 1 —a/(4p), ifa/2<p<1/2
l—a(l —p), ifp>1/2

Applying Remark 13.9 to the measure p of density f(z) = exp(—z), z >0
Raulp) = inf u(A") = min{Ru(E7(9) + B), 1~ Fu(E7(5) ~ W)}

Another calculation (setting also a = exp(—h), gives

Ru(p) = { p/a, if p<a/2

l1—afl —p), ifp>a/2

Hence, Ry, (p) < R u(p) with strict inequality when o/2 < p < 1/2.
2) Another interesting example is provided by a probability measure p of density
1

(lz] +2)>

Clearly, p is unimodal and symmetric around 0, so one can apply Corollary 13.10 in

f(z) =

order to find the isoperimetric function I,. The distribution function of p is F(z) =
(z +1)/(z +2), for z > 0, and an easy calculation shows that J,(p) = (1 — p)?, for
p > 1/2. Since J, is symmetric around 1/2, we get

Ju(p) = min{p®,(1-p)’}, 0<p<lLl

Applying (13.13), we finally find

L(p) = 5 min{p?,(1-pf} = LJ.(p)

Note that, whenever 0 < p < 1, the interval (—oo, z], of measure p, is not an extremal
set in (13.3). Note also that there does not exist a positive function I which would be
majorized by J, and would satisfy the condition c¢) in Proposition 13.4: otherwise, by
Corollary 13.6, 1 — F/(z) would decrease exponentially to zero at infinity.

Proof of Proposition 13.7. Set J = J,, and for A = [p, q) define J(A) = J(p) + J(q),
0 < p<¢<1,whilefor p=gq put J(0) = 0. Then, (13.2) can be written as

(13.14) I(p) = inf an J(Ak),

k=1
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where the infimum is taken over finite unions of disjoint intervals Ax C [0,1), 1 < k < mn,
of total length p. Note that since I, is symmetric around 1/2, one can also take in (13.14)
sets of total length 1 — p.

By assumption, for some py € [0, 1], the function J is non—decreasing on the interval
[0,p0], and non—increasing on the interval [po,1]. Take all the intervals Ag, &k € V C
{1,...,n}, which are situated on the left of pg. Then, by the above,

(13.15) Y. J(Ay) > J(p),

keV
where p; is the total length of the Ag, £ € V. In the same way, if we take all the A,
ke W C{1,...,n}, which are situated on the right of py, and denote by p, their total
lengths, then

(13.16) S J(Ay) > J(1—ps).

keWw

Therefore, all the Ay, k € V (resp., k € W), can be substituted in (13.14) by a single
interval [0, p1) (resp., [l —p2,1)). Note that one of the sets V or W is empty when py = 0,
or po = 1. In addition, at most one of the A covers the point pg. Therefore, to minimize
(13.14), one needs only consider unions of three disjoint intervals, more precisely:

Al = [07p1)7 A2 = [1 — P2, 1)7 A3 = [p37p4)7
where in general, 0 < p; < p3 <po <ps <1—p3 <1, p1+p2+(ps—p3) =p (and/or
=1-p)

The middle interval A3 can be excluded from our considerations by putting ps = pa
(this is explained in a short while). Then (excluding Aj), the right side of (13.14) becomes

J(A1) + J(Az) = J(p1) + J(1 — p2),

under the assumption p; + p; = p (and/or = 1 — p), i.e., under the assumption (1 —p,) —
p1 =1 —p (and/or = p), and p; < po < 1 —p,y. This gives the right-hand side of (13.11)
taking into account the following remark: In (13.11), the case 0 < p; < ps < 1, where
also p; and p, lie on the same side of pg is non—extremal. Indeed, let 0 < p; < ps < po
(of course, p, —p1 = p (or, =1 —p)). Then, since J is non—decreasing on [0, po|, we have

J(p1) + J(p2) > J(p2 —p1)-

Thus, the pair (0,ps — p1) is “better” than the pair (p1,p2) which is thus non—extremal.

It remains to explain why the middle interval A3 can be excluded from our consid-
erations. Let 0 < p; < p3 < po < py <1 —py; <1 and p3 < ps. Then, take the
complementary intervals Ay = [p1,p3) and As = [ps, 1 — p2). Ay is situated on the left
of po, while Ay is on the right of po, their total length is 1 — p (and/or p) with, finally,

(13.17) J(Ag) + J(As) = J(A) + J(A2) + J(Ay).
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By (13.15) and (13.16), these two intervals can be respectively replaced by [0,p3 — p1)
and by [l — p2 — ps, 1), so the left, hence the right hand—side of (13.17) can be decreased.
Thus, we decrease the number of intervals (from three to two), and therefore complete
the proof.

Proof of Corollary 13.8. The function g,(t) = J,(t) + Ju(t +p), 0 <t < 1 —p, attains
its minimum at one of end points ¢t = 0 or £ = 1 — p, because g, is concave when x4 is
log—concave (in which case J,, is concave), and g, is monotone when f is monotone (in
which case J,, is monotone).

Proof of Corollary 13.10. It suffices to consider the case p < 1/2. If ¢ > 1/2, then
since J,, is non-increasing on [1/2, 1], g, attains its minimumon [1/2,1 —p] at t =1 —p,
and that minimum is equal to J,(1—p) = J,(p). In the same way, g, attains its minimum
on [0,1/2 — p] at t = 0, and that minimum is equal to J,(p). In case 1/2 —p <t < 1/2,
we use another representation for g,, namely,

9p(t) = Ju(t) + Ju(l = (¢ +p)).

Clearly, g, attains its minimum on the middle interval at ¢t where ¢ = 1 — (¢t + p),
e, t = (1 —p)/2, and the minimum is equal to 2J,((1 — p)/2). Since by (13.11),
I,(p) = min{inf; g,(t), inf; g1_,(¢)}, we obtain (13.13).
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14 Isoperimetry and Sobolev-type inequalities on
the real line

Here we return to Theorem 1.1 in order to better understand the situation on the real
line. Again, given a non-atomic probability measure y on R, and a Young function N,
we estimate the Orlicz—norm of g — m(g), where g is a “smooth” function defined on R,
with y—mean m(g) = [g 9di, in terms of the first power of their derivative g’ :

(14.1) lg—mig)llx < eu(W) [ 1g'ld

If one wishes to find an “optimal” N (which satisfies (1.36) when (14.1) becomes equiva-
lent to the isoperimetric problem for p), then it is necessary (at least formally) to find the
isoperimetric function I, and the results of the previous section can be used. Moreover,
the optimal constant ¢ in (14.1), is given by:

(14.2) (V) = sup P,

where In(p) = ||xa — p||n, and where A C R has p-measure p, i.e., z, = 1/In(p) is the
positive solution of

(14.3) pN((1 —p)zp) + (1 — p)N(pzp) = 1.

Recall that such functions Iy are completely characterized by the conditions 1)-3) of
Theorem 1.11. When N(z) = |z|*, 1 < a < +00, the function Iy is simply I, and (14.2)
is just (1.14). Note also that Iy is determined by N but not by p.

According to (14.2), in order to find ¢,(N), we have to solve the isoperimetric problem
for p so as to find I,. In fact, as explained below, for 4 absolutely continuous there is no

need to do so, since for such probability measures the isoperimetric function I, in (14.2)
can be replaced by the function J,(p) = f(F~!(p)). Moreover, (14.1) can be essentially
improved if one wishes to find the minimal “weight” w such that

(14.4) lg—m(@)ly < [ lg'(e)hu(a)da.

Below, and as usual, F'(z) = p((—o0,z]) is the distribution function of p which is con-
tinuous on R, since p is.

Theorem 14.1 For any locally Lipschitz function g,

(14.5) lg—mig)lx < [ lg@)lin(F())da.
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More precisely: if the right-hand side of (14.5) is finite, then g € Ly(R,p), hence g
is p—integrable, and (14.5) holds. Moreover, the function w(z) = In(F(z)) is minimal
(for the pointwise order and up to a set of Lebesgue measure zero) among all the locally
integrable (with respect to the Lebesgue measure) functions w which satisfy (14.4), for all
locally Lipschitz g.

Before proceeding to the proof of this theorem, let us present some examples and conse-
quences.

Example 14.2 When N(z) = |z|% 1 < a < 400, (14.5) takes the form

1/

(14.6) (/7 ls(z) - mio)=dr(@)) < [ Ig@)a(F(@)ds.

In particular, for @« = 1 and a = 2, we respectively have I1(p) = 2p(1 — p), L(p) =
p(1 — p), and (14.6) becomes

(14.7) /+°° 9(2) — m(g)|dF(z) < 2/ 2)(1 — F(z))da.

(148) \/ [ lgt@) ~ mlo)ar(z) < /_:" 9'()1y/F()(1 = F(2))de.

When a = 400, then I,(p) = max(p,1 — p), and we get

lg — m(g ||oo§/ 2)| max(F(z), (1 — F(z)))da.

Theorem 14.1 also allows to find the optimal constant in (14.1) ¢, (N) provided u is
absolutely continuous with respect to the Lebesgue measure. Indeed,

Proposition 14.3 Assume that u is absolutely continuous with density f, and that (14.1)
18 satisfied. Then,

(14.9) cu(N) = ess:gﬁw.

Therefore, c,(N) < +oo if and only if

(14.10) d,(N) = esszlélf f(z)N* (F(m)(ll—F(m))> > 0,

where N~ : [0,+00) —> [0, +00) is the inverse of N restricted to [0, +00).

It is reasonable to give another wording for the above statement by comparing y to
some canonical distribution as this was done in the last part of Corollary 13.6. Here we
assume for a while that f is continuous and positive on an interval (ar, br) (finite or not)
where p is concentrated. Thus, in the terminology of Section 13, F' € F.
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Any Young function N corresponds to a (symmetric around 0) probability measure py,
defined via the identity J,, = Iy. Its distribution function Fy and density fy can
tentatively be found via (13.1). As already observed in Section 2, when N(z) = |z|, we

have .
F = — R.
w(z) 1 4 exp(—2z)’ 7€
Likewise when N(z) = |z|?, we have
|1 si
Fy(z) = (Bﬂ | < /2.

A big difference between these two important examples is that the second distribution
has compact support. In general, put
E|

= [ ——dt

— b

by

so that py is concentrated on (ay,by). With these notations, and if x is concentrated
on (ap,br), we state:

Proposition 14.4 Let the probability measure p have distribution function F € F.
Then, c,(N) < +o0, if and only if the increasing map U : (an,by) — (ar, br), which
transforms py into w, is Lipschitz, of Lipschitz constant at most c,(N).

From this proposition, and if F' € F, we also conclude:

Corollary 14.5 Suppose that by < 400, that 1s

/+°° N7'(2)

22 dt < +oo.

If ¢,(N) < +00, then pu has compact support.

In particular, the probability distributions g with F' € F and for which (14.1) holds true
for the Lebesgue spaces Lo(R, ), @ > 1, and for a finite constant ¢, (N), are concentrated
on finite intervals.

Remark 14.6 Of course, in Proposition 14.4, the characterizing property of c,(N) <
400, can also be expressed via any probability distributions A, different but equivalent
to un, in that:
J J
0< i 22 )

inf IA\P)
0<p<1 In(p) ~ o<p<1 In(D)

For example, when N(z) = |z|, pn can be replaced in the statement of the proposition
(changing also the Lipschitz constant) by the two-sided exponential distribution v for
which J,(p) = min{p, 1 — p}.

< 400
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Proof of Theorem 14.1
Step 1. In this step, (14.5) is proved for all g bounded and Lipschitz, provided also that

/+°° In(F(2))dz < +oo.

— o0

By this assumption, the measure v of density dv(z)/dz = Iy(F(z)) is finite. Therefore,
by Theorem 1.1 with £(g) = ||g — m(g)||n, the inequality (14.5) holds for all g bounded
and Lipschitz, if and only if, for any Borel measurable set A C R, with y(A) = p,

(14.11) vt(A) > |lxa —pllv = In(p).

According to Remark 13.3, to prove this, it suffices to check (14.11) for the sets A which
are finite unions of open intervals Ay, ..., A, and whose boundaries are disjoint. Note
that the function Iy possesses the following property: for any p,q > 0, such that p+¢q < 1,

(14.12) In(p+4q) < In(p)+ In(q)

Indeed, taking disjoint sets A and B of respective measure p and g, we have, by the very
definition of Iy:

In(p+q) = llxavs — (p + 9|~ < llxa — 2llv + x5 — qllv = In(p) + In(q).

Now, assume for a while that (14.11) has already been shown for open intervals. Then,
we will have for the sets A described above, applying (14.12) to a finite sum of p; = p(A,)
such that " p, = p

VHA) = v () 2 3 In(m) 2 In(m) = xa —plly = In(p),

So, (14.11) holds for all A, provided it is true for the intervals A = (a,b), —00 <a < b <
+00. For such intervals A,

v¥(A) = In(F(a)) + In(F(b)).

Using In(1—p) = In(p) and again (14.12), we finally get (note that u(A) = F(b)—F(a) =
p):

In(F(a)) + In(F(b)) = In(F(a))+ In(1 - F(}))
> In(1—(F(b) — F(a)))
= In(F(b) - F(a))
= In(p)

Step 2: In this step, (14.5) is proved for all Lipschitz g which are constant outside a finite
interval, say [a, b], and no assumption on the finiteness of v is made.
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Take a sequence u, of Borel probability measures on R whith compact supports, which
converge weakly to u, i.e., such that for any bounded, continuous function A,

hdy, /hd,
J in — [ B

as n — 0o. Then, applying the results of step 1 to g and py,:

+oo
(1413) lg = [ 9dmllintiy < A= [ I9'@IIn(Fu(2))da,

where F), is the distribution function of p,. Since p is non-atomic, F' is continuous and
F,, converges to F' pointwise. Hence I(F,(z)) — I(F(z)) for all z € R, as n — oo.
Since Iy is bounded on [0,1], |¢'| is bounded by its Lipschitz seminorm, and since the
right integral in (14.3) is taken over [a, b, the Lebesgue dominated convergence theorem
gives

My > A = /_+°° 10'(2)| In(F(2))dz.

o0

Let us now rewrite (14.13) in the form

g —mn
14.14 /N( )dn<1,
(14.14) k . pn <

where m,, = [g 9dpn. Since g is bounded and continuous, m,, — m(g), as n — oo. In
order to take the limit in (14.14), we use the following property of weak convergence
(see Billingsley [Bil, Theorem 5.5]): if g, — p weakly and if &, is a uniformly bounded
sequence of continuous functions such that h,(z,) — h(z) whenever z,, — z, where h is

a continuous function, then
hndity, — / hdy,
ey

as n — 0o. Applying this result to h, = N((g — mn)/An), B = N((g — m(g))/ ), we get

(assuming that A > 0):
g —m(g)
N|———|dp <1
/R ( A ) o=

lg =m(@llenew < A

that is

This last inequality coincides with (14.5). The case A = 0 is trivial: g becomes constant
on (ap,br), and the left-hand side in (14.5) is zero.

Step 3. In this step, (14.5) is extended to all g locally Lipschitz. Before verifying this
claim, we first note that if the right-hand side of (14.5) is finite, then g is p—integrable
and moreover, g € Ly(R, ). Indeed, if g is locally Lipschitz,
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define the functions
9(z), ifa,<z<b,

gn(z) = g(by), ifz>b,
g(an), ifz<a,

where a,, —» —00, b, — +00, as n — oo. Clearly, g, is Lipschitz and constant outside of
[@n, by], so applying the result of step 2 and writing (14.5) for g, we get:

lan = [ il < [ lg'@) (P (o)),

and therefore,
+oo
(14.15) lon— [ mdply < A= [ " lg'(a) In(F(a))do.

Assume now that A < 4o00. The space Li(p) is the largest of all the Orlicz spaces,
moreover there exists a constant A = A(N) such that, for all g € Ly(p),

gl < Allgll~-.

Hence, (14.15) implies
lgn = m(gn)lls < AN,

Therefore, estimating |gn(z) — gn(y)| via |gn(z) — m(gn)| + |gn(y) — m(gn)|, we obtain

(14.16) S [ 19a(2) = 9a(y)|du(a)du(y) < 242,

Applying Fatou’s lemma to the left—-hand side of (14.16) gives

J. [ 19(2) — g(v)ldu(z)duly) < 242,

and g is uy—integrable. Now,

(1417)  mion) = [ g(e)du(a) + g(an)u((~00,an]) + g(ba il lbn, +0)).

Since g is p—integrable, the first term on the right-hand side of (14.17) converges to m(g).
The second and the third terms will also converge to 0, if a, and b, are chosen in an
appropriate way. The existence of such appropriate sequences follows from

+ o0

inf |g(a)lu((b, +00)) < [ lg(@)ldu(z) >0 (b +oo),
inf|g(@)|u((~00,a]) < [ lg(@)ldu(e) =0 (a— —o0)

97



Thus, m(gn) — m(g). Let us rewrite (14.15), assuming again that A > 0:

(14.18) /RN (W) dp < 1.

Applying, once more, Fatou’s lemma to (14.18), we finally get

e

that is, g — m(g) € Ly(p), and moreover, ||g — m(g)||x < A. This coincides with (14.5).
For A =0, the result is trivially true and Step 3 is complete.

Step 4: In this step, we prove the minimality (for the pointwise order and up to a set
of Lebesgue measure zero) of Iny(F(z)) among all the locally integrable (with respect to
the Lebesgue measure) functions w which satisfy (14.4) for all locally Lipschitz g.

Approximating the indicator function g = X(—w), z € R, by Lipschitz functions, (14.4)
yields

(14.19) In(F(@)) = g~ m(g)ln < wi(z),

where

. . 1 z+te
wi(z) = lim mf—/ w(t)dt.

e—0t & —€

Since wy(z) = w(z) almost everywhere, the result follows.

Proof of Proposition 14.3. The identity (14.9) follows directly from the statement on
the minimal weight in Theorem 14.1. Then, from (14.3), one can easily obtain two-sided
estimates for z, and show that, for any p € (0,1), ¢ =1 — p,

1 1
(14.20) N7! (—) < z, < 2N7! (—) :
2pq 2pq
Indeed, assuming that 0 < p < 1/2, so that 2¢ > 1, it follows from (14.3) that pN(gz,) <

1, hence
1 1 1
Tp < ~N~! <—> <2N7! <—> )
q p 2pq

since N~! is concave. On the other hand, let T'(z) = N(z)/z, z > 0. Since N is convex,
T is non—decreasing. Again by (14.3),

1= pqmp(T(qmp) + T(Pmp)) < 2qupT(mp) = 2qu($p),

and the left inequality in (14.20) follows. Since Iy(p) = 1/z,, (14.10) is equivalent to
(14.9), and Proposition 14.3 is proved.
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Proof of Proposition 14.4. It suffices to note that

Proof of Corollary 14.5. Since N™! is concave and increasing, by (14.20), N=!(1/2pq)
behaves, up to a constant, like N™'(1/p), as p — 0%. Therefore, by is finite if and only

if the integral
1/2 1
Nt (—) dp
0 p

is finite. The change of variables ¢t = 1/p and Proposition 14.4 finish the proof, since the
Lipschitz image of a compactly supported measure is also compactly supported.
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15 Extensions of Sobolev—-type inequalities to prod-
uct measures on R”

For the space L'(u), the inequality (14.1) is easily extends, by induction on the dimension
n, to product measures y = p; ® -+ - ® W, whose marginals distributions are absolutely
continuous. Let f; be a density (with respect to the Lebesgue measure) of p;, again we
are looking for conditions on p for the existence of a constant ¢ such that

15.1 / — m(g)|d </ Vldu,
(15.1) o |9 —mlg)ldp < ¢ [ [Vgldu

for all locally Lipschitz functions f on R™. Note that |Vg| depends on the metric d
on R™ Of course, the metric dependence is only important in finding the optimal ¢
in (15.1). Below, we find the optimal constant in case d is the £'-metric in R™, i.e.,

di(z,y) = Xy |z — wil.
Let us denote by F;(z) = u;((—o0, z]) the distribution function of y;, and let also

(15.2) c(p) = f??g}i €ss :1611% ZFZ(m)S(;)FZ(m))

Proposition 15.1 The inequality (15.1) is satisfied for some ¢ < 400 and all bounded
Lipschitz functions if and only if c(p) < +oo. If it is so, then (15.1) holds for all locally
Lipschitz function g in the following sense: if the right hand side of (15.1) is finite then
g is u—integrable, and moreover (15.1) holds. In addition, for the £'-metric in R™, c(u)
18 optimal.

Proof. Taking in (15.1) bounded Lipschitz functions g(z) = g(z;) which only depend on
the ith variable, (15.1) reduces to (14.1) in L;(p;). Therefore by Proposition 14.3, the
condition

C; — €88 Sup ZFZ(:E)(]_ _ FZ(:E))
' zcR fi(z)

is necessary and in addition ¢ > maxi<i<n ¢;. Let now assume that ¢(p) < +o0. We prove

< +00,

the result by induction on the dimension. By Theorem 14.1 and Proposition 14.3, the
result holds for n = 1. Then, let ¢ be a bounded Lipschitz function on R™ and assume
that (15.1) is true for the dimension n — 1,n > 2. Fixing z, € R and applying (15.1) to

the function h(z1, -, @n_1) = g(z1,- -+, Tn_1, Tn) and to the measure v = g1 ® - - @ pip—1
we get:
(15.3) / |h|dy < ‘/ hdv| + max ci/ |Vh|dv.

R~—1 R~»—-1 1SZSTL—1 R~»—-1

Note that the function A is Lipschitz, hence differentiable almost everywhere (with respect
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to the Lebesgue measure). So,

0 0
VAl = |5+ |5,
1111 (9a:n_1
for almost all (z4,-+,z,—1) € R™'. Let us now introduce the function ¢(z,) =

Jrn-1 hdv. Clearly, ¢ is Lipschitz, so again, one can apply (14.1) for Li(R, u,) and
get:

15.4 / dn<‘/ i, n/ Ny,
(15.4) R|‘P|M_R‘PM +c R|‘P|M

Integrating (15.3) with respect to p, over R, using (15.4) and noting that [g wdp, =
Jr~ 9dp, we have by Fubini’s Theorem

Og
6:111'

du.

(15.5) / lgldu < ‘/ gd,u‘ —|—cn/ ¢ |dpin + max cz/ >

1<2<n—1

It now remains to note that ¢'(z,) = Jgn-t ;ngl/, hence

Og
I < o
|(P (:ETL)| — JRn1 6:1111 dV7
and 5
/ g
< —_— .
/Rlso(wn)ldﬂn(wn) < /Rn 5. |

Since ¢, < ¢(p), maxi<i<n-1 6 < (), (15.5) gives (15.1) for all bounded Lipschitz g
with ¢ = ¢(p). Then, a truncation argument extends (15.1) to all locally Lipschitz g, as
stated in the proposition.

Remark 15.2 In a particular case, Proposition 15.1 gives the solution to the isoperimetric
problem when R™ is equipped with the supremum distance do(z,y) = maxi<i<n |2 — ¥il-
Indeed, let 4 be the n—th power of the logistic distribution F(z) = 1/(1+exp(—z)),z € R
of density f. Clearly, f is such that f(z) = F(z)(1 — F(z)). Hence, by Proposition 15.1,
the inequality (15.1) is satisfied with ¢ = 2. Thus, by Theorem 1.2 for a = 1, (15.1) is
equivalent to ut(A) > p(1—p),p = u(A). But, by Theorem 2.1, this is in turn equivalent
to the “integral” inequality u(A") > p/(p + (1 — p)exp(—h)) (see the equivalence of
(2.4) and (2.5)) where the enlargement A" is taken with respect to the do, metric, i.e.,
AP = A + hB,, where B, is the £, unit ball in R®. We thus have:

Corollary 15.3 Let u be the n—th power of the logisitic distribution. For any h > 0,
the minimal value of u(A"), when u(A) = p is fized, is attained at a standard half-space
{z € R™: z; < const.} of measure p.
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Remark 15.4 Proposition 15.1 implies that

dp,

(15.6) [ 1o~ m(o)ldu < el [

where now, the constant c(u)y/n is suboptimal. For the {'-metric, the optimal constant
does not tend to infinity with n. One might thus wonder, even when u; = g, for all
1, whether or not, when the gradient is estimated in the Euclidian metric, the optimal
constant tends to infinity with n.

Let us rewrite (15.6) with a constant K and the product measure " = p ® --- @ u:

(15.7) / g — m(g)|du™ <2K/

where m(g) = fg~ 9dp™. As we know (Theorem 1.2), (15.7) is equivalent to

(15.8) (W™)"(4) =

In turn, this is equivalent (see (2.5)) to

(15.9) ur(AR) > P - R

2 T 0 pe(hE) 2P

where A > 0 and where A" is the Euclidian A-neighboorhood of A. Let us now suppose
that u has a continuous positive density f on (a,b) where p is concentrated. Then, by
Proposition 14.4 and Remark 14.6, (15.1) for n = 1, is equivalent to: u is a Lipschitz
image of the two—sided exponential distribution v. It is thus natural to conjecture that
this last requirement on g (which is necessary) is also a sufficient condition for the validity
of (15.7), i.e., of (15.9), in the n—dimensional case and for some constant K = K(u)
independent of n. It is easy to see that if (15.9) holds for some measure p, then it holds
for all its Lipschitz images uU~'. Therefore the above conjecture is equivalent to (15.9)
for 4 = v. So only one distribution (the double exponential) needs to be consider to
solve this problem. To date, the closest form to (15.9) is an inequality due to Talagrand
[Tall, p.95] (see also [Tal2, Chap.2]):

(15.10) v"(A+ hBy + VhB,) > F, (Fu‘l(p) + %) :

where K is some universal constant and where B; and B, are respectively the Z; and
£y unit balls in R™. In Example 1 of Section 13, an expression for the right—hand side
of (15.10) was found. On the other hand, the right-hand side of (15.8) is equivalent
to K min(p,1 — p) which is (up to a constant) the isoperimetric function of the one (or
two) sided exponential distribution. Hence, the right hand side of (15.10) is equivalent
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(uniformly in p and k) to Ry/x(p), where Rp(p) = Fu.(F;*(p)+h), where F,(z) = 1/(1+
exp(—z)),z € R is the logistic distribution. Finally, note that (15.10) is stronger than
(15.9) for h large. Unfortunately, for A small (important in estimating the isoperimetric
function), (15.10) does not imply (15.9) and in fact becomes weaker. Thus, the question
of the existence of necessary and sufficient conditions for the validity of (15.7) with some
constant independent of n remains open.
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