
748 s. g. bobkov

[2] N. Martin and J. England, Mathematical Theory of Entropy, Cambridge University Press,
Great Britain, Cambridge, 1985.

[3] U. Krengel, Ergodic Theorems, De Gruyter, Berlin, New York, 1985.

[4] Z. I. Bezhaeva and V. I. Oseledetz, On a variance of the sum of functions of a stationary
Markov process, Theory Probab. Appl., 41 (1996), pp. 633–639 (in Russian).

[5] H. Horowitz, L∞-limit theorems for Markov processes, Israel J. Math., 7 (1969), pp. 60–62.

[6] H. Horowitz, Strong ergodic theorems for Markov processes, Proc. Amer. Math. Soc., 23
(1969), pp. 328–334.

[7] H. Horowitz, Pointwise convergence of iterates of a Harris-recurrent operator, Israel J. Math.,
33 (1979), pp. 177–180.

[8] S. R. Fogel, Harris operators, Israel J. Math., 33 (1979), pp. 281–309.

[9] S. R. Fogel and N. A. Goussoub, Ornstein–Metivier–Brunel theorem revisited, Ann. Inst.
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SOME EXTREMAL PROPERTIES OF THE BERNOULLI
DISTRIBUTION*

S. G. BOBKOV†

(Translated by A. V. Bulinskii)

Abstract. The location of n-dimensional Bernoulli distribution is examined within the class of
all probability distributions in Rn with finite first moment being an ordered set with the Choquet
ordering.

Key words. Bernoulli distribution, comparison of measures after Choquet, boundedness of
stochastic processes linearly generated by independent variables

PII. S0040585X97975769

Denote byMn the class of all probability distributions µ in Rn having finite first moment:∫
Rn ‖x‖ dµ(x) < ∞. Let Mn denote a subclass of Mn consisting of product-measures, i.e.,
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some extremal properties of the bernoulli distribution 749

the probability measures admitting representation as a product µ = µ1⊗· · ·⊗µn of measures
on the real line with finite first moment.

For a pair of measures µ, ν ∈Mn, we shall write µ ≺ ν whenever for any convex function
f : Rn → R

(1)

∫
Rn

fdµ 5
∫
Rn

fdν.

The order relation ≺ was introduced by Choquet [4] (see also [2, p. 279]; [3, p. 29]) for
positive measures on convex compact subsets of locally convex spaces. We employ the relation
≺ without assumption on support. Note that the integrals in (1) exist (though, possibly
taking value +∞), since any convex function majorizes some affine function but all the linear
functionals are summable with respect to the measures in Mn.

The main issue of study in this note is the following: what is the location of n-dimensional
Bernoulli distribution Pn within Mn and Mn viewed as partially ordered sets, that is what
kind of measures are comparable with Pn? By definition Pn assigns the mass 2−n to every
point of the discrete cube {−1, 1}n, i.e., it is the nth degree of measure P given by P ({−1}) =
P ({1}) = 1

2 . Set Un = {µ ∈Mn: µ ≺ Pn}, Bn = {µ ∈Mn: Pn ≺ µ} so that

Un ≺ Pn ≺ Bn.

Observe at once that two measures have equal means (barycenters), provided that they are
comparable in Mn. Indeed, application of (1) to linear functions f and −f yields equality
in (1) for all the linear f . Therefore, the measures comparable with Pn have zero means.
For a measure µ on R, we denote by m(µ) (any of) its medians; note in this connection that∫
R |x−m(µ)| dµ(x) is independent of the median choice.

Theorem 1. The following relations hold :

U1 =

{
µ ∈M1:

∫
R
x dµ(x) = 0, µ

(
[−1, 1]

)
= 1

}
,

B1 =

{
µ ∈M1:

∫
R
x dµ(x) = 0,

∫
R

∣∣∣x−m(µ)
∣∣∣ dµ(x) = 1

}
.

Theorem 2. One has Un = (U1)n, Bn = (B1)n (in the sense of Cartesian products).
We now state Theorems 1 and 2 in terms of random variables. Let ξ = (ξ1, . . . , ξn),

η = (η1, . . . , ηn) be random vectors composed of random variables (r.v.’s) having finite first
moment. In the same way as for measures, denote by m(λ) a median of r.v. λ.

Corollary 1. Given that for all k = 1, . . . , n,

Eξk = 0, |ξk| 5 1 a.s.,(2)

Eηk = 0, E
∣∣∣ηk −m(ηk)

∣∣∣ = 1,(3)

one has for any convex function f : Rn → R

(4) E f(ξ) 5 E f(η).

If ζ = (ζ1, . . . , ζn), ζk are independent and P{ζk = ±1} = 1
2 (r.v.’s with the law of

distribution P ), then conditions (2) and (3) are satisfied simultaneously, so by virtue of (4)
for all the convex f

(5) E f(ξ) 5 E f(ζ) 5 E f(η).

The converse claim is also valid: if the first (respectively, the second) inequality in (5) holds
for all convex f , then (2) (respectively, (3)) is true.

We present another corollary.D
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750 s. g. bobkov

Corollary 2. If independent r.v.’s ηn (n = 1) meet (3), then for any convex f : R → R
one has

(6) lim inf
n→∞ Ef

(
Sn√
n

)
= E f(λ),

where Sn = η1 + · · ·+ ηn and r.v. λ has a standard normal distribution.
Within the class An the distribution Pn has yet another extremal property.
Theorem 3. Given the validity of (2), one has for all convex smooth functions f :

Rn → R

(7) D f(ξ) 5 2E
∣∣∣∇f(ξ)

∣∣∣2.
Here ∇f is the gradient of f, |∇f |2 =

∑n
k=1(∂f/∂xk)

2.
The constant value 2 appearing in (7) can be sharpened if and only if none of the ξk has

Bernoulli distribution, in which case (7) is fulfilled with the constant 1 + max15k5nDξk in

front of E|∇f(ξ)|2. However, when ξk = ζk for some k, (7) turns into equality on f(x) =
max(xk + 1, 0) (in asymptotic sense, i.e., on some sequence of convex smooth fm converging
to f).

Let (ξn)n=1 be a sequence of independent r.v.’s, Eξn = 0, having a common nondegen-
erate distribution with compact support in R. Let (ηn)n=1 be another sequence of r.v.’s with
the same properties (but having a different common distribution). Consider two stochastic
processes:

(8) x(t) =
∞∑
n=1

an(t) ξn, y(t) =

∞∑
n=1

an(t) ηn, t ∈ T,

linearly generated by r.v.’s ξn and ηn, respectively. Here the coefficients an are arbitrary
functions given on a parametric (abstract) set T , moreover, the series in (8) are assumed to
be convergent a.s. for all t ∈ T , i.e.,

∑
n=1 an(t)2 < +∞.

Corollary 3. A stochastic process x(t), t ∈ T , is sample bounded , i.e., supt∈T x(t) <
+∞ a.s., if and only if it is a process y(t), t ∈ T .

If it were true that all the r.v.’s ξn have N (0, 1)-distribution, then (8) would provide
the general form of decomposition of a centered Gaussian stochastic process x(t). In that
case, the final solution to the problem of establishing necessary and sufficient conditions of
boundedness for x(t) realizations was obtained by M. Talagrand (this problem, with some
simplifications in proofs, was elucidated in detail by M. Ledoux [1]). In the case of Bernoullian
r.v.’s ξn (the corresponding stochastic process is called Bernoullian by M. Ledoux, see [1,
p. 73]) no necessary and sufficient conditions of boundedness are known for x(t). Corollary 3
indicates that in the case of bounded r.v.’s ξn the problem of establishing conditions for
boundedness of x(t) is reduced to studying Bernoullian generating variables.

Proof of Theorem 2 follows easily by induction, if we use the following statement.
Lemma 1. Let µ1, ν1 and µ2, ν2 be probability measures in Rn and Rm, respectively.

Then if µ1 ≺ µ2 and ν1 ≺ ν2, one has µ1 ⊗ ν1 ≺ µ2 ⊗ ν2.
As usual the product of measures µ and ν is denoted by µ⊗ ν.
Proof of Lemma 1. We first remark that definition (1) can be extended to all the

functions f : Rn−→(−∞,+∞] meeting the inequality

f
(
tx+ (1− t) y

)
5 tf(x) + (1− t) f(y), x, y ∈ Rn, t ∈ [0, 1]

(the value +∞ is admitted). Let f : Rn+m → R be convex. Then the following function will
be “wide sense” convex:

g(y) =

∫
f(x, y) dµ1(x), h(y) =

∫
f(x, y) dµ2(x),D
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some extremal properties of the bernoulli distribution 751

moreover, g(y) 5 h(y) for all y ∈ Rm. Applying (1) to g, using the Fubini theorem, we have∫
Rn+m

f dµ1 ⊗ ν1 =

∫
Rm

g dν1 5
∫
Rm

g dν2 5
∫
Rm

h dν2 =

∫
Rn+m

f dµ2 ⊗ ν2.

The lemma is proved.
Proof of Theorem 1. We shall only consider the measures having zero mean, since, as

was already noted, µ ≺ ν entails
∫
x dµ(x) =

∫
x dν(x).

Consider first the former assertion (the description of class A1). When µ ≺ P , supp(µ) ⊂
[−1, 1]; otherwise, for instance if µ((1,+∞)) > 0, the value

∫
f dµ can be arbitrarily large,

whereas f(−1) and f(1), hence also
∫
f dP , remain constant. Conversely, let supp(µ) ⊂

[−1, 1]. Then for all x ∈ [−1, 1] and any convex f ,

f(x) 5 1− x

2
f(−1) +

1 + x

2
f(1).

Consequently,
∫
f dµ 5 [f(−1) + f(1)]/2 =

∫
f dP . Thus, µ ≺ P .

Now we show that P ≺ µ⇐⇒ ∫
R |x−m(µ)| dµ(x) = 1. Any convex function f : R → R

satisfies the inequalities

f(x) = f(−1) + f ′(−1− 0) (x+ 1) = f−1(x),

f(x) = f(1) + f ′(1 + 0) (x− 1) = f1(x)

for arbitrary x ∈ R. Hence f(x) = f0(x) = max{f−1(x), f1(x)} and therefore
∫
f dµ =∫

f0dµ. But f(x) = f0(x) for x = ±1, so
∫
f dP =

∫
f0dP . Consequently,

∫
f dµ =

∫
f dP is

valid for all convex f if and only if the same holds for functions of the f0-kind, i.e., for the
functions of the following form

f(x) =

{
α(x− x0) + c, x 5 x0,

β(x− x0) + c, x = x0,

where α 5 β, c ∈ R, |x0| 5 1. Given α = β, f is an affine function, hence
∫
f dµ = f(0) =∫

f dP . If α < β,∫
f dµ = c+ α

∫ x0

−∞
(x− x0) dµ(x) + β

∫ ∞

x0

(x− x0) dµ(x)

= c− βx0 − (β − α)

∫ x0

−∞
(x− x0) dµ(x),∫

f dP = c− βx0 − (β − α)

∫ x0

−∞
(x− x0) dP (x),

because µ and P have zero means. Thus the sign of the value∫
f dµ−

∫
f dP = −(β − α)

∫ x0

−∞
(x− x0) d(µ− P ) (x)

depends neither on c nor on α and β, so one can set c = 0, α = −1, β = 1 yielding
f(x) = |x− x0|. Consequently,

P ≺ µ⇐⇒
∫
|x− x0| dµ(x) =

∫
|x− x0| dP (x) for all x0 ∈ [−1, 1].

But for these x0 we have
∫ |x− x0| dP (x) = 1 and the following characterization results:

(9) P ≺ µ⇐⇒
(
∀x0 ∈ [−1, 1]

) ∫
R
|x− x0| dµ(x) = 1D

ow
nl

oa
de

d 
01

/2
0/

15
 to

 1
28

.1
12

.6
6.

66
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



752 s. g. bobkov

(µ is assumed to have finite first moment, and, moreover,
∫
R x dµ(x) = 0). Observe that for

all x0 ∈ R ∫
R
|x− x0| dµ(x) =

∣∣∣∣ ∫
R

(x− x0) dµ(x)

∣∣∣∣ = |x0|.

Therefore, given the validity of the inequality in the right-hand side of (9) for all x0 ∈ [−1, 1],
the same is true for all x0 ∈ R. Consequently,

P ≺ µ⇐⇒ inf
a∈R

∫
R
|x− a| dµ(x) =

∫
R

∣∣∣x−m(µ)
∣∣∣ dµ(x) = 1.

Theorem 1 is thus proved.
Remarks. The role played by the independence property in the context of Corollary 1 is a

question of interest. In particular, when ξ = (ξ1, . . . , ξn), Eξi = 0, |ξi| 5 1 a.s. and, moreover,
the independence of ξi is not assumed, it is interesting to know when the distribution µ of
a random vector ξ is majorized by the multidimensional Bernoulli distribution Pn. The
following simple condition can be proposed.

Theorem 4. If , for any 1 5 i1 < · · · < ik 5 n,

(10) E ξi1 · · · ξik = 0,

then µ ≺ Pn.
Proof of Theorem 4. Set ε = (ε1, . . . , εn) ∈ {−1, 1}n, x ∈ [−1, 1]n for pε(x) =

2−n
∏n
i=1(1 + εixi). Obviously,

pε(x) = 0,
∑

ε∈{−1,1}n
pε(x) = 1,

since the sum above can be written as

E(1 + ζ1x1) · · · (1 + ζnxn) = E(1 + ζ1x1) · · ·E(1 + ζnxn) = 1,

where ζ1, . . . , ζn are independent Bernoullian variables. In a similar manner one verifies the
identity ∑

ε

pε(x) ε = x.

Therefore, for any convex f : Rn → R

f(x) 5
∑
ε

pε(x) f(ε),

and, having integrated in measure µ this inequality, we obtain∫
R
f dµ 5

∑
ε

E pε(ξ1, . . . , ξn) f(ε) = 2−n
∑
ε

f(ε) =

∫
Rn

f dPn,

since

E pε(ξ1, . . . , ξn) = 2−nE(1 + ε1ζ1) · · · (1 + εnζn)

= 2−n
(

1 +
∑

15i1<···<ik5n
εi1 · · · εikEξi1 · · · ξik

)
= 2−n.

Consequently, µ ≺ Pn.
Example 1. A sequence of r.v.’s ξi(ω) = cos(2iω), 0 5 i 5 n, given on a probability

space ((−π, π), dω/(2π)) meets (10), so its distribution is majorized by Pn+1.
Example 2. For ε1, . . . , εn = ±1, let random vectors (ξ1, . . . , ξn) and (ε1ξ1, . . . , εnξn)

have the same distribution. By Theorem 3, whenever |ξi| 5 1 a.s., one has µ ≺ Pn. It isD
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some extremal properties of the bernoulli distribution 753

noteworthy that this claim can be converted. Whenever |ξi| = 1 a.s., Pn ≺ µ. This fact is
readily established by induction, upon representing µ as a mixture

∫
R µtdπ(t) so that the

conditional measure µt be concentrated on the hyperplane xn = t, and employing the same
reasoning as in the proof of Lemma 1.

Proof of Theorem 3. Assume first n = 1 and let f be a convex smooth function on R.
Since the derivative f ′ is nondecreasing for any x, y ∈ R, one has∣∣∣f(x)− f(y)

∣∣∣ 5 max
{∣∣∣f ′(x)∣∣∣, ∣∣∣f ′(y)∣∣∣} |x− y|,

so ∣∣∣f(x)− f(y)
∣∣∣2 5

(∣∣∣f ′(x)∣∣∣2, ∣∣∣f ′(y)∣∣∣2) (x− y)2.

Hence, for the variance of f with respect to µ, we get

Df =
1

2

∫
R

∫
R

∣∣∣f(x)− f(y)
∣∣∣2dµ(x) dµ(y)

5 1

2

∫
R

∫
R

(∣∣∣f ′(x)∣∣∣2 +
∣∣∣f ′(y)∣∣∣2) (x− y)2dµ(x) dµ(y)

=
1

2

∫
R

∫
R

∣∣∣f ′(x)∣∣∣2(x2 + y2)dµ(x) dµ(y) +
1

2

∫
R

∫
R

∣∣∣f ′(y)∣∣∣2(x2 + y2) dµ(x) dµ(y)

−
∫
R

∫
R

(
f ′(x)2 + f ′(y)2

)
xy dµ(x) dµ(y) =

∫
R

∣∣∣f ′(x)∣∣∣2(x2 + σ2) dµ(x),

where σ2 =
∫
R x2dµ(x) (writing out the last inequality we have taken into account the

hypothesis on zero mean of µ). Note that the smoothness condition can be dropped by
rendering to |f ′(x)| the value max{|f ′(x− 0)|, |f ′(x+ 0)|}.

We demonstrate by induction that, given

µ = µ1 ⊗ · · · ⊗ µn,

∫
R
x dµi(x) = 0,

∫
R
x2 dµi(x) = σ2

i ,

for any convex smooth f : Rn → R one has

(11) D f 5
n∑
i=1

∣∣∣∣∂f(x)

∂xi

∣∣∣∣2(x2
i + σ2

i ) dµ(x).

Realizing the inductive passage, consider a convex smooth function f : Rn+1 → R. Fix
xn+1 ∈ R and write (11) for the function x ∈ Rn−→ f(x, xn+1):∫

Rn

f(x, xn+1)
2dµ1 ⊗ · · · ⊗ µn(x) 5

[ ∫
Rn

f(x, xn+1) dµ1 ⊗ · · · ⊗ µn(x)

]2
+

n∑
i=1

∫
Rn

∣∣∣∣∂f(x, xn+1)

∂xi

∣∣∣∣2(x2
i + σ2

i ) dµ1 ⊗ · · · ⊗ µn(x).(12)

Set g(xn+1) =
∫
Rn f(x, xn+1) dµ1⊗· · ·⊗µn(x). This function is convex, and one can apply

the inequality established for n = 1:∫
R
g(xn+1)

2 dµn+1(xn+1) 5
[ ∫

R
g(xn+1) dµn+1(xn+1)

]2
+

∫
R

∣∣∣g′(xn+1)
∣∣∣2(x2

n+1 + σ2
n+1) dµn+1(xn+1).

But
∫
R g dµn+1 =

∫
Rn+1 f dµ by the Fubini theorem and

g′(xn+1) =

∫
Rn

∂f(x, xn+1)

∂xn+1
dµ1 ⊗ · · · ⊗ µn(x),D
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754 s. g. bobkov

whereas by the Schwarz inequality

g′(xn+1)
2 5

∫
Rn

∣∣∣∣∂f(x, xn+1)

∂xn+1

∣∣∣∣2µ1 ⊗ · · · ⊗ µn(x).

Thus we have∫
R
g(xn+1)

2 dµn+1(xn+1)

5
(∫

Rn+1

f dµ

)2

+

∫
Rn+1

∣∣∣∣∂f(x, xn+1)

∂xn+1

∣∣∣∣2(x2
n+1 + σ2

n+1) dµ(x, xn+1).(13)

Integrating (12) in xn+1 variable and taking into account (13) we deduce (11) for n + 1.
Whenever supp(µi) ⊂ [−1, 1], (11) implies the inequality

D f 5 max
15i5n

(1 + σ2
i )E|∇f |2.

Theorem 3 is proved.
Proof of Corollary 2. By Theorem 1,

E f

(
Sn√
n

)
= E f

(
ζ1 + · · ·+ ζn√

n

)
=

∫ +∞

−∞
f(x) dFn(x),

where Fn is the distribution function of (ζ1 + · · · + ζn)/
√
n. Without loss of generality, set

f(0) = 0. Since the distribution associated with Fn is symmetric with respect to zero, we
have∫ +∞

−∞
f dFn =

∫ +∞

0

(
f(x) + f(−x)

)
dFn(x) =

∫ +∞

0

(
1− Fn(x)

)
d
(
f(x) + f(−x)

)
.

The function G(x) = f(x)+ f(−x) is nondecreasing on [0,+∞), and one can therefore apply
the Fatou lemma:

lim inf
n→∞

∫ +∞

−∞
f dFn =

∫ +∞

0

lim inf
n→∞

(
1− Fn(x)

)
dG(x)

=

∫ +∞

0

(
1− Φ(x)

)
dG(x) =

∫ +∞

0

G(x) dΦ(x),

where Φ is the distribution function of a standard normal r.v. λ. It remains to observe that∫ +∞

0

GdΦ < +∞

if and only if ∫
R
f dΦ < +∞.

In any case ∫ +∞

0

GdΦ =

∫
R
f dΦ.

Proof of Corollary 3. Note first that the studied suprema of stochastic processes are
understood as the structural suprema. The space L0 of all random variables with the usual
order relation is a conditionally complete lattice; moreover, the supremum of any bounded
subset K ⊂ L0 is that of some countable subset in K. Thus one can consider a countable
parametric set T in Corollary 3. We show first that

sup
t
x(t) < +∞ a.s. ⇐⇒E sup

t
x(t) < +∞,D
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the same being true for y(t).

When E supt x(t) < +∞ one obviously has supt x(t) < +∞ a.s. Conversely, without
loss of generality assume |ξn| 5 1 a.s., n = 1. Since W = supt x(t) < +∞ a.s., it is obvious
that the variances

Dx(t) =
∞∑
n=1

∣∣∣an(t)
∣∣∣2D ξ1

are bounded by some constant σ2. Let

fn(x) = sup
t

n∑
k=1

ak(t)xk, x = (x1, . . . , xn) ∈ Rn.

This function is convex and Lipschitzian, moreover, ‖fn‖Lip 5 σ. By Theorem 2 we have
Dfn 5 2σ2. Assume first T to be finite. Because a.s. fn(ξ1, . . . , ξn)−→W as n → ∞, we
conclude (for example, due to the Fatou lemma) that DW 5 2σ2. If T = {tn: n = 1}
is infinite, considering r.v.’s Wn = sup15k5n x(tk) and using the fact that Wn → W as

n → ∞, DWn 5 2σ2, we establish that DW 5 2σ2 in the general case. In particular,
EW < +∞ (to avoid the definition of variance by means of EW one should employ the
identity DW = 1

2 E|W −W ′|, where W ′ is an independent copy of W ).

By Theorem 1, E supt x(t) < +∞⇐⇒E supt y(t) < +∞. Indeed, for any convex func-
tion f : Rn → R, inequality (4) gives

(14) E f

(
ξ

c

)
5 E f

(
η

d

)
,

where ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn), c = ess sup|ξ1|, d = E|η1 −m(η1)|. Applying (14)
to fn, and using homogeneity we arrive at the inequality

E fn(ξ) 5 c

d
Efn(η).

Since this inequality is independent of dimension, one can extend it to the infinite-dimensional
case.

In conclusion the author wishes to express his gratitude to the anonymous referee for
careful reading and useful comments.
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