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Abstract. In this paper, we prove the Khinchin-type inequality (E|f(ξ)|p)1/p � C(p, d)E|f(ξ)|
for polynomials in components of random vectors in a space with logarithmically concave density.
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Some years ago Prokhorov investigated the Khinchin-type inequalities(
E|f(ξ)|2

)1/2 � C(d)E|f(ξ)|(1)

in the class of polynomials f of degree n. In [9], using the expansion in Hermite polynomials
he proved this inequality in the case of normally distributed random variables ξ. In [10] the
Laguerre polynomials were used to prove inequalities of the form (1) for Gamma-distributed
random variables. Like the results themselves, of indisputable interest is the approach to (1)
based on the application of the well-known Markov inequality connecting the maximum
values of a polynomial and its derivative on a finite interval. In both cases this approach made
it possible to obtain inequality (1) with regular exponential growth of the coefficients C(d)
as the power d increases. The following statement proved in [2] is a natural generalization
of the results mentioned above.

Theorem 1. Inequality (1) holds in the class of all polynomials f on R of degree d
in arbitrary sets of random variables ξ = (ξ1, . . . , ξn) having joint logarithmically concave
density on Rn, with the coefficient of the form C(d) = Cd, where C is a universal constant.

Recall that a nonnegative function ρ in Rn is called logarithmically concave if it satisfies
the inequality ρ((1− t)x+ ty) � ρ(x)1−tρ(y)t for all x, y ∈ Rn and t ∈ (0, 1).

In the one-dimensional case (n = 1) Theorem 1 can be easily proved if the rate of increase
of coefficients C(d) is not taken into account (see [3]). However, in the form presented above
the statement becomes much more delicate. For the first time the question of comparability
of the Lp- and L1-norms for multivariate polynomials, with respect to the uniform distri-
bution λK on a convex compact body K in Rn, was formulated by Milman. The solution
of this problem using the Knothe parametrization was given by Bourgain [4] who obtained
an estimate for the probabilities of large deviations λK{|f | � tE|f |} � exp{−tc/d}, t � t0,
where c ∈ (0, 1) and t0 > 0 are absolute constants. Equivalently, for a random vector ξ with
the uniform distribution on K, the Khinchin-type inequality(

E|f(ξ)|p
)1/p � C(p, d)E|f(ξ)|(2)

holds with constants of the form C(p, d) = (Cpd)Cd, C > 1. Previously, Gromov and
Milman [5] considered the linear case d = 1. From a special case of Bourgain’s result (as
applied to the uniform distribution on the cube [−1, 1]n with growing dimension n), by
virtue of the central limit theorem, inequality (1) follows for normally distributed random
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variables ξ, however, with the worse increase rate of the constants C(d) as compared with
Prokhorov’s result. Later Lovász and Simonovits [8] introduced the so-called localization
method which makes it possible to reduce some relations between multidimensional integrals
to those between one-dimensional integrals (in connection with isoperimetric problems on a
sphere, ideas were earlier developed in [6]; also see [1]). Developing this method, Kannan,
Lovász, and Simonovits, in particular, proved an important theorem [7, Theorem 2.7] from
which we obtain the following result.

Theorem 2. Let p � 1, C � 1, and let f be a continuous function on Rn. The
inequality (E|f(ξ)|p)1/p � CE|f(ξ)| holds for all random vectors ξ having logarithmically
concave density on Rn if and only if it holds for random vectors of the form ξ = a+ηb, where η
is a [0, 1]-valued random variable with the density λ e−λx/(1− e−λ), x ∈ [0, 1] (a, b ∈ Rn and
λ ∈ R are arbitrary parameters).

If f = f(x1, . . . , xn) is a polynomial of degree d in n variables and t ∈ R, then f(a+ tb)
is a polynomial of degree no higher than d in one variable. Therefore, Theorem 2 reduces
inequalities (1) and (2) to the one-dimensional case n = 1. Moreover, to estimate the constant
coefficients C(p, d), choosing an appropriate scaling if necessary, one can assume that the
random variable ξ has the truncated exponential distribution νn with the density

dνu(x)

dx
=

e−x

1− e−u
1(0,u)(x), x ∈ R, u > 0

(as the limit case, we obtain the standard exponential distribution ν+∞ = ν with the den-
sity e−x, x > 0).

Thus, Theorem 2 considerably simplifies the situation. However, the question of the
extremal polynomials and distributions providing the values of optimal constants in (2) still
remains open and some additional means should be brought in to investigate the asymptotic
behavior of C(p, d) as a function of two parameters. As was shown in [2], combining the
approach of Prokhorov with Theorem 2 one can obtain Theorem 1 (with C = e11). If

inequality (1) is sequentially applied to the polynomials f2, f4, . . . , f2
k

, then with p � 2 we
arrive at inequality (2) with coefficients C(p, d) = pCd, where C > 1 is a constant. In this
paper, we will demonstrate a way to obtain a more accurate assertion.

Theorem 3. Inequality (2) holds in the class of all polynomials f on Rn of degree d
in arbitrary random vectors ξ with logarithmically concave density on Rn; moreover, the
coefficient has the form C(p, d) = (Cp)d, where C is a universal constant.

Note that, as is demonstrated by the example of the polynomial f(x) = xd and a random
variable having the standard exponential distribution ν, the optimal constant in (2) must
satisfy the inequality C(p, d) � cpd/d(p−1)/(2p) with some c > 0.

To prove Theorem 3 we need some preparations. We rely upon Theorems 1 and 2 and
use the reasoning from [10].

Lemma. Let the random variable ξ have the distribution ν. For any polynomial f on R
of degree d � 1 and any p � 1 we have(

E|f(ξ)|p
)1/p � (e12p)d E|f(ξ)|.

Proof. Denote ‖η‖p = (E|η|p)1/p. By Theorem 1 with C = e11, we can assume that

p � 2. By virtue of homogeneity, we can assume that ‖f(ξ)‖22 =
∫ +∞
0

x2|f(x)|2e−xdx = 1.
Introduce the Laguerre polynomials

Lk(x) =
ex

k!

dk

dxk
(xke−x) =

k∑
j=0

(−1)jCj
k

xj

j!
, k = 0, 1, . . . .(3)

They constitute a complete orthonormal system in L2(ν); furthermore, f is representable as

f =
∑d

k=0
akLk, where

∑d

k=0
|ak|2 = 1. Therefore, |f |2 �

∑d

k=0
|Lk|2 and

‖f(ξ)‖2p =
∥∥|f(ξ)|2∥∥

p/2
�

d∑
k=0

∥∥ |Lk(ξ)|2
∥∥
p/2

=

d∑
k=0

‖Lk(ξ)‖2p.(4)
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It can be easily deduced from the Stirling formula that Γ(pj+1)1/p � pjΓ(j+1) for all p � 2
and all integers j � 0. By (3) we obtain

‖Lk(ξ)‖p �
k∑

j=0

Cj
k

‖ξj‖p
j!

=

k∑
j=0

Cj
k

Γ(pj + 1)1/p

j!
�

k∑
j=0

Cj
kp

j = (p+ 1)k.

Applying (4), we conclude that

‖f(ξ)‖2p �
d∑

k=0

(p+ 1)2k � (d+ 1)(p+ 1)2d < (2p)2d, d � 2,

and ‖f(ξ)‖2p � 1+(p+1)2 < (2p)2 for d = 1. Thus, ‖f(ξ)‖p � (2p)d‖f(ξ)‖2. Now it remains
to apply Theorem 1. The lemma is proved.

Proof of Theorem 3. By virtue of Theorem 2 it suffices to prove the inequality(
E|f(ξu)|p

)1/p � (Cp)d E|f(ξu)|, p � 1, u > 0,(5)

with some universal constant C, where f is an arbitrary polynomial of degree d � 1, and ξu
is a random variable with distribution νu. As above, ‖η‖p = (E|η|p)1/p (1 � p � +∞).

Step 1. 0 < u < 24d. Let x0 ∈ [0, u] be the point of maximum of |f | on the interval
[0, u]. Without loss of generality, let f(x0) > 0. By the Markov inequality we have

‖f ′(ξu)‖∞ = max
0�x�u

|f ′(x)| � 2d2

u
max
0�x�u

|f(x)| = 2d2

u
‖f(ξu)‖∞.

Therefore, for all x ∈ [0, u]

f(x) � f(x0)− ‖f ′(ξu)‖∞|x− x0|

� f(x0)− 2d2

u
‖f(ξu)‖∞|x− x0| =

(
1− 2d2

u
|x− x0|

)
‖f(ξu)‖∞.

Hence, for points x from the interval δ = [x1, x2] ≡ [x0 − u/(4d2), x0 + u/(4d2)] ∩ [0, u] the
estimate f(x) � 1

2
‖f(ξu)‖∞ is valid. Consequently,

‖f(ξu)‖1 �
∫
δ

f(x) dνu(x) � 1

2
‖f(ξu)‖∞νu(δ).(6)

Moreover, since x2 − x1 � u/(4d2), for some point x3 ∈ [x1, x2] we have

νu(δ) =
e−x1 − e−x2

1− e−u
=

x2 − x1
1− e−u

e−x3 � 1

4d2
u

1− e−u
e−24d � 1

4d2
e−24d.

Combining this with (6), we obtain 8d2e24d‖f(ξu)‖1 � ‖f(ξu)‖∞ � ‖f(ξu)‖p. Hence (5)
easily follows.

Step 2. u � 24d. Let ξ be a random variable with distribution ν. Applying the Cauchy–
Bunyakovskii inequality and Theorem 1 (again with C = e11), we have∫ ∞

u

|f(x)| e−x dx � ‖f(ξ)‖2
[
ν(u,+∞)

]1/2 � e11d−u/2‖f(ξ)‖1 � e−d‖f(ξ)‖1.

Therefore,

1

1− e−u

∫ ∞

u

|f(x)| e−x dx � 1

e(1− e−24)
‖f(ξ)‖1 � 1

2
‖f(ξ)‖1,

which is equivalent to the inequality E|f(ξu)| � 1
2
E|f(ξ)|. Finally, by virtue of the lemma

we have

E|f(ξu)|p =
1

1− e−u

∫ u

0

|f(x)|p e−x dx � 1

1− e−24

∫ ∞

0

‖f(x)‖pe−xdx

=
1

1− e−24
E‖f(ξ)‖p � 2(e12p)pd

(
E|f(ξ)|

)p � 2p+1(e12p)pd
(
E|f(ξu)|

)p
.

So, we arrive at inequality (5) with C = 4e12. Theorem 3 is proved.
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