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LOCALIZATION PROOF OF THE BAKRY–LEDOUX
ISOPERIMETRIC INEQUALITY AND SOME APPLICATIONS∗

S. G. BOBKOV†

(Translated by M. V. Khatuntseva)

Abstract. A Gaussian-type isoperimetric inequality due to D. Bakry and M. Ledoux is proved
by means of the localization lemma of Lovász and Simonovits. Some applications on sharp large
deviations are given.
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Let γn be a standard Gaussian measure in Rn. Denote by Φ the standard normal
distribution function,

Φ(x) = γ1(−∞, x] =
1√
2π

∫ x

−∞
e−t2/2 dt, x ∈ R,

and by Φ−1 : [0, 1] → [−∞,+∞] the inverse function. As usual, ϕ(x) = (2π)−1/2 e−x2/2.
The isoperimetric theorem in the Gauss space (Rn, γn) states that for all measurable

A ⊂ Rn and all h > 0

γn(A
h) � Φ

(
Φ−1(γn(A)) + h

)
,(1)

where Ah = {x ∈ Rn : ∃ a ∈ A : |a−x| < h} is an open h-neighborhood of the set A in a sense
of ordinary Euclidean distance in Rn. This important property of the Gaussian measure was
discovered by Sudakov and Tsirel’son [26] and Borell [10]; they obtained inequality (1) as a
corollary of the Lévy–Schmidt theorem on isoperimetric properties of balls on a sphere. Later
Ehrhard [12] proposed a direct proof introducing the Gaussian symmetrization technique
(see [9], [11], [22]). As was shown in [5], one can also derive (1) using an integral differential
inequality for independent Bernoulli variables. Some abstract generalizations were studied
in [6]; see also [3].

We consider the following natural generalization of the Gaussian isoperimetric inequality
which was obtained by Bakry and Ledoux with use of a well developed semigroup technique
[2], [21]. Let µ be an absolutely continuous probability measure on Rn with a density of
the form dµ(x)/dx = e−U(x), where U is a convex twice continuously differentiable function,
whose second derivative satisfies (in the sense of comparing positively definite matrices in all
points of the space) inequality cU ′′(x) � Id (c > 0 is some constant). Then

µ(Ah) � Φ

(
Φ−1(µ(A)) +

h

c

)
.(2)

In frames of the more abstract scheme of diffusion generators, Bakry and Ledoux consider the
statement of such type as an infinite dimensional analogue of the Gromov theorem [13], [14]
generalizing the isoperimetric inequality on a sphere onto the Riemannian manifolds with the
Ricci curve bounded from below. Considering the same measures on Rn and, without loss
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of generality, the case c = 1 in inequality (2), we can give the following equivalent statement
of the Bakry–Ledoux result.

Theorem 1. If a probability measure µ on Rn has a log-concave density with respect to
the measure γn, then for all measurable A ⊂ Rn and all h > 0

µ(Ah) � Φ
(
Φ−1(µ(A)) + h

)
.

Recall that a nonnegative function ρ defined on Rn is called log-concave if, for all
x, y ∈ Rn and all t ∈ (0, 1), the inequality ρ((1− t)x+ ty) � ρ(x)1−tρ(y)t holds. Up to the
set of the Lebesgue measure zero, we can represent such a function in the form ρ(x) = e−U(x),
x ∈ K, where U is a convex function on some open convex set K ⊂ Rn, setting ρ = 0 outside
ofK (in this representation ρ is semicontinuous from below). In particular, Theorem 1 can be
applied to the normalized contraction of the measure γn onto the arbitrary convex subset Rn

of the positive measure.
Note that using (1) we obtain inequality (2) for each image µ = γnT

−1 of the measure γn
under the map T : Rn → Rn having a finite Lipschitz seminorm c = ‖T‖Lip. For example, as
was noted in [16], the uniform distribution on a cube [0, 1]n can be obtained from γn with the
help of the map T with the Lipschitz seminorm c = 1/

√
2π. The uniform distribution on a

ball of volume 1 (hence of radius
√
n ) can also be obtained in the same way and the respective

Lipschitz seminorm will be bounded by a constant independent of the dimensionality [8].
Continuing the analogy it will be interesting to see whether or not one can obtain the
Bakry–Ledoux theorem in the same way (the problem of the intrinsic characterization of a
class of all Lipschitz images of the Gaussian measure has not yet been solved).

There exists another way that permits us to obtain Theorem 1 and the Gaussian isoperi-
metric inequality as a direct corollary of the general localization lemma of Lovász and Si-
monovits [23]. The localization method in the form of [23] and [17] permits us to reduce
some relations between multidimensional integrals to the relations between one-dimensional
integrals, and, as we shall show in this paper, it particularly concerns inequality (2) (similar
ideas were developed earlier by Gromov and Milman who investigated isoperimetric inequal-
ities on a sphere; see [15], [1]). In the one-dimensional case probability measures having a
log-concave density with respect to γ1 are indeed Lipschitz images of γ1, and thus we can
apply the one-dimensional inequality (1).

Denote by Fn a family of all functions f : Rn → R such that ‖f‖Lip � 1. Inequality (2)
admits a series of equivalent statements in terms of distributions of Lipschitz functions in
the same way as (1). For example, under the conditions of Theorem 1 we can equivalently
affirm that for any f ∈ Fn there exists a nondecreasing function f∗ ∈ F1 having the same
distribution with respect to γ1 as f has with respect to µ: µf−1 = γ1(f

∗)−1. From here, in
particular, follows an inequality for probabilities of deviations of f from its median m(f):

µ
{
f −m(f) � h

}
� 1− Φ(h), h > 0.

We can write, with little degradation of the right-hand side, an analogous estimate for
probability deviations of f from its mean value Eµf =

∫
f dµ. Cirel’son, Ibragimov, and

Sudakov [16] were the first to study this problem in the Gaussian case µ = γn; they proved
the inequality

γn{f − Eγnf � h} � 2(1− Φ(h)), h > 0.(3)

The approach proposed in [16] is purely Gaussian. It is based on the representation of
f −Eγnf in the form of a functional of a Brownian process with random time and does not
use Gaussian isoperimetric inequality. For large h, inequality (3) can be improved with the
help of one Gaussian correlation identity (see [7]):

γn{f − Eγnf � h} � ϕ(h)

h
, h > 0.

Indeed, relying on (1) and (2), one can get the exact information.
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Corollary 1. Let µ be a probability measure on Rn having a log-concave density with
respect to the measure γn. Then

sup
f∈Fn

µ{f − Eµf � h} � sup
f∈Fn

γn{f − Eγnf � h} = 1− Φ(α(h)), h > 0,

where α = α(h) is a unique root of αΦ(α) + ϕ(α) = h.
Obviously, α(h) → −∞ for h→ 0+, so the constant 2 in (3) cannot be improved.
Let us note one more corollary of Theorem 1. Let us introduce the identity function

f1(x) = x on R.
Corollary 2. Let µ be a probability measure on Rn having a log-concave density with

respect to γn, and let Ψ be a convex function on R. Then for all f ∈ Fn with mean Eµf = 0

EµΨ(f) � Eγ1Ψ(f1).(4)

In the Gaussian case µ = γn such comparative estimates have also been studied by many
authors. In the case Ψ(x) = x2 inequality (4) follows from an inequality of the Poincaré type
for a Gaussian measure. In the case Ψ(x) = eλx we arrive at the other known inequality

Eγne
λf � eλ

2/2, λ ∈ R.(5)

Although first obtained by Pisier and Maurey (see [25]), who applied, as in [16], functionals
of a Brownian process, Ledoux [18] found another proof based on the properties of Ornstein–
Uhlenbeck operators. Later it was discovered [19], [20] that (5) follows from the logarithmic
Gross inequality. Under the additional assumption of a convexity of the function f , in-
equality (5) follows from one exponential inequality of Tsirel’son for a Gaussian random
process [27], [28]. The case of an arbitrary convex function Ψ in the inequality

EγnΨ(f) � Eγ1Ψ(f1)(6)

was considered by Pinelis [24]. He modified the approach proposed in [25] and obtained the
more general inequality for the case where the Lipschitz function f takes values in Rk, and Ψ
is defined and convex on Rk (respectively, the measure γ1 must be replaced with γk). In [24]
it is also shown that (6) implies (3) with a constant e instead of 2 and that this constant
cannot be improved using (6). So inequalities for the deviations from the mean values are
not equivalent to inequalities for moments in a class of convex functions Ψ. We give a simple
proof of (6) using the Gaussian isoperimetric inequality.

Before we begin the proof let us formulate the localization Lovász–Simonovits theorem
mentioned above.

Lemma 1. Let continuous-from-below summable functions u, v on Rn be given such that∫
Rn

u(x) dx > 0,

∫
Rn

v(x) dx > 0.(7)

Then there are a, b ∈ Rn and an affine function � : (0, 1) → (0,+∞) such that∫ 1

0

u((1− t) a+ tb) �(t)n−1 dt > 0,

∫ 1

0

v((1− t) a+ tb) �(t)n−1 dt > 0.(8)

The last two integrals can be considered as normalized n-dimensional integrals of u and
v over a frustum of a cone with an infinitely small base. In (7)–(8) (or, for example, only
in (8)) one can replace symbols of strong inequalities with symbols of weak inequalities.

The proof of Lemma 1 given in [23] consists of two steps. In the first step the decreasing
sequence of compacts Ki contracting in a point or interval [a, b] ⊂ Rn is constructed so that
the normalized integrals

1

Voln(Ki)

∫
Ki

u(x) dx,
1

Voln(Ki)

∫
Ki

v(x) dx

remain positive.
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These integrals converge to one-dimensional integrals but, by the Brunn–Minkowski
inequality, we pass in limit to (8) with some positive concave function � on (0,1). Note that
in this case the function ψ(t) = �(t)n−1 continued by zero outside of (0, 1) is bounded and
log-concave. We apply Lemma 1 in this weakened variant.

Proof of Theorem 1. First we show how Lemma 1 reduces Theorem 1 to the dimen-
sionality n = 1. With respect to the Lebesgue measure, we can write the density of the
measure µ in the form

dµ(x)

dx
= ρ(x)ϕn(x), x ∈ Rn,

where ϕn(x) = dγn(x)/dx = (2π)−n/2 e−|x|2/2 and ρ is the log-concave continuous-from-
below function on Rn. Fix p ∈ (0, 1), h > 0, and choose an arbitrary open set A in Rn of
the measure µ(A) > p. Using the one-dimensional inequality of Theorem 1, we show that
µ(Ah) � Φ(Φ−1(p) + h). Supposing the opposite we introduce the functions

u(x) =
(
Φ(Φ−1(p) + h)− 1Ah(x)

)
ρ(x)ϕn(x), v(x) =

(
1A(x)− p

)
ρ(x)ϕn(x),

where 1A denotes the indicator function. The functions u and v are continuous from below
and

∫
Rn u(x) dx > 0,

∫
Rn v(x) dx > 0. By Lemma 1 there exist a, b ∈ Rn and a bounded

log-concave function ψ : R → [0,+∞) such that∫ 1

0

u
(
(1− t) a+ tb

)
ψ(t) dt > 0,

∫ 1

0

v
(
(1− t) a+ tb

)
ψ(t) dt > 0.

The assumption a = b leads to a contradiction. In the case a = b, we set θ = (b− a)/|b− a|,
r = |b − a| and after a change of variable z = rt we rewrite the last two inequalities in the
form ∫ r

0

u(a+ zθ)w(z) dz > 0,

∫ r

0

v(a+ zθ)w(z) dz > 0,(9)

where w(z) = ψ(z/r).
Introduce a probability measure ν on R concentrated in [0, r] and having on it the

density
dν(z)

dz
=

1

c
w(z) ρ(a+ zθ)ϕn(a+ zθ), z ∈ [0, r],

where c =
∫ 1
0
w(y)ρ(a+ yθ)ϕn(a+ yθ) dy is a normalizing factor. Since |θ| = 1, the function

ϕn(a+ zθ)/ϕ(z) is log-concave with respect to z ∈ R, and thus ν has a log-concave density
with respect to the measure γ1. Now we introduce sets on the line

B = {z ∈ R : a+ zθ ∈ A}, C = {z ∈ R : a+ zθ ∈ Ah}.
Then the inequalities in (9) become

ν(C) < Φ
(
Φ−1(p) + h

)
, ν(B) > p.(10)

By construction, Bh ⊂ C (here the h-neighborhood is considered on the line); hence ν(Bh) �
ν(C). In view of (10) we obtain ν(Bh) < Φ(Φ−1(ν(B)) + h), which contradicts the one-
dimensional inequality of Theorem 1. So

µ(Ah) � Φ
(
Φ−1(µ(A)) + h

)
(11)

for all open, and hence all measurable, A ⊂ Rn as soon as we obtain that inequality for n = 1.
Now we consider the one-dimensional case. Let µ be a probability measure on R having

with respect to the Lebesgue measure a density of the form

f(x) = ρ(x)ϕ(x),(12)

where ρ is a log-concave function on R. Let F (x) = µ(−∞, x] be a distribution function
of the measure µ. The measure µ is concentrated on some interval (α, β), possibly infinite,
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inside which ρ is positive and continuous. Let F−1 : (0, 1) → (α, β) be inverse to F . Show
that the continuously differentiable increasing map T (x) = F−1(Φ(x)) transforming the
measure γ1 into µ has the Lipschitz seminorm ‖T‖Lip � 1. The last is equivalent to the
inequality f(F−1(p)) � ϕ(Φ−1(p)) for all p ∈ (0, 1).

For this we prove the stronger statement: If a positive finite measure µ on R has a
density of the form (12) with a log-concave function ρ and if a point x0 ∈ R is such that
µ(−∞, x0) � p, µ(x0,+∞) � q (where p ∈ (0, 1) is fixed and q = 1− p), then

f(x0) � ϕ
(
Φ−1(p)

)
.(13)

Represent ρ in the form ρ(x) = e−U(x), where U is a convex function finite in some
interval (α, β) of the full µ-measure. Then x0 ∈ (α, β) and we can construct a tangent �
to U at point x0. The function ρ0(x) = e−�(x) is log-concave and on the real axis satisfies
inequality ρ0 � ρ, and a measure µ0 on R defined with respect to the Lebesgue measure
by the density f0(x) = ρ0(x)ϕ(x) satisfies µ0(−∞, x0) � p, µ0(x0,+∞) � q. Moreover,
f0(x0) = f(x0). Hence, without loss of generality we can assume in what follows (proving
our stronger assumption) that U = � is an affine function on (α, β) = R.

So let f(x) = Ceλxϕ(x) with parameters C > 0, λ ∈ R. We have

µ(−∞, x0) =

∫ x0

−∞
f(x) dx = Ceλ

2/2 Φ(x0 − λ) � p,

µ(x0,+∞) =

∫ +∞

x0

f(x) dx = Ceλ
2/2

(
1− Φ(x0 − λ)

)
� q

if and only if C � e−λ2/2 max{p/Φ(x0 − λ), q/(1− Φ(x0 − λ))}. Hence

f(x0) � e−λ2/2 max

{
p

Φ(x0 − λ)
,

q

1− Φ(x0 − λ)

}
eλx0ϕ(x0)

= max

{
p

Φ(x0 − λ)
,

q

1− Φ(x0 − λ)

}
ϕ(x0 − λ).

Since λ may be arbitrary in view of (13) we have to show that for all z ∈ R

max

{
p

Φ(z)
,

q

1− Φ(z)

}
ϕ(z) � ϕ

(
Φ−1(p)

)
.(14)

For z � Φ−1(p) the left-hand side of (14) is of the form (p/Φ(z))ϕ(z). Being a function of z
it is decreasing (since log Φ is concave) and thus it takes the minimal value at the extreme
point z = Φ−1(p). Analogously, at the same point the left-hand side of (14) is minimizing on
the interval z � Φ−1(p). It remains to remark that for z = Φ−1(p) inequality (14) becomes
the equality.

So the map T is a contraction of the measure γ1, and thus one-dimensional isoperimetric
inequality (11) holds for all µ under consideration as soon as it holds for the measure µ = γ1.
This concrete case can also be easily verified (see, for example, [4]). Theorem 1 is proved.

Proof of Corollary 1. As was noted, Theorem 1 can be formulated in the following
way: For any function f ∈ Fn there exists a nondecreasing function f∗ ∈ F1 such that
µf−1 = γ1(f

∗)−1. Thus

sup
f∈Fn

µ{f − Eµf � h} � sup
f∈Fn

γn{f − Eγnf � h} = sup
f∈F+

1

γ1{f − Eγ1f � h},

where F+1 denotes a family of all nondecreasing functions f on R with the Lipschitz seminorm
‖f‖Lip � 1.

We maximize γ1{f−Eγ1f � h} in the class F+1 . Let f ∈ F+1 , a = Eγ1f . If h > f(x)−a
for all x ∈ R, then there is nothing to prove. Otherwise there exists a minimal α ∈ R such
that f(α) = a + h. Remark that the function g(x) = min{x − α, 0} + a + h belongs to F+1
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and satisfies the inequality g(x) � f(x) for all x ∈ R. In particular, Eγ1g � a. Moreover,
since f(x) < f(α) for x < α, it follows that {f � a+ h} = {g � a+ h} = [α,+∞). Hence,

γ1{f − a � h} = γ1{g − a � h} � γ1{g − Eγ1g � h}.
So in view of the fact that the probabilities under consideration do not change after adding
constants to the functions, we can restrict ourselves to a class of functions of the form
g(x) = min{x− α, 0}. For such functions we have

Eγ1g =

∫ α

−∞
(x− α) dΦ(x) = −ϕ(α)− αΦ(α) ≡ −ξ(α).

Thus

γ1{g − Eγ1g � h} = 1− Φ
(
h+ α− ξ(α)

)
if h � ξ(α),(15)

and γ1{g − Eγ1g � h} = 0 in the case h > ξ(α). Further we have ξ′(α) = Φ(α), and
hence the function α − ξ(α) is continuously increasing on the real axis changing in the
interval (−∞, + ∞). Thus the right-hand side in (15) is maximal in the case ξ(α) = h.
This proves Corollary 1.

Proof of Corollary 2. As above, Theorem 1 reduces Corollary 2 to the case where
n = 1, µ = γ1, and f ∈ F+1 . As the following statement shows, here the Gaussian property
is unessential.

Lemma 2. Let µ be a probability measure on R with a finite first moment and let Ψ be
a convex function on R. Then in the class of all nondecreasing functions f on R with the
Lipschitz seminorm ‖f‖Lip � 1 the expression EµΨ(f − Eµf) achieves its maximal value
(possibly, infinite) on the identity function f = f1.

Proof. Set u = f − Eµf , u1 = f1 − Eµf1. We can assume that the function Ψ is
differentiable everywhere and its derivative Ψ′ is bounded. In this case the function ψ(t) =
EµΨ((1− t)u+ tu1) is finite everywhere, differentiable, and

ψ′(t) = EµΨ
′((1− t)u+ tu1

)
(u1 − u), t ∈ R.

Supposing the opposite we assume that EµΨ(u1) < EµΨ(u), i.e., that ψ(1) < ψ(0). Since ψ
is convex, this assumption implies the inequality ψ′(0) < 0, i.e.,

EµΨ
′(u)u1 < EµΨ

′(u)u.(16)

On the other hand, taking into account that Eµu = Eµu1 = 0, u satisfies 0 � u(x)− u(y) �
x− y = u1(x)− u1(y) for all x > y, and Ψ′ is not decreasing, we obtain

EµΨ
′(u)u =

∫ ∫
x>y

(
Ψ′(u(x))−Ψ′(u(y))

)
(u(x)− u(y)) dµ(x) dµ(y)

�
∫ ∫

x>y

(
Ψ′(u(x))−Ψ′(u(y))

) (
u1(x)− u1(y)

)
dµ(x) dµ(y) = EµΨ

′(u)u1.

However, this contradicts (16). Lemma 2 and Corollary 2 are proved.
Remark. After this paper had been prepared, the author learned about the paper [29].

It specifically proves that all the probability measures considered in Theorem 1 can be
represented as Lipschitz images of the standard Gaussian measure in Rn.
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