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1 Introduction

We consider here two asymptotic properties of finite dimensional convex bod-
ies which generate a norm with an unconditional basis. For definiteness, such
a basis is taken to be the canonical basis in Rn. Thus, assume we are given
a convex set K ⊂ Rn of volume voln(K) = 1 which, together with every
point x = (x1, . . . , xn), contains the parallepiped with the sides [−|xj |, |xj | ],
1 ≤ j ≤ n. In addition, K is supposed to be in isotropic position, which is
equivalent to the property that the integrals∫

K

x2
j dx = L2

K , 1 ≤ j ≤ n, (1.1)

do not depend on j.
The isotropic constant LK is known to satisfy c1 ≤ LK ≤ c2, for some

universal c1, c2 > 0. Hence, for the Euclidean norm |x| = (x2
1 + . . . + x2

n)
1/2

we have
c1n ≤

∫
K

|x|2 dx ≤ c2n

and similarly, the average value of |x| over K is about
√
n.

Consider the linear functional

f(x) =
x1 + . . .+ xn√

n
.

By (1.1), its L2-norm over K is exactly ‖f‖2 = LK . As in the case of any
other linear functional, Lp-norms satisfy ‖f‖p ≤ Cp ‖f‖2 for every p ≥ 1 and
some absolute C. Up to a universal constant, this property can equivalently
be expressed as one inequality ‖f‖ψ1 ≤ C ‖f‖2 for the Orlicz norm corre-
sponding to the Young function ψ1(t) = e|t| − 1, t ∈ R. For the concrete
functional f introduced above, this can be sharpened in terms of the Young
function ψ2(t) = e|t|2 − 1.
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Theorem 1.1. ‖f‖ψ2 ≤ C, for some universal C.

The proof might require some information on the distribution of the Eu-
clidean norm of a point x over K. Indeed, if we observe x = (x1, . . . , xn) as a
random vector uniformly distributed in K, and if (ε1, . . . , εn) is an arbitrary
collection of signs, then (ε1x1, . . . , εnxn) has the same uniform distribution
(by the assumption that the canonical basis is unconditional). In particular,

f(x, ε) =
ε1x1 + . . .+ εnxn√

n

has the same distribution as f(x). But with respect to the symmetric
Bernoulli measure Pε on the discrete cube {−1, 1}n, there is a subgaussian
inequality

Pε

{|f(x, ε)| ≥ t
} ≤ 2 e−nt2/(2|x|2), t ≥ 0.

Taking the expectation over K, we arrive at

voln
{
x ∈ K : |f(x)| ≥ t

} ≤ 2
∫
K

e−nt2/(2|x|2) dx. (1.2)

This is how the distribution of the norm |x| can be involved in the study of
the distribution of f(x). The statement of Theorem 1.1 is equivalent to the
assertion that the tails of f admit a subgaussian bound

voln
{
x ∈ K : |f(x)| ≥ t

} ≤ Ce−ct2 .

Hence, it suffices to prove such a bound for the integral in (1.2) taken over a
sufficiently big part ofK. The function e−nt2/(2|x|2) under the integral sign has
the desired subgaussian behaviour on the part of K where |x|/√n ≤ const.
To control large deviations of |x|/√n, we prove:

Theorem 1.2. There exist universal t0 > 0 and c > 0 such that, for all
t ≥ t0,

voln

{
x ∈ K :

|x|√
n

≥ t

}
≤ e−c t√n. (1.3)

For the “normalized” �n1 -ball, this inequality was proved by G. Schechtman
and J. Zinn in [S-Z1], see also [S-Z2] for related results on deviations of the
Euclidean norm and other Lipschitz functions on the �np -balls.

Note that too large t may be ignored in (1.3), since we always have |x| ≤
Cn, for all x ∈ K (V.D. Milman, A. Pajor, [M-P]). Therefore, for t > C

√
n,

the left hand side is zero. For t ≤ C
√
n, the inequality implies

voln

{
x ∈ K :

|x|√
n

≥ t

}
≤ e−c t2/C ,

which means that the Lψ2(K)-norm of the Euclidean norm is bounded by its
L2-norm, up to a universal constant. Thus, Theorem 1.2 can also be viewed as
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a sharpening, for isotropic convex sets with an unconditional basis, of a result
of S. Alesker [A]. We do not know whether the unconditionality assumption
is important for the conclusion such as (1.3). On the other hand, Theorem
1.2 as well as Theorem 1.1 (under an extra condition on the support) can be
extended to all isotropic log-concave probability measures which are invariant
under transformations (x1, . . . , xn) → (±x1, . . . ,±xn), cf. Propositions 5.1
and 6.1 below.

Using Theorem 1.2, one may estimate the integral in (1.2) as follows:∫
K

e−n t2/(2|x|2) dx =
∫

|x|≤t0
√
n

+
∫

|x|≥t0
√
n

≤ e−t2/(2t20) + e−c t0
√
n

≤ 2 e−t2/(2t20)

provided that t ≤ constn1/4. Hence, we obtain the desired subgaussian bound
for relatively “small” t. To treat the values t ≥ constn1/4, one needs to involve
some other arguments which are discussed in section 6.

2 Preliminaries (the case of bodies)

Here we collect some useful, although basically known, facts about the sets
K with the canonical unconditional basis as in section 1. It is reasonable to
associate with K its normalized part in the positive octant Rn

+ = [0,+∞)n,

K+ = 2K ∩ Rn
+.

Thus, if x = (x1, . . . , xn) is viewed as a random vector uniformly distributed
in K, then the vector (2|x1|, . . . , 2|xn|) is uniformly distributed in K+.

The set K+ has the properties:

a) voln(K+) = 1;

b) for all x ∈ K+ and y ∈ Rn
+ with yj ≤ xj , 1 ≤ j ≤ n, we have y ∈ K+;

c)
∫
K+ x

2
j dx = 4L2

K , for all 1 ≤ j ≤ n.

Proposition 2.1. L2
K ≤ 1

2 .

Proof. With every point x = (x1, . . . , xn), the set K+ contains the par-
allepiped

∏n
j=1[0, xj ]. So

∏n
j=1 xj ≤ 1, for every x ∈ K. Since both the

sets K+ and V = {x ∈ Rn
+ :

∏n
j=1 xj ≥ 1} are convex and do not intersect

each other (excluding the points on the boundaries), there exists a separating
hyperplane. But any hyperplane touching the boundary of V has equation
λ1x1 + . . .+ λnxn = n with some λj > 0 such that

∏n
j=1 λj = 1. Therefore,

K+ ⊂ {
x ∈ Rn

+ : λ1x1+...+λnxn
n ≤ 1

}
, and so, by the geometric-arithmetic

inequality,
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1 ≥
∫
K+

λ1x1 + . . .+ λnxn
n

dx ≥
( n∏

j=1

∫
K+

xj dx

)1/n

.

By a Khinchine-type inequality,

∫
K+

xj dx ≥ 1√
2

(∫
K+

x2
j dx

)1/2

=
√

2LK , (2.1)

according to the property c). Thus, 1 ≥ √
2LK .

Remark 2.1. It is a well-known fact that, in the class of all measurable sets K
in Rn of volume one, the integral

∫
K

|x|2 dx is minimized for the normalized
Euclidean ball Bn with center at the origin. Therefore, for isotropic K, we
always have LK ≥ LBn which leads to the optimal dimension-free lower
bound

LK ≥ 1√
2πe

. (2.2)

More generally, in the class of all probability densities q on Rn attaining
maximum at the origin, the quantity q2(0)

∫ |x|2q(x) dx is minimized for the
indicator function of Bn. This property was observed by D. Hensley [H] who
assumed additionally that q is log-concave and symmetric, and later K. Ball
[Ba] gave a shorter argument not using log-concavity and symmetry. In the
one-dimensional case, the property reads as

q(0)
(∫

R
t2q(t) dt

)1/2

≥ 1
2
√

3
. (2.3)

Remark 2.2. The inequality (2.1) is a particular case of the following theorem
due to S. Karlin, F. Proschan, and R.E. Barlow [K-P-B]: Given a positive
random variable ξ with a log-concave density on (0,+∞), for all real s > 1

E ξs ≤ Γ (s+ 1) (E ξ)s.

Equality is achieved if and only if ξ has an exponential distribution, that is,
when Prob{ξ > t} = e−λt, t > 0, for some parameter λ > 0.

Proposition 2.2. For every hyperspace H in Rn,

voln−1(K ∩H) ≥ 1√
6
.

Moreover, if K is invariant under permutations of coordinates, then every
section Kj = K ∩ {xj = 0}, 1 ≤ j ≤ n, satisfies voln−1(Kj) ≥ 1.
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Proof. If H = {x ∈ Rn : 〈θ, x〉 = 0}, |θ| = 1, apply (2.3) to the density q(t)
of the linear function x → 〈θ, x〉 over K: then we get

voln−1(K ∩H)LK ≥ 1
2
√

3
.

This inequality holds true for any symmetric isotropic convex setK of volume
one. In our specific case, it remains to apply Proposition 2.1.

For the second statement, given a non-empty set π ⊂ {1, . . . , n}, denote
by K+

π the section of K by the (n − |π|)-dimensional subspace {x : xj =
0, for all j ∈ π}. Write the Steiner decomposition

voln
(
K+ + r[0, 1]n

)
=

n∑
k=0

ak(K+) rk, r > 0,

where ak =
∑

|π|=k voln−k(K+
π ) with the convention that a0 = voln(K+) = 1.

By the Brunn-Minkowski inequality, voln (K+ + r [0, 1]n) ≥ (1 + r)n, so the
coefficient a1(K+) in front of r should satisfy a1 ≥ n. That is,

n∑
j=1

voln−1(K+
j ) ≥ n,

where K+
j = K+ ∩ {xj = 0}. Since all these (n− 1)-dimensional volumes are

equal to each other, and voln−1(Kj) = voln−1(K+
j ), the conclusion follows.

Proposition 2.3. For all α1, . . . , αn ≥ 0,

voln{x ∈ K+ : x1 ≥ α1, . . . , xn ≥ αn} ≤ e−c (α1+...+αn)

with c=1/
√

6. If K is invariant under permutations of coordinates, one may
take c=1.

Proof. The function u(α1, . . . , αn) = voln{x∈K+ : x1 ≥ α1, . . . , xn ≥ αn} is
log-concave on Rn

+, u(0) = 1, and

∂u(α)
∂αj

∣∣∣∣
α=0

= −voln−1(Kj) ≤ −c,

according to Proposition 2.2. These properties easily imply the desired in-
equality.

Actually, Proposition 2.3 can be sharpened by applying the Brunn-
Minkowski inequality in its full volume. The latter implies that the func-
tion u1/n is concave on K+ which is a slightly stronger property than just
log-concavity. Hence, with the same argument, we have the inequality

vol1/nn {x ∈ K+ : x1 ≥ α1, . . . , xn ≥ αn} ≤ 1 − c (α1 + . . .+ αn)
n
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holding true for all (α1, . . . , αn) ∈ K+ with c= 1/
√

6. Since the right hand
side of this inequality must be non-negative, an immediate consequence of
such a refinement is:

Proposition 2.4. For all (x1, . . . , xn) ∈ K+,

x1 + . . .+ xn ≤
√

6n.

Equivalently, for all (x1, . . . , xn) ∈ K, |x1| + . . .+ |xn| ≤
√

6
2 n.

Thus, the normalized �1-ball in Rn is the largest set within the class of all
K’s which we consider (up to a universal enlarging factor). One may wonder
therefore whether or not it is true that the cube would be the smallest one.
The question turns out simple as one can see from the proof of the following:

Proposition 2.5. The set K contains the cube [− 1√
2
LK ,

1√
2
LK ]n which in

turn contains [− 1
2
√
πe
, 1

2
√
πe

]n.

Proof. The baricenter v = bar(K+) must belong to K+, so K+ contains
parallepiped

∏n
j=1[0, vj ] with vj =

∫
K+ xj dx. Hence the first statement im-

mediately follows from the Khinchine-type inequality (2.1). The second one
is based on the lower bound (2.2).

3 Log-Concave Measures

Here we extend Propositions 2.1–2.3 to log-concave measures. Let µ be a
probability measure on Rn with a log-concave density p(x), x ∈ Rn, such
that

a) p(0) = 1;

b) p(±x1, . . . ,±xn) does not depend on the choice of signs;

c)
∫
x2
j dµ(x) =

∫
x2
j p(x) dx = L2

µ does not depend on j = 1, . . . , n.

The case of the indicator density p(x) = 1K(x) reduces to the previous
section. As in the body case, we associate with µ its squeezed restriction µ+

to the positive octant Rn
+: this measure has density

p+(x) = p

(
1
2
x

)
, x ∈ Rn

+.

If x = (x1, . . . , xn) is distributed according to µ, then the vector (2|x1|, . . . ,
2|xn|) is distributed according to µ+. The function p+ is log-concave, is non-
increasing in each coordinate, and satisfies∫

Rn
+

x2
j dµ

+(x) = 4L2
µ, 1 ≤ j ≤ n.
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Proposition 3.1. Lµ ≤ C, for some absolute C.

Proof. Since p+ is non-increasing, for every x ∈ Rn
+,

1 ≥
∫ x1

0
. . .

∫ xn

0
p+(y) dy ≥ p+(x)

∫ x1

0
. . .

∫ xn

0
dy = p+(x)

n∏
j=1

xj .

Hence,

u(x) ≡ − log p+(x) ≥ log
n∏
j=1

xj ≡ v(x).

Note that u is convex, while v is a concave function. Therefore, there must
exist an affine function � such that u(x) ≥ �(x) ≥ v(x), for all x ∈ Rn

+. This
function can be chosen to be tangent to v at some point a = (a1, . . . , an)
with positive coordinates. That is, we may take

�(x) = v(a) +
〈∇v(a), x− a

〉
= log

n∏
j=1

aj +
n∑
j=1

xj − aj
aj

.

Setting λj = 1
aj

, the inequality u(x) ≥ �(x) becomes

p+(x) ≤ en
n∏
j=1

λj e
−λjxj , x ∈ Rn

+.

In particular, since p+(0) = 1, we have
∏n
j=1 λj ≥ e−n. Hence,

∫
Rn

+

n∏
j=1

xj p
+(x) dx ≤

∫
Rn

+

n∏
j=1

xj

(
en

n∏
j=1

λj e
−λjxj

)
dx = en

n∏
j=1

1
λj

≤ e2n.

On the other hand, with respect to µ+,∥∥∥∥
n∏
j=1

xj

∥∥∥∥
1

≥
∥∥∥∥

n∏
j=1

xj

∥∥∥∥
0

=
n∏
j=1

‖xj‖0 ≥ cn
n∏
j=1

‖xj‖2 = (2c)n Lnµ,

where we have used a Khinchine-type inequality ‖g‖0 = limp→0+ ‖g‖p ≥
c ‖g‖2 for linear functions g with respect to log-concave measures (which is
actually valid for any norm, cf. [L]). Proposition 3.1 follows with C = e2/(2c).

Proposition 3.2. For every hyperspace H in Rn,∫
H

p(x) dx ≥ 1
e
√

6
.

If p is invariant under permutations of coordinates, then
∫

{xj=0} p(x) dx ≥ 1
e ,

for every 1 ≤ j ≤ n.



60 S.G. Bobkov and F.L. Nazarov

There is a way to prove this statement without appealing to Proposition
3.1. In turn, starting from Proposition 3.2, one can easily obtain Proposition
3.1 with C = e

√
3. Indeed, the reverse one-dimensional Hensley inequality

(for the class of all symmetric log-concave probability densities q on the line,
cf. [H], Lemma 4) asserts that

q(0)
(∫

R
t2 dx

)1/2

≤ 1√
2

(3.1)

(equality is achieved at q(t) = e−2|t|). If we take any hyperspace H = {x ∈
Rn : 〈θ, x〉 = 0}, |θ| = 1, and apply this inequality to the density q(t) of the
distribution of the linear function 〈θ, x〉 under the measure µ, then we arrive
exactly at ∫

H

p(x) dxLµ ≤ 1√
2
.

Hence, the lower bound
∫
H
p(x) dx ≥ 1/(e

√
6) would lead to Lµ ≤ e

√
3, while

in the case where µ is invariant under permutations of coordinates we would
similarly obtain the estimate Lµ ≤ e/

√
2.

Proposition 3.2 will be derived from a more general:

Lemma 3.1. For any log-concave probability density p on Rn such that
p(0) = 1 and p(±x1, . . . ,±xn) does not depend on the choice of signs,

n∏
j=1

∫
{xj=0}

p(x) dx ≥ e−n. (3.2)

It is interesting that the constant 1/e appearing on the right is asymp-
totically optimal. Indeed, for the density

p(x) = exp
{

− 2n!1/n max
j≤n

|xj |
}
,

for every j ≤ n, we have
∫

{xj=0} p(x) dx = n!1/n
n → 1

e , as n → ∞.

As in this example, when a density p is invariant under permutations of
coordinates, all (n− 1)-dimensional integrals

∫
{xj=0} p(x) dx coincide, so, by

(3.2), these integrals must be greater or equal to 1/e. In the general case,
we may only conclude that maxj

∫
{xj=0} p(x) dx ≥ 1/e. On the other hand,

the combination of the two Hensley’s inequalities (2.3) and (3.1) immediately
implies that, for any symmetric log-concave isotropic density p on Rn and for
any two hyperspaces H1, H2, we have

∫
H1
p(x) dx ≤ √

6
∫
H2
p(x) dx. Hence,

min
H

∫
H

p(x) dx ≥ 1√
6

max
j

∫
{xj=0}

p(x) dx ≥ 1
e
√

6
.

Thus, Lemma 3.1 implies Proposition 3.2.
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Proof of Lemma 3.1. Given a measurable set A in Rn, an inequality due to
L. H. Loomis and H. Whitney asserts ([L-W], [B-Z]) that

n∏
j=1

voln−1(Aj) ≥ voln(A)n−1,

where Aj is the projection of A to the hyperspace xj = 0. As a matter of fact,
being applied to A = K, the above yields yet another proof of the second
part of Proposition 2.2.

Loomis-Whitney’s inequality admits a certain functional formulation.
Namely, given a measurable function g ≥ 0 on Rn, not identically zero,
consider the family A(t) = {x : g(x) > t}, t > 0. Define on Rn−1 the func-
tions

gj(x1, . . . , xj−1, xj+1, . . . , xn) = sup
xj

gj(x1, . . . , xj−1, xj , xj+1, . . . , xn)

together with Aj(t) = {x : gj(x) > t}, t > 0. Then Aj(t) are projections of
A(t), so

voln
(
A(t)

)n−1 ≤
n∏
j=1

voln−1
(
Aj(t)

)
.

Put ϕj(t) = voln−1(Aj(t)), ϕ(t) = voln(A(t)). Raising the above to the power
1/n, integrating over t > 0 and applying Hölder’s inequality, we get

∫ +∞

0
ϕ(t)(n−1)/n dt ≤

∫ +∞

0

n∏
j=1

ϕj(t)1/n dt ≤
n∏
j=1

( ∫ +∞

0
ϕj(t) dt

)1/n

=
( n∏

j=1

∫
Rn−1

gj(x) dx
)1/n

.

In order to bound from below the first integral, we use the property that ϕ(t)
is non-increasing in t > 0. For such functions, for all α ∈ (0, 1], there is a
simple inequality (cf. [B-Z])

(∫ +∞

0
ϕ(t)α dt

)1/α

≥
∫ +∞

0
ϕ(tα) dt.

But the right hand side is exactly
∫
Rn g(x)1/α dx, and for α = n−1

n , we thus
get

n∏
j=1

∫
Rn−1

gj(x) dx ≥
( ∫

Rn

g(x)n/(n−1) dx

)n−1

.

This is the desired functional form yielding the original inequality on indicator
functions g = 1A. For g = p, the supremum in the definition of gj is attained
at xj = 0, and the functional inequality becomes
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n∏
j=1

∫
{xj=0}

p(x) dx ≥
( ∫

Rn

p(x)n/(n−1) dx

)n−1

.

The right hand side can further be estimated using the log-concavity of p.
Namely, since p(0) = 1, for every t ∈ (0, 1) and x ∈ Rn, we have p(tx)1/t ≥
p(x). Integrating over x, we get

∫
Rn p(x)1/t dx ≥ tn which for t = n−1

n gives

∫
Rn

p(x)n/(n−1) dx ≥
(
n− 1
n

)n
, n ≥ 2.

It remains to note that
(
n−1
n

)n(n−1) ≥ e−n.

Lemma 3.1 follows. As a consequence, we get an analogue of Proposition
2.3:

Proposition 3.3. For all α1, . . . , αn ≥ 0,

µ+{x ∈ Rn
+ : x1 ≥ α1, . . . , xn ≥ αn} ≤ e−c (α1+...+αn)

with c= 1
e
√

6
. If µ is invariant under permutations of coordinates, one may

take c = 1/e.

4 Decreasing Rearrangement

For any vector x = (x1, . . . , xn) in Rn, its coordinates can be written in the
decreasing order,

X1 ≥ X2 ≥ . . . ≥ Xn.

In particular, X1 = maxj xj , Xn = minj xj . When x is observed as a random
vector with uniform distribution in K+ or more generally with distribution
µ+, the distribution of the random vector (X1, . . . , Xn) can be studied on
the basis of Propositions 2.3 and 3.3, respectively. In particular, we have:

Proposition 4.1. For any α ≥ 0, 1 ≤ k ≤ n,

µ+{x ∈ Rn
+ : Xk ≥ α} ≤ Ckn e

−c kα,

where c > 0 is a numerical constant.

One may always take c = 1/(e
√

6 ) but the constant can be improved for
special situations. For example, c = 1/e, when µ+ is invariant under permu-
tations of coordinates, and moreover c = 1 when µ+ is uniform distribution
on K+ which is invariant under permutations of coordinates.

We denote by Ckn the usual combinatorial coefficients n!
k!(n−k)! .
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Proof. Since

{x ∈ Rn
+ : Xk ≥ α} = ∪n≥j1>...>jk≥1{x ∈ Rn

+ : xj1 ≥ α, . . . , xjk ≥ α},
we get

µ+{Xk ≥ α} ≤
∑

n≥j1>...>jk≥1

µ+{xj1 ≥ α, . . . , xjk ≥ α} ≤ Ckn e
−c kα,

where we applied Proposition 3.3 (or, respectively, Proposition 2.3) on the
last step.

The combinatorial argument easily extends to yield a more general:

Proposition 4.2. For any collection of indices 1 ≤ k1 < . . . < kr ≤ n, and
for all α1, . . . , αr ≥ 0,

µ+{Xk1 ≥ α1, . . . , Xkr ≥ αr} ≤ n! e−c (k1α1+(k2−k1)α2...+(kr−kr−1)αr)

k1!(k2 − k1)! . . . (kr − kr−1)!(n− kr)!
,

where c > 0 is a numerical constant.

Let us now illustrate one of the possible applications to large deviations,
say, for �1-norm ‖x‖1 =

∑n
k=1 |xk| under the measure µ. For all numbers

α1, . . . , αn ≥ 0,

µ

{
‖x‖1 ≥

n∑
k=1

αk

}
= µ+

{
n∑
k=1

xk ≥ 2
n∑
k=1

αk

}
= µ+

{
n∑
k=1

Xk ≥ 2
n∑
k=1

αk

}

≤
n∑
k=1

µ+{Xk ≥ 2αk} ≤
n∑
k=1

Ckn e
−2c k αk

where we applied Proposition 4.1 on the last step. Using Ckn ≤ (
ne
k

)k, we
thus get

µ

{
c ‖x‖1 ≥

n∑
k=1

αk

}
≤

n∑
k=1

e−k (2αk−log ne
k ).

Now, take αk = 1
2 log ne

k + t n
k(log n+1) which is almost an optimal choice.

Then,
∑n
k=1 αk ≤ n(1 + t), and we arrive at:

Proposition 4.3. For any t ≥ 0,

µ

{
c ‖x‖1

n
≥ 1 + t

}
≤ n exp

{
−2t

n

log n+ 1

}
.

The right hand side converges to zero for any fixed t > 0. In particular, for
large n, we have ‖x‖1 ≤ 2n/c with µ-probability almost one. In probabilistic
language, this means that the random variables ‖x‖1/n are stochastically
bounded as n → ∞. Since L1(µ)-norm of ‖x‖1/n is about 1, this property
cannot be deduced from the usual exponential bound for norms under log-
concave measures (cf. [Bo]).
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5 Euclidean Norm. Proof of Theorem 1.2

As in the proof of Proposition 4.3, for all α1, . . . , αn ≥ 0, we similarly obtain
that

µ

{
|x|2 ≥

n∑
k=1

α2
k

}
= µ+

{
n∑
k=1

X2
k ≥ 4

n∑
k=1

α2
k

}

≤
n∑
k=1

µ+{Xk ≥ 2αk} ≤
n∑
k=1

Ckn e
−2c k αk

where again we applied Proposition 4.1 on the last step. Using Ckn ≤ (
ne
k

)k,
we thus get

µ

{
c2 |x|2 ≥

n∑
k=1

α2
k

}
≤

n∑
k=1

e−k (2αk−log ne
k ).

Now, take αk = 1
2 log ne

k + t
√
n
k . Then,

∑n
k=1 α

2
k ≤ 4nt2, for all t ≥ 2, so

µ

{
c |x|√
n

≥ 2t
}

≤ n e−2t
√
n.

In a more compact form:

Proposition 5.1. For any t ≥ 4,

µ

{
x ∈ Rn :

c |x|√
n

≥ t

}
≤ e− 1

2 t
√
n.

As in Proposition 4.1, we may take c = 1/(e
√

6 ) in general, and c = 1/
√

6
in the body case. As explained in section 1, the above inequality implies:

Proposition 5.2. For every number C ≥ 56, in the interval 0 ≤ t ≤ Cn1/4,

µ

{
x ∈ Rn :

∣∣∣∣x1 + . . .+ xn√
n

∣∣∣∣ ≥ t

}
≤ 2 exp

{
− t2

8C4/3

}
.

Indeed, applying Proposition 5.1 with c = 1
7 <

1
e
√

6
, we get

µ

{
1√
n

∣∣∣∣
n∑
j=1

xj

∣∣∣∣ ≥ t

}
= µ⊗ Pε

{
1√
n

∣∣∣∣
n∑
j=1

εjxj

∣∣∣∣ ≥ t

}

≤
∫
e−nt2/(2|x|2) dµ(x) =

∫
|x|≤t0

√
n

+
∫

|x|≥t0
√
n

≤ e−t2/(2t20) + e− 1
14 t0

√
n,

for every t0 provided that ct0 ≥ 4, that is, t0 ≥ 28. By the assumption on t,
the last term is bounded by e−t0 t2/(14C2). It remains to take (the optimal)
t0 = (7C2)1/3.
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6 Theorem 1.1 for Log-Concave Measures

In order to involve the region t ≥ Cn1/4 in Proposition 5.2, an extra condition
on the measure µ is required. One important property distinguishing the case
where µ is the uniform distribution on K from the general measure case is
indicated in Proposition 2.4: for all x ∈ K,

|x1| + . . .+ |xn| ≤ An (6.1)

with A =
√

6/2. It is therefore natural to assume that the measure µ is
supported on a convex set satisfying (6.1) for some A = A(µ). In this case
Theorem 1.1 admits a corresponding extension:

Proposition 6.1. ‖f‖Lψ2 (µ) ≤ C
√
A(µ), where C is a numerical constant.

Note that in terms of the linear functional

f(x) =
x1 + . . .+ xn√

n

the quantity A(µ) is described as 1/
√
n ‖f‖L∞(µ). Thus, Proposition 6.1 re-

lates Lψ2-norm to L∞-norm of f via ‖f‖Lψ2 (µ) ≤ C/
√
n

√‖f‖L∞(µ). This
inequality is not linear in f which is due to the basic assumption p(0) = 1 on
the density p of µ. Without this condition, Proposition 6.1 can be formulated
as follows:

Corollary 6.1. Let µ be a probability measure on Rn with a log-concave
density p such that, for all x ∈ Rn, p(±x1, . . . ,±xn) does not depend on the
choice of signs, and

∫
Rn x

2
j p(x) dx does not depend on j = 1, . . . , n. Then,

for some universal C,

‖f‖2
Lψ2 (µ) ≤ C√

n
‖f‖L2(µ) ‖f‖L∞(µ).

Let us return to the original assumption p(0) = 1. Then A(µ) is always
separated from zero. Indeed, since the density p(x) is bounded by 1, we have

1 =
∫

|x1|+...+|xn|≤An
p(x) dx ≤ voln{x ∈ Rn : |x1| + . . .+ |xn| ≤ An}

=
(2An)n

n!
.

Hence, A ≥ n!1/n
2n ≥ 1

2e .

While the first applications are based upon Proposition 4.1, the proof of
Proposition 6.1 uses a more general Proposition 4.2. The estimate given in it
can be simplified as follows: using a general bound m! ≥ (

m
e

)m and the fact
that the function x → (

ne
x

)x increases in 0 < x ≤ n, we get



66 S.G. Bobkov and F.L. Nazarov

n(n− 1) . . . (n− kr + 1)
k1!(k2 − k1)! . . . (kr − kr−1)!

≤
r∏
j=1

(
ne

kj − kj−1

)kj−kj−1

≤
r∏
j=1

(
ne

kj

)kj

with the convention that k0 = 0 on the middle step. Hence, for all α1, . . . , αr ≥
0,

µ+{Xk1 ≥ α1, . . . , Xkr ≥ αr} ≤
r∏
j=1

(ne
kj

)kj
e−c (k1α1+(k2−k1)α2...+(kr−kr−1)αr).

From now on, the indices kj will be assumed to be the powers of 2. Thus
let � = [log2 n] (the integer part), and let S be any non-empty subset of
{0, 1, . . . , �}. From the previous inequality, for any collection αk ≥ 0 indexed
by k ∈ S,

µ+ {X2k ≥ αk, for all k ∈ S} ≤
∏
k∈S

(ne
2k

)2k

exp
{

− c
∑
k∈S

2k−1αk

}
.

The choice αk = βk + 2
c log ne

2k leads to:

Lemma 6.1. For any non-empty subset S of {0, 1, . . . , �} and any collection
β = (βk)k∈S of non-negative numbers,

µ+
{
X2k ≥ βk +

2
c

log
ne

2k
, for all k ∈ S

}
≤ exp

{
− c

∑
k∈S

2k−1βk

}
.

As before, one may take c = 1/(e
√

6). In view of the assumption (6.1),
the measure µ+ is supported by

x1 + . . .+ xn ≤ 2An

so, only βk < 2An can be of interest in Lemma 6.1. Assume moreover that
each βk also represents a power of 2. The couples (S, β) with these properties
will be called blocks, and we say that a vector x ∈ Rn

+ is controlled by a
block (S, β) if

X2k ≥ βk +
2
c

log
ne

2k
, for all k ∈ S.

Lemma 6.2. The total number of blocks does not exceed, e2 log 2n log(2 log 4An).

Indeed, given a non-empty S ⊂ {0, 1, . . . , �}, the number of admissible
functions β on S is equal to [log2 2An]|S|. Hence, the number of all blocks is
equal to

∑
S

[log2 2An]|S| =
�+1∑
r=1

Cr�+1[log2 2An]r =
(
1 + [log2 2An]

)[log2 n]+1 − 1
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from which the desired bound easily follows.
Combining Lemma 6.1 with Lemma 6.2 and using c = 1/(e

√
6) > 1/7, we

thus obtain that

µ+
{
x ∈ Rn

+ : x is controlled by a block (S, β) with
∑
k∈S

2k−1βk ≥ 1
8
t
√
n

}

≤ e2 log 2n log(2 log 4An) e− 1
8·7 t

√
n. (6.2)

Lemma 6.3. Given t > 0, assume that a vector x ∈ Rn
+ is not controlled

by any block (S, β) with
∑
k∈S 2k−1βk ≥ 1

8 t
√
n. Then, with some absolute

constant B > 0,

Pε

{∣∣∣∣ε1x1 + . . .+ εnxn√
n

∣∣∣∣ ≥ t

}
≤ 2 e−t2/B .

Proof. It is also possible that x is not controlled by any block (S, β) at all:
by the very definition, this holds if and only if

X2k < 1 +
2
c

log
ne

2k
, for all 0 ≤ k ≤ �.

But then

|x|2 =
n∑
j=1

X2
j ≤

�∑
k=0

X2
2k 2k <

�∑
k=0

(
1 +

2
c

log
ne

2k

)2

2k ≤ Bn,

for some absolute constant B. Therefore, for all t > 0,

Pε

{∣∣∣∣ε1x1 + . . .+ εnxn√
n

∣∣∣∣ ≥ t

}
≤ 2 e−nt2/2|x|2 ≤ 2 e−t2/2B ,

and the statement follows.
In the other case, there is a maximal block controlling the given vector x.

Namely, introduce (the canonical) set

S =
{
k = 0, 1, . . . , � : X2k ≥ 1 +

2
c

log
ne

2k

}
,

and for each k ∈ S, denote by βk the maximal power of 2 not exceeding
X2k − 2

c log ne
2k . In particular,

βk ≤ X2k − 2
c

log
ne

2k
< 2βk, (6.3)

and, by the assumption of the lemma,

∑
k∈S

2k−1βk <
1
8
t
√
n. (6.4)
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Define a new vector (Yj)1≤j≤n approximating (Xj)1≤j≤n in a certain sense.
First put

αk =
(
X2k −

(
1 +

2
c

log
ne

2k
))+

, 0 ≤ k ≤ �,

so that αk = 0 outside S and 0 ≤ αk ≤ 2βk−1 < 2βk, for all k ∈ S, according
to (6.3). Let Yj = (Xj − αk)

+, for 2k ≤ j < 2k+1 (0 ≤ k ≤ �). Then, clearly
0 ≤ Yj ≤ Xj ≤ Yj + αk, and by (6.4),

n∑
j=1

Xj − Yj ≤
�∑

k=0

2kαk =
∑
k∈S

2kαk ≤
∑
k∈S

2k+1βk <
1
2
t
√
n.

Hence,

Pε

{
1√
n

∣∣∣ n∑
j=1

εjxj

∣∣∣ ≥ t

}
= Pε

{
1√
n

∣∣∣ n∑
j=1

εjXj

∣∣∣ ≥ t

}

≤ Pε

{
1√
n

∣∣∣ n∑
j=1

εjYj

∣∣∣ ≥ t

2

}
.

It remains to observe that, for 2k ≤ j < 2k+1, we have Yj ≤ Y2k ≤ 1 +
2
c log ne

2k , so
∑n
j=1 Y

2
j ≤ ∑�

k=0

(
1 + 2

c log ne
2k

)2 2k ≤ Bn. Lemma 6.3 follows.

Proof of Proposition 6.1. We need to get a subgaussian bound of the form
µ{|f | ≥ t} ≤ c1 e

−c2t2/A, for some absolute c1, c2 > 0. By the assumption
(6.1) on the support of µ, we may assume t ≤ A

√
n.

Put C = (σA)3/4 with a positive universal constant σ to be determined
later on. Since necessarily A ≥ 1/(2e), we assume

(
σ
2e

)3/4 ≥ 56 so that to
apply Proposition 5.2 in the interval 0 ≤ t ≤ Cn1/4: it then gives

µ
{
x ∈ Rn : |f(x)| ≥ t

} ≤ 2e−t2/(8σA).

The right hand side is of the desired order both in t and A in that interval.
Now, let t ≥ Cn1/4. Define Ω0(t) to be the collection of all vectors x ∈

Rn
+ which are controlled by a block (S, β) with

∑
k∈S 2k−1βk ≥ 1

8 t
√
n. Let

Ω1(t) = Rn
+ \Ω0(t). In terms of f(x, ε) = ε1x1+...+εnxn√

n
, we may write

µ{|f | > t} = µ+ ⊗ Pε

{
(x, ε) : |f(x, ε)| > 2t

}
=

∫
Ω0

Pε

{|f(x, ε)| > 2t
}
dµ+(x) +

∫
Ω1

Pε

{|f(x, ε)| > 2t
}
dµ+(x).

The second integral does not exceed 2e−t2/B with some numerical B (Lemma
6.3). The first integral can be bounded, according to (6.2), by

µ+(
Ω0(t)

) ≤ e− 1
56 t

√
n+∆n(A),



Convex Bodies and Log-Concave Probability Measures 69

where ∆n(A) = 2 log(2n) log(2 log(4An)). Thus, for the values Cn1/4 ≤ t ≤
A

√
n, it suffices to show that

e− 1
56 t

√
n+∆n(A) ≤ e−t2/(112A)

(note that if A
√
n < Cn1/4, we are done). Equivalently,

1
112A

t2 − 1
56
t
√
n+∆n(A) ≤ 0.

Since t ≤ A
√
n, the above is implied by ∆n(A) ≤ 1

112 t
√
n. In view of t ≥

Cn1/4 = (σA)3/4n1/4, the latter is equivalent to

∆n(A) ≤ 1
112

(σA)3/4n1/4.

Clearly, if σ is sufficiently large, the above inequality holds true for all A ≥ 1
2e

and n ≥ 1. Summarizing, we may write the following estimate for all t > 0:

µ{|f | > t} ≤ max
{
2e−t2/(8σA), 2e−t2/B + e−t2/(112A)}.

This gives the desired result.
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