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Summary. We study the spectral gap and a related concentration property for a
family of spherically symmetric probability measures.

This note appeared in an attempt to answer the following question raised
by V. Bogachev: How do we effectively estimate the spectral gap for the
exponential measures p on the Euclidean space R™ with densities of the
form &) _ ge-blzl 9

dx :

By the spectral gap, we mean here the best constant A\; = A1(u) in the

Poincaré-type inequality

Al/” [u()[? dps(x) S/n Vu(z) [ du(x) W

with u being an arbitrary smooth (or, more generally, locally Lipschitz) func-
tion on R™ such that [wu(z)du(z) = 0. Although it is often known that
A1 > 0, in many problems of analysis and probability, one needs to know how
the dimension n reflects on this constant. One important case, the canonical
Gaussian measure j = v,,, with density (2)~"/2 e~12I*/2 provides an exam-
ple with a dimension-free spectral gap Ay = 1. This fact can already be used
to recover a dimension-free concentration phenomenon in Gauss space.

To unite both the Gaussian and the exponential cases, we consider a
spherically symmetric probability measure i on R™ with density

dp(z)
dx

=p(|z]), = eR",

assuming that p = p(¢) is an arbitrary log-concave function on (0, +00), that
is, the function log p(t) is concave on its support interval. In order that u be
log-concave itself (cf. [Bor2] for a general theory of log-concave measures), p
has also to be non-increasing in ¢t > 0. However, this will not be required.

It is a matter of normalization, if we assume that p satisfies

/ (2, 0)2 du(z) = |02, forall §€R™. @)
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As usual, (-,-) and | - | denote the scalar product and the Euclidean norm,
respectively. Since y is symmetrically invariant, this normalization condition
may also be written as [z} du(z) =1, or [ |z]* du(xz) = n. We prove:

Theorem 1. Under (2), the optimal value of Ay in (1) satisfies 15 < A < 1.

Returning to the exponential measure du(z) = ae~**ldz, b > 0, we thus
obtain that \; is of order b%/n.

Using Theorem 1 and applying Gromov—Milmans’s theorem on concen-
tration under Poincaré-type inequalities, one may conclude that all the con-
sidered measures share a dimension-free concentration phenomenon:

Theorem 2. Under (2), given a measurable set A in R™ of measure p(A) >
%, for all h >0,

1—p(A") <27, (3)
where ¢ is a certain positive universal constant.

Here, we use A" = {x € R"™ : dist(4,7) < h} to denote an h-
neighborhood of A with respect to the Euclidean distance.

Note that, in polar coordinates, every spherically symmetric measure pu
with density p(|z|) represents a product measure, i.e., it may be viewed as the
distribution of £, where 6 is a random vector uniformly distributed over the
unit sphere S"~!, and where £ > 0 is an independent of § random variable
with distribution function

t
pllol <t} =, [ S Npls)ds £0 (4)
0

(wp, is the volume of the unit ball in R™). For example, one can take (R™, 1)
for the underlying probability space and put &(x) = |z|, O(x) = I%I It is
a classical fact that A\1(S""!) = n — 1. To reach Theorems 1-2, our task
will be therefore to estimate A;(€) from below and to see in particular that
the values of £ are strongly concentrated around its mean E£ which is of
order y/n. When p is log-concave, the density q(t) = nw, t"~p(t) of & is
log-concave, as well. Of course, this observation is not yet enough to reach
the desired statements, since it “forgets” about an important factor t"~1. As
a first step, we will need the following one-dimensional:

Lemma 1. Given a positive integer n, if a random variable £ > 0 has density
q(t) such that the function q(t)/t" ! is log-concave on (0,+0c0), then

Var(€) < — (E€)%. ()

SRS

As usual, Var(¢) = E£? — (E€)? and E¢ denote the variance and the
expectation of a random variable .
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For ¢(z) = |x| as above, with distribution given by (4), in view of the
normalization condition (2), we have E£? = n, so the bound (5) yields a
dimension-free inequality

Var(¢) < 1. (6)

Lemma 1 represents a particular case of a theorem due to R.E. Barlow,
A.W. Marshall, and F. Proshan (cf. [B-M-P], p. 384, and [Bor1]) which states
the following: If a random variable 7 > 0 has a distribution with increasing
hazard rate (in particular if n has a log-concave density), then its normalized
moments \, = F(a =y En® satisfy a reverse Lyapunov’s inequality

/\Z*C)\Z*b <A a>b>c>1, cinteger. (7)

Indeed, puttinga=n+1,b=n,c=n—1 (n > 2), we get
1
En"t Ep" ! < (1 + n) (En")?. (8)

If the random variable £ has denbity q(t) = t"~!p(t) with p log-concave on
(0, 4+00), and n has density p(t)/ f t) dt, the above inequality becomes
E&? < (14 1) (E¢)? which is exactly (5)

When n = 1, the latter is equivalent to the well-known Khinchine-type
inequality En? < 2 (En)2. More generally, one has

En* <I'(a+1)(En)*, a>1,

which is known to hold true in the class of all random variables n > 0 with
log-concave densities. This fact cannot formally be deduced from (7) because
of the assumption ¢ > 1. It was obtained in 1961 by S. Karlin, F. Proshan,
and R.E. Barlow [K-P-B] as an application of their study of the so-called
totally positive functions (similar to [B-M-P] — with techniques and ideas
going back to the work of I.J. Schoenberg [S]).

To make the proof of Theorem 1 more self-contained, we would like to
include a different argument leading to the inequality (7) for a related func-
tion:

Lemma 2. Given a log-concave random wvariable n > 0, the function A\, =
a% En® is log-concave in a > 0. Equivalently, it satisfies (7), for all a > b >
c>0.

Again putting a = n+1, b =n, c = n — 1, we obtain Ep?»*1 Ep"~! <
Cy(En™)? with constant C,, M which is a little WOl“be than
that of (8). On the other hand, one can easily see that C,, <1 + + n37
we get, for example, the constant 21 in Lemma 1 (and this leads to the lower
bound 5z in Theorem 1).

Finally, it might also be worthwhile to mention here the following inter-
esting immediate consequence of Lemmas 1-2. Given an integer d > 1 and
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an arbitrary sequence of probability measures (pn,)n>q4 on R™ (from the class
we are considering), their projections to the coordinate subspace R¢ must
converge, as n — 00, to the standard Gaussian measure on R,

A second step to prove Theorem 1 is based on the following statement
([B1], Corollary 4.3):

Lemma 3. If a random variable £ has distribution v with log-concave density
on the real line, then

1 1
<

12 Var(§) — M) = Var(€)'

Together with (6) for £(z) = |z|, we thus get

Proof of Theorem 1. We may assume that n > 2. As before, denote by v
the distribution of the Euclidean norm &(z) = |z| under u, and by 0,1
the normalized Lebesgue measure on the unit sphere S™~!. To prove the
Poincaré-type inequality (1), take a smooth bounded function v on R™ and
consider another smooth bounded function v(r,8) = u(rf) on the product
space (0,400) x R™. Under the product measure v X o,,_1, v has the same
distribution as w has under pu.
By (9), the measure v satisfies the Poincaré-type inequality on the line,

+oo
Var, (g) < 12 / 1972,

where g = g(r) is an arbitrary absolutely continuous function on (0, 400). In
particular, for g(r) = v(r,6) with fixed 6 € S"~!, we get

2

/0+°° v(r,0)* dv(r) < (/;’00 o(r,0) dy(r)) 1 /0+oo %

Now, 2 = (Vu(rf),6), so ’%’ < |Vu(r6)|. Integrating the above inequality

over o,_1, we get

2

dv(r).

| ou@Rdn@ < [ w@Rdo@)+12 [ V@ Pdu). (o)

n

where w(0) = f0+o° v(r,0) dv(r). For this function, which is well-defined and

smooth on the whole space R™, the average over ,,_1 is exactly the average
of u over u. Hence, by the Poincaré inequality on the unit sphere,

[ woran @< ([ wwan) <1 [ wuori. o,
(1)
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(The classical Riemannian version of the Poincaré inequality is formulated
for the “inner” gradient V gn-1w(6) on the unit sphere which is the projection
of the usual gradient Vw(f) onto the subspace orthogonal to §. In this case
the constant L in (11) should be replaced with —1+.)

Since Vw(0)= 0+°<5" Vu(r6) dv(r), we have \Vw )< f T |[Vu(rd)| dv(r).
Hence, by the Cauchy—Bunyakovski inequality,

+oo +oo +oo
|Vw(0))? < /0 r? dl/(?")/o |Vu(ro)|? dv(r) = n/o |Vu(ro)|? dv(r),

where we used the normalization condition E¢? = n. Together with (10) and
(11), this estimate yields

[ e duta) < ( [ ) du(w)>2 +13 [ |Vul@) du(a),

that is, the Poincaré-type inequality (1) with the lower bound A; > 1/13.
The upper bound is trivial and follows by testing (1) on linear functions.
This finishes the proof.

As already mentioned, the fact that (1) implies a concentration inequality,
namely,

— (A" < Cem VM b0, p(A) > (12)

1
2’
where C' and ¢ are certain positive universal constants, was proved by M. Gro-
mov and V.D. Milman, see [G-M]. They formulated it in the setting of a
compact Riemannian manifold, but the assertion remains to hold in many
other settings, e.g., for an arbitrary metric space (see e.g. [A-S], [B-L], [L]).
The best possible constant in the exponent in (12) is ¢ = 2 ([B2]), but this
is not important for the present formulation of Theorem 1.

Remark. We do not know how to adapt the argument in order to prove, for
all smooth u with y-mean zero, a stronger inequality in comparison with (1),

¢ / () d) < /R V(@) duz), (13)

called sometimes a Cheeger-type inequality. On the shifted indicator functions
u=14—p(A), (13) turns into an equivalent isoperimetric inequality for the -
perimeter, pu(A) > 2¢ pu(A)(1—p(A)). One deep conjecture ([K-L-S]) asserts
that, for some universal ¢ > 0, this isoperimetric inequality holds true under
the isotropic condition (2) in the class of all log-concave measures u. However,
the hypothesis remains open even in the weaker forms such as Poincaré and
concentration inequalities. And as we saw, already the particular case of
a symmetrically log-concave measure leads to a rather sophisticated one-
dimensional property such as Lemma 1.
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Proof of Lemma 2. Let p be the probability density of 5 on (0, +00). We apply
the one-dimensional Prékopa-Leindler theorem (see [Prl-2], [Le], or [Pi] for
a short proof): given t,s > 0 with ¢ + s = 1 and non-negative measurable
functions u, v, w on (0, +00) satisfying w(tz + sy) > u'(z)v*(y), for all z,y >
0, we have

/O T () dz > ( /0 ) dm) 9

+o0 ¢
([ ewa) .
0
Let a >b>c> 0 and b = ta + sc. Since

P ta+sc
sup Iayc — atacsc ,
te+sy=z ta + sc

t

the inequality (14) applies to u(z) = (£)%p(x), v(y) = (£)°p(y), and w(z) =
(£)’p(z). This is exactly what we need.

Remark. The multidimensional Prékopa—Leindler theorem yields a similar

statement: For any random vector (71, ...,7,) in R’} with log-concave dis-
tribution, the function ¢(as,...,a,) = E ()% ... (1) is log-concave on
Ri. 1 n
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