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Summary. We study the spectral gap and a related concentration property for a
family of spherically symmetric probability measures.

This note appeared in an attempt to answer the following question raised
by V. Bogachev: How do we effectively estimate the spectral gap for the
exponential measures µ on the Euclidean space Rn with densities of the
form dµ(x)

dx = ae−b|x| ?
By the spectral gap, we mean here the best constant λ1 = λ1(µ) in the

Poincaré-type inequality

λ1

∫
Rn

|u(x)|2 dµ(x) ≤
∫
Rn

|∇u(x)|2 dµ(x) (1)

with u being an arbitrary smooth (or, more generally, locally Lipschitz) func-
tion on Rn such that

∫
u(x) dµ(x) = 0. Although it is often known that

λ1 > 0, in many problems of analysis and probability, one needs to know how
the dimension n reflects on this constant. One important case, the canonical
Gaussian measure µ = γn, with density (2π)−n/2 e−|x|2/2, provides an exam-
ple with a dimension-free spectral gap λ1 = 1. This fact can already be used
to recover a dimension-free concentration phenomenon in Gauss space.

To unite both the Gaussian and the exponential cases, we consider a
spherically symmetric probability measure µ on Rn with density

dµ(x)
dx

= ρ(|x|), x ∈ Rn,

assuming that ρ = ρ(t) is an arbitrary log-concave function on (0, +∞), that
is, the function log ρ(t) is concave on its support interval. In order that µ be
log-concave itself (cf. [Bor2] for a general theory of log-concave measures), ρ
has also to be non-increasing in t > 0. However, this will not be required.

It is a matter of normalization, if we assume that µ satisfies
∫
Rn

〈x, θ〉2 dµ(x) = |θ|2, for all θ ∈ Rn. (2)
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As usual, 〈·, ·〉 and | · | denote the scalar product and the Euclidean norm,
respectively. Since µ is symmetrically invariant, this normalization condition
may also be written as

∫
x2

1 dµ(x) = 1, or
∫ |x|2 dµ(x) = n. We prove:

Theorem 1. Under (2), the optimal value of λ1 in (1) satisfies 1
13 ≤ λ1 ≤ 1.

Returning to the exponential measure dµ(x) = a e−b|x|dx, b > 0, we thus
obtain that λ1 is of order b2/n.

Using Theorem 1 and applying Gromov–Milmans’s theorem on concen-
tration under Poincaré-type inequalities, one may conclude that all the con-
sidered measures share a dimension-free concentration phenomenon:

Theorem 2. Under (2), given a measurable set A in Rn of measure µ(A) ≥
1
2 , for all h > 0,

1 − µ(Ah) ≤ 2e−ch, (3)

where c is a certain positive universal constant.

Here, we use Ah = {x ∈ Rn : dist(A, x) < h} to denote an h-
neighborhood of A with respect to the Euclidean distance.

Note that, in polar coordinates, every spherically symmetric measure µ
with density ρ(|x|) represents a product measure, i.e., it may be viewed as the
distribution of ξθ, where θ is a random vector uniformly distributed over the
unit sphere Sn−1, and where ξ > 0 is an independent of θ random variable
with distribution function

µ{|x| ≤ t} = nωn

∫ t

0
sn−1ρ(s) ds, t > 0 (4)

( ωn is the volume of the unit ball in Rn). For example, one can take (Rn, µ)
for the underlying probability space and put ξ(x) = |x|, θ(x) = x

|x| . It is
a classical fact that λ1(Sn−1) = n − 1. To reach Theorems 1-2, our task
will be therefore to estimate λ1(ξ) from below and to see in particular that
the values of ξ are strongly concentrated around its mean Eξ which is of
order

√
n. When ρ is log-concave, the density q(t) = nωn tn−1ρ(t) of ξ is

log-concave, as well. Of course, this observation is not yet enough to reach
the desired statements, since it “forgets” about an important factor tn−1. As
a first step, we will need the following one-dimensional:

Lemma 1. Given a positive integer n, if a random variable ξ > 0 has density
q(t) such that the function q(t)/tn−1 is log-concave on (0, +∞), then

Var(ξ) ≤ 1
n

(Eξ)2. (5)

As usual, Var(ξ) = Eξ2 − (Eξ)2 and Eξ denote the variance and the
expectation of a random variable ξ.
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For ξ(x) = |x| as above, with distribution given by (4), in view of the
normalization condition (2), we have Eξ2 = n, so the bound (5) yields a
dimension-free inequality

Var(ξ) ≤ 1. (6)

Lemma 1 represents a particular case of a theorem due to R.E. Barlow,
A.W. Marshall, and F. Proshan (cf. [B-M-P], p. 384, and [Bor1]) which states
the following: If a random variable η > 0 has a distribution with increasing
hazard rate (in particular, if η has a log-concave density), then its normalized
moments λa = 1

Γ (a+1) Eηa satisfy a reverse Lyapunov’s inequality

λb−c
a λa−b

c ≤ λa−c
b , a ≥ b ≥ c ≥ 1, c integer. (7)

Indeed, putting a = n + 1, b = n, c = n − 1 (n ≥ 2), we get

Eηn+1 Eηn−1 ≤
(

1 +
1
n

)
(Eηn)2. (8)

If the random variable ξ has density q(t) = tn−1p(t) with p log-concave on
(0, +∞), and η has density p(t)/

∫ +∞
0 p(t) dt, the above inequality becomes

Eξ2 ≤ (1 + 1
n ) (Eξ)2 which is exactly (5).

When n = 1, the latter is equivalent to the well-known Khinchine-type
inequality Eη2 ≤ 2 (Eη)2. More generally, one has

Eηa ≤ Γ (a + 1) (Eη)a, a ≥ 1,

which is known to hold true in the class of all random variables η > 0 with
log-concave densities. This fact cannot formally be deduced from (7) because
of the assumption c ≥ 1. It was obtained in 1961 by S. Karlin, F. Proshan,
and R.E. Barlow [K-P-B] as an application of their study of the so-called
totally positive functions (similar to [B-M-P] – with techniques and ideas
going back to the work of I.J. Schoenberg [S]).

To make the proof of Theorem 1 more self-contained, we would like to
include a different argument leading to the inequality (7) for a related func-
tion:

Lemma 2. Given a log-concave random variable η > 0, the function λa =
1

aa Eηa is log-concave in a > 0. Equivalently, it satisfies (7), for all a ≥ b ≥
c > 0.

Again putting a = n + 1, b = n, c = n − 1, we obtain Eηn+1 Eηn−1 ≤
Cn(Eηn)2 with constant Cn = (n+1)n+1(n−1)n−1

n2n which is a little worse than
that of (8). On the other hand, one can easily see that Cn ≤ 1 + 1

n + 1
n3 , so,

we get, for example, the constant 2
n in Lemma 1 (and this leads to the lower

bound 1
25 in Theorem 1).

Finally, it might also be worthwhile to mention here the following inter-
esting immediate consequence of Lemmas 1-2. Given an integer d ≥ 1 and
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an arbitrary sequence of probability measures (µn)n≥d on Rn (from the class
we are considering), their projections to the coordinate subspace Rd must
converge, as n → ∞, to the standard Gaussian measure on Rd.

A second step to prove Theorem 1 is based on the following statement
([B1], Corollary 4.3):

Lemma 3. If a random variable ξ has distribution ν with log-concave density
on the real line, then

1
12 Var(ξ)

≤ λ1(ν) ≤ 1
Var(ξ)

.

Together with (6) for ξ(x) = |x|, we thus get

λ1(ν) ≥ 1
12

. (9)

Proof of Theorem 1. We may assume that n ≥ 2. As before, denote by ν
the distribution of the Euclidean norm ξ(x) = |x| under µ, and by σn−1
the normalized Lebesgue measure on the unit sphere Sn−1. To prove the
Poincaré-type inequality (1), take a smooth bounded function u on Rn and
consider another smooth bounded function v(r, θ) = u(rθ) on the product
space (0, +∞) × Rn. Under the product measure ν × σn−1, v has the same
distribution as u has under µ.

By (9), the measure ν satisfies the Poincaré-type inequality on the line,

Varν(g) ≤ 12
∫ +∞

0
|g′(r)|2dν(r),

where g = g(r) is an arbitrary absolutely continuous function on (0, +∞). In
particular, for g(r) = v(r, θ) with fixed θ ∈ Sn−1, we get

∫ +∞

0
v(r, θ)2 dν(r) ≤

(∫ +∞

0
v(r, θ) dν(r)

)2

+ 12
∫ +∞

0

∣∣∣∣∂v

∂r

∣∣∣∣
2

dν(r).

Now, ∂v
∂r = 〈∇u(rθ), θ〉, so

∣∣∂v
∂r

∣∣ ≤ |∇u(rθ)|. Integrating the above inequality
over σn−1, we get∫

Rn

u(x)2 dµ(x) ≤
∫

Sn−1
w(θ)2 dσn−1(θ) + 12

∫
Rn

|∇u(x)|2 dµ(x), (10)

where w(θ) =
∫ +∞
0 v(r, θ) dν(r). For this function, which is well-defined and

smooth on the whole space Rn, the average over σn−1 is exactly the average
of u over µ. Hence, by the Poincaré inequality on the unit sphere,
∫

Sn−1
w(θ)2 dσn−1(θ) ≤

(∫
Rn

u(x) dµ(x)
)2

+
1
n

∫
Sn−1

|∇w(θ)|2dσn−1(θ).

(11)
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(The classical Riemannian version of the Poincaré inequality is formulated
for the “inner” gradient ∇Sn−1w(θ) on the unit sphere which is the projection
of the usual gradient ∇w(θ) onto the subspace orthogonal to θ. In this case
the constant 1

n in (11) should be replaced with 1
n−1 .)

Since ∇w(θ)=
∫ +∞
0 r ∇u(rθ) dν(r), we have |∇w(θ)|≤ ∫ +∞

0 r |∇u(rθ)| dν(r).
Hence, by the Cauchy–Bunyakovski inequality,

|∇w(θ)|2 ≤
∫ +∞

0
r2 dν(r)

∫ +∞

0
|∇u(rθ)|2 dν(r) = n

∫ +∞

0
|∇u(rθ)|2 dν(r),

where we used the normalization condition Eξ2 = n. Together with (10) and
(11), this estimate yields

∫
Rn

u(x)2 dµ(x) ≤
(∫

Rn

u(x) dµ(x)
)2

+ 13
∫
Rn

|∇u(x)|2 dµ(x),

that is, the Poincaré-type inequality (1) with the lower bound λ1 ≥ 1/13.
The upper bound is trivial and follows by testing (1) on linear functions.

This finishes the proof.

As already mentioned, the fact that (1) implies a concentration inequality,
namely,

1 − µ(Ah) ≤ Ce−c
√

λ1 h, h > 0, µ(A) ≥ 1
2
, (12)

where C and c are certain positive universal constants, was proved by M. Gro-
mov and V.D. Milman, see [G-M]. They formulated it in the setting of a
compact Riemannian manifold, but the assertion remains to hold in many
other settings, e.g., for an arbitrary metric space (see e.g. [A-S], [B-L], [L]).
The best possible constant in the exponent in (12) is c = 2 ([B2]), but this
is not important for the present formulation of Theorem 1.

Remark. We do not know how to adapt the argument in order to prove, for
all smooth u with µ-mean zero, a stronger inequality in comparison with (1),

c

∫
Rn

|u(x)| dµ(x) ≤
∫
Rn

|∇u(x)| dµ(x), (13)

called sometimes a Cheeger-type inequality. On the shifted indicator functions
u = 1A−µ(A), (13) turns into an equivalent isoperimetric inequality for the µ-
perimeter, µ+(A) ≥ 2c µ(A)(1−µ(A)). One deep conjecture ([K-L-S]) asserts
that, for some universal c > 0, this isoperimetric inequality holds true under
the isotropic condition (2) in the class of all log-concave measures µ. However,
the hypothesis remains open even in the weaker forms such as Poincaré and
concentration inequalities. And as we saw, already the particular case of
a symmetrically log-concave measure leads to a rather sophisticated one-
dimensional property such as Lemma 1.
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Proof of Lemma 2. Let p be the probability density of η on (0, +∞). We apply
the one-dimensional Prékopa–Leindler theorem (see [Pr1-2], [Le], or [Pi] for
a short proof): given t, s > 0 with t + s = 1 and non-negative measurable
functions u, v, w on (0, +∞) satisfying w(tx+ sy) ≥ ut(x)vs(y), for all x, y >
0, we have

∫ +∞

0
w(z) dz ≥

(∫ +∞

0
u(x) dx

)t (∫ +∞

0
v(y) dy

)s

. (14)

Let a > b > c > 0 and b = ta + sc. Since

sup
tx+sy=z

xayc = atacsc

(
z

ta + sc

)ta+sc

,

the inequality (14) applies to u(x) = (x
a )ap(x), v(y) = (y

c )cp(y), and w(z) =
( z

b )bp(z). This is exactly what we need.

Remark. The multidimensional Prékopa–Leindler theorem yields a similar
statement: For any random vector (η1, . . . , ηn) in Rn

+ with log-concave dis-
tribution, the function ϕ(a1, . . . , an) = E ( η1

a1
)a1 . . . ( ηn

an
)an is log-concave on

Rn
+.
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