Spectral Gap and Concentration for Some Spherically Symmetric Probability Measures^{*}

S.G. Bobkov

School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church St. S.E., Minneapolis, MN 55455, USA *bobkov@math.umn.edu*

Summary. We study the spectral gap and a related concentration property for a family of spherically symmetric probability measures.

This note appeared in an attempt to answer the following question raised by V. Bogachev: How do we effectively estimate the spectral gap for the exponential measures μ on the Euclidean space \mathbf{R}^n with densities of the form $\frac{d\mu(x)}{dx} = ae^{-b|x|}$?

By the spectral gap, we mean here the best constant $\lambda_1 = \lambda_1(\mu)$ in the Poincaré-type inequality

$$\lambda_1 \int_{\mathbf{R}^n} |u(x)|^2 \, d\mu(x) \le \int_{\mathbf{R}^n} |\nabla u(x)|^2 \, d\mu(x) \tag{1}$$

with u being an arbitrary smooth (or, more generally, locally Lipschitz) function on \mathbf{R}^n such that $\int u(x) d\mu(x) = 0$. Although it is often known that $\lambda_1 > 0$, in many problems of analysis and probability, one needs to know how the dimension n reflects on this constant. One important case, the canonical Gaussian measure $\mu = \gamma_n$, with density $(2\pi)^{-n/2} e^{-|x|^2/2}$, provides an example with a dimension-free spectral gap $\lambda_1 = 1$. This fact can already be used to recover a dimension-free concentration phenomenon in Gauss space.

To unite both the Gaussian and the exponential cases, we consider a spherically symmetric probability measure μ on \mathbf{R}^n with density

$$\frac{d\mu(x)}{dx} = \rho(|x|), \quad x \in \mathbf{R}^n,$$

assuming that $\rho = \rho(t)$ is an arbitrary log-concave function on $(0, +\infty)$, that is, the function $\log \rho(t)$ is concave on its support interval. In order that μ be log-concave itself (cf. [Bor2] for a general theory of log-concave measures), ρ has also to be non-increasing in t > 0. However, this will not be required.

It is a matter of normalization, if we assume that μ satisfies

$$\int_{\mathbf{R}^n} \langle x, \theta \rangle^2 \, d\mu(x) = |\theta|^2, \quad \text{for all } \theta \in \mathbf{R}^n.$$
(2)

* Supported in part by an NSF grant.

As usual, $\langle \cdot, \cdot \rangle$ and $|\cdot|$ denote the scalar product and the Euclidean norm, respectively. Since μ is symmetrically invariant, this normalization condition may also be written as $\int x_1^2 d\mu(x) = 1$, or $\int |x|^2 d\mu(x) = n$. We prove:

Theorem 1. Under (2), the optimal value of λ_1 in (1) satisfies $\frac{1}{13} \leq \lambda_1 \leq 1$.

Returning to the exponential measure $d\mu(x) = a e^{-b|x|} dx$, b > 0, we thus obtain that λ_1 is of order b^2/n .

Using Theorem 1 and applying Gromov–Milmans's theorem on concentration under Poincaré-type inequalities, one may conclude that all the considered measures share a dimension-free concentration phenomenon:

Theorem 2. Under (2), given a measurable set A in \mathbb{R}^n of measure $\mu(A) \geq \frac{1}{2}$, for all h > 0,

$$1 - \mu(A^h) \le 2e^{-ch},\tag{3}$$

where c is a certain positive universal constant.

Here, we use $A^h = \{x \in \mathbf{R}^n : \operatorname{dist}(A, x) < h\}$ to denote an *h*-neighborhood of A with respect to the Euclidean distance.

Note that, in polar coordinates, every spherically symmetric measure μ with density $\rho(|x|)$ represents a product measure, i.e., it may be viewed as the distribution of $\xi\theta$, where θ is a random vector uniformly distributed over the unit sphere S^{n-1} , and where $\xi > 0$ is an independent of θ random variable with distribution function

$$\mu\{|x| \le t\} = n\omega_n \int_0^t s^{n-1} \rho(s) \, ds, \quad t > 0 \tag{4}$$

 $(\omega_n \text{ is the volume of the unit ball in } \mathbf{R}^n)$. For example, one can take (\mathbf{R}^n, μ) for the underlying probability space and put $\xi(x) = |x|$, $\theta(x) = \frac{x}{|x|}$. It is a classical fact that $\lambda_1(S^{n-1}) = n - 1$. To reach Theorems 1-2, our task will be therefore to estimate $\lambda_1(\xi)$ from below and to see in particular that the values of ξ are strongly concentrated around its mean $\mathbf{E}\xi$ which is of order \sqrt{n} . When ρ is log-concave, the density $q(t) = n\omega_n t^{n-1}\rho(t)$ of ξ is log-concave, as well. Of course, this observation is not yet enough to reach the desired statements, since it "forgets" about an important factor t^{n-1} . As a first step, we will need the following one-dimensional:

Lemma 1. Given a positive integer n, if a random variable $\xi > 0$ has density q(t) such that the function $q(t)/t^{n-1}$ is log-concave on $(0, +\infty)$, then

$$\operatorname{Var}(\xi) \le \frac{1}{n} \, (\mathbf{E}\xi)^2. \tag{5}$$

As usual, $Var(\xi) = \mathbf{E}\xi^2 - (\mathbf{E}\xi)^2$ and $\mathbf{E}\xi$ denote the variance and the expectation of a random variable ξ .

For $\xi(x) = |x|$ as above, with distribution given by (4), in view of the normalization condition (2), we have $\mathbf{E}\xi^2 = n$, so the bound (5) yields a dimension-free inequality

$$\operatorname{Var}(\xi) \le 1. \tag{6}$$

Lemma 1 represents a particular case of a theorem due to R.E. Barlow, A.W. Marshall, and F. Proshan (cf. [B-M-P], p. 384, and [Bor1]) which states the following: If a random variable $\eta > 0$ has a distribution with increasing hazard rate (in particular, if η has a log-concave density), then its normalized moments $\lambda_a = \frac{1}{\Gamma(a+1)} \mathbf{E} \eta^a$ satisfy a reverse Lyapunov's inequality

$$\lambda_a^{b-c}\lambda_c^{a-b} \le \lambda_b^{a-c}, \qquad a \ge b \ge c \ge 1, \quad c \text{ integer.}$$
(7)

Indeed, putting a = n + 1, b = n, c = n - 1 $(n \ge 2)$, we get

$$\mathbf{E}\eta^{n+1}\,\mathbf{E}\eta^{n-1} \le \left(1+\frac{1}{n}\right)(\mathbf{E}\eta^n)^2. \tag{8}$$

If the random variable ξ has density $q(t) = t^{n-1}p(t)$ with p log-concave on $(0, +\infty)$, and η has density $p(t)/\int_0^{+\infty} p(t) dt$, the above inequality becomes $\mathbf{E}\xi^2 \leq (1 + \frac{1}{n}) (\mathbf{E}\xi)^2$ which is exactly (5).

When n = 1, the latter is equivalent to the well-known Khinchine-type inequality $\mathbf{E}\eta^2 \leq 2 (\mathbf{E}\eta)^2$. More generally, one has

$$\mathbf{E}\eta^a \le \Gamma(a+1) \, (\mathbf{E}\eta)^a, \quad a \ge 1,$$

which is known to hold true in the class of all random variables $\eta > 0$ with log-concave densities. This fact cannot formally be deduced from (7) because of the assumption $c \ge 1$. It was obtained in 1961 by S. Karlin, F. Proshan, and R.E. Barlow [K-P-B] as an application of their study of the so-called totally positive functions (similar to [B-M-P] – with techniques and ideas going back to the work of I.J. Schoenberg [S]).

To make the proof of Theorem 1 more self-contained, we would like to include a different argument leading to the inequality (7) for a related function:

Lemma 2. Given a log-concave random variable $\eta > 0$, the function $\lambda_a = \frac{1}{a^a} \mathbf{E} \eta^a$ is log-concave in a > 0. Equivalently, it satisfies (7), for all $a \ge b \ge c > 0$.

Again putting a = n + 1, b = n, c = n - 1, we obtain $\mathbf{E}\eta^{n+1} \mathbf{E}\eta^{n-1} \leq C_n(\mathbf{E}\eta^n)^2$ with constant $C_n = \frac{(n+1)^{n+1}(n-1)^{n-1}}{n^{2n}}$ which is a little worse than that of (8). On the other hand, one can easily see that $C_n \leq 1 + \frac{1}{n} + \frac{1}{n^3}$, so, we get, for example, the constant $\frac{2}{n}$ in Lemma 1 (and this leads to the lower bound $\frac{1}{25}$ in Theorem 1).

Finally, it might also be worthwhile to mention here the following interesting immediate consequence of Lemmas 1-2. Given an integer $d \ge 1$ and an arbitrary sequence of probability measures $(\mu_n)_{n\geq d}$ on \mathbf{R}^n (from the class we are considering), their projections to the coordinate subspace \mathbf{R}^d must converge, as $n \to \infty$, to the standard Gaussian measure on \mathbf{R}^d .

A second step to prove Theorem 1 is based on the following statement ([B1], Corollary 4.3):

Lemma 3. If a random variable ξ has distribution ν with log-concave density on the real line, then

$$\frac{1}{12\operatorname{Var}(\xi)} \le \lambda_1(\nu) \le \frac{1}{\operatorname{Var}(\xi)}$$

Together with (6) for $\xi(x) = |x|$, we thus get

$$\lambda_1(\nu) \ge \frac{1}{12}.\tag{9}$$

Proof of Theorem 1. We may assume that $n \geq 2$. As before, denote by ν the distribution of the Euclidean norm $\xi(x) = |x|$ under μ , and by σ_{n-1} the normalized Lebesgue measure on the unit sphere S^{n-1} . To prove the Poincaré-type inequality (1), take a smooth bounded function u on \mathbf{R}^n and consider another smooth bounded function $v(r, \theta) = u(r\theta)$ on the product space $(0, +\infty) \times \mathbf{R}^n$. Under the product measure $\nu \times \sigma_{n-1}$, v has the same distribution as u has under μ .

By (9), the measure ν satisfies the Poincaré-type inequality on the line,

$$\operatorname{Var}_{\nu}(g) \le 12 \int_{0}^{+\infty} |g'(r)|^2 d\nu(r),$$

where g = g(r) is an arbitrary absolutely continuous function on $(0, +\infty)$. In particular, for $g(r) = v(r, \theta)$ with fixed $\theta \in S^{n-1}$, we get

$$\int_0^{+\infty} v(r,\theta)^2 \, d\nu(r) \le \left(\int_0^{+\infty} v(r,\theta) \, d\nu(r)\right)^2 + 12 \int_0^{+\infty} \left|\frac{\partial v}{\partial r}\right|^2 d\nu(r).$$

Now, $\frac{\partial v}{\partial r} = \langle \nabla u(r\theta), \theta \rangle$, so $\left| \frac{\partial v}{\partial r} \right| \le |\nabla u(r\theta)|$. Integrating the above inequality over σ_{n-1} , we get

$$\int_{\mathbf{R}^n} u(x)^2 \, d\mu(x) \le \int_{S^{n-1}} w(\theta)^2 \, d\sigma_{n-1}(\theta) + 12 \int_{\mathbf{R}^n} |\nabla u(x)|^2 \, d\mu(x), \quad (10)$$

where $w(\theta) = \int_0^{+\infty} v(r,\theta) d\nu(r)$. For this function, which is well-defined and smooth on the whole space \mathbf{R}^n , the average over σ_{n-1} is exactly the average of u over μ . Hence, by the Poincaré inequality on the unit sphere,

$$\int_{S^{n-1}} w(\theta)^2 \, d\sigma_{n-1}(\theta) \le \left(\int_{\mathbf{R}^n} u(x) \, d\mu(x)\right)^2 + \frac{1}{n} \int_{S^{n-1}} |\nabla w(\theta)|^2 \, d\sigma_{n-1}(\theta).$$
(11)

(The classical Riemannian version of the Poincaré inequality is formulated for the "inner" gradient $\nabla_{S^{n-1}}w(\theta)$ on the unit sphere which is the projection of the usual gradient $\nabla w(\theta)$ onto the subspace orthogonal to θ . In this case the constant $\frac{1}{n}$ in (11) should be replaced with $\frac{1}{n-1}$.)

Since $\nabla w(\theta) = \int_0^{+\infty} r \nabla u(r\theta) \, d\nu(r)$, we have $|\nabla w(\theta)| \leq \int_0^{+\infty} r |\nabla u(r\theta)| \, d\nu(r)$. Hence, by the Cauchy–Bunyakovski inequality,

$$|\nabla w(\theta)|^2 \le \int_0^{+\infty} r^2 \, d\nu(r) \int_0^{+\infty} |\nabla u(r\theta)|^2 \, d\nu(r) = n \int_0^{+\infty} |\nabla u(r\theta)|^2 \, d\nu(r),$$

where we used the normalization condition $\mathbf{E}\xi^2 = n$. Together with (10) and (11), this estimate yields

$$\int_{\mathbf{R}^n} u(x)^2 \, d\mu(x) \le \left(\int_{\mathbf{R}^n} u(x) \, d\mu(x)\right)^2 + 13 \int_{\mathbf{R}^n} |\nabla u(x)|^2 \, d\mu(x),$$

that is, the Poincaré-type inequality (1) with the lower bound $\lambda_1 \geq 1/13$.

The upper bound is trivial and follows by testing (1) on linear functions. This finishes the proof.

As already mentioned, the fact that (1) implies a concentration inequality, namely,

$$1 - \mu(A^h) \le C e^{-c\sqrt{\lambda_1} h}, \quad h > 0, \quad \mu(A) \ge \frac{1}{2},$$
 (12)

where C and c are certain positive universal constants, was proved by M. Gromov and V.D. Milman, see [G-M]. They formulated it in the setting of a compact Riemannian manifold, but the assertion remains to hold in many other settings, e.g., for an arbitrary metric space (see e.g. [A-S], [B-L], [L]). The best possible constant in the exponent in (12) is c = 2 ([B2]), but this is not important for the present formulation of Theorem 1.

Remark. We do not know how to adapt the argument in order to prove, for all smooth u with μ -mean zero, a stronger inequality in comparison with (1),

$$c\int_{\mathbf{R}^{n}}|u(x)|\,d\mu(x)\leq\int_{\mathbf{R}^{n}}|\nabla u(x)|\,d\mu(x),\tag{13}$$

called sometimes a Cheeger-type inequality. On the shifted indicator functions $u = 1_A - \mu(A)$, (13) turns into an equivalent isoperimetric inequality for the μ -perimeter, $\mu^+(A) \ge 2c \,\mu(A)(1-\mu(A))$. One deep conjecture ([K-L-S]) asserts that, for some universal c > 0, this isoperimetric inequality holds true under the isotropic condition (2) in the class of all log-concave measures μ . However, the hypothesis remains open even in the weaker forms such as Poincaré and concentration inequalities. And as we saw, already the particular case of a symmetrically log-concave measure leads to a rather sophisticated one-dimensional property such as Lemma 1.

Proof of Lemma 2. Let p be the probability density of η on $(0, +\infty)$. We apply the one-dimensional Prékopa-Leindler theorem (see [Pr1-2], [Le], or [Pi] for a short proof): given t, s > 0 with t + s = 1 and non-negative measurable functions u, v, w on $(0, +\infty)$ satisfying $w(tx + sy) \ge u^t(x)v^s(y)$, for all x, y > 0, we have

$$\int_0^{+\infty} w(z) \, dz \ge \left(\int_0^{+\infty} u(x) \, dx \right)^t \left(\int_0^{+\infty} v(y) \, dy \right)^s. \tag{14}$$

Let a > b > c > 0 and b = ta + sc. Since

$$\sup_{tx+sy=z} x^a y^c = a^{ta} c^{sc} \left(\frac{z}{ta+sc}\right)^{ta+sc}$$

the inequality (14) applies to $u(x) = (\frac{x}{a})^a p(x)$, $v(y) = (\frac{y}{c})^c p(y)$, and $w(z) = (\frac{z}{b})^b p(z)$. This is exactly what we need.

Remark. The multidimensional Prékopa–Leindler theorem yields a similar statement: For any random vector (η_1, \ldots, η_n) in \mathbf{R}^n_+ with log-concave distribution, the function $\varphi(a_1, \ldots, a_n) = \mathbf{E} \left(\frac{\eta_1}{a_1}\right)^{a_1} \ldots \left(\frac{\eta_n}{a_n}\right)^{a_n}$ is log-concave on \mathbf{R}^n_+ .

References

- [A-S] Aida, S., Stroock, D. (1994): Moment estimates derived from Poincaré and logarithmic Sobolev inequalities. Math. Res. Lett., 1, No. 1, 75–86
- [B-M-P] Barlow, R.E., Marshall, A.W., Proshan, F. (1963): Properties of probability distributions with monotone hazard rate. Ann. Math. Stat., 34, 375–389
- [B1] Bobkov, S.G. (1999): Isoperimetric and analytic inequalities for logconcave probability distributions. Ann. Probab., 27, No. 4, 1903–1921
- [B2] Bobkov, S.G. (1999): Remarks on Gromov-Milman's inequality. Vestnik of Syktyvkar University, 3, Ser.1, 15–22 (in Russian)
- [B-L] Bobkov, S.G., Ledoux, M. (1997): Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution. Probab. Theory Rel. Fields, 107, 383–400
- [Bor1] Borell, C. (1973): Complements of Lyapunov's inequality. Math. Ann., 205, 323–331
- [Bor2] Borell, C. (1974): Convex measures on locally convex spaces. Ark. Math., 12, 239–252
- [G-M] Gromov, M., Milman, V.D. (1983): A topological application of the isoperimetric inequality. Amer. J. Math., 105, 843–854
- [K-L-S] Kannan, R., Lovász, L., Simonovits, M. (1995): Isoperimetric problems for convex bodies and a localization lemma. Discrete and Comput. Geom., 13, 541–559
- [K-P-B] Karlin, S., Proshan, F., Barlow, R.E. (1961): Moment inequalities of Polya frequency functions. Pacific J. Math., 11, 1023–1033

- [L] Ledoux, M. (1999). Concentration of measure and logarithmic Sobolev inequalities. Séminaire de Probabilités, XXXIII, Lecture Notes in Math., 1709, Springer, 120–216
- [Le] Leindler, L. (1972): On a certain converse of Hölder's inequality II. Acta Sci. Math. Szeged, 33, 217–223
- [Pi] Pisier, G. (1989): The Volume of Convex Bodies and Banach Space Geometry. Cambridge Tracts in Math., 94, Cambridge University Press, Cambridge
- [Pr1] Prékopa, A. (1971): Logarithmic concave measures with applications to stochastic programming. Acta Sci. Math. Szeged, 32, 301–316
- [Pr2] Prékopa, A. (1973): On logarithmic concave measures and functions. Acta Sci. Math. Szeged, 34, 335–343
- [S] Schoenberg, I.J. (1951): On Pólya frequency functions I. The totally positive functions and their Laplace transforms. J. d'Analyse Math., 1, 331– 374