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ABSTRACT
Motivated by (the rate of information loss or) the rate at
which the entropy of an ergodic Markov chain relative to
its stationary distribution decays to zero, we study modi-
fied versions of the standard logarithmic Sobolev inequality
in the discrete setting of finite Markov chains and graphs.
These inequalities turn out to be weaker than the stan-
dard log-Sobolev inequality, but stronger than the Poincare’
(spectral gap) inequality. We also derive a hypercontractiv-
ity formulation equivalent to our main modified log-Sobolev
inequality which might be of independent interest. Finally
we show that, in contrast with the spectral gap, for bounded
degree expander graphs various log-Sobolev-type constants
go to zero with the size of the graph.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability & Statis-
tics—Markov processes, Probabilistic Algorithms

General Terms
Algorithms, Theory

Keywords
Spectral gap, Entropy decay, Sobolev Inequalities

1. INTRODUCTION
Let (M,P, π) denote an ergodic Markov chain with a finite

state space M , transition probability matrix P and station-
ary distribution π. For f, g : M → R, let E(f, g) denote the
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Dirichlet form defined by

E(f, g) = −Eπ(fLg) = −
∑
x∈M

f(x)Lg(x)π(x), (1.1)

where −L = I − P is the so-called Laplacian matrix. Then
the spectral gap of P or the smallest non-zero eigenvalue of
−L can be defined as the optimal positive constant in

λ1Varπf ≤ E(f, f), (1.2)

over all f : M → R. As usual, Varπf = Eπf
2 − (Eπf)2.

Note that one arrives at such a functional (or variational)
definition of the spectral gap in a natural way, when one
considers the rate of decay of variance of the distribution of
the chain with respect to the stationary distribution. More
formally, working in the technically-easier continuous-time,
let µt = µ0Pt be the distribution of the chain at time t, for
t ≥ 0, where we use Pt to denote the semi-group generated

by L: etL =
∞∑
n=0

tnLn

n!
. Let ft = µt/π denote the density of

µ with respect to π, i.e., ft(x) = µt(x)/π(x), for all x ∈ M .
Then it is a classical fact that

d

dt
Varπ(ft) = −2E(ft, ft), (1.3)

which motivates the above definition of λ1. On the other
hand, little attention seems to have been given (particu-
larly in the context of finite Markov chains) to the following
equally natural property: for all t ≥ 0,

d

dt
D(µt||π) = −E(ft, log ft), (1.4)

where D(µ||π) =
∑
x∈X µ(x) log(µ(x)/π(x)) denotes (the in-

formational divergence or) the relative entropy of µ with
respect to π. Using the standard notation that Entπf =
Eπ(f log f)−(Eπf) log(Eπf), one is then motivated in study-
ing the inequality,

ρ0Entπf ≤ 1

2
E(f, log f), (1.5)

over all f : M → R+, since one is then able to conclude
(after observing that Entπf = D(µ||π), whenever f = µ/π)
that for all t ≥ 0,

d

dt
D(µt||π) ≤ −2ρ0 D(µt||π), t > 0.
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If one would rather study convergence to stationarity us-
ing the more popular total variation norm: ‖µt − π‖TV =
1

2

∑
x∈M

|µt(x) − π(x)|, a well-known inequality (see (2.5))

between the total variation norm and the relative entropy
could lead the above discussion further to (see Corollary 2.6)):
for every initial distribution µ0 on M , for all t ≥ 0,

‖µt − π‖2
TV ≤ 2 log

1

π∗
e−2ρ0t, (1.6)

where π∗ = minx∈M π(x), thus recovering and in fact im-
proving upon a similar bound (see Remark 2.5 below) em-
ploying the standard logarithmic Sobolev constant. In Sec-
tion 4, we consider a further generalization of (1.3) and
(1.4) using Sobolev-type inequalities, which interpolate be-
tween the modified log-Sobolev inequality and the Poincaré
inequality.

Recall that the standard logarithmic Sobolev inequality is
of the form

ρEntπf
2 ≤ 2E(f, f),

for all f : M → R. Also recall that it is shown in [12] that
1

4ρ
≤ τ2 ≤

(
1 +

1

4
log log(1/π∗

)
1

2ρ
, where τ2 = inf{t > 0 :

sup
µ0

Eπ[|µt/π− 1|2]1/2 ≤ 1/e}. Thus while ρ captures rather

accurately the convergence to stationarity using
supµ0 Eπ[|µt/π − 1|2]1/2, which in general is larger than
D(µt||π), it seems better to use ρ0 when one wants to work
with either the relative entropy or the total variation norm.

We observe that ρ ≤ ρ0 ≤ λ1 (see Proposition 3.6) and
provide examples which show that either inequality could
be tight up to universal constants. Some standard exam-
ples on which ρ0 is in fact the order of λ1, while ρ = o(ρ0),
(thus providing tight bounds on convergence to stationar-
ity using the total variation norm), include simple random
walks on the complete graph, on the set of permutations
using random transpositions, and a biased random walk on
the n-cube.

It is natural to wonder how the relative entropy decays for
random walks on expander graphs. Using a (yet another)
modified log-Sobolev inequality of the gradient type (see the
definition of ρ1 in Section 3), we show that in fact both ρ
and ρ0 are of the order of 1/(log |G|) for bounded degree ex-
panders G (see Section 5), while by definition λ1 is bounded
away from zero.

On the computational side, we remark that ρ0 of a graph
could be computed efficiently up to arbitrary accuracy, in
similarity to λ1, while we can only argue that ρ can be esti-
mated efficiently up to a factor of at most five.

An independent and interesting aspect (as explained in
[3], [12] etc.) of the classical logarithmic Sobolev inequality
is its equivalence to the so-called hypercontractivity. The
often-used Bonami-Beckner hypercontractivity estimate for
functions on {0, 1}n is known (due to [15]) to be equivalent
to ρ being 4 (in our notation). In this case it turns out
that ρ = ρ0 = ρ1 = λ1 = 4. In addition, for the general case
(including the continuous setting) we derive a hypercontrac-
tivity characterization of ρ0 (see Section 6).

2. CONVERGENCE TO STATIONARITY
Elaborating on the introduction, we start with a stochas-

tic matrix P on a finite set M , and define a Markov process
{X}t≥0 in M with initial distribution, say, µ0 and transition
matrices

Pt = e−t(I−P ), t ≥ 0,

with the generator −L = I − P . To study the asymptotic
behavior of the probability distributions µt of random vari-
ables X(t) for large time, we will assume that:

a) There is a stationary distribution π for P , i.e., πP = P .
b) π(x) > 0, for all x ∈ M .
c) For all x, y ∈ M such that x 
= y, there exists n ≥ 1

with Pn(x, y) > 0.
Standard fact is that a)−c) imply that such a π is unique.

More over, b) also implies that any probability distribution µ
on M is absolutely continuous with respect to π, and we are

allowed to consider the corresponding density dµ
dπ

(x) = µ(x)
π(x)

,

x ∈ M . Thus, let ft(x) =
µt(x)

π(x)
, x ∈ M, be the density of

µt with respect to π at time t ≥ 0. We wish to show that the
measures µt approach π, or equivalently, that ft’s are getting
close to 1 for large t. A proper quantitative statement may
be done, for example, in terms of Lp-distance

‖ft − 1‖pLp(π) =

∫
|ft − 1|p dπ, 1 ≤ p < +∞,

which becomes the total variation norm ‖µt − π‖TV in case
p = 1. Another important measure of closeness is the so-
called informational divergence, defined by

D(µt||π) = Entπ(ft) =

∫
ft log ft dπ.

Recall that µt = µ0Pt. Let P ∗ denote the time-reversal of
P given by π(x)P ∗(x, y) = π(y)P (y,x), for x, y ∈ M . Let

P ∗
t = etL

∗
, where −L∗ = I − P ∗. Then the following is a

useful basic technical fact:

Lemma 2.1. For any µ0 and all t ≥ 0, we have ft =
P ∗
t f0. Consequently, for any x ∈ M ,

dft(x)

dt
= L∗ft(x).

Now it is easy to show how the functional E(f, g) is con-
nected with the L2-distance ‖ft − 1‖L2(π) and the informa-
tional divergence. Indeed, by Lemma 2.1, differentiating the
function Varπ(ft) =

∫
f2
t dπ − 1, we get

d

dt
Varπ(ft) =

∫
d

dt
f2
t dπ

= 2

∫
ftL

∗ft dπ = 2

∫
L(ft)ft dπ

= −2E(ft, ft).

Assuming the Poincaré-type inequality (1.2) holds true with
constant λ1 > 0, we get from the above identity, the classical

fact:
d

dt
Varπ(ft) ≤ −2λ1Varπ(ft). Integrating over t, we

arrive at the standard estimate:

Theorem 2.2. For every initial distribution µ0,

Varπ(ft) ≤ Varπ(f0) e−2λ1t, t ≥ 0. (2.1)

288



Now, we may repeat a similar argument towards the study
of the informational divergence:

Lemma 2.3. Under a) − c), for any µ0 and all t > 0,
the density ft is strictly positive on M . Furthermore, the
function t → D(µt||π) is differentiable on (0,+∞), and

d

dt
D(µt||π) = −E(ft, log ft), t > 0.

Proof. Writing Taylor’s expansion : for all x, y ∈ M and

t ≥ 0, P ∗
t (x, y) = e−t

∞∑
n=0

tn

n!
(P ∗)n(x, y). We also have,

π(x)(P ∗)n(x, y) = π(y)Pn(y, x), for n ≥ 1. Hence, the as-
sumptions b) − c) imply that P ∗

t (x, y) > 0 whenever t > 0.
Since ft = P ∗

t f0 and
∑
x f0(x) = 1, this yields the first

statement of the lemma.
Thus, in the range t > 0, we are allowed to perform dif-

ferentiation in accordance with Lemma 2.1 and the identity
(1.1) for the Dirichlet form:

d

dt
D(µt||π) =

∫
d

dt
ft log ft dπ

=

∫
(log ft + 1)L∗ft dπ =

∫
L(log ft)ft dπ

= −E(ft, log ft).

✷

Now, similarly to Theorem 2.2, we can start from the
modified logarithmic Sobolev inequality (1.5) on M .

Theorem 2.4. For every initial distribution µ0,

D(µt||π) ≤ D(µ0||π) e−2ρ0t, t ≥ 0. (2.2)

Proof. By Lemma 2.3,

d

dt
D(µt||π) ≤ −2ρ0 D(µt||π). t > 0.

Integrating this inequality over t and since the right hand
side is continuous at t = 0, we arrive at the desired estimate
(2.2).

In the general case, let us modify the kernel a little: for
small ε > 0, consider

P (ε)(x, y) = (1 − ε)P (x, y) + επ(y), x, y ∈ M.

Evidently, the new Markov kernel satisfies all the properties
a) − c) with the same invariant measure π. Hence, we get

(2.2) for the corresponding measures µ
(ε)
t :

D(µ
(ε)
t ||π) ≤ D(µ

(ε)
0 ||π) e−2ρ0t, t ≥ 0.

It remains to let ε ↓ 0. ✷

Remark 2.5. Note that we didn’t make the assumption
of reversibility (namely, the assumption that π(x)P (x, y) =
π(y)P (y,x), for all x, y ∈ M) of the Markov kernel in the
above. In the next section, assuming reversibility we show
that ρ ≤ ρ0, thus showing that the estimate (2.2) improves
upon

D(µt||π) ≤ D(µ0||π) e−2ρ t, t ≥ 0. (2.3)

The latter was obtained in [2] and [25], see discussion in
[12]. Together with (2.3), Theorem 3.6 in [12] also involves
nonreversible Markov kernels in which case ρ is replaced

with ρ/2 (a result of L. Miclo [22]). The above proof of
Lemma 2.3 which led to Theorem 2.4 is implicitly contained
in [12] (or as paraphrased in the appendix of [13]). The
important difference is that the usual log-Sobolev inequality
(3.2) is taken as a starting point in [13] and in all the above-
mentioned papers.

The estimates given in Theorems 2.2 and 2.4 are not
comparable in general: each may have its own advantages.
When ρ0 = λ1 or when these constants are of similar magni-
tude, the estimate (2.2) can be more useful than the estimate
(2.1). First note, there is a general inequality

∫
f dπ Entπf ≤

Varπ(f), holding true for any measurable function on an ar-
bitrary probability space. Applying this to f = ft, we get

D(µt||π) ≤ Varπ(ft).

Hence, in the second theorem, a smaller distance (the infor-
mational divergence at time t) is estimated from above by a
smaller quantity (the informational divergence at the initial
time multiplied by an exponentially decreasing factor).

Another natural and typical objective is obtaining the
rates of convergence in total variation norm ‖µt−π‖TV uni-
formly over all possible µ0. Then, in order to apply (2.1),
one can use a trivial bound ‖µt − π‖2

TV ≤ Varπ(ft). The
right hand side of (2.1) is maximized when µ0 is one of the
Dirac measures δx which leads to

‖µt − π‖2
TV ≤ 1

π∗
e−2λ1t, where π∗ = min

x∈M
π(x). (2.4)

It is also possible to relate the total variation norm to
the informational divergence, using the following well known
inequality, see e.g. Lemma 12.6.1 in [9], [12] or [13]: for every
probability measure µ on M ,

‖µ− π‖2
TV ≤ 2D(µ||π). (2.5)

With estimate (2.2) this leads to a certain refinement of
(2.4) (when ρ0 is approximately λ1):

Corollary 2.6. For every initial distribution µ0 on M ,
for all t ≥ 0,

‖µt − π‖2
TV ≤ 2 log

1

π∗
e−2ρ0t. (2.6)

A general 2-state chain can be used to show that in (2.6),
the dependence on t can be sharp; (once again, ρ0 and λ1

are of the same order in such an example.)

Example 2.7. I. (slices of the n-cube) A fundamental
example is a slice Ω(n, k) of the discrete cube: the ver-
tices being the k-subsets of an n-set. Two subsets are ad-
jacent if and only if they can be obtained from each other
by a single swap of a pair of elements. (Note that this is
also the so-called uniform matroid.) There is a natural re-
versible Markov kernel associated with this graph, which as-
signs P (x, y) = 1/[k(n−k)], whenever x and y are neighbors.
In the full version of our paper, using an elementary proof
we show that (n + 2)/[4k(n− k)] ≤ ρ0 ≤ n/[k(n− k)] = λ1.
(The value of λ1 is due to [11].)

II. (random transpositions) We also prove in the full ver-
sion that ρ0 of the chain on permutations using (uniform)
random transpositions satisfies: 1/[2(n− 1)] ≤ ρ0 ≤ 2/(n−
1) = λ1. This in particular implies that the mixing time
in total variation is at most O(n log n), which is the tight,
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whereas only an O(n log2 n) bound follows from ρ, since
ρ = Θ(1/(n log n)).

The proof technique uses the chain rule for conditional rel-
ative entropy and convexity of R(a, b) = (a−b)(log a−log b),
for a, b > 0, in getting a recurrence for ρ0 of Sn as a func-
tion of n. We have recently found out that ρ0 has been in-
troduced and estimated in the context of studying precisely
the above two examples by Gao and Quastel in a recent pa-
per [14]. The approach in [14] is a bit different, namely, the
martingale approach (in the spirit of [20] who estimated the
standard log-Sobolev constant for the same examples), while
ours is a direct inductive argument. Our bounds are asymp-
totically equivalent. At the end of Section 4, we rederive the
bounds in the above examples using an interpolating Sobolev-
type inequality.

It might also be worth mentioning that the bounds (2.4)-
(2.6) can be sharpened by virtue of Theorem 2.2 under mild
symmetry assumptions of the initial density f0 about its
mean value

∫
f0 dπ = 1. In particular, we have:

Corollary 2.8. For every initial distribution µ0 such
that

∫
(f0 − 1)3 dπ = 0,

Varπ(ft) ≤ 2 log
1

π∗
e−2λ1t, t ≥ 0. (2.7)

Proof: See the journal version of the paper.

3. POINCARÉ AND LOG-SOBOLEV IN AB-
STRACT SETTINGS

In this section we make a systematic study of various log-
arithmic Sobolev inequalities and the Poincaré inequality
in discrete settings. We begin with a basic definition of a
Dirichlet form. Let (M,µ) be a probability space, and let
A be a linear space of bounded measurable functions on M .
Further assumptions on A are:

Axiom 1. If f, g ∈ A, then fg ∈ A (that is, A is an
algebra).

Axiom 2. If f ∈ A, then ef ∈ A.

Definition 3.1. Any bilinear form E : A × A → R will
be called a Dirichlet form.

Although the definition of Dirichlet forms has nothing to
do with the measure µ, it turns out that many standard ex-
amples are constructed through a measure. In what follows
we will be primarily interested in a discrete setting of finite
undirected graphs or finite Markov chains. How ever, since
traditionally these functional inequalities have been stud-
ied in a continuous setting, we also briefly mention such a
setting.

Example 3.2. (a continuous setting). Let M be an open
subset of Rd, and let A be the family of all smooth, compactly
supported functions on M . Put

E(f, g) =

∫
M

〈∇f(x),∇g(x)〉 dµ(x),

where 〈·, ·〉 is a canonical scalar product in Rn, and where

∇f(x) = ( ∂f(x)
∂x1

, . . . , ∂f(x)
∂x1

) denotes the usual gradient of f
at the point x ∈ M . This gradient is local in the sense that
∇u(f) = u′(f)∇f , for any smooth u such that u(f) ∈ A.

The example can be generalized by considering for M an
arbitrary Riemannian manifold of dimension d. If M is
compact, one typically takes for µ the normalized Lebesgue
measure on M .

Example 3.3. (a graph setting). Let G = (M,M) be a
finite, connected, undirected graph with vertex set M and
edge set M. Let µ : M → [0, 1] be an arbitrary probability
measure on the vertices. Given a function f on M , one can
define the gradient ∇f(x) at each vertex x ∈ M as the vector
{f(x)− f(y)}y∼x of the length d(x), the degree of x. Hence,
the corresponding Dirichlet form becomes

E(f, g) =
∑
x

∑
y∼x

(f(x) − f(y))(g(x) − g(y))µ(x).

Here A represents the space of all functions on M .

Example 3.4. (an abstract discrete setting and reversible
Markov kernels). Again, let (M,µ) be a finite probability
space, and let P : M × M → [0,+∞) be a non-negative
function, called a kernel in the sequel. For all functions f, g
on M , one may define the associated Dirichlet form by

E(f, g) =
1

2

∫ ∑
y∈M

(f(x) − f(y)) (g(x) − g(y))P (x, y) dµ(x).

It corresponds to the gradient operator

∇f(x) =

{
1√
2

(f(x) − f(y))
√

P (x, y)

}
y∈M

, so again the

gradient formula as in Example 3.2 works well. If P is a
reversible Markov kernel, then the above definition is also
equivalent to the general definition given by (1.1), and we
have the additional property that E(f, g) = E(g, f). It turns
out that the formula suggested by Example 3.2 is particu-
larly suited to study reversible kernels, due to the apparent
symmetry, while (1.1) is more general.

In the rest of this section, whenever we assume that P is
a Markov kernel, we also assume implicitly that P is in fact
reversible.

Consider a probability space (M,µ) and a Dirichlet form
E : A×A → R, as above. Then we can introduce Poincaré-
type (or spectral gap) and logarithmic Sobolev inequalities
as

λ1Var(f) ≤ E(f, f), f ∈ A, (3.1)

ρEnt(f2) ≤ 2 E(f, f), f ∈ A. (3.2)

As mentioned already in the introduction, by a modified
logarithmic Sobolev inequality (of the Dirichlet type), we
mean an inequality of the form

ρ0Ent(ef ) ≤ 1

2
E(ef , f), f ∈ A. (3.3)

If the Dirichlet form comes through a gradient like in all
the previous examples, one may also consider modified loga-
rithmic Sobolev inequalities of the gradient type. The most
popular versions which appeared in connection with the con-
centration of measure phenomenon are (see [19]):

ρ1Ent(ef ) ≤ 1

2

∫
|∇f |2 ef dµ, f ∈ A, (3.4)

ρ2Ent(ef ) ≤ 1

2

∫
|∇ef |2 e−f dµ, f ∈ A. (3.5)
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To be more precise, here one assumes that any point x ∈ M
is assigned with a linear operator A � f → ∇f(x) ∈ Rd(x)

such that the functions of the form x → 〈∇f(x),∇g(x)〉 are
µ-integrable and bounded, whenever f, g ∈ A.

Formally replacing f with log f , the inequality (3.5) takes
a more familiar form

ρ2Ent(f) ≤ 1

2

∫ |∇f |2
f

dµ, f ∈ A, f : positive. (3.6)

More precisely, we obtain (3.5) from the last inequality (3.6)
by applying it to ef . At this step the axiom 2 is used. For the
converse implication, one needs a different assumption, that
log f ∈ A as long as f belongs to A and is positive. Thus, in
all the examples we considered before, the inequalities (3.5)
and (3.6) are equivalent, but we prefer the first, exponential
form in order to keep maximal generality and to save more
analogs between (3.5) and the other exponential form (3.4).

If the gradient is local like in Example 3.2, all the log-
Sobolev inequalities (3.2), (3.3), (3.4) and (3.5) are equiv-
alent to each other, and moreover ρ = ρ0 = ρ1 = ρ2 for
optimal values. As for the general case, first we show that,
under reasonable assumptions, the spectral gap inequality
is weaker than any of these inequalities.

Proposition 3.5. Assume that
1) the function g(x) = 1 belongs to A and E(f, 1) =

E(1, f) = 0, for all f ∈ A ;
2) for all f, g ∈ A and for any uniformly bounded se-

quence fn converging to f (µ-almost everywhere), we have
E(fn, g) → E(f, g), as n → ∞.
Then, for the optimal constants in (3.1) − (3.5), we have

max {ρ, ρ0, ρ1, ρ2} ≤ λ1.

Proof. To show ρ ≤ λ1, note that, for every c real, E(f +
c, f + c) = E(f, f). Since Ent((f + c)2) → 2 Var(f), as
c → ∞, the application of (3.2) to functions of the form f+c
yields (3.1) with ρ in the place of λ1. To prove ρ0, ρ1, ρ2 ≤
λ1, apply the inequalities (3.3)-(3.5) to functions 1

n
f with

n → ∞.

Note that the assumptions 1) and 2) are not needed for
deriving ρ1, ρ2 ≤ λ1. The assumption 2) is automatically
fulfilled as long as there exists a linear operator L associated
with the Dirichlet form E . In particular, this is true for an
abstract discrete setting, which might be a well-known fact,
and we omit the proof from this version.

Now let us specialize the log-Sobolev inequalities to dis-
crete settings where they may differ considerably in terms
of the magnitudes of ρ, ρ0, ρ1 and ρ2. (The fact that ρ ≤ ρ1

for reversible Markov kernels was observed in [17], wherein
ρ1 was called τ2 (see comments after Lemma 1 in [17].)

Proposition 3.6. In the reversible Markov kernel set-
ting, for the optimal constants in (3.1) − (3.5), we have

0 ≤ ρ ≤ ρ0 ≤ ρ1 ≤ ρ2 ≤ λ1.

Proof of Proposition 3.6. Let (M,µ) be a finite probabil-
ity space with a reversible Markov kernel P . First we show
that the logarithmic Sobolev inequality (3.2) implies the
modified logarithmic Sobolev inequality (3.3) with ρ0 = ρ.
Thus, fix a function f on M . Starting from (3.2), apply it

to the function ef/2 to get

ρEnt(ef ) ≤ 2 E(ef/2, ef/2).

Hence, in order to derive (3.3) with the same constant on
the left, it suffices to show that

E(ef/2, ef/2) ≤ 1

4
E(ef , f).

This estimate is actually observed in [12]. According to the
definition (in Example 3.4) of the discrete Dirichlet form,
we need to check that(

ef(x)/2 − ef(y)/2
)2

≤ 1

4

(
ef(x) − ef(y)

)
(f(x) − f(y)),

for all x, y ∈ M . Putting a = ef(x)/2, b = ef(y)/2, we are
reduced to the inequality (a− b)2 ≤ 1

2
(a2 − b2) log a

b
in the

range a, b > 0, which can easily be verified to be true.
Now, in view of Proposition 3.5, we need only to show

that (3.3) ⇒ (3.4) ⇒ (3.5) with ρ2 = ρ1 = ρ0. Clearly, it
suffices to compare the right hand sides in these inequalities
and to see that, for every f on M ,

E(ef , f) ≤
∫

|∇f |2ef dµ ≤
∫

|∇ef |2 e−f dµ. (3.7)

Since |∇f(x)|2 = 1
2

∑
y∈M(f(x) − f(y))2P (x, y), we have∫

|∇f |2ef dµ =
1

2

∑
x,y∈M

(f(x) − f(y))2ef(x)P (x, y)µ(x)

=
1

2

∑
x,y∈M

(f(x) − f(y))2ef(y)P (x, y)µ(x),

by reversibility. So∫
|∇f |2ef dµ

=
1

2

∑
x,y∈M

(f(x) − f(y))2
ef(x) + ef(y)

2
P (x, y)µ(x).

Similarly,

∫
|∇ef |2 e−f dµ

=
1

2

∑
x,y∈M

(ef(x) − ef(y))2
e−f(x) + e−f(y)

2
P (x, y)µ(x).

On the other hand, E(ef , f)

=

∫ 〈
∇ef ,∇f

〉
dµ

=
1

2

∑
x,y∈M

(f(x) − f(y))
(
ef(x) − ef(y)

)
P (x, y)µ(x).

To establish (3.7), it suffices to compare the corresponding
terms in these three representations. Thus, put a = f(x),
b = f(y) for fixed x, y ∈ M : we need to show that

(a−b)
(
ea − eb

)
≤ (a−b)2

ea + eb

2
≤
(
ea − eb

)2 e−a + e−b

2
.

Since all the three sides are symmetric with respect to (a, b),
we may assume a ≥ b. Putting a = b+ h, we are reduced to

h(eh − 1) ≤ h2 eh + 1

2
≤ (eh − 1)2

e−h + 1

2
, h ≥ 0. (3.8)

Write the first inequality as eh − 1 ≤ h e
h+1
2

. It turns into
an equality at the point h = 0, while after differentiation
it becomes eh ≤ 1

2
+ h+1

2
eh. Again, there is equality at
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h = 0, and differentiating it, we arrive at eh ≤ h+2
2

eh which
is evidently true. This proves the first inequality in (3.8).

The second inequality is simplified as h2eh ≤ (eh−1)2 ⇐⇒
heh/2 ≤ eh− 1 ⇐⇒ h

2
≤ sh(h

2
). It readily holds, as well and

thus Proposition 3.6 is proved. ✷

Note that, the normalizing property (
∑
y P (x, y) = 1, for

all x ∈ M) was not used in the proof of Proposition 3.6.
More over, the proof holds good for the graph setting with
µ being uniform on the set of vertices.

Example 3.7. (symmetric discrete cube). LetM = {0, 1}n
be the discrete cube. For x ∈ M , if y is the neighbor of x
obtained by flipping coordinate i, then we write y = si(x).
Then the canonical Dirichlet form on M is defined by

E(f, g) =

∫ n∑
i=1

(f(x) − f(si(x))) (g(x) − g(si(x))) dµ(x),

(3.9)
where the measure µ is uniform. In this case,

ρ = ρ0 = ρ1 = ρ2 = λ1 = 4. (3.10)

(Formally we are not in a Markov kernel setting. However,
one may simply multiply the Dirichlet form by 1

2n
to get the

corresponding constants.) That ρ = 4 is due to Gross[15];
that λ1 = 4 is trivial. Hence ρ = λ1 and the remaining
equalities in (3.10) follow immediately from Proposition 3.6.

Example 3.8. (non-symmetric discrete cube). Now, for
p ∈ (0, 1), equip M with the product measure µ = µnp with
marginal µp assigning mass p to 1 and mass q = 1− p to 0.
In this case for the Dirichlet form (3.9)

λ1 =
1

pq
, ρ =

1

pq

2 (p− q)

log p− log q
. (3.11)

The first equality is trivial; the second one was obtained in
[12] and mentioned in [16] without proof. The constant ρ2

was studied in [6] where it is proved that

1

2pq
≤ ρ2 ≤ 1

pq
. (3.12)

Hence, ρ2 is of order λ1. As for the remaining log-Sobolev
constants, we have:

Proposition 3.9. For the discrete cube M = {0, 1}n with
the product measure µ = µnp , 0 < p < 1,

1

2pq
≤ ρ0 ≤ λ1 =

1

pq
, ρ1 ≤ 2 (log p− log q)

p− q
. (3.13)

Proof. See the journal version of the paper.

Note that in huge contrast with Proposition 3.6, as pq →
0, ρ1 << ρ << ρ0 ≈ ρ2 ≈ λ1, (although the best value
of ρ1 is not known). This pathological situation concerns
only the modified log-Sobolev inequality (3.4) of gradient
type. It may be explained with the fact that the gradient
is not defined via the Dirichlet form (in contrast with (3.1),
(3.2) and (3.3)) and essentially depends on the kernel itself.
Indeed, already in dimension one, for any f : {0, 1} → R,
we have∫

|∇f |2ef dµ = (f(1) − f(0))2
(
pef(1) + qef(0)

)
. (3.14)

Note, if p 
= q, the right hand side is not invariant under
replacement f(1) ↔ f(0). On the other hand, in accordance
with definition (3.9) in dimension one, we have

E(ef , f) = (f(1) − f(0))
(
ef(1) − ef(0)

)
, (3.15)

which is invariant (and does not depend on p, at all).

Remark 3.10. Note that the eigenvalue interpretation of
λ1 tells us that there is in fact a function (namely an eigen-
function) which achieves the optimal value λ1. The same is
not necessarily true of ρ and ρ0 (e.g., as in the symmetric
two-point case). How ever, we prove (in the journal version)
that if the inf in the definition of ρ and ρ0 is not achieved,
then in fact ρ = ρ0 = λ1!

Remark 3.11. All the above constants (ρ, ρ0, ρ1, ρ2, λ1)
remain invariant under taking the Cartesian product of a
graph with itself. The “standard” argument (e.g., as in [17])
using the tensoring property of entropy and variance works.

Example 3.12. (the complete graph). Let (M,M) be the
complete graph on a non-empty finite set M . Moreover, as-
sume M is equipped with a probability measure µ such that
µ∗ = min

x∈M
µ(x) > 0, and consider the function P (x, y) =

µ(y). Then, (P, µ) is a reversible Markov kernel, and in ac-
cordance with the Markov kernel setting, the Dirichlet form
is given by

E(f, g) = covµ(f, g). (3.16)

In particular, for M = {0, 1} with µ = µp, this Dirichlet
form is 2pq times the Dirichlet form (3.15). Since the in-
equalities (3.1)–(3.3) are defined through the Dirichlet form,
we can apply (3.11), (3.13) and then Proposition 3.6 to get:

1

2
≤ ρ0 ≤ ρ1 ≤ ρ2 ≤ λ1 = 1, (3.17)

and

ρ =
2 (p− q)

log p− log q
. (3.18)

Thus, in contrast with Example 3.8, the optimal constants
in all modified log-Sobolev inequalities are of order λ1. Ac-
tually, the set of inequalities (3.17) remains to hold for an
arbitrary complete graph M with the remark that, for a sin-
gle point set M , all the optimal constants are equal to +∞.
Indeed, by Jensen’s inequality and by (3.16), Ent(ef ) ≤
cov(f, ef ) = E(f, ef ), so ρ0 ≥ 1

2
. On the other hand, λ1 = 1,

and it remains to apply Proposition 3.6. As for the constant
ρ, every complete graph M satisfies (3.18) with p = µ∗,
q = 1 − µ∗. This is shown in [12] on the basis of the two
point case (3.11).

4. BETWEEN MODIFIED LOG-SOBOLEV
AND POINCARÉ

For reversible kernels, both inequalities (2.1) and (2.2)
can be united by a more general scheme under a certain
stronger hypothesis. Namely, given (M,P, π) with P being
a reversible kernel, for a number p ∈ (1, 2], one may start
with the Sobolev-type inequality

α(p)
[ ‖f‖pp − ‖f‖p1

] ≤ p

2
E(f, fp−1), (4.1)
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where f is an arbitrary positive function on M , and ‖f‖pp =∫
fp dπ, ‖f‖1 =

∫
f dπ.

If p = 2, we are reduced to the Poincaré-type inequality
(3.1), so the optimal constant α(2) is just the spectral gap
λ1. For 1 < p < 2, applying (4.1) to functions of the form
1 + εf and letting ε → 0, we obtain the relation

α(p) ≤ λ1.

On the other hand, dividing both sides of (4.1) by p−1 and
letting p ↓ 1, we get in the limit the modified logarithmic
Sobolev inequality (3.3), so α(1) = ρ0.

The proofs of Theorems 2.2 and 2.4 are readily extended
to the more general statement:

Theorem 4.1. Under the hypothesis (4.1) with p ∈ (1, 2],
for every initial distribution µ0 on M ,

‖ft‖pp − 1 ≤ [‖f0‖pp − 1
]
e−2α(p) t, t ≥ 0. (4.2)

In the continuous setting with Dirichlet form E(f, g) =∫ 〈∇f,∇g〉 dπ, the inequality (4.1) may be rewritten equiv-
alently by replacing p with 2/q and putting f = gq. It then
takes the form

α(2/q)
[ ‖g‖2

2 − ‖g‖2
q

] ≤ (2− q)E(g, g), 1 ≤ q < 2. (4.3)

This inequality was introduced in 1989 by W. Beckner [4]
as a kind of sharp interpolation between Poincaré and loga-
rithmic Sobolev inequality: it was established for the canon-
ical Gaussian measure with optimal constants α(2/q) =
1 thus generalizing the famous Gross’ theorem ((4.3) was
also proved there for uniform distributions on Euclidean
spheres). Recently, a similar inequality was derived for prod-

uct measures in Rn with marginal densities cre
−|x|r , 1 ≤

r ≤ 2, by R. Latala and K. Oleszkiewicz, cf. [18].
Let us note that, while for q = 1 the inequality (4.3)

represents the spectral gap, the limiting case q = 2 reduces
to the usual logarithmic Sobolev inequality (3.2), where the
optimal constant may be much smaller than the one in (3.3).
Therefore, (4.1) has a correct form to fit the features of the
modified log-Sobolev inequality in the discrete setting. The
essential difference between (4.1) and (4.3) already appears
for complete graphs as we can see from the following:

Proposition 4.2. For every complete graphM on at least
two vertices, equipped with an arbitrary probability measure
π, for every p ∈ (1, 2], we have

p

2
≤ α(p) ≤ 1.

Proof. The right hand side inequality is immediate since
λ1 = 1. Recalling that E(f, g) = covπ(f, g), the left hand
side inequality is just

‖f‖pp − ‖f‖p1 ≤ covπ(f, fp−1) = ‖f‖pp − ‖f‖1‖f‖p−1
p−1,

that is, ‖f‖p−1 ≤ ‖f‖1. The latter holds due to p − 1 ≤ 1.
✷

Example 4.3. (product spaces) LetM = Gn be the Carte-
sian product of n copies of G, with product probability mea-
sure µn, where µ is arbitrary on the vertices of G, and
let p ∈ (1, 2]. Then we have α(p)[Gn] = α(p)[G], for all
n ≥ 1, using the tensoring property of the functional L(f) =
‖f‖pp − ‖f‖p1.

In order to study the interpolating inequality (8.1) for
non-product graphs, the following is a useful technical lemma;
the proof can be found in the journal version.

Lemma 4.4. For any p ∈ (1, 2], the function

R(a, b) = (a− b)(ap−1 − bp−1), a, b > 0.

is convex in the positive octant.

As an illustration, consider the graph M = Ω(n, k) of slices
of the discrete cube. Recall that the statement about the
modified log-Sobolev inequality,

Entπ(f) ≤ 1

n + 2
E(f, log f), (4.4)

was mentioned (in Example 2.7) for the Dirichlet form cor-
responding to the graph setting, namely,

E(f, g) =

∫ ∑
y∼x

(f(x) − f(y))(g(x) − g(y)) dπ(x), (4.5)

where π is uniform probability measure on M . Making use
of Proposition 4.2 and the convexity of R(a, b) above, leads
to the following generalization of (4.4).

Proposition 4.5. Let 1 ≤ k ≤ n − 1 be integer, and
p ∈ (1, 2]. For every positive function f on Ω(n, k), with
repsect to the uniform probability measure

‖f‖pp − ‖f‖p1 ≤ 1

n + 2
E(f, fp−1), (4.6)

Equivalently, in the Markov kernel setting,

p (n + 2)

4k(n− k)
≤ α(p) ≤ λ1 =

n

k(n− k)
.

The constant on the right, 1
n+2

, is of correct order uniformly

over all admissible triples (n, k, p). The particular case p = 2
yields the spectral gap inequality

Varµ(f) ≤ 1

n + 2
E(f, f). (4.7)

Here, the optimal value of the constant is known and is
equal to 1

2n
(see [10]). For this constant, equality in (4.7)

is attained for any linear function f on Rn. On the other
hand, dividing both sides of (4.6) by p−1, letting p → 1, we
arrive at the modified logarithmic Sobolev inequality (4.4)
stated above.

Proof of Proposition 4.5. We may identify Ω(n, k) with a
slice of the discrete cube, {x ∈ {0, 1}n : x1 +x2 + · · ·+xn =
k}, so that Ω(n, k) inherits the structure of a graph from
the discrete cube: neighbors are the pairs of points which
differ exactly in two coordinates. The canonical inner metric
ρ = ρn,k in Ω(n, k) is given by

ρ(x, y) =
1

2
card{i ≤ n : xi 
= yi}, x, y ∈ Ω(n, k),

that is, one half of the Hamming distance.
For 1 ≤ k ≤ n− 1, let An,k denote the best constant in

‖f‖pp − ‖f‖p1 ≤ An,k E(f, fp−1), (4.8)

where f is an arbitrary positive function on Ω = Ω(n, k). In
terms of the function R this inequality takes the form∫

fp dµ ≤
(∫

f dµ

)p
+ An,k

1

Ckn

∑
ρ(x,y)=1

R(f(x), f(y)),

(4.9)
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where the summation is performed over all ordered pairs
(x, y) ∈ Ω × Ω such that ρ(x, y) = 1. By symmetry, An,k =
An,n−k.

We know that An,1 ≤ 1
2n

. As for k ≥ 2, we will deduce a
recursive inequality relating An,k to An−1,k−1, and then we
may proceed by induction. Thus, fix k ≥ 2 and a positive
function f on Ω with

∫
f dµ = 1 (this can be assumed in view

of homogeneity of (4.8)-(4.9)). Introduce the subgraphs

Ωi = {x ∈ Ω : xi = 1}, 1 ≤ i ≤ n,

and equip them with uniform measures µi. Since all Ωi can
be identified with Ω(n−1, k−1), we may write the definition
(4.9) for these graphs:∫

Ωi
fp dµi ≤

(∫
Ωi

f dµi
)p

+
An−1, k−1

Ck−1
n−1

∑
x∈Ωi

∑
y∈Ωi, ρ(x,y)=1

R(f(x), f(y)).

Setting ϕ(i) =
∫
Ωi

f dµi and summing these inequalities over

all i ≤ n with weight 1
n

, we obtain

1

n

n∑
i=1

∫
Ωi

fp dµi ≤ 1

n

n∑
i=1

ϕ(i)p

+
An−1, k−1

nCk−1
n−1

n∑
i=1

∑
x∈Ωi

∑
y∈Ωi, ρ(x,y)=1

R(f(x), f(y)).

(4.10)

Since 1
n

∑n
i=1 µi = µ, the first term in (4.10) is equal to∫

fp dµ. The second term is estimated from above, accord-
ing to the case k = 1, by(

1

n

n∑
i=1

ϕ(i)

)p
+

An,1
C1
n

∑
i	=j

R(ϕ(i), ϕ(j)).

But 1
n

∑n
i=1 ϕ(i) =

∫
f dµ = 1. Hence, (4.10) implies∫

fp dµ ≤ An,1
n

∑
i	=j

R(ϕ(i), ϕ(j))

+
An−1, k−1

nCk−1
n−1

n∑
i=1

∑
x∈Ωi

∑
y∈Ωi, ρ(x,y)=1

R(f(x), f(y)).

To treat the triple sum, fix x, y ∈ Ω with ρ(x, y) = 1. The
number of all i such that x ∈ Ωi and y ∈ Ωi simultaneously
is equal to k − 1. Hence, the triple sum will contribute

(k−1)
∑
x∈Ω

∑
y∈Ω, ρ(x,y)=1

R(f(x), f(y)) = (k−1)Ckn E(f, log f).

Since
(k − 1)Ckn

nCk−1
n−1

=
k − 1

k
, we thus get∫

fp dµ ≤ An,1
n

∑
i	=j

R(ϕ(i), ϕ(j))

+
(k − 1)An−1, k−1

k
E(f, log f). (4.11)

To treat the sum in (4.11), for each pair (i, j), i 
= j, define
the bijective map sij : {0, 1}n → {0, 1}n,

(sijx)r = xr, for r 
= i, j, and (sijx)j = xi, (sijx)i = xj .

It acts as a bijection between Ωi and Ωj and pushes forward
µi onto µj , provided that k ≥ 2. In particular, ϕ(j) ≡∫
f(y) dµj(y) =

∫
f(sijx) dµi(x).

Now, by Lemma 4.4, the function R is convex in the quan-
drant a, b > 0. Consequently, by Jensen’s inequality,

R(ϕ(i), ϕ(j)) = R

(∫
f(x) dµi(x),

∫
f(sijx) dµi(x)

)

≤
∫

R(f(x), f(sijx)) dµi(x).

Therefore,∑
i	=j

R(ϕ(i), ϕ(j)) ≤ 1

Ck−1
n−1

∑
i	=j

∑
x∈Ωi

R(f(x), f(sijx)). (4.12)

Note that y = sijx always implies ρ(x, y) ≤ 1, and in case
x ∈ Ωi, the equality ρ(x, y) = 1 is only possible when xi = 1,
xj = 0. Hence, the double sum in (4.12) contains only terms
R(f(x), f(y)) with ρ(x, y) = 1 (the cases ρ(x, y) = 0 can be
excluded). In turn, fixing any pair (x, y) ∈ Ω such that
ρ(x, y) = 1, there is a unique pair (i, j) such that i 
= j and
y = sijx. Thus, the right hand side of (4.12) is just

1

Ck−1
n−1

∑
x∈Ω

∑
y∈Ω, ρ(x,y)=1

R(f(x), f(y)) =
n

k
E(f, fp−1),

and we get from (4.11)∫
fp dµ ≤ An,1 + (k − 1)An−1, k−1

k
E(f, fp−1).

Hence, An,k ≤ An,1 + (k − 1)An−1, k−1

k
, or in terms of

Bn,k = kAn,k,

Bn,k ≤ An,1 + Bn−1, k−1.

Applying this inequality successively k− 1 times and recall-
ing that Ar,1 ≤ 1

2r
, we arrive at

Bn,k ≤ 1

2n
+

1

2(n− 1)

+ · · · +
1

2(n− (k − 2))
+ Bn−(k−1), 1

≤ 1

2n
+

1

2(n− 1)

+ · · · +
1

2(n− (k − 2))
+

1

2(n− (k − 1))
.

If k ≤ n
2

, each of the above k terms does not exceed 1
n+2

,

so Bn,k ≤ k
n+2

. This implies the desired estimate An,k ≤
1
n+2

. In the case k ≥ n
2

, we may use An,k = An,n−k, and
Proposition 4.5 follows. ✷

A similar statement can be made about the symmetric
group M = Sn in which case we have (4.4) with the same
constant 1

n+2
for the Dirichlet form (4.5):

Proposition 4.6. Let p ∈ (1, 2]. For every positive func-
tion f on Sn, n ≥ 2, with respect to the uniform probability
measure

‖f‖pp − ‖f‖p1 ≤ 1

n + 2
E(f, fp−1),

Equivalently, in the Markov kernel setting,

p (n + 2)

2n(n− 1)
≤ α(p) ≤ λ1 =

2

n− 1
.
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Now let us return to Theorem 4.1 and the inequality (4.2)
about the mixing time. Since the norm ‖f0‖p is maximized
for Dirac measure µ0 = δx, for some x ∈ M , we obtain
similarly to (2.4) a more general bound

‖ft‖pp − 1 ≤ 1 − πp−1
∗

πp−1
∗

e−2α(p)t, t ≥ 0,

where π∗ = minx π(x). Letting p ↓ 1 helps us recover the
previous estimate on the informational divergence, cf. ( 2.2)
and (2.6),

Entπ(ft) ≤ log
1

π∗
e−2ρ0t, t ≥ 0.

5. BOUNDS ON DIAMETER
Throughout this section we assume that G = (V,E) is a

finite, connected, undirected graph. For simplicity we also
assume that G is d-regular, although typically the weaker
assumption, that the maximum degree is at most d, is suffi-
cient. Let µ be uniform over V . More over, let (G,µ) satisfy
the inequality: for all f > 0 on V ,

ρ1Entµ(ef ) ≤ 1

2
Eµ|∇f |2ef , (5.1)

for some ρ1 > 0; recall that |∇f(x)|2 =
∑
y:y∼x

(f(x)− f(y))2,

for x ∈ V .
Then we have the following bound on the diameter D =

D(G) of G.

Proposition 5.1. D ≤ 2

√
2d

ρ1
log |V |.

Remark 5.2. This improves upon similar results by [1]

and [8], where the bounds are of the type: D ≤ c

√
d

λ1
log |V |,

for c > 0 some universal constant. Using the general in-
equalities, ρ ≥ λ1/(log |V |) (see e.g. [24]) and ρ1 ≥ ρ (see
comments after the proof of Proposition 3.6), it is clear that
the Proposition 5.1 is an improvement. Results in [7] and
[23] also provide improvements over [1], but are in general
incomparable with ours.

Remark 5.3. The proposition also implies that for bounded
degree expander graphs, ρ, ρ0 and ρ1 are all of the order of
1/ log |V |, where the constants would depend on the bounds
on the degree and the expansion, or equivalently, the spectral
gap. Indeed since we have,

λ1

log |V | ≤ ρ ≤ ρ0 ≤ ρ1 ≤ 8d log |V |
D2

,

and since for graphs with degree at most d0, the diameter is
at least logd0 |V |, up to a universal constant, we verify the
above assertion.

Proof of Proposition 5.1. Applying the inequality (5.1)
to tf , with t ∈ IR, f :Lipschitz, Eµf = 0, we get

ρ1Entµ(etf ) ≤ dt2

2
Eµe

tf . (5.2)

Setting Eetf = etu(t), Ent(etf ) becomes t2u′(t)etu(t). Plug-
ging into (5.2) yields that u′(t) ≤ d/(2ρ1), which in turn
implies that u(t) ≤ dt/(2ρ1). Hence

Eµe
tf ≤ edt

2/2ρ1 . (5.3)

Now let us tensorize (5.3) on G✷G, the Cartesian product
of G with itself: as mentioned in Remark 3.11, ρ1(G✷G) =
ρ1(G). Consider g on V × V , with g(x, y) := f(x) − f(y).
Then f : Lipschitz on G implies that g: Lipschitz on G✷G,
and more over, Eµ×µg = 0. Thus applying (5.3) with g, and
noting G✷G is regular with degree 2d yields:

Eµ×µet(f(x)−f(y)) ≤ edt
2/ρ1 .

On the other hand, letting M = max f(x) and m = min f(x),
we have

Eµ×µe
t(f(x)−f(y)) ≥ et(M−m)

|V |2 .

Thus we may conclude that for all t ∈ IR, we have

M −m ≤ dt

ρ1
+

2 log |V |
t

.

Minimizing over t yields, for all Lipschitz f on G,

max f − min f ≤ 2

√
2d

ρ1
log |V |. (5.4)

To conclude the proof of the proposition, let us take f(x) =
d(x, x0), for x0 ∈ V , and maximize the left hand side of (5.4)
over all choices of x0:

D ≤ 2

√
2d

ρ1
log |V |. (5.5)

✷

We refer the reader to the journal version of our paper
for other bounds on the diameter of a graph using ρ and ρ0,
and also for related results on concentration of measure on
product graphs.

Remark 5.4. It is well known that the spectral gap of a
graph can be estimated efficiently up to arbitrary accuracy.
Considering the computational complexity of ρ0 of an undi-
rected graph on n vertices, let us remark that ρ0 can also be
estimated up to arbitrary accuracy using, say, the ellipsoid
algorithm : indeed computing ρ0 corresponds to minimizing
the convex functional

∑
x

∑
y∼xR(f(x), f(y))µ(x) over the

convex body {f ∈ Rn : Entµf ≤ 1}.
The computational complexity of ρ was raised as an open

question in [24]. Note that the above argument can not be
made directly regarding ρ, since {f : Entµf

2 ≤ 1} is not a
convex body in Rn. However, it is known from [5] that the
log-Sobolev inequality in the form (3.2) can equivalently be
rewritten as

ρL(f) ≤ E(f, f),

where L(f) = supa Entµ
(
(f + a)2

)
. Furthermore, it is shown

in [5] that

2

3
‖f‖2

N ≤ L(f) ≤ 13

4
‖f‖2

N ,

where ‖.‖N denotes the Orlicz norm corresponding to the
(convex) Young function N(x) = x2 log(1 + x2). Thus over
the convex body {f ∈ Rn : ‖f‖2

N ≤ 1} one can minimize the
convex functional

∑
x

∑
y∼x(f(x) − f(y))2µ(x) to estimate

ρ to within a factor of 39/8.
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6. HYPERCONTRACTIVITY
In this section our treatment is very general, including

both the continuous and the discrete cases. Let (M,µ) be
a probability space and let A be a linear space of bounded
measurable functions on M . Let L : A → A be a linear
operator associated with the Dirichlet form E : A×A → R
in the sense that

−
∫

fLg dµ = E(f, g), for all f, g ∈ A. (6.1)

It is easy to see that whenever such an operator exists, it
is unique. Furthermore, assume a family of linear operators
Pt : A → A, t ≥ 0, is associated with E , with the properties
that:

1) Pt has generator L satisfying the relation (6.1);

2) For all f ∈ A and t0 > 0, sup0≤t≤t0 ‖Ptf‖ < +∞.

Note that the property of having a generator is understood
in the following sense: for all f ∈ A and t ≥ 0,

lim
ε→0

Pt+εf − Ptf

ε
= L(Ptf) (6.2)

with convergence in the norm of the space L1(µ). Then we
have:

Theorem 6.1. Given a number ρ0, the following proper-
ties are equivalent:
a) The Dirichlet form E satisfies the modified logarithmic

Sobolev inequality

ρ0 Ent(ef ) ≤ 1

2
E(ef , f), f ∈ A. (6.3)

b) For all t ≥ 0 and f ∈ A,∥∥∥ePtf
∥∥∥
e2ρ0t

≤
∥∥∥ef∥∥∥

1
. (6.4)

All the norms here are taken in the Lebesgue spaces Lq(µ)
(although we say “norm” even if q < 1). The equivalence
of (6.4) and log-Sobolev inequality (3.2) is well known in
the continuous setting (cf. [3]). Here we are dealing with
the most general formulation fitting both continuous and
discrete cases. The main point and motivation is that, in
discrete spaces, the constant ρ0 can be much better than ρ.

Proof. See the journal version of the paper.
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Séminaire de Probabilité XIX, Lect. Notes in Math.,
1123 (1994), 179–206, Springer, Berlin.

[4] Beckner, W. A generalized Poincaré inequality for
Gaussian measures. Proc. of the AMS, 105 (1989), No
2, 397–400.

[5] Bobkov, S.G., Götze, F. Exponential integrability and
transporation cost related to logarithmic
transportation inequalities. J. Funct. Anal., 163
(1999), 1–28.

[6] Bobkov, S.G., Ledoux, M. On modified logarithmic
Sobolev inequalities for Bernoulli and Poisson
measures. J. Funct. Anal., 156 (1998), 347–365.

[7] Chung, F.R.K. Diameters and Eigenvalues, J. Amer.
Math. Soc. 2 (1989), 187–196.

[8] Chung, F.R.K., Grigor’yan, A., Yau, S.-T. Higher
eigenvalues and isoperimetric inequalities on
Riemannian manifolds and graphs. Comm. Anal.
Geom. 8 (2000), no. 5, 969–1026.

[9] Cover, T.M., Thomas, J.A. Elements of Information
Theory. John Wiley & Sons, New York (1991).

[10] Diaconis, P., Group representations in Probability and
Statistics. IMS, Hayward, CA (1988).

[11] Diaconis, P., Shashahani, M. Time to reach
stationarity in the Bernoulli-Laplace diffusion model.
SIAM J. Math. Anal., 18 (1987), 208–218.

[12] Diaconis, P., Saloff-Coste, L. Logarithmic Sobolev
inequalities for finite Markov chains. Ann. Appl.
Probab., 6 (1996), 695–750.

[13] Frieze, A., Kannan, R. Log-Sobolev inequalities and
sampling from log-concave distributions. Preprint
(1998).

[14] Gao, F., Quastel, J., Exponential decay of entropy in
the Random Transposition and Bernoulli-Laplace
models, Ann. Appl. Probab., to appear.

[15] Gross, L. Logarithmic Sobolev inequalities. Amer. J.
Math., 97 (1975), 1060–1083.

[16] Higuchi, Y., Yoshida, N. Analytic conditions and
phase transition for Ising models. Lect. Notes in
Japanese, 1995.
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inhomogénes. Ann. Appl. Probab., 6 (1996), No.4,
1112–1156.

[23] Mohar, B. Eigenvalues, diameter, and mean distance
in graphs. Graphs Combin. 7 (1991), 53–64.

[24] Saloff-Coste, L. Lectures on finite Markov chains.
Lect. Notes in Math., 1665 (1997), 301–413, Springer,
Berlin.

[25] Stroock, D. Logarithmic Sobolev inequalities for
Gibbs measures. Lect. Notes in Math., 1563 (1993),
Springer, Berlin.

296


