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1 Introduction

Let P be a log-concave probability measure on Rn. Equivalently, P is concentrated
on some affine subspace E ⊂ Rn where it has a density p, with respect to Lebesgue
measure on E, such that

p(tx+ (1 − t)y) ≥ p(x)tp(y)1−t, for all t ∈ (0, 1) and x, y ∈ E.

We refer the reader to the classical 1974 paper by C. Borell [Bor] for a general theory
of such measures.

As is known, given a function f on Rn, certain possible distributional properties
of f with respect to P can be controled by the behavior of this function along lines.
For example, when f(x) = ‖x‖ is an arbitrary norm, we have an inequality for large
deviations

P{f > λEf} ≤ Ce−cλ, λ ≥ 0, (1.1)

where C and c are positive numerical constants, and where we use probabilistic
notations Ef =

∫
f dP for the expectation with respect to P . In an equivalent

form this fact first appeared in [Bor], cf. Lemma 3.1. If f is a polynomial in n real
variables of degree d, we have a similar inequality

P{|f | > λE|f |} ≤ C(d) e−c(d)λr(d)
, λ ≥ 0, (1.2)

thus with the right hand side depending on d, but independent of the measure P .
This observation, which gave an affirmative answer to a conjecture of V. D. Milman,
is due to J. Bourgain [Bou] who considered for P the uniform distribution on an
arbitrary convex body in Rn.

Both (1.1) and (1.2) can be united by a more general scheme. With every
continuous function f on Rn and ε ∈ (0, 1), we associate the quantity

δf (ε) = sup
x0,x1∈Rn

mes{t ∈ (0, 1) : | f(tx0 + (1 − t)x1) | < ε|f(x0)|}.
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As turns out, the behavior of δf near zero is connected with large deviations of f ,
and moreover, the corresponding inequalities can be made independent of P . To
study the polynomial case, J. Bourgain established the property

δf (ε0) ≤ δ0 (1.3)

with δ0 = 1/2 and with some ε0 ∈ (0, 1) depending upon d. This was already enough
to derive a very general statement on large deviations in the form (1.2). However, the
altitude of δf (ε) for small ε’s may contain an additional information on the strength
of deviations. In this note, we refine and extend Bourgain’s approach to arbitrary
functions f and log-concave measures P , with resulting estimates depending upon
δf , only. In particular, we prove:

Theorem 1.1. Let P be a log-concave probability measure on Rn, and let f be
a continuous function on Rn. Then, for all λ > 2e such that δf (2e/λ) ≤ 1/2,

P{|f | > λE|f |} ≤ exp

{
− 1

2δf (2e/λ)

}
. (1.4)

Once δf (ε) → 0, as ε → 0, the assumption δf (2e/λ) ≤ 1/2 is fulfilled for all λ
large enough. In case δf (ε) ≤ Cεr, for all ε ∈ (0, 1) and some C ≥ 1, r > 0, we thus
arrive at the estimate of the form

P {|f | > λE|f |} ≤ c1e
−c2λr

, λ ≥ 0.

As an example, we will observe that δf (ε) = 2ε
1+ε for any norm f(x) = ‖x‖ on Rn,

and we are thus lead to (1.1). In the polynomial case, δf (ε) = O(ε1/d) that leads to
(1.2) with the correct power r(d) = 1/d.

The main Bourgain argument based on the existence of suitable measure-preserving
maps is described in section 2. In the next section 3, we study large deviations un-
der the condition 1.3. The latter turns out to be related to a property known as
Markov’s inequality for polynomials in one real variable. In section 4, we consider
Theorem 1.1 itself and show how it can be applied to norms and polynomials, by
computing or estimating the quantity δf (ε). In section 5, we apply Theorem 1.1 to
study deviations of convex functions f from their mean Ef . In particular, we will
consider the case of the euclidean norm for which it is possible to reach exponentially
decreasing tails in terms of P -variance. At the end of this note, we put an appendix
devoted to triangular measure-preserving maps.

2 Bourgain’s argument

As a first basic step, we prove:
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Theorem 2.1. Let f be a continuous function on Rn, and let P be a log-concave
probability measure on Rn. Let ε ∈ (0, 1) and δ = δf (ε) < 1. Then, for all λ ≥ 0
and γ ∈ (0, 1 − δ],

P{|f | > λε} ≥ γP{|f | > λ}δ/(1−γ). (2.1)

Proof. Without loss of generality, we may assume that P is absolutely contin-
uous with respect to Lebesgue measure on Rn. Thus, P is concentrated on an open
convex set A0 ⊂ Rn where it has a positive, log-concave density p(x). We may also
assume that 0 < λ < ess sup f . For such values, introduce a family of non-empty
open subsets of A0,

Aλ = {x ∈ A0 : |f(x)| > λ}.
Fix λ and take a regular subset A of Aλ (e.g., a finite union of open balls, cf.
Appendix for details). In particular, P (A) > 0. We follow an argument of J.
Bourgain [Bou]: There exists unique continuous bijective triangular map T : A→ A0

which pushes forward the normalized restriction PA of P to A to the measure P .
Moreover, the components Ti = Ti(x1, . . . , xi) of T , i = 1, . . . , n, are C1-smooth
with respect to xi-coordinates and satisfy ∂Ti

∂xi
> 0 so that the Jacobian

J(x) =
n∏

i=1

∂Ti(x)
∂xi

, x ∈ A,

is continuous and positive on A. Since PA has density pA(x) = p(x)
P (A) , x ∈ A, the

property that T pushes forward PA to P is equivalent to saying that

p(x)
P (A)

= p(T (x))J(x), x ∈ A. (2.2)

Now, for each t ∈ (0, 1), introduce another map,

Tt(x) = tx+ (1 − t)T (x), x ∈ A,

which is also continuous, triangular, with components that are C1-smooth with
respect to xi-coordinates. Moreover, its Jacobian Jt satisfies

Jt(x) =
n∏

i=1

(
t+ (1 − t)

∂Ti(x)
∂xi

)
≥ J(x)1−t, x ∈ A. (2.3)

Consider the set

Bt = {x ∈ A : |f(tx+ (1 − t)T (x))| > λε}
and its image B′

t = Tt(Bt). Clearly, if y ∈ B′
t, then y = tx + (1 − t)T (x), for some

x ∈ Bt, hence |f(y)| > λε, that is, y ∈ Aλε. This means that B′
t ⊂ Aλε, and

therefore
P (B′

t) ≤ P (Aλε). (2.4)
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On the other hand, using the log-concavity p(tx+ (1− t)x′) ≥ p(x)tp(x′)1−t (which
will be needed with x′ = T (x)), and applying (2.2)-(2.3), we get

P (B′
t) =

∫
Tt(Bt)

p(y) dy =
∫

Bt

p(Tt(x))Jt(x) dx

≥
∫

Bt

p(Tt(x))J(x)1−t dx ≥
∫

Bt

p(x)t p(T (x))1−t J(x)1−t dx

= P (A)t−1
∫

Bt

p(x) dx = P (A)t−1 P (Bt).

Together with (2.4), this yields

P (Aλε) ≥ P (A)t−1 P (Bt). (2.5)

Now, in order to further estimate from below the last term in (2.5), it is the time
to involve the function δf . By the definition, for any x ∈ A,

mes{t ∈ (0, 1) : |f(tx+ (1 − t)T (x)| < ε|f(x)|} ≤ δ.

Since A ⊂ Aλ, we have |f(x)| > λ, so,

mes{t ∈ (0, 1) : |f(tx+ (1 − t)T (x)| ≤ ελ} ≤ δ,

or equivalently, ∫ 1

0
1{|f(tx+(1−t)T (x)|>λε} dt ≥ 1 − δ.

Integrating this inequality over the measure PA and interchanging the integrals, we
get ∫ 1

0
PA(Bt) dt ≥ 1 − δ. (2.6)

Thus, the function ψ(t) = PA(Bt) being bounded by 1 satisfies
∫ 1
0 ψ(t) dt ≥ 1 − δ.

This actually implies that ψ(t) ≥ γ, for some t ∈ (0, t0] where t0 = δ
1−γ ∈ (0, 1].

Indeed, assuming that ψ(t) < γ, whenever t ∈ (0, t0], we would get
∫ 1

0
ψ(t) dt =

∫ t0

0
ψ(t) dt+

∫ 1

t0
ψ(t) dt < γt0 + (1 − t0) = 1 − (1 − γ)t0 = 1 − δ.

Thus,
∫ 1
0 ψ(t) dt < 1 − δ that contradicts to (2.6). We can therefore conclude that

P (Bt)
P (A)

= PA(Bt) ≥ γ, for some t ∈ (0, t0].

Applying this in (2.5), we arrive at P (Aλε) ≥ γP (A)t, and since t ≤ t0,

P (Aλε) ≥ γP (A)t0 . (2.7)
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At last, approximating from below the set Aλ by regular subsets A so that P (A) ↑
P (Aλ), we get from (2.7) in the limit P (Aλε) ≥ γP (Aλ)t0 , that is, exactly (2.1).

Theorem 2.1 is proved.

Remark 2.2. The above argument still works with many other measure pre-
serving maps. For example, one may take for T the Brenier map, i.e., of the form
T = ∇ϕ, for some mod(P )-uniquely defined convex function ϕ, cf. [Bre] and [M]. In
this case, the derivative T ′(x) represents a positively definite matrix, and the crucial
inequality (2.3) should be replaced with

det(t Id + (1 − t)T ′(x)) ≥ det1−t(T ′(x))

which is a particular (and log-concave) case of the Brunn-Minkowski-type inequality
for determinants det1/n(A+B) ≥ det1/n(A)+det1/n(B) in the class of all positively
definite n× n-matrices. However, to make the argument following (2.3) absolutely
rigorous (the change of the variable formula), it is desirable to require that the
map Tt be in a certain sense regular. C1-smoothness seems too strong requirement,
but specializing in triangular maps, it is enough to have C1-smoothness of the
components Ti of T with respect to i-th coordinates. We provide more details in
appendix.

Remark 2.3. An attempt to choose an optimal γ in (2.1) complicates this
inequality, but in essense does not give an improvement. For further applications,
at the sake of some loss in constants, one may use Theorem 2.1 with γ = 1

2 , for
example.

It is however interesting to know how sharp the inequality (2.1) is. The definition
of δf reflects the behavior of the function f along all lines, so one may try to derive
inequalities of this kind by appealing to the localization technique going back to
the papers by M. Gromov and V. D. Milman, cf. [G-M], [A], and L. Lovász and
M. Simonovits [L-S], cf. also [K-L-S]. The advantage of this approach is that it allows
one to reduce many problems to dimension one where it is much easier to explore
extremal situations. In a recent preprint [N-S-V], F. Nazarov, M. Sodin, and A.
Volberg employ the localization ideas to prove the following remarkable statement
which they call the geometric KLS lemma in the spirit of [K-L-S]: Given a compact
convex set K in Rn, its closed subset F , and a number α > 1, define

Fα =
{
x ∈ K : for every interval J such that x ∈ J ⊂ K,

|F ∩ J |
|J | ≥ α− 1

α

}
.

Then, if voln(F ) > 0,
voln(Fα)
voln(K)

≤
(

voln(F )
voln(K)

)α

.

It is noted in [N-S-V] that in the definition of Fα it is enough to consider only the
intervals J that have x as one of their endpoints. Moreover, the above inequality
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extends to arbitrary log-concave probability measures P in the form

P (Fα) ≤ P (F )α. (2.8)

To see a connection with (2.1), take F = {x : |f(x)| ≥ λε}, G = {x : |f(x)| ≥ λ},
and assume that δ = δf (ε) < 1. Then, by the very definition of δf , we have G ⊂ Fα

for α = 1/δ, so (2.8) turns into

P{|f | ≥ λε} ≥ P{|f | ≥ λ}δ. (2.9)

This is an improved and more correct version of (2.1): the factor γ can thus be
replaced with 1 while the power δ/(1 − γ) can be replaced with δ. The inequality
(2.9) is sharp already in some special sitiuations. For example, for an arbitrary
norm f(x) = ‖x‖ on Rn, we have δf (ε) = 2ε

1+ε , ε ∈ (0, 1), so P{|f | ≥ λε} ≥ P{|f | ≥
λ}2ε/(1+ε) which is another version of the ineqiality

1 − P

(
1
ε
A

)
≤ (1 − P (A))2ε/(1+ε) (2.10)

for the class of all centrally symmetric convex sets A in Rn. The latter was proved
using a localization lemma by L. Lovász and M. Simonovits [L-S] for euclidean balls
A and later extended by O. Guédon [G] to the general case. He also observed
that equality in (2.10) is attained in dimension one for any interval A = (−a, a),
a > 0, at the (non-symmetric) exponential measure P with P (x,+∞) = e−(x+a),
x > −a. We do not know whether the argument based on the transference plans
can appropriately be modified to reach the sharp forms (2.9)-(2.10).

Remark 2.4. It follows from (2.1) by letting λ ↓ 0 that P{f = 0} = 0, if f �= 0
mod(P ) and δf (ε) → 0, as ε ↓ 0. Note also that in Theorem 2.1 one may assume
that f is defined on A0 (rather than on the whole space), and restrict the points x0

and x1 in the definition of δf to the set A0.

3 Iteration procedure. Markov’s classes

In order to apply the inequality (2.1), the weakest assumption which should be
required from f is the property δf (ε) �= 0 (identically), that is,

δf (ε0) ≤ δ0 (3.1)

for some ε0 ∈ (0, 1) and δ0 ∈ (0, 1). As shown in [Bou], already in this situation
one can recover exponentially decreasing tails for f by iterating the inequality (2.1).
Namely, we have:
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Theorem 3.1. Under the condition (3.1), there exist positive numbers C, c, r,
depending on (ε0, δ0), only, such that, for all λ ≥ 0,

P{|f | > λE|f |} ≤ C e−cλr
. (3.2)

The power r appearing in (3.2) can be chosen as close to the number r0 =
log(1/δ0)
log(1/ε0)

, as we wish. In particular, f has finite moments E|f |q of any order q, and,
moreover, for all 0 < r < r0,

E exp{|f |r} =
∫

exp{|f |r} dP < +∞.

In addition, f satisfies Khinchine-type inequalities

(E|f |q)1/q ≤ C E|f |, C = C(q, ε0, δ0), q ≥ 1. (3.3)

It would therefore be interesting to explore the class of all functions f possessing
the property (3.1). One sufficient condition was suggested by Yu. V. Prokhorov
in his study of Khinchine-type inequalities for polynomials over Gaussian and Γ-
distributions on the real line, cf. [Pr1], [Pr2]. Prokhorov’s proof of (3.3) is based on
Markov’s inequality,

max
0≤t≤1

|Q′(t)| ≤ κ max
0≤t≤1

|Q(t)|, (3.4)

which holds true for any polynomial Q in real variable t of degree d with (optimal)
constant κ = 2d2. Let us then say that a given function f on Rn belongs to the
(Markov) classM(κ) with constant κ ≥ 1, if, for all vectors x0, x1 ∈ Rn, the function
Q(t) = f(tx0 + (1− t)x1) is absolutely continuous on R and has a Radon-Nikodym
derivative Q′ satisfying the inequality (3.4). With this definition, we have:

Proposition 3.2. Every function f in M(κ) satisfies (3.1) with

ε0 =
1
2
, δ0 = 1 − 1

2κ
.

Indeed, following an argument of [Pr1-2], let t0 be a point of maximum of |Q(t)|
on [0,1], and assume for definiteness that Q(t0) > 0. Then, by (3.4), for all t ∈ [0, 1],

Q(t) ≥ Q(t0)(1 − κ|t− t0|) ≥ 1
2
Q(t0),

where the second inequality holds true in a smaller subinterval |t − t0| ≤ 1/(2κ),
0 ≤ t ≤ 1. This interval has length at least 1/(2κ), so

mes{| f(tx0 + (1 − t)x1) | < ε|f(x0)|} = mes
{
t ∈ (0, 1) : |Q(t)| < 1

2
|Q(1)|

}

≤ mes
{
t ∈ (0, 1) : |Q(t)| < 1

2
|Q(t0)|

}
≤ 1 − 1

2κ
.
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Thus, according to Theorem 3.1 and Proposition 3.2, any function f in M(κ)
shares the large deviation inequality (3.2) and the Khinchine-type inequality (3.3).
Moreover, for large values of κ, the critical value r0 in (3.2) is of order at most C/κ.

According to Markov’s inequality, any polynomial f on Rn of degree d belongs
to the class M(2d2). Another important example: any norm f(x) = ‖x‖ belongs
to the class M(2). Indeed, the function Q(t) = f(tx0 + (1 − t)x1) is convex and
satisfies, by the triangle inequality, Q(t) ≥ Q0(t) ≡ | t‖x0‖ − (1 − t)‖x1‖ |. Since
Q0(0) = Q(0), Q0(1) = Q(1), we conclude that

max
0≤t≤1

|Q′(t)| ≤ max
0≤t≤1

|Q′
0(t)| = ‖x0‖ + ‖x1‖ ≤ 2 max

0≤t≤1
|Q(t)|.

Proof of Theorem 3.1. Assume for definiteness that f �= 0 mod(P ) and write
the inequality (2.1) with ε = ε0, δ = δ0 and an arbitrary fixed γ ∈ (0, 1 − δ0) as

P{|f | > λ} ≤ αβ P{|f | > λε0}β , λ ≥ 0, (3.5)

where α = 1
γ , β = 1−γ

δ0
. Thus, α > 1 and β > 1. In case λ = 0, we get in particular

that
P{|f | > 0} ≥ α

− β
β−1 (3.6)

Now, applying (3.5) to λε0, we get P{|f | > λ} ≤ αβ+β2
P{|f | > λε20}β2

. Similarly,
on the k-th step, we will have

P{|f | > λ} ≤ αβ+...+βk
P{|f | > λεk

0}βk
.

Using β + . . .+ βk ≤ β
β−1 β

k, we obtain a simpler estimate

P{|f | > λ} ≤
(
α

β
β−1 P{|f | > λεk

0}
)βk

. (3.7)

Now denote by m a quantile of |f | of order e−1 α
− β

β−1 , that is, any number such
that

P{|f | > m} ≤ 1

e α
β

β−1

, P{|f | < m} ≤ 1

e α
β

β−1

(3.8)

By (3.6), such a number m must be positive. Furthermore, the inequality (3.7) with
λεk

0 = m yields, for all k = 1, 2 . . . ,

P

{ |f |
m

> ε−k
0

}
≤ exp

{
−βk

}
. (3.9)

Now take any x ≥ 1/ε0 and pick up a natural namber k such that ε−k
0 ≤ x <

ε
−(k+1)
0 . Then, k ≥ log x

log(1/ε0)
− 1, so, βk ≥ 1

βx
log β/ log(1/ε0). Since P

{ |f |
m > x

}
≤

P
{ |f |

m > ε−k
0

}
, we derive from (3.9)

P

{ |f |
m

> x

}
≤ exp

{
− 1
β
x

log β
log(1/ε0)

}
, x ≥ 1

ε0
. (3.10)
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The power r = log β
log(1/ε0)

in (3.10) is less than r0 = log(1/δ0)
log(1/ε0)

but it can be made close
to this number by choosing small values of γ.

Now, in order to replace the quantile with the mean E|f |, we may use the
inequality E|f | ≥ 1

e α
β

β−1

m, so (3.10) yields

P

{
|f | > eα

β
β−1 xE|f |

}
≤ exp

{
− 1
β
x

log β
log(1/ε0)

}
, x ≥ 1

ε0
.

Making the change λ = e α
β

β−1 x, we get the desired inequality P{|f | > λE|f |} ≤
e−c λr

, λ ≥ λ0, with an arbitrarily chosen γ ∈ (0, 1 − δ0), and

r =
log β

log(1/ε0)
, c =

1

β

(
e α

β
β−1

) log β
log(1/ε0)

, λ0 =
e α

β
β−1

ε0
.

4 Theorem 1.1. Norms and polynomials

To derive the inequality of Theorem 1.1 from Theorem 2.1, assume f is normalized
so that E|f | = 1. By Chebyshev’s inequaity, P{|f | ≥ x} ≤ 1/x, for all x > 0. If
δf (ε) ≤ 1/2, we can take in (2.1) γ = 1/2 which leads to

P{|f | > λ} ≤ (2P{|f | > λε})1/(2δf (ε)) ≤
(

2
λε

)1/(2δf (ε))

, λ ≥ 0.

Choosing if possible ε = 2e/λ, we then arrive at the estimate (1.4), that is,

P{|f | > λE|f |} ≤ exp

{
− 1

2δf (2e/λ)

}
, λ > 2e, δf (2e/λ) ≤ 1/2. (4.1)

The above inequality immediately implies:

Corollary 4.1. If δf (ε) ≤ Cεr, for all ε ∈ (0, 1) and some C ≥ 1, r > 0, then

P

{
1
2e

|f | ≥ λE|f |
}
≤ exp

{
− λr

2C

}
, λr ≥ 2C. (4.2)

As we see, the inequalities (4.1)-(4.2) may contain more precise information in
comparison with the general Markov classes M(κ). This concerns in particular such
functions f as norms and polynomials for which it would be interesting to explore
the behavior of δf near zero. We start with an arbitrary norm f(x) = ‖x‖ on Rn.

Proposition 4.2. For any norm f , we always have δf (ε) = 2ε
1+ε , ε ∈ (0, 1).
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Proof. By the triangle inequality, for all x0, x1 ∈ Rn, and t ∈ (0, 1),

‖tx0 + (1 − t)x1‖ ≥ | t‖x0‖ − (1 − t)‖x1‖ |.
Hence,

mes{t ∈ (0, 1) : ‖tx0 + (1 − t)x1‖ < ε‖x0‖} ≤
mes{t ∈ (0, 1) : | t‖x0‖ − (1 − t)‖x1‖ | < ε‖x0‖}.

Putting a = ‖x0‖, b = ‖x1‖, c = a
a+b ≤ 1, and assuming a > 0, we obtain

mes{t : | ta− (1 − t)b | < εa} = mes{t : −εa < ta− (1 − t)b < εa}
= mes{t : (1 − ε) a < t (a+ b) < (1 + ε) a}
= mes{t : (1 − ε) c < t < (1 + ε) c}
= min{1, (1 + ε) c} − (1 − ε) c.

The last quantity is maximized in 0 ≤ c ≤ 1 at c = 1
1+ε which gives 2ε

1+ε . The
optimality of this upper bound can be seen in case x1 = −εx0, ‖x0‖ = 1. Proposition
4.2 is proved.

Thus, the assumption made in Corollary 4.1 is fulfilled for the norm-function
with r = 1 and C = 2. Hence, by (4.2), for all λ ≥ 8e,

P {|f | > λE|f |} ≤ e−λ/(16e).

The numerical constants are certainly not optimal and can be improved by virtue
of (2.10).

Now let f be an arbitrary polynomial of degree at most d ≥ 1. In this case,
the maximal possible value of δf (ε) is completely determined in dimension one, so
assume n = 1. In [Bou] it was shown that, for some numerical c0 ∈ (0, 1),

mes
{
t ∈ (0, 1) : |f(t)| < cd0 ‖f‖L∞(0,1)

}
≤ 1

2
.

Thus, we always have δf (cd0) ≤ 1
2 which complements Proposition 3.2 in the poly-

nomial case, namely, δf (1/2) ≤ 1 − 1
4d2 . As for small values of ε, we have:

Proposition 4.3. For any polynomial f of degree at most d ≥ 1, for all ε ∈
(0, 1),

1) δf (ε) ≤ 2d ε1/d ; 2) δf (ε) ≤ 2 ε1/d log 1
ε1/d .

Proof. Let f(t) =
∏d

i=1(t − zi) with zi ∈ C, 1 ≤ i ≤ d. Then, on the interval
(0,1),

mes{t ∈ (0, 1) : |f(t)| < ε |f(0)|} ≤ mes
d⋃

i=1

{|t− zi| < ε1/d |zi|}
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≤
d∑

i=1

mes{|t− zi| < ε1/d |zi|}.

Since |t − zi| ≥ |t − |zi| |, the roots zi may be assumed to be real non-negative
numbers. But, for any c ∈ (0, 1) and z > 0, the quantity mes{t ∈ (0, 1) : |t−z| < cz}
is maximized at z = 1

1+c and is equal to 2c
1+c . This gives the first inequality.

To get the second one, we follow an argument of [Bou]. Fix α ∈ (0, 1) and put
ui = 1/zi (zi > 0). By Chebyshev’s and Hölder’s inequalities,

mes{t ∈ (0, 1) : |f(t)| < ε |f(0)|} = mes

{
d∏

i=1

|uit− 1|−α/d > ε−α/d

}

≤ εα/d
∫ 1

0

d∏
i=1

|uit− 1|−α/d dt

≤ εα/d

(
d∏

i=1

∫ 1

0
|uit− 1|−α dt

)1/d

≤ 2εα/d

1 − α

where we used a simple inequality
∫ 1
0 |ut − 1|−α dt ≤ 2

1−α (u ≥ 0) on the last step.
It remains to optimize over all α ∈ (0, 1).

Thus, the condition of Corollary 4.1 is fulfilled with r = 1/d and C = 2d. Hence:

Corollary 4.4. For all λ ≥ (4d)d,

P {|f | > λE|f |} ≤ e−λ1/d/(8ed).

The upper bound can further be sharpened with the help of the localization
lemma of Lovász-Simonovits [L-S] which allows one to get in Khinchine-type in-
equalities for polynomials a correct order of constants as functions of degree d. As
shown in [B1-2], for all p ≥ 1,

(E|f |p)1/p ≤ (cp)d E|f |,

where c > 1 is a universal constant. Hence, by Chebyshev’s inequality, for all λ > 0,
P{|f | > λE|f |} ≤ (cp)pd

λp . Optimizing the right hand side over p ≥ 1, we arrive at

P{|f | > λE|f |} ≤ e−dλ1/d/(ce),

provided that λ ≥ (ce)d.
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5 Deviations from the mean

Large deviations of f from the mean Ef =
∫
f dP can be controled once we know

how to estimate the quantity δf−c uniformly over all c ∈ R. For example, since the
class of polynomials f of degree d is closed under translations f → f + const, (1.2)
implies the bound

P{|f − Ef | > λσ} ≤ C(d) exp
{
−c(d)λ1/d

}
, λ ≥ 0,

in terms of the variance σ2 = E(f −Ef)2. One may therefore hope to reach similar
dimension-free inequalities for other classes of functions. The question is stimulated
by the observation (typical in concentration problems, cf. [M-S], [L]) that many
interesting f ’s have very large expectations Ef , but relatively small variances σ2.
In this situation, bounds for P{|f − Ef | > λσ} are certainly more delicate and
preferable in comparison with those for P{|f | > λE|f |}. However, if we wish to
involve into consideration arbitrary norms, the desired extension of (1.1) to the
larger class f(x) = ‖x‖− c is no longer valid, and some extra condition on the norm
like the uniform convexity is required. To illustrate these ideas, we will consider
here the example of the euclidean norm f(x) = ‖x‖2 on Rn.

To start with, it might be reasonable to find an appropriate form of Theorem
1.1 for the case of devations from constants. To every continuous function f on Rn

and ε > 0, we may associate another quantity ∆f (ε) defined to be the least number
∆ ∈ [0, 1] such that, for all x0, x1 ∈ Rn, the function Q(t) = f(tx0 + (1 − t)x1)
satisfies

mes
{
t ∈ [0, 1] : Q(t) − min

0≤s≤1
Q(s) < ε

[
max
0≤s≤1

Q(s) − min
0≤s≤1

Q(s)
]}

≤ ∆.

Theorem 5.1. Let P be a log-concave probability measure on Rn, and let f be
a convex function on Rn with mean Ef and variance σ2. Then, for all λ > 2e such
that ∆f (4e/(λ+ 2e)) ≤ 1/2,

P{|f − Ef | > λσ} ≤ exp

{
− 1

2δf (4e/(λ+ 2e))

}
.

The statement follows immediately from Theorem 1.1 and

Lemma 5.2. For every convex f on Rn, for all ε ∈ (0, 1),

sup
c∈R

δf−c(ε) = ∆f

(
2ε

1 + ε

)
. (5.1)
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Proof. Fix x0, x1 ∈ Rn and the corresponding functionQ(t) = f(tx0+(1−t)x1),
0 ≤ t ≤ 1 (not identically a constant on [0,1]). Since Q is convex, it attains its
maximum at t = 0 or t = 1. By homogeneity and translation invariance of (5.1), and
replacing x0 with x1 if necessary, we may assume that Q(1) = max0≤s≤1Q(s) = 1
and Q(t0) = min0≤s≤1Q(s) = 0, for some t0 ∈ [0, 1). Consider the quantity

ϕ(c) = mes{t ∈ [0, 1] : |Q(t) − c| < ε|1 − c|}
appearing in the definition of δf−c(ε). In view of supc∈R δf−c(ε) = supx0,x1

supc∈R ϕ(c),
we need to maximize the latter function over all c.

If c > 1, |Q(t) − c| < ε|1 − c| implies Q(t) > 1 that is not possible. So, assume
c ≤ 1 in which case the definition becomes

ϕ(c) = mes{t ∈ [0, 1] : (1 + ε)c− ε < Q(t) < (1 − ε)c+ ε}. (5.2)

In the range {c : (1 + ε)c − ε < 0} = (−∞, ε
1+ε), the first inequality in (5.2) is

fulfilled automatically, while the upper bound (1 − ε)c + ε increases with c. Thus,
we may also assume c ≥ c0 ≡ ε

1+ε .
As c varies in [c0, 1], the interval ((1 + ε)c − ε, (1 − ε)c + ε) moves to the right

and its length 2ε(1− c) decreases from 2c0 to 0. By the convexity of Q, this implies
that the length of the interval {t ∈ [t0, 1] : (1 + ε)c − ε < Q(t) < (1 − ε)c + ε}
decreases as a function of c. Indeed, if Q is not a constant in any neighborhood of
t0, then it increases in [t0, 1], the inverse function Q−1 : [0, 1] → [0, t0] is concave, so,
for any positive decreasing function h = h(u), the function Q−1(u+ h) −Q−1(u) is
decreasing in u, as well. A similar argument applies to Q restricted to the interval
[0, t0]. Therefore, c = c0 is the point of minimum to ϕ. To involve a possible
”degenerate” case, we should write

sup
c∈R

ϕ(c) = lim
c↑c0

ϕ(c) = mes{t ∈ [0, 1] : Q(t) < (1 − ε)c0 + ε}.

It remains to note that (1 − ε)c0 + ε = 2c0 = 2ε
1+ε , and the lemma follows.

Now, let us turn to the particular case f(x) = ‖x‖2. The euclidean norm can be
related to the polynomial f2 of degree d = 2 via the following observation: For every
convex f ≥ 0 on Rn, for all ε > 0 and q ≥ 1, we have ∆f (ε) ≤ ∆fq(ε). The latter
statement easily follows from the definition and a simple inequality bq−aq

cq−aq ≤ b−a
c−a ,

0 ≤ a ≤ b ≤ c (a �= c). Now, appropriate computations show that

∆‖x‖2
2
(ε) =

2
√
ε

1 +
√
ε
, ε ∈ (0, 1).

Hence, ∆‖x‖2
(ε) ≤ ∆‖x‖2

2
(ε) ≤ 2

√
ε. Thus, from Theorem 5.1, we obtain

Corollary 5.3. Let X = (X1, . . . , Xn) be a random vector in Rn with a log-
concave distribution. Let σ2 be the variance of ‖X‖2. Then,

Prob{| ‖X‖2 − E‖X‖2 | > λσ} ≤ Ce−c
√

λ, λ ≥ 0,
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where C and c are positive numerical constants.

Since one can relate the strength of concentration of ‖X‖2 about its mean to
the standard deviation σ, one may wonder how to bound the variance itself. For
normalization, let the covariances of the components of X satisfy

cov(Xi, Xj) ≡ EXiXj − EXiEXj = δij , 1 ≤ i, j ≤ n, (5.3)

where δij is the Kronecker symbol. Under this (isotropy) assumption, the question
of whether or not σ2 = Var(‖X‖2) does not exceed a universal constant represents a
week form of a conjecture of R. Kannan, L. Lovász and M. Simonovits, cf. [K-L-S].
One simple sufficient condition of dimension free boundedness of σ2, namely, the
property

cov(X2
i , X

2
j ) ≤ 0, 1 ≤ i < j ≤ n, (5.4)

was recently proposed by K. Ball and I. Perissinaki [B-P]. Indeed, for positive ran-
dom variables ξ’s, there is a general estimate Var(ξ) ≤ Var(ξ2)

Eξ2 , which for ξ = ‖X‖2

in view of (5.3) becomes Var(‖X‖2) ≤ Var(‖X‖2
2)

n . On the other hand,

Var(‖X‖2
2) =

n∑
i=1

Var(X2
i ) + 2

∑
i<j

cov(X2
i , X

2
j ) ≤

n∑
i=1

EX4
i ≤ Cn,

where we used (5.4) and Khinchine-type inequality EX4
i ≤ C (EX2

i )2 = C.
In [B-P], a property implying (5.3) was verified for random vectors X uniformly

distributed in 
np balls in Rn.

6 Appendix: Triangular maps

Here we recall some facts about triangular maps which are needed for the proof of
Theorem 2.1. A map T = (T1, . . . , Tn) : G→ Rn defined on an open non-empty set
G in Rn is called triangular if its components are of the form

Ti = Ti(x1, . . . , xi), x ∈ G, 1 ≤ i ≤ n.

The triangular map T will be called increasing if, for all i ≤ n, the component
Ti is a (strictly) increasing function with respect to xi-coordinate while the rest
coordinates are fixed (xi may vary within an open interval which depends on the
rest coordinates xj , j < i).

Such maps were used by H. Knothe [Kn] to reach some generalizations of the
Brunn-Minkowski inequality. The following statement is often refered to as the
construction of the Knothe mapping [Kn].
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Theorem 6.1. Let A and B be open, bounded, non-empty convex sets in Rn.
There exists a continuous, bijective, triangular map T : A→ B such that

a) the partial derivatives ∂Ti
∂xi

are continuous and positive on A ;

b) the Jacobian J(x) = Det(T ′(x)) =
∏n

i=1
∂Ti
∂xi

is constant on A and satisfies

J(x) =
Voln(B)
Voln(A)

, x ∈ A;

c) the map T pushes forward the uniform distribution on A to the uniform dis-
tribution on B.

Note that T is not required to be C1-smooth, so the property b) first defines a
function ”Jacobian” and then pustulates that it is a constant.

To complete Bourgain’s argument, we need an appropriate generalization of The-
orem 6.1 for measures. In [Bou], Theorem 6.1 is stated without convexity assumption
on A which might lead to singularity problems. Indeed, consider, for example, the
sets B = (0, 1)×(0, 1) and A = (0, 1)×(0, 2)∪(0, 2)×(0, 1) ⊂ R2. The set A is open,
bounded and has Lebesgue measure |A| = 3. Let P be a probability measure which
has density p(x) = 1/3, for x ∈ A, and p = 0 outside A. Then, the distrubution P1

of x1-coordinate under P is concentrated on the interval A1 = (0, 2) and has there
density

p1(x1) =
{

2/3, if 0 < x1 < 1
1/3, if 1 < x1 < 2

That is, P1 does not have any continuous density on (0, 2). But the property that
P1 has a continuous density is necessary for smoothness of triangular maps which
push forward P to the uniform measure Q on B.

Thus, to save the property a) in the general non-convex case, some extra con-
dition is required. First note that, given random vectors X = (X1, . . . , Xn) and
Y = (Y1, . . . , Yn) with values in open sets A and B and distributed according to P
and Q, respectively, the first i coordinates (X1, . . . , Xi) and (Y1, . . . , Yi) (1 ≤ i ≤ n)
have distributions Pi and Qi supported on the open sets

Ai = {x ∈ Ri : ∃ t ∈ Rn−i (x, t) ∈ A},

Bi = {x ∈ Ri : ∃ t ∈ Rn−i (x, t) ∈ B},
which are projections of A and B to Ri. In particular, An = A, Bn = B.

We will say that P is regular if it has a (necessarily continuous) density p on
A such that the following two conditions are satisfied. The first condition is that,
for each i ≤ n, the measure Pi has a positive continuous density pi on Ai. This is
equivalent to saying that the integral

pi(x1, . . . , xi) =
∫
Rn−i

p(x1, . . . , xi, ti+1, . . . , tn) dti+1 . . . dtn
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is finite for every (x1, . . . , xi) ∈ Ai and represents a continuous function on Ai

(when i = n, we just have pi = p). The second condition is that, for each i ≤ n, the
conditional distribution function

Prob{Xi ≤ xi |Xj = xj , j = 1, . . . , xi−1}
is continuous in (x1, . . . , xi) ∈ Ai. Under the first condition, this is equivalent to
saying that the integral∫ xi

−∞

∫
Rn−i

p(x1, . . . , xi−1, ti, . . . , tn) dti . . . dtn

defines a continuous function on Ai. We can now state a corresponding generaliza-
tion of Theorem 6.1.

Theorem 6.2. For all regular probability measures P and Q supported on an
open set A and on an open convex set B, respectively, there exists unique increas-
ing, continuous, triangular, bijective map T : A → B which pushes forward P to
Q. Moreover, the components Ti are C1-smooth with respect to xi-coordinates and
satisfy ∂Ti

∂xi
> 0 on Ai.

Some examples of regular measures will be described at the end of this section,
and we turn to the study of triangular maps T themselves. Many properties of such
maps are determined by behavior of functions Ti with respect to xi-coordinates. We
collect some properties in the two lemmas below.

Lemma 6.3. If T = (T1, . . . , Tn) : G → Rn is a continuous, increasing, trian-
gular map, then the image T (G) is an open set, and T represents a homeomorphism
between G and T (G).

Lemma 6.4. Let T = (T1, . . . , Tn) : G → Rn be a continuous triangular map
whose components Ti have continuous positive partial derivatives ∂Ti

∂xi
on G. Then,

for every integrable function f on Rn,∫
G
f(T (x))J(x) dx =

∫
T (G)

f(y) dy, (6.1)

where J(x) =
∏n

i=1
∂Ti(x)

∂xi
.

Note that, by Lemma 6.3, the map T from Lemma 6.4 is increasing, so T is a
bijection from G to the open set T (G). The topological Lemma 6.3 can easily be
proved by virtue of Brauer’s theorem, so we omit the proof.

Proof of Lemma 6.4. If T is C1-smooth on G, i.e., T has a continuous
derivative T ′ = ( ∂Ti

∂xj
)1≤i,j≤n, the ”true” Jacobian J(x) = Det(T ′(x)) =

∏n
i=1

∂Ti(x)
∂xi
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is well-defined and is everywhere positive on G. Hence, the equality (6.1) holds true
by the well-known theorem on the change of the variable in the Lebesgue integral.

In general, we approximate T by smooth triangular maps T ε. Recall that the
domain of Ti is the open set

Gi = {x = (x1, . . . , xi) ∈ Ri : ∃y ∈ Rn−i (x, y) ∈ Rn}.
Now, take C∞

0 -functions Ki ≥ 0, i = 1, . . . , n, supported on the unit ball Di(0, 1) ⊂
Ri and such that

∫
Di(0,1)Ki(y) dy = 1, and introduce convolutions T ε

i of Ti with
Kε

i (x) = 1
εi Ki(x/ε), ε > 0:

T ε
i (x) =

∫
Gi

Kε
i (x− z)Ti(z) dz, x ∈ Ri.

The above integral is well-defined and represents a C∞-function on Ri. Differenti-
ating over xi, we obtain a C∞-function

∂T ε
i (x)
∂xi

=
∫

Gi

∂Kε
i (x− z)
∂xi

Ti(z) dz, x ∈ Ri.

The kernel Kε
i is supported on Di(0, ε). Hence, this integral may be taken over the

whole space Ri as soon as Di(x, ε) lies in Gi:

∂T ε
i (x)
∂xi

=
∫
Ri

∂Kε
i (x− z)
∂xi

Ti(z) dz, x ∈ Ri.

Let εi(x) be the supremum of such ε’s. Integrating by parts, for ε ∈ (0, εi(x)],
ε < +∞, we get

∂T ε
i (x)
∂xi

=
∫
Ri
Kε

i (x− z)
∂Ti(z)
∂zi

dz =
∫

Gi

Kε
i (x− z)

∂Ti(z)
∂zi

dz, x ∈ Ri.

The integral on the right is again well-defined and represents a C∞-function as the
convolution of ∂Ti

∂zi
with Kε

i . Moreover, it is positive, by the assumptions on Ti and
Ki.

Thus, the map T ε = (T ε
1 , . . . , T

ε
n) is triangular, C∞-smooth, with positive Jaco-

bian

Jε(x) =
n∏

i=1

∂T ε
i (x1, . . . , xi)

∂xi

at every point x ∈ G and for all ε ∈ (0,+∞) such that 0 < ε ≤ εn(x) (note that the
numbers εi(x1, . . . , xi) decrease when i increases from 1 to n). Moreover, Jε(x) > 0
on the set Gε = {x ∈ G : Dn(x, ε) ⊂ G}, the open ε-interior of G. Therefore, we
can apply (6.1) to any open set A ⊂ Gε and every intergrable function f on Rn to
get ∫

A
f(T ε(x))Jε(x) dx =

∫
T ε(A)

f(y) dy. (6.2)
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Now, by the choice of Ki’s, and since T and ∂Ti
∂xi

are continuous, T ε(x) → T (x) and
∂T ε

i (x)
∂xi

→ ∂Ti(x)
∂xi

, as ε ↓ 0 uniformly over all x ∈ A, for every A whose closure clos(A)
is compact and lies in G. Similarly, Jε(x) → J(x).

Let A be open with compact closure clos(A) ⊂ G. Since Gε ↑ G, as ε ↓ 0, there
is ε0 > 0 such that clos(A) ⊂ Gε0 . Hence, we can apply the Lebesgue dominated
convergence theorem: for every continuous function f on Rn,∫

A
f(T ε(x))Jε(x) dx→

∫
A
f(T (x))J(x) dx, as ε ↓ 0. (6.3)

To find the limit of the right hand side of (6.2), first note that

lim sup
ε↓0

T ε(A) ⊂ clos(T (A)) = T (clos(A)).

On the other hand, by a topological argument, we have T (A) ⊂ lim infε↓0 T ε(A),
that is, whenever a ∈ A, the point b = T (a) is contained in T ε(A), for all ε > 0
small enough. As a result, 1T (A)(y) ≤ lim infε↓0 1T ε(A)(y) ≤ lim supε↓0 1T ε(A)(y) ≤
1T (clos(A))(y), for every y ∈ Rn. Hence, for every non-negative bounded continuous
function f on Rn,∫

T (A)
f(y) dy ≤ lim inf

ε↓0

∫
T ε(A)

f(y) dy ≤ lim sup
ε↓0

∫
T ε(A)

f(y) dy ≤
∫

T (clos(A))
f(y) dy.

Together with (6.2)-(6.3) we get∫
T (A)

f(y) dy ≤
∫

A
f(T (x))J(x) dx ≤

∫
T (clos(A))

f(y) dy.

This already easily implies the equality (6.1). Lemma 6.4 follows.

In order to turn to the proof of Theorem 6.2, let us first emphasize what exactly
we need to prove. Assume we have two absolutely continuous probability measures
P and Q on Rn which are supported on some open sets A and B and have there
densities p(x) and q(y), respectively. We wish to construct a continuous bijective
map T = (T1, . . . , Tn) : A → B which pushes forward P to Q. This property is
denoted Q = PT−1 or Q = T (P ) and can be defined via the equality

∫
B f dQ =∫

A f(T ) dP or, in terms of densities, as∫
B
f(y)q(y) dy =

∫
A
f(T (x))p(x) dx, (6.4)

holding for every bounded measurable function f on B. If T is C1-smooth and
has at every point x ∈ A an invertible matrix T ′(x) = (∂Ti(x)

∂xj
)1≤i,j≤n of the first

derivatives, one can make in the first integral the change of variable y = T (x), and
(6.4) becomes∫

A
f(T (x)) q(T (x)) |Det(T ′(x))| dx =

∫
A
f(T (x)) p(x) dx.
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Thus, if T is bijective, C1-smooth, and the Jacobian J(x) = Det(T ′(x)) is every-
where positive, the necessary and sufficient condition for Q = PT−1 is that, for
almost all x ∈ A,

q(T (x))J(x) = p(x). (6.5)

In the case where the map T is increasing and triangular, one can weaken the
smoothness requirement and just assume that the components Ti have positive con-
tinuous derivatives ∂Ti

∂xi
. Indeed, if B = T (A), then, by Lemma 6.4, the equality∫

B
g(y) dy =

∫
A
g(T (x))J(x) dx

holds true for every integrable function g on B with J(x) =
∏n

i=1
∂Ti(x)

∂xi
. Applying

this equality to g(y) = f(y)q(y), we get∫
B
f(y)q(y) dy =

∫
A
f(T (x))q(T (x))J(x) dx.

Therefore, (6.4) would immediately follow from (6.5). Thus, we may conclude:

Lemma 6.5. Let T = (T1, . . . , Tn) : A → Rn be a continuous triangular map
whose components Ti have continuous positive partial derivatives ∂Ti

∂xi
on A. Let

B = T (A). If the equality (6.5) holds true for almost all x ∈ A, then the map T
pushes forward P to Q.

However, the existence of the triangular map T satisfying (6.5) requires more
properties such as regularity of P and Q.

Proof of Theorem 6.2. We use induction over n, and prove at the same time
that the components Ti, 1 ≤ i ≤ n, satisfy, for all (x1, . . . , xi) ∈ Ai, the relation∫ xi

−∞
∫
Rn−i p(x1, . . . , xi−1, ti, . . . , tn) dti . . . dtn∫+∞

−∞
∫
Rn−i p(x1, . . . , xi−1, ti, . . . , tn) dti . . . dtn

=

∫ Ti
−∞

∫
Rn−i q(T1, . . . , Ti−1, ti, . . . , tn) dti . . . dtn∫+∞

−∞
∫
Rn−i q(T1, . . . , Ti−1, ti, . . . , tn) dti . . . dtn

, (6.6)

where it is also claimed that all the integrals are finite and positive. For i = 1, the
above formula becomes∫ x1

−∞

∫
Rn−1

p(t1, . . . , tn) dt1 . . . dtn =
∫ T1

−∞

∫
Rn−1

q(t1, . . . , tn) dt1 . . . dtn , (6.7)

while for i = n, it reads as∫ xn
−∞ p(x1, . . . , xn−1, tn) dtn∫+∞
−∞ p(x1, . . . , xn−1, tn) dtn

=
∫ Tn
−∞ q(T1, . . . , Tn−1, tn) dtn∫+∞
−∞ q(T1, . . . , Tn−1, tn) dtn

. (6.8)
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Note that the formulas (6.6)-(6.8) may be written in a more compact probabilistic
form as

Prob{Xi ≤ xi |X1 = x1, . . . , Xi−1 = xi−1} = Prob{Yi ≤ Ti |Y1 = T1, . . . , Yi−1 = Ti−1},
where for i ≤ n we write for short Ti = Ti(x1, . . . , xi).

The case n = 1 is obvious: the desired map T = T1(x1) is unique and is deter-
mined by ∫ x1

−∞
p(t1) dt1 =

∫ T1(x1)

−∞
q(t1) dt1. (6.9)

Clearly, T1 is a C1-smooth increasing bijection from A to B (B is an interval).
Now, to perfom the induction step, assume n ≥ 2 and recall that Pi and Qi de-

note the distrubution of the first i variables (x1, . . . , xi) under P and Q, respectively.
By the induction hypothesis, there is unique continuous, increasing, triangular bi-
jective map (T1, . . . , Tn−1) : An−1 → Bn−1 which transports Pn−1 to Qn−1, and
moreover, the equality (6.6) holds true on Ai for all i ≤ n− 1.

According to (6.9) for the case n = 1, the equality (6.7) expresses the fact that
the measure P1 is transported to Q1 by the map T1. Similarly and more generally,
the equality (6.6) expresses the fact that, given a vector (x1, . . . , xi−1) ∈ Ai−1, the
function

xi → Ti(x1, . . . , xi−1, xi)

transports the corresponding conditional measure Px1,...,xi−1 of P on the line in Ri

with these first i− 1 coordinates to the conditional measure QT1(x1),...,Ti−1(x1,...,xi−1)

of Q on the line with fixed coordinates T1(x1), . . . , Ti−1(x1, . . . , xi−1). In order to
make the same to be valid when i = n, we just postulate equality (6.8) as the
definition of Tn. Note that Px1,...,xn−1 represents a probability measure which is
supported on the open one dimensional set

A(x1, . . . , xn−1) = {x ∈ R : (x1, . . . , xn−1, x) ∈ A},
while QT1(x1),...,Tn−1(x1,...,xn−1) is a probability measure supported (by convexity of
B) on the open segment

B(x1, . . . , xn−1) = {y ∈ R : (T1(x1), . . . , Tn−1(x1, . . . , xn−1), y) ∈ B}.
In addition, by the regularity assumption made on P and Q, these measures have
positive continuous densities on A(x1, . . . , xn−1) and B(x1, . . . , xn−1), respectively.
Hence, as well as in the case n = 1, for all (x1, . . . , xn−1) ∈ An−1, the function

xn → Tn(x1, . . . , xn−1, xn)

represents a C1-smooth increasing bijection fromA(x1, . . . , xn−1) toB(x1, . . . , xn−1).
This proves that (T1, . . . , Tn−1, Tn) is an increasing bijection from A to B together
with the fact that all components Ti are C1-smooth with respect to xi-coordinates.
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It should also be clear that, for each i ≤ n, the function Ti continuously depends
on (x1, . . . , xi). Indeed, the case i = 1 does not need to be verified, while for i ≥ 2
we may argue using induction over i. Assuming that T1, . . . , Ti−1 are continuous,
introduce the function

ψ(x1, . . . , xi−1, y) =
∫ y

−∞

∫
Rn−i

q(T1, . . . , Ti−1, ti, . . . , tn) dti . . . dtn

and write the equality (6.6) as

R(x1, . . . , xi) = ψ(x1, . . . , xi−1, Ti).

By the regularity assumption on P and Q and the induction hypothesis, both R and
ψ are continuous functions defined respectively on the open sets Ai and

{(x1, . . . , xi−1, y) : (x1, . . . , xi−1) ∈ Ai−1, (T1, . . . , Ti−1, y) ∈ Bi}.

In particular, if x′j → xj for all j = 1, . . . , i, and y = Ti(x1, . . . , xi), y′ = Ti(x′1, . . . , x′i),
we get that

ψ(x′1, . . . , x
′
i−1, y

′) → ψ(x1, . . . , xi−1, y).

The function ψ increases with respect to y. So, if y′ does not converge to y, and for
definiteness y′ ≤ y − ε for some ε > 0, then for some δ > 0,

ψ(x′1, . . . , x
′
i−1, y

′) ≤ ψ(x′1, . . . , x
′
i−1, y − ε) → ψ(x1, . . . , xi−1, y − ε)

< ψ(x1, . . . , xi−1, y) − δ

which is a contradiction. Hence, y′ → y, and thus Ti is continuous.
Now, differentiating (6.7) over x1, (6.6) over xi, where we assume that 2 ≤ i ≤

n− 1, and (6.8) over xn, we get respectively,

∫
Rn−1

p(x1, t2, . . . , tn) dt2 . . . dtn =
∫
Rn−1

q(T1, t2, . . . , tn) dt2 . . . dtn
∂T1

∂x1
, (6.10)

∫
Rn−i p(x1, . . . , xi, ti+1, . . . , tn) dti+1 . . . dtn∫
Rn−i+1 p(x1, . . . , xi−1, ti, . . . , tn) dti . . . dtn

=

∫
Rn−i q(T1, . . . , Ti, ti+1, . . . , tn) dti+1 . . . dtn∫
Rn−i+1 q(T1, . . . , Ti−1, ti, . . . , tn) dti . . . dtn

∂Ti

∂xi
, (6.11)

p(x1, . . . , xn)∫+∞
−∞ p(x1, . . . , xn−1, tn) dtn

=
q(T1, . . . , Tn)∫+∞

−∞ q(T1, . . . , Tn−1, tn) dtn

∂Tn

∂xn
. (6.12)
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Myltiplying (6.10)-(6.11)-(6.12) by each other, we arrive at

p(x1, . . . , xn) = q(T1, . . . , Tn)
n∏

i=1

∂Ti

∂xi

which is exactly (6.5). It remains to apply Lemma 6.5, and the existence part of
Theorem 6.2 immediately follows.

The uniqueness follows from the requirement that, given a vector (x1, . . . , xi−1) ∈
Ai−1, the function xi → Ti(x1, . . . , xi−1, xi) must transport the conditional measure
Px1,...,xi−1 to the conditional measure QT1(x1),...,Ti−1(x1,...,xi−1).

Theorem 6.2 is now proved.

To give some examples of regular measures (in the above sense), we need another
definition. In addition to the projections Ai, with every set A ⊂ Rn, we also
associate its sections

Ax1,...,xi = {t ∈ Rn−i : (x1, . . . , xi, t) ∈ A}, (x1, . . . , xi) ∈ Ri, 1 ≤ i ≤ n− 1.

We say that A is regular, if for all i ≤ n− 1 and for all (x1, . . . , xi) ∈ Ai, the section
(∂A)x1,...,xi of the boundary of A has the (n−i)-dimensional Lebesgue measure zero.

For example, a finite union of balls represents a regular set. Another simple
example is provided by an arbitrary open convex set in Rn. As for regularity of
measures, the following lemma covers most interesting cases.

Lemma 6.6. Assume that a probability measure P is concentrated on an open
set B ⊂ Rn where it has a positive continuous density p such that, for each i ≤ n−1,∫

Rn−i
sup
x∈Bi

p(x, t) dt < +∞ (6.13)

(where it is assumed that p = 0 outside B). Then, the normalized restriction of P
to any regular set A ⊂ B is a regular measure.

The condition (6.13) is fulfilled, for example, if with some positive constants C
and c, the density p satsfies an inequality

p(x) ≤ Ce−c|x|, x ∈ B. (6.14)

Proof of Lemma 6.7. By the assumption, the function

pi(x) =
∫
Rn−i

p(x, t) 1A(x, t) dt

is finite for every x ∈ Bi, and moreover the function under the integral sign is
bounded by an integrable function. We should show that pi is continuous on Ai.
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So, take a sequence x(k) ∈ Ai converging to a point x ∈ Ai, as k → ∞. Then, for
every t ∈ Rn−1,

1A(x, t) ≤ lim inf
k→∞

1A(x(k), t) ≤ lim sup
k→∞

1A(x(k), t) ≤ 1clos(A)(x, t).

Since pi(x(k), t) → p(x, t), as k → ∞, and since A is open, we may apply Lebesgue
dominated converging theorem which gives

pi(x) ≤ lim inf
k→∞

∫
Rn−i

p(x(k), t) 1A(x(k), t) dt

≤ lim sup
k→∞

∫
Rn−i

p(x(k), t) 1A(x(k), t) dt ≤
∫
Rn−i

p(x, t) 1clos(A)(x, t) dt.

Now note that, by regularity of A, for any x ∈ Ai

1clos(A)(x, t) − 1A(x, t) = 1∂A(x, t) = 0, for almost all t ∈ Rn−i

with respect to Lebesgue measure on Rn−i. Hence,
∫
Rn−i p(x, t) 1clos(A)(x, t) dt =

pi(x), and thus pi is continuous. The first condition involved in the definition of
regularity of a measure is therefore fulfilled. The second condition requires to verify
that, for each i ≤ n, the function

ri(x, xi) =
∫ xi

−∞

∫
Rn−i

p(x, ti, t) 1A(x, ti, t) dti dt

=
∫ +∞

−∞

∫
Rn−i

p(x, ti, t) 1A(x, ti, t) 1(−∞,xi]×Rn−i(ti, t) dti dt

is continuous in (x, xi) ∈ Ai, as well, where for short we write x = (x1, . . . , xi−1),
t = (ti+1 . . . , tn). In case i = 1, the above expression depends on x1, only,

r1(x1) =
∫ +∞

−∞

∫
Rn−1

p(t1, t) 1A(t1, t) 1(−∞,x1]×Rn−1(t1, t) dt1 dt,

and is clearly continuous on A1. In the case i ≥ 2, we use the property that, for every
(ti, t) ∈ R×Rn−i, the function (x, xi) → p(x, ti, t) 1(−∞,xi]×Rn−i(ti, t) is continuous
on Ai, and then argue as before: for any x ∈ Ai−1,

1clos(A)(x, ti, t) − 1A(x, ti, t) = 1∂A(x, ti, t) = 0, for almost all (ti, t) ∈ R× Rn−i

with respect to Lebesgue measure on Rn−i+1, and therefore, once more by the
Lebesgue dominated convergence theorem, ri is continuous on Ai. Lemma 6.6 fol-
lows.

Corollary 6.7. Uniform distrubution on a bounded regular set is a regular
measure.
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This statement appears as a particular case of Lemma 6.6 with A = B and
p = 1/|A| on A (where |A| stands for the Lebesgue measure).

At last, since absolutely continuous log-concave measure on Rn are known to
satisfy (6.14), we also obtain:

Corollary 6.8. Every absolutely continuous log-concave measure P on Rn is
regular. Moreover, the normalized restriction of P to an arbitrary regular set A of
positive Lebesgue measure in the support of P represents a regular measure.
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