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In this note we would like to add some additional historical remarks and references
to our paper [5]. Let {Xn}∞n=1 be a sequence of random variables on a probability
space (Ω,F ,P) with finite second moments, such that the following properties hold:

(a) EXkXj = δkj , for all k, j, where δkj denotes the Kronecker symbol;
(b) (X2

1 + · · · + X2
n)/n ⇒ ρ2 weakly in distribution, as n → ∞, for some ran-

dom ρ � 0;
(c) max1�k�n |Xk| = o(

√
n ), in probability, as n → ∞.

Let Lp = Lp(Ω,F ,P) denote the space of p-integrable random variables with
norm ‖ · ‖p (1 � p � +∞). Given a random variable ρ � 0, defined possibly on
a different probability space, we denote by N(0, ρ2) the distribution of ρZ, where Z
is a standard normal random variable independent of ρ. At first we formulate an
immediate corollary of Theorem 6.1 and Lemma 6.1 in [5] (appearing as Theorem 6.3
in the particular case ρ = 1).

Theorem 1. Assuming conditions (a)–(c), for an increasing sequence of in-
dices {in}n�1, we have weakly in distribution

Xi1 + · · · + Xin√
n

⇒ N(0, ρ2).(1)

Moreover, given a sequence {jn}n�1 with limn→∞ jn/n → +∞, there is a seque-

nce {in}n�1 satisfying

in � jn for all n large enough.(2)

The existence of a sequence satisfying (1), without the tightness property (2)
for in, is known to hold in much more general situations and for several schemes
of weighted sums. In particular, for sequences of real numbers a = (an) such that
An = (a2

1+· · ·+a2
n)1/2 → +∞, an = o(An) (which we will call an admissible sequence),

one may consider the sequence of weighted sums Sn(a) = (a1Xi1 + · · · + anXin)/An.
In 1955, G. W. Morgenthaler considered in [12] an arbitrary uniformly bounded

orthonormal system Xn on the unit interval Ω = (0, 1) with the Lebesgue measure P.
He proved that there exist an increasing sequence in and a measurable function ρ � 0
on Ω with ‖ρ‖2 = 1 and ‖ρ‖∞ � supn ‖Xn‖∞ such that, for any admissible a = (an),

Sn(a) ⇒ N(0, ρ2).(3)

Moreover, this convergence is stable in the sense that (3) holds on every measurable
set B of positive measure with respect to the normalized restriction of P to B.

http://www.siam.org/journals/tvp/49-2/98114.html

373



374 LETTER TO THE EDITORS

More general statements, including necessary and sufficient conditions, were ob-
tained in the mid 1960s by V. F. Gaposhkin in a series of papers [7], [8], and [9], and
later in [10]. Here we formulate two theorems.

Theorem 2 (see [7, Theorem 5], [10, Theorem 6]). Let EX2
n = 1, n � 1, and

let ρ � 0 be a random variable with ‖ρ‖2 = 1. The following properties are equivalent:

1) There exists an increasing sequence in such that the central limit theorem (3)
holds for any admissible a = (an);

2) there exists an increasing sequence in such that Xin → 0 weakly in L2 and
X2

in
→ ρ2

0 weakly in L1 as n → ∞, for some ρ0 � 0 on Ω equidistributed with ρ.

Here the case where ρ = 1 when the limit distribution is standard normal is of
special interest. The existence of a random variable ρ with ‖ρ‖2 = 1 such that (3)
holds for some increasing sequence in is equivalent to the weak convergence Xin → 0
together with the uniform integrability of the sequence X2

in
(cf. [7, Theorem 8] or [8,

Theorem 1.5.3]).

Theorem 3 (see [8, Theorem 1.5.2], [10, Theorem 5]). If Xn → 0 weakly in L2,
then there exists an increasing sequence in such that the central limit theorem (3)
holds for any admissible a = (an) and some random variable ρ � 0.

In [10] Gaposhkin introduced an “equivalence lemma,” which allowed us to reduce
many problems on subsequences of Xn to martingale differences (such as convergence
of series, the central limit theorem, the law of the iterated logarithm) and eventually to
extend the corresponding statements from Lebesgue measure and the space Ω = (0, 1)
to arbitrary probability spaces.

Theorem 3 was rediscovered by S. D. Chatterji [6], with a similar martingale
approach. Chatterji introduced an informal statement known as principle of subse-
quences; it states that any limit theorem about independent, identically distributed
random variables continues to hold under proper moment assumptions for a certain
subsequence of a given sequence of random variables. This general observation was
made precise and developed by D. J. Aldous [1], and later by I. Berkes and E. Péter [2].

One should note, however, that not much is known about the speed of increase of
the subsequence chosen to satisfy a central limit theorem. For example, sharpening
a classical result of R. Salem and A. Zygmund [13] on lacunary trigonometric subse-
quences, P. Erdös [11] proved that any sequence Xin(ω) = cos(2πinω) on Ω = (0, 1)
with in+1/in � 1 + cn/

√
n, cn → +∞, satisfies (1) with the standard normal limit

distribution; cf. also [3]. Note that here in must grow faster than e
√
n. Using ran-

domization of indices in a trigonometric orthonormal system, Berkes [4] showed that
a sequence in in (1) with ρ = 1 can be chosen to satisfy in+1 − in = O(jn), for any
prescribed jn → +∞. Theorem 1 above describes a similar property, with possible
application to other orthonormal systems.

Acknowledgment. We would like to thank a referee for the reference to results
of S. D. Chatterji.
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