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Summary. Lower bounds on the isoperimetric constant for logarithmically concave
probability measures are considered in terms of the distribution of the Euclidean
norm. A refined form of Kannan–Lovász–Simonovits’ inequality is obtained.

Given a Borel probability measure µ on Rn, its isoperimetric constant or,
isoperimetric coefficient, is defined as the optimal value h = h(µ) satisfying
an isoperimetric-type inequality

µ+(A) ≥ h min
{
µ(A), 1− µ(A)

}
. (1)

Here, A is an arbitrary Borel subset of Rn of measure µ(A) with µ-perimeter
µ+(A) = limε↓0

µ(Aε)−µ(A)
ε , where Aε = {x ∈ Rn : |x − a| < ε, for some a ∈

A} denotes an open ε-neighbourhood of A with respect to the Euclidean
distance.

The quantity h(µ) represents an important geometric characteristic of the
measure and is deeply related to a number of interesting analytic inequalities.
As an example, one may consider a Poincaré-type inequality

∫
|∇f |2 dµ ≥ λ1

∫
|f |2 dµ

in the class of all smooth functions f on Rn such that
∫
f dµ = 0. The optimal

value λ1, the so-called spectral gap, satisfies λ1 ≥ h2/4. This relation goes back
to the work by J. Cheeger in the framework of Riemannian manifolds [C] and
– in a more general form – to earlier works by V.G. Maz’ya (cf. [M1-2], [G]).
The problem on bounding these two quantities from below has a long story.
In this note we specialize to the class of log-concave probability measures, in
which case, as was recently shown by M. Ledoux [L], λ1 and h are equivalent
(λ1 ≤ 36h2).
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Following A. Prékopa [P], µ is called logarithmically concave (or, log-
concave), if for all non-empty convex sets A, B in Rn, and t ∈ (0, 1),

µ
(
(1− t)A+ tB

)
≥ µ(A)1−tµ(B)t,

where (1 − t)A + tB = {(1 − t)a + tb : a∈A, b∈B} denotes the Minkowski
average. The definition reduces to the statement that µ is concentrated on
some affine subspace L of Rn, where it is absolutely continuous with respect
to Lebesgue measure and has a density p, satisfying

p
(
(1− t)x+ ty

)
≥ p(x)1−tp(y)t, for all x, y ∈ L, t ∈ (0, 1). (2)

For example, a uniform distribution over an arbitrary convex body K in Rn

is log-concave (the convex body case). For a full description, including more
general classes of convex measures, see C. Borell [Bor1-2]. In the sequel, by
saying that µ is k-dimensional, we mean that the supporting subspace L has
dimension k.

For any log-concave probability measure µ, its isoperimetric constant is
positive and may be bounded from below, up to some universal constant
c > 0, as

h(µ) ≥ c
∫
|x| dµ(x)

. (3)

This inequality was obtained by R. Kannan, L. Lovász and M. Simonovits for
the convex body case as part of the study of randomized volume algorithms
([K-L-S], Main Theorem). Actually, their proof based on a localization lemma
of Kannan and Lovász [K-L] may easily be extended to the general log-concave
case. A different approach, using the Prékopa–Leindler functional form for the
Brunn–Minkowski inequality, was later proposed in [B1].

Our aim is to get the following sharpening of the bound (3) involving the
distribution of the Euclidean norm. Let X = (X1, . . . , Xn) be a random vector
in Rn with distribution µ, and |X| = (X2

1 + · · · + X2
n)1/2 be its Euclidean

length.

Theorem 1. If µ is log-concave, then

h(µ) ≥ c

Var(|X|2)1/4
, (4)

where c is a universal constant.

Here, Var(|X|2) = E |X|4 − (E |X|2)2 =
∫
|x|4 dµ(x) − (

∫
|x|2 dµ(x))2 is

the variance of |X|2.
By Borell’s lemma ([Bor1], Lemma 3.1), Lp-norms of |X| are equivalent,

so E|X|4 ≤ C4 (E |X|)4, for some positive numerical constant C. Therefore,

Var
(
|X|2

)1/4 ≤
(
E|X|4

)1/4 ≤ C E |X|,
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and thus (4) implies the K-L-S bound (3). To see that there can be an essential
difference between (3) and (4), take the unit ball B in Rn with center at
the origin and equip it with the normalized Lebesgue measure µ. Then, |X|
has the distribution function Fn(t) = P{|X| ≤ t} = tn, 0 ≤ t ≤ 1, so
E |X| =

∫ 1

0
t dFn(t) = n

n+1 . Hence, the right hand side of (3) is of order 1. On
the other hand,

Var(|X|2) =
∫ 1

0

t4 dFn(t)−
(∫ 1

0

t2 dFn(t)
)2

=
4n

(n+ 2)2(n+ 4)
,

so, the right hand side of (4) is of order
√
n. Hence, in this case (4) provides

a correct estimate for h(µ) with respect to the dimension n. Equivalently, if
B is a ball of volume radius of order 1, then h(µ) is of order 1, as well.

More generally, suppose the measure µ is normalized to be in isotropy
position in the sense that

E 〈X, θ〉2 =
∫
〈x, θ〉2 dµ(x) = |θ|2, θ ∈ Rn. (5)

Then, E |X| ≤ (E|X|2)1/2 =
√
n, and (3) leads to h(µ) ≥ c/√n. It is unknown

whether this bound can be improved in general. Nevertheless, by virtue of
Theorem 1, one may reach an improvement for some classes of measures (or
bodies). For example, one interesting class is described by the condition

EX2
iX

2
j ≤ EX2

i EX2
j , i = j. (6)

That is, a log-concave probability measure µ on Rn belongs to this class, if the
squares of the coordinates have non-positive covariances cov(X2

i ,X
2
j ). In this

case, if EX2
i = 1 for all i ≤ n (which holds under the isotropy assumption),

we have that

Var(|X|2) =
n∑

i=1

Var(X2
i ) + 2

∑

i<j

cov(X2
i ,X

2
j ) ≤

n∑

i=1

EX4
i ≤ Cn,

for some universal constant C. Therefore, Theorem 1 yields:

Corollary 1. If a log-concave isotropic measure µ on Rn satisfies (6), then

h(µ) ≥ c

n1/4
, (7)

where c is a universal constant.

As a more specific case, consider the uniform distribution µ on the dilated
�np -ball

K =
{
x ∈ Rn : |x1|p + · · ·+ |xn|p ≤ cp

}

with parameter 1 ≤ p ≤ +∞ and with c = c(p, n) chosen to satisfy the isotropy
condition (5) (c is of order n1/p). That the covariance property (6) is fulfilled
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for such a family of convex bodies was observed by K. Ball and I. Perissinaki
[B-P]. As we mentioned, in the case p = 2, h(µ) is of order 1. The same is true
for p = +∞ (H. Hadwiger) and for the whole range 2 ≤ p ≤ +∞, since then µ
can be obtained from the canonical Gaussian measure as Lipschitz transform.
When 1 ≤ p < 2, the correct asymptotic with respect to the dimension seems
to be unknown, and we can only state that h(µ) ≥ c n−1/4. In this case,
the constant is also believed to be of order 1; at least, this is inspired by
concentration results, obtained by G. Schechtman and J. Zinn [S-Z]. More
generally, Kannan, Lovász and Simonovits conjectured that h(µ) is of order 1
for arbitrary isotropic convex bodies.

Now, let us turn to the proof of Theorem 1. We use the localization argu-
ment of [K-L-S], but choose a somewhat different hypothesis in applying the
localization lemma. The argument goes back to the bisection method of L. E.
Payne and H. F. Weinberger [P-W]; similar ideas were also developed by M.
Gromov and V. D. Milman in [G-M]; cf. also [A] and [F-G1,2]. Below we state
as a lemma a slightly modified variant of Corollary 2.2 appearing in [K-L-S].

Lemma 1. Let α, β > 0, and suppose ui, i = 1, 2, 3, 4, are non-negative con-
tinuous functions on Rn such that for any segment ∆ ⊂ Rn and any affine
function � on ∆,

(∫

∆

u1 e
�

)α(∫

∆

u2 e
�

)β
≤
(∫

∆

u3 e
�

)α(∫

∆

u4 e
�

)β
. (8)

Then,
(∫

Rn

u1

)α(∫

Rn

u2

)β
≤
(∫

Rn

u3

)α(∫

Rn

u4

)β
. (9)

The one-dimensional integrals in (8) are taken with respect to Lebesgue
measure on ∆, while the integrals in (9) are n-dimensional.

It should be clear that Lemma 1 remains to hold for many discontinuous
functions ui, as well, like the indicator functions of open or closed sets in the
space. For the uniform distribution µ on a convex bodyK in Rn, the approach
of [K-L-S] is to apply the lemma with α = β = 1 to the functions of the form

u1 = 1A, u2 = 1B , u3 = 1C , u4(x) =
const |x|
ε

1K(x),

where A and B are arbitrary “regular” disjoint subsets of Rn at the distance
ε = dist(A,B) and where C = Rn \ (A ∪B). Then (9) turns into

µ(A)µ(B) ≤ µ(C)
const
ε

∫
|x| dµ(x), (10)

and letting ε → 0, we arrive at the desired isoperimetric inequality (1) with
1
h = 2 const

∫
|x| dµ(x). On the other hand, (8) turns into a one-dimensional
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inequality which is similar to (10). The only difference is that µ should be
replaced by a specific probability measure µ� concentrated on ∆ and having,
up to a normalizing constant, the density e� with respect to Lebesgue measure
on ∆. That is how, the bound (3) reduces to the one-dimensional inequality
(10) in the body case.

More generally, if µ is absolutely continuous and has a density p satisfying
(2), then in (8) we are dealing with a probability measure µ�, concentrated on
∆ and having, up to a normalizing constant, the density pe�. It satisfies (2),
so the bound (3), being stated for the class of all absolutely continuous log-
concave probability measures on Rn, may also be reduced to the inequality
(10) about arbitrary log-concave measures on ∆. Therefore, we obtain the
following corollary from Lemma 1:

Corollary 2. Let g be a non-negative continuous function on Rn. Let A,
B be open disjoint subsets of Rn at distance ε = dist(A,B), and put C =
Rn \ (A ∪B). If the inequality

µ(A)µ(B) ≤ µ(C)
ε

∫
g dµ (11)

holds for any one-dimensional log-concave probability measure, then it holds
for any n-dimensional log-concave probability measure on Rn.

In the conclusion, the dimension is irrelevant and can be ignored.
Also, as we already mentioned, letting ε → 0, (11) takes the form of an

isoperimetric inequality

µ(A)µ(B) ≤ µ+(C)
∫
g dµ. (12)

Actually, it is easy to show that (12) is equivalent to (11) when these in-
equalities are required to hold for all admissible partitions A, B, C (see e.g.
[B-Z], Proposition 10.1). Recalling the definition (1) and using 2µ(A)µ(B) ≥
max{µ(A), µ(B)}, one may reformulate Corollary 2 equivalently up to a factor
as:

Corollary 3. Given a non-negative continuous function g on Rn, if the in-
equality 1

h(µ) ≤
∫
g dµ is fulfilled for any one-dimensional log-concave proba-

bility measure µ, then for any log-concave probability measure µ on Rn, we
have 1

h(µ) ≤ 2
∫
g dµ.

Proof of Theorem 1. If ξ is a random variable with a log-concave distribution
µ on the real line, then

c1
√

Var(ξ) ≤ 1
h(µ)

≤ c2
√

Var(ξ). (13)

The optimal constants, which are not important for us, are c1 = 1/
√

2, c2 =√
3 (cf. [B1], Proposition 4.1). Any one-dimensional log-concave probability
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measure µ on Rn may be viewed as the distribution of a random vector a+ξθ,
where a, θ are orthogonal vectors, |θ| = 1, and ξ is a random variable with a
log-concave distribution. Clearly, µ also satisfies (13). Hence, by Corollary 3,
if the inequality √

Var(ξ) ≤ Eg(a+ ξθ) (14)

holds for all ξ as above and for all vectors a, θ in Rn, such that 〈a, θ〉 = 0,
then

1
h(µ)

≤ 2 c2
∫
g dµ (15)

in the class of all log-concave probability measures µ on Rn. We choose g(x) =
C | |x|2 − α|1/2 with an arbitrary number α, but with a constant C to be
specified. In this case, the quantity Eg(a+ξθ) = CE| |a|2 +ξ2−α|1/2 satisfies
(14) in view of the equivalence of Lp-norms of polynomials with respect to log-
concave distributions. To be more precise, if Q is a polynomial on Rn of degree
d, and µ is a log-concave probability measure, then for ‖Q‖p = (

∫
|Q|p dµ)1/p

there is the relation

‖Q‖p ≤ c(d, p) ‖Q‖0, p ≥ 0, (16)

with constants c(d, p) depending on d and p, only (cf. [Bou], [B2], [B-G]). In
particular, ‖Q‖2 ≤ c ‖Q‖1/2 for any quadratic function Q with c = c(2, 2).
Therefore,

c
(
E | |a|2 + ξ2 − α|1/2

)2 ≥
(
E | |a|2 + ξ2 − α|2

)1/2 ≥ Var(ξ2)1/2. (17)

Also, if L2 = Eξ2, we have

Var(ξ2)1/2 ≥ ‖ξ2 − L2‖0 = ‖ξ − L‖0 ‖ξ + L‖0
≥ 1
c2
‖ξ − L‖2 ‖ξ + L‖2 ≥

1
c2

Var(ξ),

where we applied (16) once more on the last step. Together with (17) this
yields

C E | |a|2 + ξ2 − α|1/2 ≥
√

Var(ξ)

with C = c3/2, so the hypothesis (14) is fulfilled.
Now, let’s look at the conclusion (15). If X is a random vector with dis-

tribution µ, by Jensen’s inequality,
∫
g dµ = C E | |X|2 − α|1/2 ≤ C

(
E | |X|2 − α|2

)1/4
.

The right hand side is minimized for α = E|X|2 and becomes C Var(|X|2)1/4.
Hence, 1

h(µ) ≤ 2 c2C Var(|X|2)1/4 which is the claim.
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