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In this note we would like to attract reader’s attention to the following func-
tional form for the surface Brunn–Minkowski-type inequality.

Theorem 1. Let 0 < t < 1 and let u, v, w be non-negative, quasi-concave,
smooth functions on Rn, such that w(x) → 0, as |x| → ∞, and

w
(
tx+ (1− t)y

)
≥ u(x)tv(y)1−t, (1)

for all x, y ∈ Rn. Then

∫
|∇w(z)| dz ≥

(∫
|∇u(x)| dx

)t(∫
|∇v(y)| dy

)1−t
. (2)

A function w is called quasi-concave, if w(tx+(1−t)y) ≥ min{w(x), w(y)},
whenever x, y ∈ Rn and 0 < t < 1 (cf. e.g. [C-F] for an account on
equivalent definitions and basic properties of such functions.) In particular,
all log-concave functions are quasi-concave. In this case, the assumption on
smoothness may be removed from the hypotheses of Theorem 1.

Let A and B be convex bodies in Rn. Approximating these sets by smooth
log-concave functions u and v, inequality (2) yields

S
(
tA+ (1− t)B

)
≥ S(A)tS(B)1−t, (3)

and by homogeneity, for n ≥ 2,

S
(
tA+ (1− t)B

)
≥
[
t S(A)1/(n−1) + (1− t)S(B)1/(n−1)

]n−1

, (4)

where we use S(·) to denote the area size of the surface of a corresponding
convex body. This is a Brunn–Minkowski-type inequality for the functional
S, cf. [S]. The bound (4) is optimal in the sense that its right hand side
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provides minimum of S(tA+ (1− t)B) in terms of S(A) and S(B); however,
the advantage of the “log-concave” form (3) is that it remains to formally
hold when one of the sets is empty.

Thus, inequality (2) under the hypothesis (1) may be viewed as a functional
form for (4). The class of quasi-concave functions is natural in Theorem 1,
since only for such functions the sets of the form Au(λ) = {x ∈ Rn : u(x) ≥ λ}
are convex, and since (4) is stated for convex sets.

Recall that, for all non-negative measurable functions u, v, and w,
satisfying the condition (1), we have the Prékopa–Leindler inequality ([Pr1-2],
[L])

∫
w(z) dz ≥

(∫
u(x) dx

)t(∫
v(y) dy

)1−t
, (5)

which represents a natural functional form for the volume Brunn–Minkowski
inequality

voln
(
tA+ (1− t)B

)
≥
[
t voln(A)1/n + (1− t) voln(B)1/n

]n
. (6)

Other functional forms of (6), earlier references and discussion of history may
be found in S. Das Gupta [DG] and R. Gardner [G]. Prékopa–Leindler’s theo-
rem has found a number of interesting applications in Convex Geometry and
Analysis; let us only mention the works by C. Borell [Bo1-2], K. Ball [Ba]
and B. Maurey [M]. In fact, (5) being combined with (3) may also be used to
derive inequality (2).

Indeed, assume the functions u and v are not identically zero, so that both
vanish as |x| → ∞, since w does. Hence, the sets Au(λ) = {u ≥ λ}, λ > 0,
are convex, bounded (and perhaps empty), and similarly for v and w.

Now, by the hypothesis (1),

tAu(λ1) + (1− t)Av(λ2) ⊂ Aw(λt1λ
1−t
2 ), λ1, λ2 > 0, t ∈ (0, 1),

as long as both Au(λ1) and Av(λ2) are non-empty. Anyhow, by (3) and by
monotonicity of S, the functions

f(λ) = S
(
Au(λ)

)
, g(λ) = S

(
Av(λ)

)
, h(λ) = S

(
Aw(λ)

)

satisfy h(λt1λ
1−t
2 ) ≥ f(λ1)tg(λ2)1−t, for all λ1, λ2 > 0. This property is a

multiplicative version of (1) in dimension one, and it also implies (5), ([Ba],
Lemma 3), i.e.,

∫ +∞

0

h(λ) dλ ≥
(∫ +∞

0

f(λ) dλ
)t(∫ +∞

0

g(λ) dλ
)1−t

.

Finally, applying the coarea formula
∫
Rn |∇u(x)| dx =

∫ +∞
0

f(λ) dλ to u, as
well as to the functions v and w, we arrive at the desired conclusion (2).

More generally, with a similar argument one may consider Choquet’s in-
tegrals

∫
ϕdµ ≡

∫ +∞
0

µ{ϕ ≥ λ} dλ for ϕ ≥ 0 with an arbitrary monotone set
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function µ ≥ 0 on Rn, such that µ(tA + (1 − t)B) ≥ µ(A)tµ(B)1−t in the
class of all convex bodies in the n-space. Under the assumptions of Theorem
1, one then gets that

∫
w dµ ≥

(∫
u dµ

)t(∫
v dµ

)1−t
. (7)

For example, the p-capacity µ(A) = inf{
∫
|∇g(x)|p dx : g ≥ 1A, g ∈ C∞

0 (Rn)}
is included in (7) whenever 1 ≤ p < n. In that case, the log-concavity of µ
was proved by C. Borell [Bo2] for p = 2, n ≥ 3 (the case of Newton capacity)
and by A. Colesanti and P. Salani for all p < n. When p = 1, (7) coincides
with (2). On the other hand, when µ is Lebesgue measure, we return to (5).
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