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Abstract. Concentration properties and an asymptotic behaviour of distributions of normal-
ized and self-normalized sums are studied in the randomized model where the observation
times are selected from prescribed consecutive integer intervals.

1. Introduction

Let (�, F, P) denote a probability space. It is well known that any norm-bounded
system in L2(�, F, P), say {Xn}∞n=1, contains a lacunary-type subsystem {Xnk

}
whose elements behave like shifted independent random variables, possibly mul-
tiplied by an independent factor ρ (random or not). In particular, it was shown in
1960s by V. F. Gaposhkin [G2], that if Xn is convergent to zero weakly in L2, a
subsystem can be chosen such that the distributions of the normalized sums

SN = Xn1 + · · · + XnN√
N

will be weakly convergent to N(0, ρ2), that is, to the law of ρZ where Z is a
standard normal random variable independent of the random variable ρ ≥ 0. For
short, this may be written as

SN ⇒ N(0, ρ2), as N → ∞. (1.1)

The first observation of this kind with a purely normal limit is apparently due to
M. Kac in his 1938 paper [K1] and a somewhat later there is a similar result by R.
Fortet [Fo], cf. also [K2]. On the unit interval � = (0, 1) equipped with Lebesgue
measure P, they considered special subsystems of the system {f (nω)}, where f is
a fixed 1-periodic function on the real line.

Apart from questions concerning possible rates of increase of nk , the general
problem of the existence of subsequences of indices satisfying (1.1) was studied
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by many authors with different methods and for more general schemes of sums
involving weights. See for instance the work of G. W. Morgenthaler [Mo] for
uniformly bounded orthonormal systems in L2. Later on, various aspects of the
above types of CLT have been intensively investigated by Gaposhkin, cf. [G1-4].
Some of his results were rediscovered by S. D. Chatterji [C] who introduced an
informal statement known as principle of subsequences; it states that any limit the-
orem about independent, identically distributed random variables continues to hold
under proper moment assumptions for a certain subsequence of a given sequence
of random variables. This general observation was made precise and extended by
D. J. Aldous [A], and later by I. Berkes and A. Péter [B-P].

However, not much is known about the speed of increase of a subsequence such
that a central limit theorem holds. Historically, classical trigonometric systems like

Xn(ω) = cos(2πnω), 0 < ω < 1,

on the interval � = (0, 1) have been studied most intensively in this respect. The
first result in this direction (after [K1-2]) was obtained by R. Salem and A. Zyg-
mund [S-Z] showing in particular that SN ⇒ N(0, 1

2 ), whenever nk+1
nk

≥ q > 1,
for all k. This lacunary condition was weakened in terms of consecutive ratios of
indices by P. Erdös [E] to the optimal condition nk+1

nk
≥ 1 + ck√

k
, where ck → +∞,

cf. also [Ber1], [Mu], [Fu]. Note that here nk must grow faster than e
√

k . It was
therefore an intriguing question whether a slower increasing sequence nk can be
chosen to satisfy the CLT and what the best possible rate is. To this aim, in 1978
I. Berkes [Ber2] proposed an implicit construction based on a random selection of
indices.

Namely, assume the set of all natural numbers is partitioned into non-empty
consecutive intervals �k , k ≥ 1, of respective lengths (cardinalities) |�k| → +∞.
It was shown that, if we select each nk from �k independently and at random
according to the discrete uniform distribution on �k , then for almost all choices of
indices, still SN ⇒ N(0, 1

2 ) holds. Hence, the gaps nk+1 −nk may grow as slow, as
we wish. One of the purposes of the present note is to extend this result of Berkes
in the case of self-normalized statistics

TN = Xn1 + · · · + XnN√
X2

n1
+ · · · + X2

nN

to general systems of random variables Xn in L2 satisfying certain natural assump-
tions. Although it will not matter, one may define TN to be zero in case the denom-
inator is vanishing.

Throughout we assume that the “maximal spectral norm” λ of the associated
correlation operators,

λ = sup E |a1X1 + · · · + anXn|2,
is finite. Here the supremum is taken over all n ≥ 1 and all collections (a1, . . . , an)

of real (or, equivalently, complex) numbers such that |a1|2 + · · · + |an|2 ≤ 1. For
example, any orthonormal system has spectral norm 1.
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Introduce

Vk = 1

|�k|
∑
n∈�k

X2
n, ρ2

N = V1 + · · · + VN

N
(ρN ≥ 0).

Now we claim:

Theorem 1.1. Let |�k| → +∞, and assume that

a) max1≤k≤N maxn∈�k
|Xn| = o(

√
N ) in probability, as N → ∞;

b) lim supN→∞ P{ρN ≤ h} → 0, as h ↓ 0.

Then, for almost all indices (nk)k≥1, selected independently and uniformly from
�k ,

TN ⇒ N(0, 1), as N → ∞. (1.2)

If b) is replaced by the assumption that ρ2
N ⇒ ρ2 weakly in distribution for some

random variable ρ, then for almost all indices as selected above, we obtain the
CLT (1.1).

We will comment on the assumption a) later on. The condition b) guarantees
that the distributions of ρN should not have weak limit probability measures on
the positive half-axis [0, +∞) with an atom at zero. This ensures that the random
variables TN are well-defined for large N with probability approaching 1.

Note that b) holds whenever ρ2
N ⇒ ρ2 with ρ > 0 a.s., but the latter restriction

is not important for the CLT in the form (1.1). For the cosine trigonometric system,
we have ρ2

N → ρ2 = 1
2 a.s., so it does not matter whether we consider normalized

or self-normalized sums.
In case of orthogonal systems, a statement related to Theorem 1.1 has recently

been derived in [B-G3] under similar hypotheses for a different randomized model,
where every Xn is included in the partial sum SN = ε1X1 + · · · + εNXN and
the self-normalized statistic TN = ε1X1+···+εNXN√

ε1X
2
1+···+εNX2

N

with a prescribed probability

pn (thus, either εn = 1 or 0). As turns out, when pn’s approach zero in a certain
stable way, (1.1)–(1.2) will hold with probability one in the sense of the infinite
product Bernoulli measure on {0, 1}∞. The latter was used to show that, whenever
mk

k
→ +∞, (1.1)–(1.2) hold for some fixed (non-random) sequence nk satisfy-

ing nk ≤ mk for all k large enough. Although very close, this is however a weaker
property in comparison with what one could potentially obtain in the Berkes model.
Indeed, by the Erdös-Rényi “pure heads” theorem, in the scheme of Bernoulli trials
we will be selecting indices nk = min{i > nk−1 : εi = 1} with gaps nk+1 − nk

of order at least log k for infinitely many k’s, and therefore the rate of increase of
gaps cannot be made as small as we wish.

Concerning the cosine trigonometric system, Berkes raised the natural ques-
tion whether or not it is possible to find nk with bounded gaps nk+1 −nk satisfying
SN ⇒ N(0, 1

2 ), as in the randomized central limit theorem with growing gaps.
We shall give a negative answer to this question. It turns out that a non-trivial limit
SN ⇒ ξ is possible in case of bounded gaps, but then necessarily Eξ2 < 1

2 (so, part
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of the second moment must be vanishing in the limit distribution). Nevertheless, it
is of course a challenging problem to describe all possible weak limits of SN . To
see what may happen in the typical situation, let us look at the simplest case of a
partition into intervals of cardinality 2.

Theorem 1.2. For almost all indices nk , selected independently and uniformly from
the two point integer sets �k = {2k − 1, 2k}, we have

√
2 SN ⇒ N(0, ρ2), as well as TN ⇒ N(0, ρ2),

where ρ is distributed according to the arcsin law.

More precisely ρ has the distribution function F(x) = 2
π

arcsin(x), 0 < x < 1.

Hence, Eρ2 = 1
2 , while for the normalized partial sums E (

√
2 SN)2 = 1. Other

typical distributions appear in the limit for intervals �k of larger length. As we will
see, the limit of SN essentially reflects the density of the index sequence nk in the
set of all natural numbers.

It is of course a remarkable intrinsic feature that one may freely speak about
typical distributions regardless of the behaviour of lengths |�k| in randomized limit
theorems. This is due to a strong concentration property of the family of the dis-
tributions Fτ of SN = SN(τ) with respect to finite selections τ = (n1, . . . , nN),
which may be of independent interest. To be more precise, fix N and equip the space
M = �1 × · · · × �N of all τ ’s of length N with a (discrete) uniform probability
measure μ. In terms of the Levy’s distance between probability measures on the
line we obtain, in particular:

Theorem 1.3. For any δ > 0,

μ{τ : L(Fτ , FN) ≥ δ} ≤ C e−cN , (1.3)

where FN = ∫ Fτ dμ(τ) is the average distribution, and where C, c denote positive
constants depending on λ and δ, only.

Note that the strength of concentration depends on λ only. Inequality (1.3) is
obtained as an application of an abstract logarithmic Sobolev inequality in product
probability spaces and a concentration phenomenon associated with it. Let us men-
tion in this connection that the concentration property of {Fτ } around its μ-mean
FN is also known for some other distributions μ over the space of collections τ

of indices, cf. [B-G3], [B2]. This line of applications of concentration methods
originates in the work of V. N. Sudakov [S] and is now being actively discussed in
the literature.

The paper is organized as follows. The basic concentration tools are discussed
in section 2. In section 3 they are used to derive concentration inequalities for
characteristic functions of randomized sums. A more detailed version of Theorem
1.3 is established in section 4. Section 5 is devoted to the asymptotic behaviour of
the average distributions. Theorem 1.1 is proved in section 6. In section 7 we dis-
cuss typical distributions for the trigonometric system appearing in the model with
bounded gaps and prove, in particular, Theorem 1.2. There it is shown as well that
limit laws cannot be standard normal. Section 8 illustrates applications of Theorem
1.1 to sums of pairwise independent random variables.
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2. Concentration in product spaces

In order to make the presentation self-contained, we recall in this section a rather
abstract variant of the concentration phenomenon in product spaces, which will be
used to study the concentration properties of normalized sums.

Given arbitrary probability spaces (Mk, μk), 1 ≤ k ≤ N , consider the product
space (M, μ) = (M1, μ1)⊗· · ·⊗ (MN, μN). With every complex-valued measur-
able functiong onM , we associate the function of the “point”x =(x1, . . . , xN)∈M ,

|∇g(x)|2 = 1

2

N∑
k=1

∫
|g(x) − g(x1, . . . , xk−1, yk, xk+1, . . . , xN)|2 dμk(yk).

(2.1)

The quantity |∇g(x)| may be viewed as the modulus of a gradient of g at the point
x, and

‖g‖Lip = ess sup
x∈M

|∇g(x)|

as the Lipschitz semi-norm of g. In particular, when the “dimension” N = 1,
formula (2.1) simplifies to

|∇g(x)|2 = 1

2

∫
|g(x) − g(y)|2 dμ(y). (2.2)

In the general case, the modulus of the gradient defined in (2.1) is of the additive
type in the sense that

|∇g(x)|2 =
N∑

k=1

|∇xk
g(x)|2, x = (x1, . . . , xN), (2.3)

where we write |∇xk
g(x)| to emphasize that at this step the modulus of the gradi-

ent is evaluated as in dimension one with respect to the k-th variable (keeping the
remaining variables fixed).

Proposition 2.1. If ‖g‖Lip ≤ D, then g is μ-integrable, and moreover, for any
h ≥ 0,

μ

{∣∣∣∣ g −
∫

g dμ

∣∣∣∣ ≥ h

}
≤ 4e−h2/(8D2). (2.4)

A standard argument to derive (2.4) relies upon suitable Sobolev-type inequal-
ities. As a first interesting example, let us note that according to (2.2), in dimension
one we have Varμ(g) = ∫ |∇g|2 dμ. In dimension N the variance functional pos-
sesses a subadditivity property

Varμ(g) ≤
∫ N∑

k=1

Varxk
(g) dμ
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with the same understanding as in (2.3). This leads to a Poincaré-type inequality

Varμ(g) ≤
∫

|∇g|2 dμ (2.5)

which can already be used to recover exponential tails of “Lipschitz” functions
on the product space (M, μ). To reach the Gaussian decay as in (2.4), one has to
work with a different class of analytic inequalities, and it appears that a modified
logarithmic Sobolev inequality

Entμ(eg) ≤ c

∫
|∇g|2eg dμ (2.6)

represents the most convenient form responsible for the Gaussian-type concentra-
tion. Here g is an arbitrary real-valued function on M , and Entμ stands for the
entropy functional defined for all non-negative integrable functions, say u, by

Entμ(u) =
∫

u log(u) dμ −
∫

u dμ log
∫

u dμ.

In dimension one, by Jensen’s inequality,

Entμ(eg) ≤ covμ(g, eg) = 1

2

∫ ∫
(g(x) − g(y))(eg(x) − eg(y)) dμ(x) dμ(y)

≤ 1

4

∫ ∫
(g(x) − g(y))2(eg(x) + eg(y)) dμ(x) dμ(y)

=
∫

|∇g|2eg dμ,

where we used the elementary estimate (a − b)(ea − eb) ≤ 1
2 (a − b)2(ea + eb),

a, b ∈ R. Therefore, (2.6) holds true with c = 1 when N = 1. Applying the
subadditivity property of the entropy functional (similarly to the variance) and the
additivity property for the gradient, one arrives at (2.6) for general product spaces.

Now, starting from (2.6) with c = 1 for functions tg with bounded g such that
|∇g| ≤ D on M , we get a distributional inequality Entμ(etg) ≤ D2t2

∫
etg dμ

implying the bound on the Laplace transform
∫

et(g−Eμg) dμ ≤ eD2t2
, t ∈ R,

where Eμg = ∫ g dμ. By Chebyshev’s inequality, the latter yields

μ{g − Eμg ≥ h} ≤ e−h2/(4D2) (2.7)

and therefore μ{|g − Eμg| ≥ h} ≤ 2 exp{−h2/(4D2)}. In the complex-valued
case, this estimate applies separately to real and imaginary parts of g, and then we
obtain (2.4).

This is how the standard argument leading to Proposition 4.1 works in the
abstract framework. When every Mk consists of two points of equal μk-measure,
(2.6) holds with optimal constant c = 1

2 , which follows from a logarithmic Sobolev
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inequality due to L. Gross [Gr]. Thus, (2.4) represents a natural generalization of the
concentration phenomenon on the discrete cube. With the same constant, (2.6) can
also be shown to hold on the discrete cube for non-symmetric product measures.

In the present form, the modified logarithmic Sobolev inequality (2.6) first
appeared in M. Ledoux [L1] as a tool to recover a concentration inequality in
abstract Hamming spaces, i.e., for functions on M that are Lipschitz with respect
to the metric d(x, y) = card{k ≤ N : xk 
= yk}. M. Ledoux also used a similar
argument as an alternative approach to an abstract scheme of penalties, developed
in 1995 by M. Talagrand, cf. [T]. For other aspects related to isoperimetry and
concentration in abstract product spaces, see also [L2], [B-G1, B-G2]. However,
beyond the discrete cube, we are not aware of any applications of abstract deviation
inequalities, such as (2.4), that are formulated in terms of the modulus of gradient
defined via (2.2). So, we have found a little amazing that (2.4) can be effectively used
to reach concentration for randomized distributions, as given in Theorem 3.1 below.

3. Concentration of characteristic functions

In the set of all natural numbers, let us fix non-empty consecutive integer intervals
�k , 1 ≤ k ≤ N , of respective finite cardinalities |�k|, equipped with arbitrary
probability measures μk .

Consider a random vector X = (X1, . . . , Xm) in Rm, where m = n1+· · ·+nN .
With every collection of indices τ = (n1, . . . , nN) in M = �1 ×· · ·×�N , we

associate the sums

S(τ) = Xn1 + · · · + XnN√
N

, R2(τ ) = X2
n1

+ · · · + X2
nN

N
,

and the two-dimensional random vector W(τ) = (S(τ ), R2(τ )). Let Gτ denote the
distribution of W(τ), and let

G =
∫

Gτ dμ(τ)

be the μ-mean of these distributions on the plane with respect to the product mea-
sure μ = μ1 ⊗ · · · ⊗ μN on M with marginals μk . In this section we study the
concentration property of the family Gτ about G in terms of their characteristic
functions

fτ (t, s) =
∫

ei(tx+sy) dGτ (x, y),

f (t, s) =
∫

ei(tx+sy) dG(x, y), t, s ∈ R.

A main step will be the following:

Theorem 3.1. Assume EX2
n ≤ σ 2, for all 1 ≤ n ≤ m. Then, for all t, s ∈ R, and

h > 0,

μ{τ : |fτ (t, s) − f (t, s)| ≥ h} ≤ 4 e−Nh2/4D(t,s)2
, (3.1)
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where D(t, s) = √
2λ |t | + 2σ 2(t2 + |s|) with λ being the maximal eigenvalue of

the correlation operator of X.

Although in further applications to randomized sums the measures μ will be
taken to be discrete uniform on M , it should be emphasized that the bound on the
rate of concentration can be chosen regardless of the product measure μ.

In the orthonormal case, λ = σ = 1, so D(t, s) = √
2 |t | + 2t2 + 2|s|, and the

right hand side of (3.1) has an exponential decay with respect to the “dimension”
N . As for the general case, the given bound will be small provided that λ = o(N)

and σ 2 = o(
√

N).
Inequality (3.1) is immediately obtained from the deviation inequality (2.4) and

the following bound on the Lipschitz semi-norm in the sense discussed in section 2:

Lemma 3.2. For all t, s ∈ R, the function τ → fτ (t, s) has modulus of gradient
satisfying, for all τ in M ,

|∇fτ (t, s)| ≤
√

2λ |t | + 2σ 2(t2 + |s|)√
2N

. (3.2)

Proof. To simplify notations, put μk(n) = μk({n}) and

τk(n) = (n1, . . . , nk−1, n, nk+1, . . . , nN), n ∈ �k,

for a fixed collection τ = (n1, . . . , nN) in M . Then, for the function g(τ) = fτ (t, s)

the definition (2.1) with (Mk, μk) = (�k, μk) turns into

|∇g(τ)|2 = 1

2

N∑
k=1

∑
n∈�k

|g(τ) − g(τk(n))|2 μk(n),

or equivalently,

|∇g(τ)| = 1√
2

max
a

∣∣∣∣∣∣
N∑

k=1

∑
n∈�k

ak(n)
√

μk(n) (g(τ ) − g(τk(n)))

∣∣∣∣∣∣
, (3.3)

where summation is taken along all collections a = {ak(n)} of complex numbers
such that

N∑
k=1

∑
n∈�k

|ak(n)|2 = 1. (3.4)

Now, since S(τ)−S(τk(n)) = Xnk
−Xn√
N

and R2(τ )−R2(τk(n)) = X2
nk

−X2
n

N
, we can

split

ei (tS(τ )+sR2(τ ))−ei (tS(τk(n))+sR2(τk(n))) = ei (tS(τ )+sR2(τ ))
(

1−e−it (Xnk
−Xn)/

√
N
)

+ei (tS(τk(n))+sR2(τ ))
(
1−e

−is(X2
nk

−X2
n)/N
)
.
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Hence, the quantity after the max sign in (3.3) may be bounded from above by
∣∣∣∣∣∣
E ei (tS(τ )+sR2(τ ))

N∑
k=1

∑
n∈�k

ak(n)
√

μk(n)
(

1 − e−it (Xnk
−Xn)/

√
N
)
∣∣∣∣∣∣

+
∣∣∣∣∣∣
E

N∑
k=1

∑
n∈�k

ak(n)
√

μk(n) ei (tS(τk(n))+sR2(τ ))
(

1 − e
−is (X2

nk
−X2

n)/N
)
∣∣∣∣∣∣
,

which in turn, using |1−eiα| ≤ |α|, α ∈ R, inside the last sum, may be bounded by

E

∣∣∣∣∣∣
N∑

k=1

∑
n∈�k

ak(n)
√

μk(n)
(

1 − e−it (Xnk
−Xn)/

√
N
)
∣∣∣∣∣∣

(3.5)

+|s| E
N∑

k=1

∑
n∈�k

|ak(n)|
√

μk(n)
|X2

nk
− X2

n|
N

. (3.6)

By the assumption, E|X2
nk

− X2
n| ≤ 2σ 2. Applying Cauchy’s inequality, we also

have
∑

n∈�k
|ak(n)| √μk(n) ≤ (

∑
n∈�k

|ak(n)|2)1/2. Applying once more Cau-
chy’s inequality and using (3.4), we get

N∑
k=1

∑
n∈�k

|ak(n)|
√

μk(n) ≤
√

N. (3.7)

Hence, (3.6) is bounded by 2|s| σ 2√
N

. Similarly, we use eiα = 1 + iα + θ α2

2 , α ∈ R,

|θ | ≤ 1, to bound (3.5) by

|t |√
N

E

∣∣∣∣∣∣
N∑

k=1

∑
n∈�k

ak(n)
√

μk(n) (Xnk
− Xn)

∣∣∣∣∣∣

+ t2

2N
E

N∑
k=1

∑
n∈�k

|ak(n)|
√

μk(n) (Xnk
− Xn)

2. (3.8)

Again, E (Xnk
− Xn)

2 ≤ 4σ 2, so by (3.7), the second expectation in (3.8) is
bounded by 4σ 2

√
N . To estimate the first expectation, we shall use the maximal

spectral eigenvalue (or the spectral radius) of the correlation operator of X, which
may be described as the optimal constant λ satisfying

E

∣∣∣∣∣∣
m∑

j=1

αjXj

∣∣∣∣∣∣

2

≤ λ

m∑
j=1

α2
j ,

for all αj ∈ C. Hence, by the Cauchy inequality, the square of the first expectation
in (3.8) is bounded by
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λ

N∑
k=1

∣∣∣∣∣∣
∑

n∈�k,n
=nk

ak(n)
√

μk(n)

∣∣∣∣∣∣

2

+ λ

N∑
k=1

∑
n∈�k,n
=nk

|ak(n)|2 μk(n),

which does not exceed 2λ, by (3.4) and another application of the Cauchy inequality.
Hence, (3.8) and thus (3.5) are bounded by

√
2λ |t | + 2σ 2t2

√
N

.

Collecting the two estimates obtained for (3.5)-(3.6) and recalling (3.3), we arrive
at the desired inequality (3.2). The proof is now complete. ��

4. Concentration of distributions

Starting from Lemma 3.2 or Theorem 3.1, one may explore the rate of concentration
of Gτ around G for various metrics metrizing weak convergence in the space of
probability distributions on the plane. As a simple example, which can already be
used in randomized limit theorems, consider the metric

dist(H1, H2) =
∫ +∞

−∞

∫ +∞

−∞
|h1(t, s) − h2(t, s)| e−2|t |−2|s| dt ds,

where h1 and h2 are the characteristic functions of the probability measures H1 and
H2, respectively, on the plane. Thus, with the same notations as in Theorem 3.1,
we have:

Theorem 4.1. For all δ > 0,

μ{τ : dist(Gτ , G) ≥ δ} ≤ 2 e−Nδ2/(8B2), (4.1)

where B = √
λ/2 + 2σ 2.

Proof. At any fixed point τ in M , the modulus of the gradient g → |∇g(τ)| rep-
resents a convex, homogeneous, and translation invariant functional. Hence, by
Lemma 3.2,

|∇ dist(Gτ , G)| ≤
∫ +∞

−∞

∫ +∞

−∞
|∇ (fτ (t, s) − f (t, s))| e−2|t |−2|s| dt ds

≤
∫ +∞

−∞

∫ +∞

−∞
D(t, s)√

2N
e−2|t |−2|s|dt ds =

√
λ/2 + 2σ 2

√
2N

≡ D,

where D(t, s) = √
2λ |t | + 2σ 2t2 + 2σ 2|s|, as before. In addition, by the Poin-

caré-type inequality (2.5), for all t, s ∈ R,

∫
|fτ (t, s) − f (t, s)| dμ(τ) ≤

(∫
|∇fτ (t, s)|2 dμ

)1/2

≤ D(t, s)√
2N

.
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Thus, for the distance-function g(τ) = dist(Gτ , G), we also have
∫

g dμ ≤
∫ +∞

−∞

∫ +∞

−∞
D(t, s)√

2N
e−2|t |−2|s| dt ds = D.

Therefore, applying to g the one-sided deviation inequality (2.7), we obtain that,
for all h ≥ 0,

μ{τ : g(τ) − D ≥ Dh} ≤ e−h2/4.

If h ≥ 1, this implies μ{g(τ) ≥ 2Dh} ≤ e−h2/4. Substituting δ = 2Dh, we get

μ{g(τ) ≥ δ} ≤ e−δ2/16D2
, δ ≥ 2D.

Since D = B/
√

2N , we have arrived at the desired inequality (4.1) without factor
2. As for the range δ < 2D, it remains to note that μ{g ≥ δ} ≤ 1 ≤ 2e−δ2/16D2

.
Theorem 4.1 follows.
More efforts are needed, if we want to control closeness of Gτ to G in terms of

canonical metrics responsible for the weak convergence such as the Levy metric
on the line. Here we consider the fiollowing most interesting particular case of this
problem, restricting ourselves to randomized partial sums

S(τ) = Xn1 + · · · + XnN√
N

, τ = (n1, . . . , nN).

Denote by Fτ the distribution function of S(τ), and let F(x) = ∫ Fτ (x) dμ(τ) be
the average distribution function with respect to μ, which is still supposed to be
an arbitrary product measure on M . The Levy distance L(Fτ , F ) is defined as the
infimum over all h ≥ 0 such that F(x − h) − h ≤ Fτ (x) ≤ F(x + h) + h, for all
x ∈ R. ��
Theorem 4.2. For any δ > 0,

μ{τ : L(Fτ , F ) ≥ δ} ≤ C
1 + λ3/2

δ6 exp

{
− cN δ8

λ + σ 4

}
, (4.2)

where C, c are positive universal constants.

Theorem 1.3 follows from (4.2) by using σ 2 ≤ λ.

Proof. Without loss of generality, assume λ > 0. For the characteristic functions
fτ (t) = ∫

eitx dFτ (x), f (t) = ∫
eitx dF (x), Theorem 3.1 with s = 0 gives, for

any h > 0,

μ

{
τ :

|fτ (t) − f (t)|
t

≥ h

}
≤ 4 e−Nh2/4D(t)2

, t > 0, (4.3)

where D(t) = √
2λ + 2σ 2t . If t ≤ 2

h
, we may use D(t) ≤ D( 2

h
) to derive from

(4.3)

μ

{
τ :

|fτ (t) − f (t)|
t

≥ h

}
≤ 4 e−Nh4/4V 2

(4.4)
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with V = √
2λ h + 4σ 2. In the range t > 2

h
, the above inequality is fulfilled auto-

matically, since |fτ (t) − f (t)| ≤ 2, so that the left hand side is vanishing in that
case. As t ↓ 0, (4.4) becomes in the limit

μ{τ : |ES(τ) − ES| ≥ h} ≤ 4 e−Nh4/4V 2
, (4.5)

where S denotes a random variable with distribution function F . Thus, (4.5) may
be viewed as a particular case of (4.4) when t = 0.

Now, in order to make (4.4) uniform with respect to t , we shall apply this
inequality to points of the form t = tr = r · ch2, r = 0, . . . , � − 1, with a positive
integer � and a real c > 0 to be specified later on. Then, for the set

M(h) =
{
τ ∈ M :

|fτ (tr ) − f (tr )|
tr

< h, for all r = 0, . . . , � − 1

}

we obtain from (4.4) that

1 − μ(M(h)) ≤
�−1∑
r=0

μ

{ |fτ (tr ) − f (tr )|
tr

≥ h

}
≤ 4� e−Nh4/4V 2

. (4.6)

Take an arbitrary t ∈ (0, 1
h

]. By the definition of the spectral radius, for each

τ ∈ M , we have ES(τ)2 ≤ λ, so |f ′
τ (t)| ≤ √

λ, |f ′′
τ (t)| ≤ λ, and similarly for f .

Case t ≤ h
λ

. By Taylor’s expansion in the integral form,

fτ (t) − f (t)

t
= i (ESτ − ES) + t

∫ 1

0
(1 − v)(f ′′

τ (tv) − f ′′(tv)) dv.

Hence, if τ ∈ M(h) and, in particular, |ESτ −ES| < h, we obtain that |fτ (t)−f (t)
t

| <

h + λt ≤ 2h.
Case h

λ
< t ≤ 1

h
. Pick r = 0, . . . , �−1 such that tr < t ≤ tr+1. This is possible

as long as t� ≥ 1
h

, i.e., we may take for � the smallest integer which is greater than
or equal to 1

ch3 . Recalling that tr+1 − tr = ch2 and using the bound for the first
derivative of fτ and f , we may write, for any τ ∈ M(h),

|fτ (t) − f (t)| ≤ |fτ (t) − fτ (tr )| + |fτ (tr ) − f (tr )| + |f (tr ) − f (t)|
<

√
λ |t − tr | + trh +

√
λ |t − tr |

≤ 2
√

λ ch2 + trh ≤ (2λ3/2c + 1) th.

The assumption h ≤ λt was used on the last step. Hence, taking c = 1
2λ3/2 , we may

conclude as in the first case that |fτ (t)−f (t)
t

| < 2h.
Thus, the latter inequality holds in both cases, whenever τ ∈ M(h) and 0 <

t ≤ 1
h

. It will also be fulfilled for t > 1
h

, just because |fτ (t) − f (t)| ≤ 2. Hence,
by (4.6),

μ

{
sup
t>0

|fτ (t) − f (t)|
t

≥ 2h

}
≤ 4� e−Nh4/4V 2

. (4.7)
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Now, by Bohman’s inequality [Bo], there is a general relationship 1
2 L2(Fτ , F ) ≤

supt>0
|fτ (t)−f (t)|

t
. Hence, after the substitution δ = 2

√
h, (4.7) implies

μ {L(Fτ , F ) ≥ δ} ≤ 4� e−Nδ8/16V 2
. (4.8)

Since L(Fτ , F ) ≤ 1 always holds, only values δ ∈ [0, 1] or, equivalently, h ∈ [0, 1
2 ]

are relevant in (4.8). In this case,

V 2 ≤
(√

λ/2 + 4σ 2
)2 ≤ λ + 32 σ 4,

so the right hand side of (4.8) is bounded by 4� exp{−cNδ8/(λ + σ 4)} with a
universal constant c > 0. Finally, note that in both cases � ≤ 1

ch3 +1 = 2·43λ3/2

δ6 +1.
This finishes the proof. ��

Remark 4.3. Similar concentration inequalities for the family Fτ around F remain
to hold in a more general situation when X1, . . . , Xm represent random vectors,
say, in Rd . An appropriate definition of the involved parameters would be

1) max1≤n≤m E |Xn|2 ≤ σ 2;

2) E
∣∣∑m

n=1 αnXn

∣∣2 ≤ λ
∑m

n=1 |αn|2, for all αn ∈ R.

Here, | · | denotes the usual Euclidean norm in Rd . Then, applying inequality (3.2)
of Lemma 3.2 to the characteristic functions

fτ (t) = E ei〈t,Sτ 〉, f (t) =
∫

fτ (t) dμ(τ), t ∈ Rd ,

we obtain

|∇fτ (t)| ≤
√

2λ |t | + 2σ 2|t |2√
2N

, t ∈ Rd .

Moreover, by a similar analysis as that used in the proof of Theorem 4.1, inequality
(4.1) for the distance dist(Fτ , F ) = ∫

Rd |fτ (t) − f (t)| e−(2|t1|+···+2|td |) dt , t =
(t1, . . . , td ), may be replaced by

μ{τ : dist(Fτ , F ) ≥ δ} ≤ 2 e−Nδ2/(8B2), (4.9)

where now B = √
dλ + dσ 2 depends upon d as well.

For example, any orthonormal system X1, . . . , Xm of complex-valued ran-
dom variables in the complex space L2(�, F, P) may be viewed as a system of
two-dimensional random vectors, such that the conditions 1)-2) are fulfilled with
σ = λ = 1. In this case, (4.9) turns into

μ{τ : dist(Fτ , F ) ≥ δ} ≤ 2 e−cNδ2

with an absolute positive constant c.
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5. Average distributions

From now on, we will be dealing with an infinite system (Xn)n≥1 of random vari-
ables in L2(�, F, P).

We assume that the set of all natural numbers is partitioned into non-empty
consecutive intervals �k , k ≥ 1, of finite cardinalities |�k|, each equipped with a
uniform discrete probability measure μk . As before, given a sequence of indices
τ = (n1, . . . , nN) of length N in M = �1 × · · · × �N , we consider the sums

SN(τ) = Xn1 + · · · + XnN√
N

, R2
N(τ) = X2

n1
+ · · · + X2

nN

N
,

and the two-dimensional random vectors WN(τ) = (SN(τ), R2
N(τ)). Recall that

Gτ denotes the distribution of WN(τ). Now, let

GN =
∫

Gτ dμ(τ) = 1

|�1| . . . |�N |
∑
τ∈M

Gτ

denote the corresponding average distribution with respect to the uniform discrete
measure μ = μ1 ⊗ · · · ⊗ μN on M .

By Theorem 4.1, when N is a large number, under appropriate spectral and
variance assumptions on Xn, most of Gτ are close to GN in the sense of weak
convergence of probability measures on the plane. Thus, it is natural to study the
asymptotic behaviour of the average distributions GN for growing N .

Note that GN can be characterized as the joint distribution of the random vari-
ables

SN = Xn1 + · · · + XnN√
N

, R2
N = X2

n1
+ · · · + X2

nN

N
,

where n1, . . . , nN are now regarded as independent random indices, independent
of all Xn, such that every nk takes values in �k with equal probabilities.

First we consider the sums SN . Their asymptotic behaviour is mainly deter-
mined by the behaviour of the random variables

Uk = 1

|�k|
∑
n∈�k

Xn, Vk = 1

|�k|
∑
n∈�k

X2
n,

provided that

a) max1≤k≤N maxn∈�k
|Xn| = o(

√
N ) in probability, as N → ∞,

b) σ 2 = supn EX2
n < +∞,

c) λ = supN λN < +∞,

where we use λN to denote the spectral radius of the correlation operator of the
random vector (X1, . . . , Xm), m = n1 + · · · + nN .

This may already be seen from:
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Proposition 5.1. Let Z denote a standard normal random variable independent of
the sequence Xn. Under the conditions a) − b), the distributions of SN and

S̄N = U1 + · · · + UN√
N

+
(

V1 + · · · + VN

N
− U2

1 + · · · + U2
N

N

)1/2

Z

are weakly convergent to each other in the sense that E eitSN − E eitS̄N → 0, as
N → ∞, uniformly on every bounded interval of the real line.

This statement about weak convergence may also be rewritten as the property
that

dist(FN, F̄N) → 0, as N → ∞, (5.1)

where FN and F̄N , respectively, are the distributions of SN and S̄N , and where dist
is a metric in the space of all probability measures on the line metrizing the weak
convergence. For example, one may take dist(F, H) = ∫ +∞

−∞ |f (t)−h(t)| e−2|t | dt ,
where f , h are characteristic functions of probability measures F , H .

However, if we assume the hypothesis c), which is stronger than b), the property
(5.1) will become independent of the choice of the metric. Indeed, by Prokhorov’s
compactness criterion, it is sufficient to make sure that the distributions involved
have, say, uniformly bounded absolute moments. In our particular case, ES2

N ≤ λ.
For the other sequence, introduce

ŪN = U1 + · · · + UN√
N

.

By the spectral assumption, EŪ2
N ≤ λ

N

∑N
k=1

1
|�k | ≤ λ. By b), EVk ≤ σ 2 ≤ λ, so

we obtain that E |S̄N |2 ≤ E |ŪN |2 + E V1+···+VN

N
≤ 2λ. This shows that no matter

what metric is used in the assertion (5.1).
For the proof of Proposition 5.1, we need the following elementary statement

of calculus:

Lemma 5.2. Let ξ be a complex-valued random variable on some probability space
(M, μ) such that |ξ | ≤ 1

2 . Then, for some complex θ , |θ | ≤ 1,

Eμeξ = exp

{
Eμξ + 1

2

[
Eμξ2 − (Eμξ)2

]
+ Cθ ‖ξ‖∞ Eμ |ξ |2

}
,

where C is a universal positive constant, and ‖ξ‖∞ = ess supx∈M |ξ(x)|.

Recall that we have introduced the notation

ρ2
N = V1 + · · · + VN

N
.
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Proof of Proposition 5.1. By the very definition, the characteristic function
ϕN(t) = E eitSN , t ∈ R, has the representation

ϕN(t) = E �N(t), where �N(t) =
N∏

k=1

⎡
⎣ 1

|�k|
∑
n∈�k

eitXn/
√

N

⎤
⎦ .

Fix t 
= 0. The assumption a) may formally be strengthened as the property that,
for some sequence εN ↓ 0, the events

�N =
{
ω ∈ � : max

1≤k≤N
max
n∈�k

|Xn| ≤ εN

√
N

}

have probabilities P(�N) → 1, as N → ∞. Moreover, we may assume εN ≤ 1
2|t | ,

for all N ≥ 1.
By Lemma 5.2, applied to M = �k with uniform measure μ and to the random

variable ξ(n) = itXn(ω)√
N

on �k with a fixed ω ∈ �N , we can write

1

|�k|
∑
n∈�k

eitXn/
√

N = exp

{
it√
N

Uk − t2

2N
(Vk − U2

k ) + Cθkt
3 εN

Vk

N

}

with some complex θk = θk(ω) such that |θk| ≤ 1. Therefore, putting ηN =
U2

1 +···+U2
N

N
, we arrive at

�N(t) = exp

{
itŪN − t2

2
(ρ2

N − ηN) + Ct3θ ′
NεNρ2

N

}

for another random complex θ ′
N on �N such that |θ ′

N | ≤ 1.
Moreover, since EX2

n ≤ σ 2, we have E ρ2
N ≤ σ 2, and by Chebyshev’s inequal-

ity, P{ρ2
N ≤ 1√

εN
} → 1. Let AN = �N ∩ {ρ2

N ≤ 1√
εN

}, so that P(AN) → 1. On
this set

�N(t) = exp

{
it ŪN − t2

2

(
ρ2

N − ηN

)}
eCt3θ ′

N

√
εN .

Together with Cauchy’s inequalities Vk ≥ U2
k , ρ2

N ≥ ηN , the above representation
implies that

ϕN(t) = E eitS̄N + o(1), as N → ∞,

where o(1) is uniform with respect to t on bounded intervals of the real line.

As a corollary, we obtain:

Proposition 5.3. Let |�k| → ∞, and assume conditions a) − c) are fulfilled. If
ρ2

N ⇒ ρ2 weakly in distribution for some random variable ρ ≥ 0, then SN ⇒
N(0, ρ2), as N → ∞.
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The conclusion follows from Proposition 5.1 and the spectral assumption
implying

EŪ2
N ≤ λ

N

N∑
k=1

1

|�k| → 0, as N → ∞. (5.2)

If C = supn EX4
n < +∞ and EX2

kX
2
j ≤ EX2

k EX2
j , whenever k < j (this

holds, for example, for the cosine trigonometric system), then, Var(V1+···+VN

N
) ≤ C

N
,

so the assumption about ρ2
N is fulfilled with ρ = 1. That is, we arrive at a version

of the central limit theorem, SN ⇒ N(0, 1), for sums with random indices.

Remark 5.4. In order to study applications to complex systems, let us state a multi-
dimensional generalization of Proposition 5.3. Let Xn = (Xnj )1≤j≤d be a sequence
of Rd -valued random vectors on a probability space (�, F, P) satisfying the prop-
erties a) and c) in the vector sense. The spectral norm λ is now defined by

λ = sup E |a1X1 + · · · + anXn|2,

where the sup is running over all n ≥ 1 and over all collections (a1, . . . , an) of real
numbers such that |a1|2 + · · · + |an|2 = 1. Introduce the averages

Vk(j, l) = 1

|�k|
∑
n∈�k

XnjXnl, 1 ≤ j, l ≤ d,

and the associated sequence of (non-negatively definite) d × d random matrices
ρ2

N with entries

ρ2
N(j, l) = V1(j, l) + · · · + VN(j, l)

N
, 1 ≤ j, l ≤ d.

With a similar argument, we have:

Proposition 5.5. Assume |�k| → ∞ and that, for some non-negatively definite
d × d random matrix ρ, we have ρ2

N ⇒ ρ2 in the sense of the weak convergence
of distributions on Rd×d . Then, SN ⇒ ρZ weakly in distribution, where Z is a
standard normal random vector in Rd independent of ρ.

Let us return to the real-valued case. Now we consider the asymptotic behaviour
of the joint distribution of SN and R2

N .

Proposition 5.6. Let |�k| → ∞, and assume conditions a)−c) are fulfilled. Then,
the distributions of

WN = (SN, R2
N) and W̄N = (ρNZ, ρ2

N),

where Z is a standard normal random variable independent of ρn, are weakly
convergent to each other, as N → ∞.
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Proof. is similar to that of Proposition 5.1. The statement about the weak conver-
gence may be understood as

dist(GN, ḠN) → 0, as N → ∞, (5.3)

where ḠN is the distribution of the random vector W̄N , and where dist is a metric
in the space of all probability measures on the plane responsible for the weak con-
vergence. Since the components of both WN and W̄N have bounded first absolute
moments, this property does not depend on the choice of the metric, so it is suffi-
cient to verify that the corresponding characteristic functions approach each other
at every point.

Write the characteristic function of WN

ϕN(t, s) = E eitSN+isR2
N = E �N(t, s), t, s ∈ R,

in terms of

�N(t, s) =
N∏

k=1

⎡
⎣ 1

|�k|
∑
n∈�k

eitXn/
√

N+isX2
N/N

⎤
⎦ .

Fix t, s not both zero. Choose a sequence εN ↓ 0, such that the events

�N =
{
ω ∈ � : max

1≤k≤N
max
n∈�k

|Xn| ≤ εN

√
N

}

have probabilities P(�N) → 1, as N → ∞. Moreover, we may assume that all
εN ≤ 1

1+2(|t |+|s|) , so that |ξ(n)| ≤ 1
2 on �N , where

ξ(n) = itXn(ω)√
N

+ isXn(ω)2

N
.

By Lemma 5.2, applied to M = �k with uniform measure μk and to the random
variable ξ with a fixed ω ∈ �N , there is a representation

1

|�k|
∑
n∈�k

eitXn/
√

N+isX2
N/N = ezk ,

where

zk =
∫

ξ dμk + 1

2

[∫
ξ2 dμk −

(∫
ξ dμk

)2
]

+ Cθk ‖ξ‖∞
∫

|ξ |2 dμk

with some complex θk = θk(ω) such that |θk| ≤ 1. Now, ‖ξ‖∞ ≤ (|t | + |s|) εN

and
∫

ξ dμk = it√
N

Uk + is

N
Vk.
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Squaring ξ(n)2 = −t2 X2
n

N
− s2(

X2
n

N
)2 − 2 ts

X3
n

N3/2 and using εN ≤ 1, we get
∣∣∣∣ξ(n)2 + t2 X2

n

N

∣∣∣∣ ≤ (s2 + 2 |t ||s|) εN

X2
n

N
.

Summing over all n ∈ �k gives
∣∣∣∣
∫

ξ2 dμk + t2 Vk

N

∣∣∣∣ ≤ (s2 + 2 |t ||s|) εN

Vk

N
.

Similarly,
∫

|ξ |2 dμk ≤ (|t | + |s|)2 Vk

N
.

All bounds together yield, for all ω ∈ �N ,

zk = it√
N

Uk + is

N
Vk − t2

2N
Vk + 1

2

(
t√
N

Uk + s

N
Vk

)2

+ θk(t, s) εN

Vk

N

with a bounded random θk(t, s). Now, since Vk ≤ maxn∈�k
|Xn|2 ≤ ε2

NN, we get

1

2

∣∣∣∣
t√
N

Uk + s

N
Vk

∣∣∣∣
2

≤ t2

N
U2

k + s2

N
Vk ε2

N.

Therefore, after summation over all k ≤ N and putting ηN = U2
1 +···+U2

N

N
, we obtain

that∣∣∣∣(z1+· · · + zN)−
(

is− t2

2

)
ρ2

N

∣∣∣∣≤|t | |ŪN |+t2ηN + s2

N
ρ2

N ε2
N +θ ′

N(t, s) εNρ2
N

with another bounded random θ ′
N(t, s). Here the right hand side is getting small

on sets of large probability. Indeed, since EX2
n ≤ λ, we have E ρ2

N ≤ λ, and
by Chebyshev’s inequality, P{ρ2

N ≤ 1√
εN

} → 1. Also recall that, by the spectral

assumption c), both ŪN and ηN tend to zero in L1(�, P), cf. (5.2). So, P{|ŪN | ≤
ε′
N, ηN ≤ ε′

N } → 1, for some ε′
N ↓ 0. Let

AN = �N ∩
{
ρ2

N ≤ 1√
εN

, |ŪN | ≤ ε′
N, ηN ≤ ε′

N

}
,

so that P(AN) → 1. On this set
∣∣∣∣(z1 + · · · + zN) −

(
is − t2

2

)
ρ2

N

∣∣∣∣ ≤ θ ′′
N(t, s) ε′′

N

with some random bounded θ ′′
N(t, s) and non-random ε′′

N → 0. Hence, �N(t, s) =
exp{(is − t2

2 ) ρ2
N } + o(1) and, by the Lebesgue dominated convergence theorem,

ϕN(t, s) = E exp

{(
is − t2

2

)
ρ2

N

}
+ o(1) = E exp{it ρNZ + isρ2

N } + o(1).

Thus, the proof is complete. ��
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6. Proof of Theorem 1.1

As before, we assume the set of all natural numbers is partitioned into non-empty
consecutive intervals �k , k ≥ 1, of finite cardinalities |�k|, each equipped with a
uniform discrete probability measure μk . Let μ∞ denote the infinite product mea-
sure μ1 ⊗ μ2 ⊗ . . . on M∞ = �1 × �2 × · · · . With every sequence of indices
τ = (nk)k≥1 in M∞, we associate the sums

SN(τ) = Xn1 + · · · + XnN√
N

, R2
N(τ) = X2

n1
+ · · · + X2

nN

N
,

and the two-dimensional random vectors WN(τ) = (SN(τ), R2
N(τ)). Let Fτ(N)

and Gτ(N) denote the distributions of SN(τ) and WN(τ), respectively, and let

FN =
∫

Fτ(N) dμ∞(τ ), GN =
∫

Gτ(N) dμ∞(τ ).

By Theorem 4.1, when N is a fixed and sufficiently large, most of the Gτ(N)

are close to the average distribution GN in the sense of the weak convergence of
probability measures on the plane. This statement can be made precise, for exam-
ple, by virtue of the finite dimensional concentration inequality (4.1), which now
reads as

μ∞
{
τ ∈ M∞ : dist(Gτ(N), GN) ≥ δ

} ≤ 2 e−Nδ2/(8B2
N).

It holds true for any integer N ≥ 1 and real δ > 0 with BN = √
λN/2 + 2σ 2

N ,
where σ 2

N = maxk≤N maxn∈�k
EX2

n, and where λN is the spectral radius of the
correlation operator of the random vector (X1, . . . , Xm), m = n1 + · · · + nN . If
λ = supN λN is finite, we get

μ∞
{
τ ∈ M∞ : dist(Fτ(N), FN) ≥ δ

} ≤ 2 e−cNδ2
,

μ∞
{
τ ∈ M∞ : dist(Gτ(N), GN) ≥ δ

} ≤ 2 e−cNδ2

with a constant c depending on λ, only. In particular, the series

∞∑
N=1

μ∞
{
τ : dist(Fτ(N), FN) ≥ δ

}

is convergent. Therefore, by the Borel-Cantelli lemma, for any δ > 0, for
μ∞-almost all τ , we have dist(Fτ(N), FN) < δ, for all N large enough. If ρ2

N ⇒ ρ2

weakly in distribution, then according to Proposition 5.3, dist(FN, N(0, ρ2)) → 0,
so that

lim sup
N→∞

dist(Fτ(N), N(0, ρ2)) ≤ δ

with μ∞-probability one. This proves the second part of Theorem 1.1.
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The first part is a little more delicate. Again applying the Borel-Cantelli lemma
with δ = δN of order, say, N−1/4, we obtain that

lim
N→∞

dist(Gτ(N), GN) = 0

with μ∞-probability one. Combining this with Proposition 5.6, we also get that
with μ∞-probability one

lim
N→∞

dist(Gτ(N), L(ρNZ, ρ2
N)) = 0, (6.1)

where L(ρNZ, ρ2
N) is the joint distribution of ρNZ and ρ2

N , and where Z is a
standard normal random variable independent of ρN .

Now, by the spectral assumption λ < +∞, both families {Gτ(N) : N ≥ 1, τ ∈
M∞} and {GN : N ≥ 1} are pre-compact in the space of all probability measures
on the plane with respect to the dist-metric. Hence, (6.1) may be formulated as
the property that, for any bounded, continuous function u = u(x, y) in the upper
half-plane y ≥ 0, with μ∞-probability one

lim
N→∞

∣∣∣E u(Sτ(N), R
2
τ(N)) − E u(ρNZ, ρ2

N)

∣∣∣ = 0. (6.2)

By the assumption b) of Theorem 1.1, for large N the distributions of ρ2
N stay away

from zero, so this also holds with μ∞-probability one for the distributions of R2
τ(N)

(since, they approach each other, by (6.1)). That is,

α(h) = lim sup
N→∞

P{R2
τ(N) ≤ h} → 0, as h ↓ 0.

As a result, we can extend (6.2) to the class of all functions u(x, y) that are bounded
in the upper half-plane y ≥ 0 and continuous at every point (x, y) with y > 0.
Indeed, let C = supx,y |u(x, y)|. Given h > 0, there exists a continuous func-
tion uh(x, y) in y ≥ 0 that coincides with u(x, y) whenever y ≥ h and satisfies
supx,y |uh(x, y)| ≤ C. Applying (6.2) to uh, we then easily derive

lim sup
N→∞

∣∣∣E u(Sτ(N), R
2
τ(N)) − E u(ρNZ, ρ2

N)

∣∣∣ ≤ 2C (α(h) + β(h)),

where β(h) = lim supN→∞ P{ρ2
N ≤ h}. It remains to let h ↓ 0.

Finally, starting from a bounded, continuous function v on the real line, apply
(6.2) to u(x, y) = v(x/

√
y ), y > 0, defining u to be zero in case y = 0. As a

result, we obatin that limN→∞ E v(TN) = Ev(Z).
This proves Theorem 1.1.

Remark 6.1. The condition a) of Theorem 1.1 is fulfilled automatically for uni-
formly bounded systems Xn, and more generally, for those satisfying

sup
n

|Xn| < +∞ a.s.
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If these random variables are unbounded, but have uniformly bounded moments,
the condition a) will be fulfilled under an appropriate assumption on the growth of
|�k|. Namely, assume

C� = sup
n

E �(|Xn|2) < +∞,

for some non-negative increasing function � on [0, +∞) such that �(t)
t

→ +∞,
as t → +∞. Then, by Chebyshev’s inequality,

P
{

max
1≤k≤N

max
n∈�k

|Xn| ≥ c
√

N

}
= P

{
�

(
max

1≤k≤N
max
n∈�k

|Xn|2
)

≥ �(c2N)

}

≤ E �
(
max1≤k≤N maxn∈�k

|Xn|2
)

�(c2N)

≤ E
∑N

k=1
∑

n∈�k
�(|Xn|2)

�(c2N)

≤ C�

|�1| + · · · + |�N |
�(c2N)

.

Therefore, the condition a) will hold as long as, for any c > 0,

|�1| + · · · + |�N | = o(�(cN)) , as N → ∞, (6.3)

Remark 6.2. With a similar argument and taking into account Remark 4.3 (in par-
ticular, inequality (4.9)) and Remark 5.4 (cf. Proposition 5.5), the second part of
Theorem 1.1 may naturally be extended to Rd -valued random vectors:

Theorem 6.3. Under the assumptions of Proposition 5.5, for almost all indices
(nk)k≥1, selected independently and uniformly from �k , weakly in distribution

SN ⇒ ρZ, as N → ∞,

where Z is a standard normal random vector in Rd independent of ρ.

As a first illustratation of Theorem 6.3, we give a complex variant of Berkes’
theorem about the cosine trigonometric system:

Corollary 6.4. If |�k| → ∞, then for almost all indices (nk)k≥1, selected inde-
pendently and uniformly from �k ,

zn1 + · · · + znN

√
N/2

⇒ N(0, I2)

weakly in distribution with respect to the normalized Lebesgue measure on the unit
circle S1 = {z ∈ C : |z| = 1}.

Here N(0, I2) denotes the standard normal distribution on the plane R2.
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Proof. Consider

Xn(ω) = (cos(2πnω), sin(2πnω)), 0 < ω < 1,

as a sequence of R2-valued random vectors on the probability space � = (0, 1)

equipped with Borel σ -algebra F and a uniform probability measure P. Then, in
probability (and actually with probability 1)

ρ2
N(j, j) = 1

N

N∑
k=1

⎡
⎣ 1

|�k|
∑
n∈�k

X2
nj

⎤
⎦ −→ 1

2
, j = 1, 2,

which is due to the property that cov(X2
nj , X

2
nl) = 0, whenever j < l. In addition,

ρ2
N(1, 2) = 1

N

N∑
k=1

⎡
⎣ 1

|�k|
∑
n∈�k

Xn1Xn2

⎤
⎦ −→ 0,

since the random variables Xn1Xn2 = 1
2 X2n,1 are orthogonal in L2(�, F, P) and

have equal norms. Thus, the limit matrix

ρ2 =
(

1/2 0
0 1/2

)

is non-random, and the conclusion follows. ��

7. Bounded gaps

Here we continue the discussion of trigonometric systems, focusing on the case
where the gaps nk+1 − nk remain bounded. To start with, let us first describe a
general situation where a weak limit of partial sums SN , if it exists, will not be
standard normal.

Proposition 7.1. Let {Xn}∞n=1 be an orthonormal system in L2(�, F, P) such that
in probability

X1 + · · · + Xn√
n

→ 0, as n → ∞. (7.1)

Given an increasing sequence of indices τ = {nk}∞k=1, assume that SN ⇒ ξ weakly
in distribution, for some random variable ξ . Then,

E ξ2 ≤ 1 − den(τ ). (7.2)

Here, we use notation

den(τ ) = lim sup
N→∞

N

nN
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for the upper density of the sequence τ in the row of all natural numbers. In partic-
ular, if supk

[
nk+1 − nk

]
< +∞, this quantity is positive, so ξ cannot be standard

normal: part of the second moment is lost, while ES2
N = 1, by orthonormality.

Note that the condition (7.1) is fulfilled for the (normalized) cosine trigonomet-
ric systems. Actually, in this case it does not matter whether we consider the sums
SN or self-normalized statistics TN , since there holds true a strong law of large

numbers
X2

n1
+···+X2

nN

N
→ 1.

Proof of Proposition 7.1. Without loss of generality, assume N
nN

→ p = den(τ ),
as N → ∞. Introduce the sums

YN = 1√
nN

∑
1≤k≤N

Xnk
, ZN = 1√

nN

∑
1≤j≤nN , j 
=nk

Xj ,

so that

1) YN + ZN = 1√
nN

(X1 + X2 + · · · + XnN
),

2) E Y 2
N = N

nN
→ p, E Z2

N = 1 − N
nN

→ 1 − p,
3) E YNZN = 0.

By the assumption SN ⇒ ξ ,

YN =
√

N

nN

SN ⇒ √
p ξ. (7.3)

Note that εN ≡ YN + ZN → 0 in probability, by (7.1). Hence, given a positive
parameter b, by (7.3),

ξN ≡ YN − bZN = (1 + b)YN − bεN ⇒ (1 + b)
√

p ξ.

Therefore, by Fatou’s lemma, and using the properties 2)-3),

E
[
(1 + b)

√
p ξ
]2 ≤ lim inf

N→∞
E ξ2

N

= lim inf
N→∞

[
E Y 2

N + b2E Z2
N

]
= p + b2(1 − p).

This yields

E ξ2 ≤ p + b2(1 − p)

p(1 + b)2 .

If p < 1, the right hand side is minimized for b = p
1−p

and is equal to 1 −p at this
value. In the case p = 1, let b → +∞.

Proposition 7.1 follows.
Now let us turn to the problem on the typical distributions in the randomized

model of bounded gaps for the cosine trigonometric system

Xn(ω) = cos(2πnω)
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on � = (0, 1) with uniform measure P. For a fixed natural number d, we consider
the canonical partition

�k = {n : d (k − 1) + 1 ≤ n ≤ dk}, k ≥ 1.

Thus, |�k| = d , for all k. To study an asymptotic behaviour of sums

SN = Xn1 + · · · + XnN√
N

,

when the indices nk are selected independently and uniformly from �k , one may
apply Proposition 5.1 together with the concentration argument used in the proof
of Theorem 1.1. The latter reduces our task to the study of the average distribu-
tions, i.e., we may assume that (nk) is a sequence of independent random indices,
independent of the sequence Xn and with values in �k according to the uniform
distribution. In this case, the situation is considerably simplified by noting that

U1 + · · · + UN√
N

= X1 + · · · + XdN

d
√

N
→ 0,

for all ω ∈ (0, 1), since the sums X1 + · · · + XdN remain bounded, while N is
increasing. In addition,

V1 + · · · + VN

N
−→ 1

2

in probability, as was explained before. Therefore, by Proposition 5.1, the distribu-
tions of SN and of the random variables

(
1

2
− U2

1 + · · · + U2
N

N

)1/2

Z

approach each other in the sense of the weak convergence. Now, for each k ≤ N ,

U2
k = 1

d2

∑
n,m∈�k

Xn+m + X|n−m|
2

,

where by convention, X0 = 1. By direct evaluation, it should be clear that the sums∑N
k=1
∑

n,m∈�k
Xn+m remain bounded when N is increasing. On the other hand,∑

n,m∈�k
X|n−m| does not depend on k. Hence, SN have in the limit the distribution

of

S(d)= 1√
2

⎛
⎝1− 1

d2

d∑
n,m=1

X|n−m|

⎞
⎠

1/2

Z= 1√
2

(
1− 1

d
− 2

d2

d−1∑
n=1

(d − n) Xn

)1/2

Z.

We may summarize:
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Theorem 7.2. For almost all indices nk selected independently and uniformly
from �k ,

Xn1 + · · · + XnN√
N/2

⇒ N(0, ρ2)

weakly in distribution with respect to the Lebesgue measure on (0, 1), where

ρ =
(

1 − 1

d
− 2

d2

d−1∑
n=1

(d − n) Xn

)1/2

. (7.4)

Note that, although E (
√

2 SN)2 = 1, for the limit distribution the second
moment is E (

√
2 S(d))2 = 1 − 1

d
. This is consistent with Proposition 7.1 and

actually shows optimality of (7.2), since den(τ ) = 1
d

with μ∞-probability one.

If d = 2, formula (7.4) is simplified, and we get
√

2 S(2) =
√

1−X1
2 Z =

N(0, ρ2), where ρ has the arcsine distribution. Thus, we arrive at the conclusion
made in Theorem 1.2. In this particular case, there is an alternative argument leading
to Theorem 7.2, which we describe below.

The process of choosing indices nk from �k = {2k − 1, 2k} may be connected
with the Bernoullian scheme by noting that

Xnk
= 1 − εk

2
X2k−1 + 1 + εk

2
X2k,

where εk = ±1 are independent random variables taking the two values with prob-
ability 1

2 (independently of the sequence Xn). Thus, the value εk = −1 corresponds
to the choice nk = 2k − 1, while εk = 1 corresponds to nk = 2k. Hence,

√
2 SN = X1 + · · · + X2N√

2N
+ 1√

N

N∑
k=1

εk

X2k − X2k−1√
2

. (7.5)

As N is increasing to infinity, the first summand on the right of (7.5) will not contrib-
ute in the limit, by property (7.1). As for the second summand, one may apply the
following theorem: Given an orthogonal sequence Yn in L2(�, F, P) such that

1) E Y 2
N = σ 2;

1) max{|Y1|, . . . , |Yn|} = o(
√

n) in probability;

2)
Y 2

1 +···+Y 2
n

n
→ ρ2 weakly in distribution for some random ρ ≥ 0,

we have that, for almost all choices of εk’s, weakly in distribution

1√
n

n∑
k=1

εkYk ⇒ N(0, ρ2). (7.6)

This result has been proved in [B1] when ρ = 1, but the proof easily extends to
the general case. Related results about convergence in probability with respect to
εk’s were obtained by H. von Weiszäcker [W] (see also the original work by V. N.
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Sudakov [S]).The particular case Yn(ω) = cos(2πnω) in (7.6) corresponds to a
result of R. Salem and A. Zygmund [S-Z2], who considered a more general scheme
allowing weights. In our case

Yk(ω) = X2k(ω) − X2k−1(ω)√
2

= cos(2π 2k ω) − cos(2π (2k − 1) ω)√
2

= −
√

2 sin(πω) sin((4k − 1) πω),

so these random variables are orthogonal, satisfy 1) with σ 2 = 1
2 , satisfy 2) since

they are bounded, and also a.s.

Y 2
1 + · · · +Y 2

N

N
=2 sin2(πω)

sin2(πω)+ · · · +sin2((4N − 1) πω)

N
−→ sin2(πω).

Hence, 3) is fulfilled with ρ(ω) = | sin(πω)|. This random variable takes values in
[0,1] with respective distribution function and density

F(x) = 2

π
arcsin(x), p(x) = 2

π

1√
1 − x2

(0 < x < 1).

That is, ρ has the arcsin distribution.

8. Pairwise independent random variables

In this section we restrict ourselves to an important family of systems of random
variables that are pairwise independent. It is well known, that the usual central
limit theorem fails to hold in this situation. See, e. g., S. Janson [Ja], R. C. Bradley
[Br], A. R. Pruss [P]; another counter-example is discussed below. It is therefore
interesting to know whether weaker forms of the CLT are fulfilled. Theorem 1.1
immediately yields:

Theorem 8.1. Let (Xn)
∞
n=1 be pairwise independent random variables such that

EXn = 0, EX2
n = 1, and supn ess sup |Xn| < +∞. If |�k| → ∞, then for almost

all indices nk selected independently and uniformly from �k ,

Xn1 + · · · + XnN√
N

⇒ N(0, 1). (8.1)

Indeed, here we are dealing with an orthonormal system in L2(�, F, P), sat-
isfying the condition a) of Theorem 1.1. By pairwise independence and uniform
boundedness of Xn, the random variables

ρ2
N = 1

N

N∑
k=1

1

|�k|
∑
n∈�k

X2
n

have variances of order at most O( 1
N

), so ρ2
N → 1 in probability. Thus, Theorem

1.1 applies, and we arrive at the desired conclusion (8.1).
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For illustration, let us start with a real-valued, 1-periodic measurable function
f on the real line such that

∫ 1

0
f (x) dx = 0,

∫ 1

0
f (x)2 dx = 1, (8.2)

and consider a special system

Xn(t, s) = f (nt + s), 0 < t, s < 1, (8.3)

defined on the square � = (0, 1)× (0, 1), which we equip with Borel σ -algebra F
and Lebesgue measure P. This system is related to the well studied case {f (nt)},
but the additional “mixing” argument s adds a number of remarkable properties.
This will allow us to get rid of heavy restrictions such as “smoothness” usually
required for the function f . In particular, we have:

Corollary 8.2. If |�k| → ∞ and f is essentially bounded, then the CLT (8.1)

holds true for the system (8.3) with respect to Lebesgue measure P.

The crucial observation is contained in the following elementary statement.

Lemma 8.3. Let ζ and z be independent, complex-valued random variables uni-
formly distributed on the unit circle S1 of the complex plane. Then

ξn = ζzn, n = 1, 2 . . . ,

represents a strictly stationary sequence of pairwise independent random variables.

At the same time, it is almost a deterministic sequence in the sense that ξn =
gn(ξ1, ξ2), for certain measurable functions gn on S1 × S1. Moreover, there is
relation ξn = gi,j,n(ξi, ξj ), i 
= j , as long as n−j

i−j
is an integer. Systems of pair-

wise independent random variables with similar deterministic properties were first
constructed by A. Joffe, cf. [Jo].

Let us also note that the sums Sn = ξ1 + · · · + ξn remain bounded for growing
n, so the normalized sums Sn/

√
n, as well as their real parts Re Sn/

√
n, fail to

satisfy the central limit theorem. One may obtain other counter-examples in the
form f (ξn).

Proof of Lemma 8.3. By independence of ζ and z, we have for all integers m1, . . . ,

mN and h ≥ 0, N ≥ 1,

E ξ
m1
1+h . . . ξ

mN

N+h = E ζm1+···+mN E z(1+h)m1+···+(N+h)mN . (8.4)

Since

E ζm =
{

1, if m = 0,

0, if m 
= 0,
for all m ∈ Z,

the right hand side of (8.4) is either equal to 0 or 1, and is equal to 1 if and only if
m1 + · · · + mN = 0 and (1 + h)m1 + · · · + (N + h)mN = 0, that is, if and only if
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m1 + · · · + mN = 0 and 1 · m1 + · · · + N · mN = 0. The latter description does
not depend on h, which proves strict stationarity by applying Weierstrass’ density
theorem. Similarly, given n > m ≥ 0 integers, and a, b ∈ Z, one easily verifies
that E ξa

n ξb
m = E ξa

n E ξb
m, which is an equivalent form of independence.

One may equivalently formulate Lemma 8.3 as the property that

ηn(t, s) = nt + s (mod 1)

is a strictly stationary sequence of pairwise independent random variables on �.
So is the sequence of the form Xn = f (ηn). Since all ηn are uniformly distributed
in the interval (0,1), the assumptions of Theorem 8.1 are fulfilled by (8.2).

The uniform boundedness assumption in Theorem 8.1 may be weakened to the
uniform integrability at the expense of a certain condition posed on the growth of
|�k|, with a rate depending upon integrability properties of Xn.

Theorem 8.4. Let (Xn)
∞
n=1 be pairwise independent random variables satisfying

EXn = 0, EX2
n = 1, and supn E �(|Xn|2) < +∞ for some Young function �.

Then the CLT (8.1) holds provided that |�k| → ∞ and, for any c > 0,

|�1| + · · · + |�N | = o(�(cN)) , as N → ∞, (8.5)

Recall that a Young function represents a non-negative, increasing and con-
vex function defined on the positive half-axis t ≥ 0 such that �(0) = 0 and
�(t)

t
→ +∞, as t → +∞. When Xn are equidistributed, the existence of �

follows from the finiteness of the second moment.
According to Remark 6.1, the condition a) of Theorem 1.1 is fulfilled, provided

that (6.3) holds which is exactly the assumption (8.5). The condition b) is fulfilled
in a stronger form, as a weak law of large numbers may be applied to the sequence
Yn = X2

n − 1.

Proposition 8.5. Let Y1, . . . , Yn be pairwise independent random variables satis-
fying EYi = 0 and E �(|Yi |) ≤ 1, for all i ≤ n. Then

E

∣∣∣∣
Y1 + · · · + Yn

n

∣∣∣∣ ≤ ε�(n) (8.6)

with ε�(n) → 0, as n → ∞, depending on the Young function �, only.

In particular, if we start with an infinite sequence Yn under the same hypotheses,
then in probability

Y1 + · · · + Yn

n
−→ 0, as n → ∞.

This weak law of large numbers is due to D. Landers and L. Rogge [L-R]. Here
the requirement that �(t)

t
→ +∞ cannot be omitted even for totally independent

random variables. For example, if P{Yn = ± n} = 1
2n

, P{Yn = 0} = 1 − 1
n

, we
have EYn = 0, E|Yn| = 1, but the weak law does not hold. It may also be verified

that E
∣∣∣Y1+···+Yn

n

∣∣∣ ≥ c for some absolute constant c > 0.
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The refining inequality (8.6) is needed in Theorem 8.4 in view of the struc-
ture of the random variables ρ2

N . Letting C = supn E�(X2
n), C0 = 1 + 1

�−1(C)
,

�0(t) = 1
C

�(t), we get E�0(
X2

n−1
C0

) ≤ 1 and thus may apply Proposition 8.5 to

the finite collection Yn = X2
n−1
C0

, n ∈ �k , with fixed k = 1, . . . , N . By (8.6), every

Vk = 1
|�k |

∑
n∈�k

X2
n satisfies

E |Vk − 1| ≤ C0 ε�0(|�k|).
Therefore, by the triangle inequality,

E |ρ2
N − 1| ≤ C0

N

N∑
k=1

ε�0(|�k|) −→ 0, as N → ∞,

since |�k| → ∞. Hence ρ2
N → 1 in probability, and thus the proof of Theorem

8.4 would be completed. To prove Proposition 8.5, we need:

Lemma 8.6. Let Y be a random variable on the probability space (�, F, P) sat-
isfying E�(|Y |) ≤ 1, where � is a Young function such that �(1) = 1. Then

a) E |Y | 1A ≤ p �−1( 1
p
), for any A ∈ F with P(A) ≤ p;

b) E |Y | 1{|Y |≥c} ≤ c
�(c)

, for any c ≥ 1.

As usual, �−1 denotes the inverse function and 1A the indicator function of a
set A. Note that p �−1( 1

p
) is increasing in p.

Proof. The inequality in b) is obtained from a) by using Chebyshev’s inequal-
ity P(A) ≤ 1

�(c)
, where A = {|Y | ≥ c}. For the first assertion, we may assume

0 < p ≤ 1, that � is finite and that � has a continuous increasing derivative in
t > 0. So, R = �−1 has a continuous decreasing derivative R′ on the positive
half-axis.

Fix A ∈ F . Making the substitution u = �(|Y |), we are reduced to maximizing
the functional L(u) = E R(u) 1A under the constraints u ≥ 0, Eu = 1. Clearly, a
maximizer u0 exists and is vanishing outside A. Let B = {u0 > 0}, so that B ⊂ A,
and put uε = u0 + εv with a real ε and an arbitrary function v on � vanishing
outside B and such that Ev = 0. Then Euε = 1 and uε > 0 on B, for all ε small
enough. In addition, by Taylor’s expansion,

L(uε) = L(u0) + ε E R′(u0)v + o(ε), as ε → 0,

implying that E R′(u0)v = 0 for all v as above. Therefore, R′(u0) and thus u0 itself
must be constant on B. But when u0 = b1B with b P(B) = Eu0 = 1, we have that
L(u0) = R(b)P(B) = P(B)R(1/P(B)). Since the latter quantity is increasing in
P(B) and P(B) ≤ p. it does not exceed p R(1/p).

Proof of Proposition 8.5. We follow a standard argument as in [L-R], where a suit-
able double truncation procedure is applied. Consider Y ′

i = Yi 1{|Yi |<n} and put

sn = Y1+···+Yn

n
, s′

n = Y ′
1+···+Y ′

n

n
.
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For a random variable ξ , we use the notation‖ξ‖� = inf {λ > 0 : �(|ξ |/λ)≤1}
for the Orlicz norm of ξ generated by theYoung function �. First assume �(1) = 1.
Since, by the assumption, ‖Yi‖� ≤ 1, we also have ‖Y ′

i ‖� ≤ 1, so ‖sn‖� ≤ 1 and
‖s′

n‖� ≤ 1. Splitting sn = (sn − s′
n) + (s′

n − Es′
n) + Es′

n, we get

E|sn| ≤ E|sn − s′
n| + E|s′

n − Es′
n| + |Es′

n|. (8.7)

Note Es′
n = − 1

n

∑n
i=1 Yi 1{|Yi |≥n}, so by Lemma 8.4 b) applied to each Yi ,

|Es′
n| ≤ n

�(n)
. (8.8)

Now, by Chebyshev’s inequality, for the set A = ∪n
i=1{|Yi | ≥ n}, we have P(A) ≤

n
�(n)

. Note that sn = s′
n on the complement of A. Hence, by Lemma 8.4 a) applied

to Y = sn−s′
n

2 with p = n
�(n)

, we get

E |sn − s′
n| = 2 E

|sn − s′
n|

2
1A ≤ 2n

�(n)
�−1

(
�(n)

n

)
. (8.9)

To bound the middle term on the right of (8.7), use pairwise independence of Y ′
i to

write

E|s′
n − Es′

n|2 = 1

n2

n∑
i=1

Var(Y ′
i ) ≤ 1

n2

n∑
i=1

E Y 2
i 1{|Yi |<n}

= 1

n2

n∑
i=1

E Y 2
i 1{|Yi |<c} + 1

n2

n∑
i=1

E Y 2
i 1{c≤|Yi |<n},

where 1 ≤ c ≤ n. Next, E Y 2
i 1{|Yi |<c} ≤ c E|Yi | ≤ c, since, by Jensen’s inequality,

E|Yi | ≤ �−1(E�(|Yi |)) ≤ �−1(1) = 1. Similarly,

E Y 2
i 1{c≤|Yi |<n} ≤ n E |Yi | 1{|Yi |≥c} ≤ n

c

�(c)
,

by Lemma 8.6 b). Hence, E|s′
n − Es′

n|2 ≤ c
n

+ c
�(c)

. Together with (8.7)–(8.9), and
using �(n) ≥ n, this yields

E |sn| ≤ 3n

�(n)
�−1

(
�(n)

n

)
+ inf

1≤c≤n

√
c

n
+ c

�(c)
. (8.10)

The quantity on the right of (8.10) may be taken as ε�(n), since the infimum is
convergent to zero, as n → ∞ (for c = √

n, for example).
Finally, if �(1) 
= 1, introduce a newYoung function �0(t) = 1

�(1)
�(t). Then,

with C = max{1, 1
�(1)

}, we have E�0(
|Yi |
C

) ≤ 1 and, by the previous step applied

to the sequence Yi

C
, we obtain that E|sn| ≤ Cε�0(n). Proposition 8.5 is proved.

Returning to the systems associated with periodic functions, we obtain from
Theorem 8.4 the following analogue of Corollary 8.2.
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Corollary 8.7. For any 1-periodic measurable function f , normalized in accor-
dance with (8.2), the CLT (8.1) holds for Xn = f (nt + s) with respect to the
Lebesgue measure on the square 0 < t, s < 1, as long as |�1| + · · · + |�N | grow
to infinity sufficiently slowly.

For example, as we know from (8.5), if

∫ 1

0
|f (x)|2 log |f (x)| dx < +∞,

the condition on the growth rate is given by |�1| + · · · + |�N | = o(N log N). It
is, however, not clear whether this condition is necessary.
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