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Isoperimetric constants of product probability measures are known to have an almost
dimension-free character. We propose a new proof based on certain Sobolev-type in-
equalities of additive type (introduced by the author in connection with the isoperimetric
problem in Gauss space). Bibliography: 18 titles.

Let (M,ρ, µ) be a separable metric space equipped with a normalized (probability) Borel mea-
sure, i.e., µ(M) = 1. For every Borel subset A of M and real ε > 0 we define its µ-perimeter

µ+(A) = lim inf
ε→0

µ(Aε) − µ(A)
ε

,

where
Aε = {x ∈ M : ρ(x, a) < ε, for some a ∈ A}

stands for an open ε-neighborhood of A. The isoperimetric constant of the triple (M,ρ, µ)
represents an optimal value h = hµ in the isoperimetric type inequality

µ+(A) � h min{µ(A), 1 − µ(A)}, A ⊂ M Borel. (1)

This quantity was introduced in 1969 by Cheeger [1] to bound from below the spectral gap
of the Laplacian on compact Riemannian manifolds, and nowadays (1) is often called an isoperi-
metric inequality of the Cheeger type. The relationship between more general isoperimetric and
certain Sobolev type inequalities was earlier considered by Maz’ya [2] (see for history, for exam-
ple, [3, 4]). What was noticed in [1] as an equivalent functional form for (1) (in the framework
of Riemannian manifolds) is that, for any smooth function f on M with µ-median m, we have

h

∫
|f − m| dµ �

∫
|∇f | dµ. (2)

The isoperimetric constants play also an important role in other Sobolev type inequalities.
Therefore, it is natural to ask how these quantities reflect the dimension of the space and in
particular how they behave on product spaces.

Let Mn = M × · · · × M denote the nth Cartesian power of M equipped with some metric
ρn generating the canonical product topology and with the product measure µn = µ ⊗ · · · ⊗ µ.
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For any function f on M (and similarly on Mn with respect to ρn), we define the “modulus
of the gradient” to be

|∇f(x)| = lim sup
ρ(x,y)→0

|f(x) − f(y)|
ρ(x, y)

, x ∈ M,

with the convention that |∇f(x)| = 0 as long as the point x is isolated in M . Note that |∇f | is a
Borel measurable, finite function, whenever f is locally Lipschitz. By saying “locally Lipschitz”
we mean that f has a finite Lipschitz constant on every ball in M .

We assume the metric ρn is consistent with the measure µn in the sense that, for any Lipschitz
function f on Mn, µn-almost everywhere

|∇f(x)|2 =
n∑

i=1

|∇xif(x)|2. (3)

Here, |∇xif | denotes the modulus of the gradient for the function xi → f(x) on M with fixed
xj, j �= i. In reasonable situations the metric ρn may be chosen to be of the Euclidean type:

ρ2
n(x, y) =

n∑
i=1

ρ2(xi, yi), x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Mn.

For example, this is the case where M = Rd with usual Euclidean distance and with an arbitrary
probability measure, which is absolutely continuous with respect to Lebesgue measure on Rd.
The particular case of the line M = R is of a special interest.

With the above general assumptions and notations, we have the following:

Theorem 1. Under the hypothesis (3), for any integer n � 1,

hµn � 1
2
√

6
hµ. (4)

As a nontrivial example, one may consider the standard exponential probability distribution
νn on Rn, with density

dνn(x)
dx

=
1
2n

e−||x||1, x ∈ Rn,

where ‖x‖1 = |x1| + · · · + |xn|. In this case, hν = 1, and we get

hνn � 1
2
√

6
.

Equivalently, for any locally Lipschitz function f on Rn with νn-median zero,∫
|f | dνn � 2

√
6

∫
|∇f | dνn. (5)

Similar statements with the same constants remain to hold for the one-sided exponential
distribution µ on the real line with density p(x) = e−x, x > 0.

As for a general probability distribution µ on the line (cf. [5]), the isoperimetric constant
admits a simple description

hµ = essinf
p(x)

min{F (x), 1 − F (x)} ,
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where F (x) = µ(−∞, x], x ∈ R, is the associated distribution function, and p is the density
of the absolutely continuous component of µ with respect to Lebesgue measure. Moreover, the
property hµ > 0 amounts to saying that µ represents the transform of the exponential measure
ν under a Lipschitz map T : R → R.

Theorem 1 was obtained in [5] with a proof which is rather lengthy and routine especially
in part concerning the induction step. In this note we consider a different approach relating
Theorem 1 to Sobolev type inequalities

I

(∫
f dµ

)
�

∫ √
I(f)2 + |∇f |2 dµ, (6)

where I is a given nonnegative function on [0, 1], and where f is an arbitrary locally Lipschitz
function on M with values in [0, 1]. Such inequalities belong to the family of additive analytic
inequalities. The additivity property of (6) means that it may always be extended to the n-
dimensional space (Mn, ρn, µn) to get

I

(∫
f dµn

)
�

∫ √
I(f)2 + |∇f |2 dµn, (7)

once we have it for n = 1, i.e., for the original triple (M,ρ, µ). Moreover, on Lipschitz functions
f , which approximate indicator functions 1A of Borel subsets of Mn, (7) turns into

(
µn

)+(A) � I(µn(A)).

Therefore, to obtain this dimension-free isoperimetric inequality, it is sufficient to establish the
analytic inequality (7) in dimension one. This approach was proposed in [6], where it was
applied to reach the Gaussian isoperimetric inequality of Sudakov and Tsirel’son [7] and Borell
[8]. Adapting the hypothesis (3) to discrete gradients, one may also include various discrete
models. See [9, 10, 11, 12, 13, 14, 15] for discussions and related results.

As we will see, this approach can also lead to Theorem 1 with (surprisingly) the same
coefficient 1

2
√

6
as in (4), although there is no reason to believe that it is sharp. The statement

below was put in the thesis [16] and since then has not been yet published.

Theorem 2. Let I(p) = 4p(1 − p), 0 � p � 1, and let C = 4
√

6
hµ

. For any locally Lipschitz
function f : Mn → [0, 1]

I

(∫
f dµn

)
�

∫ √
I(f)2 + C2|∇f |2 dµn. (8)

By
√

a2 + b2 � a + b (a, b � 0), the inequality (8) implies

4Varµn(f) = I

(∫
f dµn

)
−

∫
I(f) dµn � C

∫
|∇f | dµn, (9)

where

Varµn(f) =
∫

f2 dµn −
(∫

f dµn

)2

stands for the variance of f under the measure µn. In particular, starting with an arbitrary
Borel set A ⊂ Mn and approximating the indicator function 1A by Lipschitz f ’s on Mn (as in
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Lemma 3.5 of [5]), we get from (9) that
(
µn

)+(A) � 4
C

µn(A)(1 − µn(A)). (10)

Here the right-hand side can be bounded from below by 2
C min{µn(A), 1−µn(A)}, and we arrive

at the required inequality (4). Thus, Theorem 2 implies Theorem 1.

The proof of Theorem 2 in dimension one is based upon the following generalization of
Cheeger’s inequality (2), which we state below as a lemma and refer to [5, Theorem 3.1] for a
proof.

Lemma. Let Ψ be a Young function (i.e., an even, convex function on R such that Ψ(0) = 0,
Ψ(t) > 0 for t > 0). If hµ > 0, for any locally Lipschitz function f on M ,∫

Ψ(f − m) dµ �
∫

Ψ
(

cΨ

hµ
|∇f |

)
dµ, (11)

where m is (any) median for f with respect µ and where cΨ = supt>0
tΨ′(t)
Ψ(t) .

Note the constant cΨ is well defined and does not depend on the choice of the Radon–
Nikodym derivative Ψ′ of Ψ. The particular case Ψ(t) = |t| in (11) returns us to (2) with
h = hµ, while the case Ψ(t) = |t|2 yields

h2

4

∫
|f − m|2 dµ �

∫
|∇f |2 dµ,

which is a slight improvement over the Poincaré type inequality

h2

4
Varµ(f) �

∫
|∇f |2 dµ. (12)

Proof of Theorem 2. Let n = 1. Take an f on M with values in [0,1]. Subtracting I(f)
from both sides of (8), rewrite this inequality as

4Varµ(f) �
∫ [√

I(f)2 + C2|∇f |2 − I(f)
]
dµ.

Since u = I(f) is bounded by 1 and since the functions u → √
u2 + v2 − u are nonincreasing in

u � 0, it is sufficient to show that

4Varµ(f) �
∫ [√

1 + C2|∇f |2 − 1
]
dµ. (13)

For |t| � 1, there is an elementary inequality 4t2 �
√

1 + 24 t2 − 1. Applying it with t = f − m

and using Lemma 1 with the Young function Ψ(t) =
√

1 + t2 − 1, in which case cΨ = 2, we get

4Varµ(f) � 4
∫

(f − m)2 dµ �
∫

Ψ
(√

24 (f − m)
)

dµ �
∫

Ψ

(
2
√

24
hµ

|∇f |
)

dµ.

Thus, we have arrived at the desired estimate (13) with

C =
2
√

24
hµ

=
4
√

6
hµ

.
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Corollary. Let νn be the standard exponential measure on Rn. For any locally Lipschitz
function f on Rn with values in [0, 1]

Varνn(f) �
√

6
∫

|∇f | dνn. (14)

Indeed, Sobolev type inequalities of this form hold in the class of all locally Lipschitz f with
values in [0,1], if and only if they hold in the asymptotic sense for indicator functions (cf. [17]).
But for f = 1A, (14) is reduced to the isoperimetric inequality

(
νn

)+(A) � 1√
6

νn(A)(1 − µn(A)), (15)

which is a particular case of (10) for the exponential measure ν, and where C = 4
√

6 as in
Theorem 2. But (10) was already shown to be a consequence of (8).

The inequality (14) complements and is equivalent, up to a universal factor, to the inequality
(5). Note that the assumption m(f) = 0 in (5) can be replaced with Ef =

∫
f dνn = 0. Indeed,

only indicator functions are important in∫
|f −Ef | dνn � 2

√
6

∫
|∇f | dνn.

But for such functions we are again reduced to (15).

Remarks. As was already mentioned (cf. (12)), the best constant λ1 = λ1(µ) in the
Poincaré type inequality

λ1Varµ(f) �
∫

|∇f |2 dµ

is connected with the isoperimetric constant h = hµ via the general relation λ1 � h2

4 (Cheeger’s
theorem). When a probability measure µ on M = Rd is absolutely continuous and has a log-
concave density with respect to Lebesgue measure (i.e, the measure is log-concave), there is a
converse bound h2 � cλ1 with some numerical constant c > 0. This result was obtained by
Ledoux, using semi-group arguments, cf. [12]. On the other hand, Poincaré type inequalities
are of additive type in the sense that for product measures we have λ1(µn) = λ1(µ). Hence, for
any log-concave probability measure µ on the real line,

h2
µn � c λ1(µ) � c

4
h2

µ.

This leads to Theorem 1 with the coefficient
√

c/2. In particular, the argument may be applied
to the exponential measures νn.

In the general case, the quantities λ1(µ) and hµ are, however, not equivalent. Nevertheless,
the previous argument may still be used to cover the general metric case as in Theorem 1 by
applying one comparison property, which was found by F. Barthe. Namely, for a symmetric
log-concave probability measure ν on the line, introduce the associated isoperimetric functions
for product measures νn on Rn,

Iνn(p) = inf
{
(νn)+(B) : νn(B) = p, B ⊂ Rn (Borel)

}
.

According to [13, Theorem 10], applied to product measures with equal marginals, if a Borel
probability measure µ on the metric space (M,d) satisfies an isoperimetric inequality

µ+(A) � Iν(µ(A)), A ⊂ M,
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then we have a similar isoperimetric inequality for all product spaces (Mn, µn),

(µn)+(A) � Iνn(µ(A)), A ⊂ Mn.

In other words, there is a comparison property Iµ � Iν ⇒ Iµn � Iνn in terms of the isoperimetric
functions.

In particular, this property may be applied to the standard exponential measure ν on the
real line. In this case (cf. [18, Propositions 2.1-2.2], it is known that Iν(p) = min{p, 1 − p}, for
all p ∈ [0, 1]. So, the combination of the Ledoux and Barthe theorems leads again to Theorem
1 with the coefficient

√
c/2, as above.
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