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and Sturm–Liouville Equations

Sergey Bobkov and Friedrich Götze

Abstract We discuss integral estimates for domain of solutions to some
canonical Riccati and Sturm–Liouville equations on the line. The approach
is applied to Hardy and Poincaré type inequalities with weights.

1 Introduction

Given a function V = V (t) in t � 0, consider the Riccati equation

y′(t) = y(t)2 + V (t) (1.1)

with initial condition
y(0) = 0. (1.2)

A standard question about (1.1)–(1.2) is how to exactly determine or to es-
timate in terms of V the length of the maximal interval [0, t0), t0 > 0, on
which a (unique) solution y exists. Known results on estimates for t0 usu-
ally treat more general Cauchy’s problems, and being applied to the above
special situation, they depend upon the growth of the maximum of |V | on
intervals [0, t] with growing t. Throughout the paper, we assume that V is
nonnegative, continuous, and is not identically zero. In this case, an impor-
tant information can be derived by applying suitable comparison arguments,
which lead to more sensitive integrable estimates. In particular, we prove the
following
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Theorem 1.1. Define

V (t) =

t∫

0

V (u) du, t � 0.

The maximal value of t0 satisfies

1
4t0

� sup
0<s<1

[
(1− s)V (t0s)

]
� 1
t0
. (1.3)

For example, for V (t) = tα−1, α � 1, this gives

1
41/(α+1)

α+ 1
α(α−1)/(α+1)

� t0 � α+ 1
α(α−1)/(α+1)

.

In particular, t0 → 1 as α→ +∞.
Transforming (1.1) to second order linear differential equations, one may

give an equivalent formulation of Theorem 1.1 as a statement about the first
eigenvalue λ0 for the regular Sturm–Liouville equation

d

dt

(
q(t)
d

dt
z(t)
)

= λp(t)z(t), a � t � b, (1.4)

with boundary conditions z(a) = z′(b) = 0. Introduce the quantity

A(p, q) = sup
a<x<b

[ x∫

a

1
q(t)
dt

b∫

x

p(t) dt
]
.

Theorem 1.2. For all positive continuous functions p and q on [a, b]

A(p, q) � 1
λ0

� 4A(p, q). (1.5)

We consider the estimates (1.3) and (1.5) as another approach, from dif-
ferential equation point of view, to a result, obtained by Kac and Krein [7]
in 1959 and later by Artola [1], Talenti [14], and Tomaselli [15], about Hardy
type inequalities with weights. In these inequalities, one tries to determine
or estimate the best constant C = C(p, q) satisfying

b∫

a

f(x)2p(x) dx � C
b∫

a

f ′(x)2q(x) dx, (1.6)

where f is an arbitrary absolutely continuous function on [a, b) such that
f(a) = 0. Their result, including the case b = +∞ as well, asserts that
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A(p, q) � C(p, q) � 4A(p, q) (1.7)

(actually, they treated a more general Lα-norm in (1.6)). In 1972, Mucken-
houpt [11] gave a complete account on this result and extended it to arbi-
trary positive measures in place of p(x)dx and q(x)dx. In general (when the
interval is unbounded), it might occur that A(p, q) is infinite. The property
A(p, q) < +∞ is sometimes called the Muckenhoupt condition, although the
two-sided inequality (1.7) is associated with it, as well. For more general re-
sults and references we refer the interested reader to the monograph [9]. The
connection of (1.6) with (1.4) is as follows: in the regular case, the extremal
functions in Hardy type inequalities exist and satisfy the boundary value
problem of Theorem 1.2 with the smallest possible value of λ. In particular,
C(p, q) = 1/λ0. It should also be clear that, in (1.6) and (1.7), the regular
case easily implies the general case, where p and q are defined on the half-axis
(a,+∞).

In a more rigorous manner, we consider the corresponding variational prob-
lem in Sect. 4, where Theorem 1.2 is proved and is shown to imply (1.7). In
Sect. 2, we prove Theorem 1.1 and some related statements. In Sect. 3, we
consider a particular case of Theorem 1.2 with q ≡ 1. We finish the paper in
Section 5, where we derive an analogue of (1.5) for the boundary conditions
z′(a) = z′(b) = 0. These conditions turn out to be connected with another
important family of inequalities of Poincaré type. The reader may find some
results connecting Hardy type inequalities with weights with Poincaré and
logarithmic Sobolev inequalities in [2], where Muckenhoupt’s characterization
was essentially used (see also [10] for discrete analogues).

Theorems 1.1 and 1.2 can easily be extended to more general equations
such as y′(t) = y(t)β + V (t) and (qz′(t)β)′ = −λp(t)zβ respectively. We
will not study these equations in order to make easy the presentation of
main techniques in the basic case α = 2. It should however be noted that
these are precisely the equations which are needed for studying the Hardy
type inequalities (1.6) with respect to the norms in general Lebesgue spaces
(rather than in L2).

2 Riccati Equations

At first, it is convenient to consider the Riccati equation (1.1) in the semi-open
interval [0, 1) and assume that V is defined, is nonnegative and continuous on
this interval (and is not identically zero). One is looking for some conditions,
necessary and sufficient, which would guarantee the existence of a solution to
(1.1) on the whole interval [0, 1). If it exists (and is thus unique), it should
necessarily belong to the class C1[0, 1) of all continuously differentiable func-
tions on [0, 1). Introducing the integral operator



72 S. Bobkov and F. Götze

Af(t) =

t∫

0

f(u)2 du+ V (t), 0 � t < 1,

we may reformulate our task as a problem on the existence of a solution
y = y(t) in C1[0, 1) to the nonlinear integral equation

Ay = y (2.1)

under the initial condition y(0) = 0.
A canonical way to construct a solution to the Cauchy problem y′(t) =

Ψ(t, y(t)) and, in particular, to the problem (1.1), where Ψ(t, y) = V (t) + y2,
is to start from a function y0, recursively defining the sequence

y1 = Ay0, y2 = Ay1, . . . , yn+1 = Ayn, n � 0.

Certain conditions on V guarantee the convergence of Ayn to a solution on
some interval [0, t1). One general sufficient condition for convergence (see,
for example, [5]) may be formulated as follows. Consider the maximum M =
maxD Ψ on the rectangle D = [0, α]× [0, β]. Then one can take

t1 = min
{
α,
β

M

}
= min

{
α,

β

‖V ‖C[0,α] + β2

}
,

where ‖V ‖C[0,α] = max0�t�α V (t). Optimizing over β so that to maximize
t1, we arrive at

t1(V ) = sup
0<α<1

min
{
α,

1
2
‖V ‖−1/2

C[0,α]

}
.

Although choosing some other domains D may improve this value t1 for
concrete V , we are in a typical situation where one has to require the bound-
edness of V on [0, 1) in order to reach the value t1 = 1. In particular, the
above formula gives t1(λV ) = 1 only if λ � 1/(4 supV ).

Now let us look at the convergence of Ayn by using some comparison
arguments and first derive the following

Lemma 2.1. A solution to (2.1) under the initial condition y(0) = 0 exists
if and only if for some nonnegative measurable function f on [0, 1) for all
t ∈ [0, 1)

f(t) � V (t) and Af(t) � f(t). (2.2)

Proof. Clearly, if y is a solution, then f = y satisfies (2.2). To prove the
converse, we assume that f satisfies (2.2). We start from y0 ≡ 0 and define a
sequence yn as above. In particular, y1 = V . We set

y(t) = sup
n
yn(t).
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Note that the operator A is monotone: if 0 � g1 � g2, then 0 � Ag1 � Ag2.
Since V � f , we get y2 = AV � Af � f . Repeating the argument (i.e., by
induction), we see that yn � f , for all n. Therefore, the function y is finite,
measurable, and satisfies y � f . In addition, for all n, Ay � Ayn = yn+1,
so that Ay � y. On the other hand, the sequence yn is nondecreasing: y2 =
Ay1 � Ay0 = y1, y3 = Ay2 � Ay1 = y2, and so on. Thus, yn(t) ↑ y(t) as n→
∞. Hence, by the Tonneli monotone convergence theorem, Ayn(t) ↑ Ay(t) for
all t ∈ [0, 1). Taking the limit in Ayn = yn+1 � y, we conclude that Ay � y.
The two estimates give Ay = y.

The function of the form Ay, as soon as it is finite, must be absolutely
continuous. Hence y is absolutely continuous, and this implies that y is in
C1[0, 1). 
�

Remark 2.2. According to the above proof, we may add to Lemma 2.1
another characterization. Consider a pointwise limit of the nondecreasing
sequence

yV (t) = lim
n→∞[AA . . . A︸ ︷︷ ︸

n times

y0](t), y0(t) ≡ 0,

which might be finite or not. Then the existence on the interval [0,1) of
a solution y to (2.1) under the initial condition (1.2) is equivalent to the
property that yV (t) < +∞, for all t ∈ [0, 1). In this case, y = yV provides
the solution.

In particular, since from 0 � V �W it follows that yV � yW , the existence
of a solution to (1.1) with a function W implies the existence of a solution
to (1.1) with any (continuous) function V �W . Such a comparison property
was given by Levin [8], who considered even more general situation, where V
is not necessarily nonnegative, but still satisfies |V | �W .

The above reformulation also holds when we consider the Riccati equation
on a larger interval or the whole half-axis [0,+∞). Then t0 = sup{t � 0 :
yV (t) < +∞}.

We need the following assertion.

Lemma 2.3. Any solution y to the Riccati equation (1.1) under the initial
condition y(0) = 0 satisfies for all t ∈ [0, 1)

y(t) <
1

1− t .

Proof. Set t1 = max{t ∈ [0, 1) : y(t) = 0}. Since y must be nondecreasing
and V is not identically zero, the point t1 is well defined and lies in [0, 1).
For t ∈ (t1, 1) we have y′(t) � y(t)2 > 0, which implies that the function
g(t) = 1

y(t) + t decreases in (t1, 1). In particular, g(t) > g(1−) � 1. 
�

Now, we are ready to estimate the supremum λ(V ) of all λ � 0, for which
there exists a solution y = y(t) to the Riccati equation
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y′(t) = y(t)2 + λV (t), 0 � t < 1, (2.3)

under the same initial condition y(0) = 0. As a consequence of the two
lemmas, we derive the following statement closely related to Theorem 1.1.

Theorem 2.4. We have

sup
0<t<1

[
(1− t)V (t)

]
� 1
λ(V )

� 4 sup
0<t<1

[
(1− t)V (t)

]
. (2.4)

In particular, λ(V ) > 0 if and only if V (t) = O( 1
1−t ) as t→ 1.

Proof. First, assume that y satisfies (2.3) with y(0) = 0. By Lemma 2.3,
1

1−t > y(t) in [0, 1). Since y′(t) � λV (t), we also have y(t) � λV (t). Hence

1
1− t > λV (t).

This gives the first inequality in (2.4). To prove the second one, we use Lemma
2.1 with respect to the function λV . Take any λ � 0 such that

1
λ

� 4 sup
0<t<1

(1− t)V (t),

so that
λV (t) � 1

4(1− t) , 0 � t < 1.

Then for the function f(t) = 1
2(1−t) we get

Af(t) ≡
t∫

0

f(u)2 du+ λV (t) =
t

4(1− t) + λV (t)

� t

4(1− t) +
1

4(1− t) � 1
2(1− t) = f(t).

Thus, Af(t) � f(t). On the other hand, f(t) � λV (t), so the sufficient
conditions of Lemma 2.1 are satisfied. Hence there is a solution y to (2.3)
with y(0) = 0. This gives the second inequality in (2.4). Hence Theorem 2.4
is proved. 
�

Proof of Theorem 1.1. It remains to explain why Theorem 1.1 is an immedi-
ate consequence of Theorem 2.4. Considering (1.1) on a finite interval [0, t1)
and introducing the functions z(s) = t1y(t1s), 0 � s < 1, we arrive at the
Riccati equation on [0, 1)

z′(s) = z(s)2 + t21V (t1s) (2.5)
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under the same initial condition z(0) = 0. Now, apply Theorem 2.4 to
Vt1(s) = V (t1s). The existence of a solution z to (2.5) implies that

1
t21

� 1
λ(Vt1 )

� sup
0<s<1

[
(1− s)V t1(s)

]
=

1
t1

sup
0<s<1

[
(1− s)V (t1s)

]
.

This leads to the second inequality in (1.3) for any t1 such that (1.1) has a
solution on [0, t1) with the initial condition (1.2). Let t0 denote the maximal
value t1 with this property. By the second inequality in (2.4), a solution z to
the equation (2.5) exists on [0, 1) if

1
t21

� 4 sup
0<s<1

[(1− s)V t1(s)],

i.e., if
1
t1

� 4 sup
0<s<1

[(1− s)V (t1s)]. (2.6)

The right-hand side of (2.6) is nondecreasing and continuous in t1 > 0, so
there exists a unique point t2 which turns this inequality into equality; more-
over, for t > t2, we have the converse inequality

1
t
< 4 sup

0<s<1

[
(1 − s)V (ts)

]
.

Since t0 � t2, we thus obtain the left inequality in (1.3) and Theorem 1.1
follows. 
�

3 Transition to Sturm–Liouville Equations

One may equivalently reformulate Theorem 1.1 as a statement about the first
zero of solutions to a second order differential equation. Here, we consider
only the simplest equation

z′′(t) = −V (t)z(t), t � 0, (3.1)

under the initial conditions

z(0) = 1, z′(0) = 0 (3.2)

(the condition z(0) = 1 has a matter of normalization, only). As in Theorem
1.1, assume that V is a nonnegative continuous function on [0,+∞), which is
not identically zero. It is well known (see, for example, [12]) that any second
order linear differential equation with continuous coefficients and given initial
conditions has a unique nontrivial solution. Moreover, on every finite interval,
the solution has a finite number of zeros. In the case of (3.1), (3.2) with V � 0
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and V �= 0, we may define

t0 = min{t > 0 : z(t) = 0},

and one would like to estimate t0. Since z(0) > 0, the function z must be
positive on [0, t0), and we may introduce a new function

y(t) = −z
′(t)
z(t)
, 0 � t < t0.

It satisfies the Riccati equation (1.1) with initial condition (1.2). Conversely,
starting from a function y satisfying (1.1), (1.2) on [0, t0), one may define the

function z(t) = exp{−
t∫
0

y(s)ds}, which will satisfy (3.1), (3.2) on the same

interval. Thus, we may conclude:

Corollary 3.1. The minimal zero t0 of the solution z to the problem (3.1),
(3.2) satisfies

1
4t0

� sup
0<s<1

[
(1− s)V (t0s)

]
� 1
t0
.

Similarly, we have an equivalent analogue of Theorem 2.4. Assume that
V is now defined on [0, 1), is continuous, nonnegative and is not identically
zero. Consider in [0, 1) the equation

z′′(t) = −λV (t)z(t). (3.3)

Corollary 3.2. Let λ(V ) be the supremum of all λ � 0, for which a solution
z to the problem (3.2), (3.3) is positive in [0, 1). Then

sup
0<t<1

[
(1− t)V (t)

]
� 1
λ(V )

� 4 sup
0<t<1

[
(1− t)V (t)

]
. (3.4)

If the limit V (1−) = limt→1−0 V (t) exists and is finite, i.e., V is continuous
on [0,1], the solutions zλ to (3.2), (3.3) exist on the whole interval [0,1]. In
particular, this is true for λ = λ(V ), and moreover, zλ(V ) is still positive on
[0, 1). Indeed, zλ depends continuously on λ, and in particular, for all t ∈ [0, 1],
zλ(t) → zλ(V )(t) as λ → λ(V )−. But the functions zλ are concave on [0, 1]
and satisfy zλ(0) = 1, zλ(1) � 0, so zλ(V ) possesses the same properties.
Thus, the supremum in Corollary 3.2 is actually the maximum, and a similar
observation applies to Theorem 2.4.

In fact, zλ(V )(1) = 0 since otherwise we would get, by continuity, that
zλ(1) > 0, for some λ > λ(V ), which contradicts to the maximality of λ(V ).
Consequently, provided (3.2) holds, the following two conditions uniquely
determine the value λ = λ(V ): zλ is nonnegative and satisfies zλ(1) = 0.
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If V is additionally everywhere positive, one can further specify λ(V ) as the
smallest eigenvalue λ0 to the problem (3.2), (3.3) with boundary condition
z(1) = 0. Indeed (see, for example, [3, 13]), in the regular case, the boundary
value problem on [0,1]

z′′(t) = −λV (t)z(t), z′(0) = z(1) = 0, (3.5)

has an infinite sequence λ0 < λ1 < . . . of eigenvalues, and the correspond-
ing eigenfunctions zn have exactly n zeros in (0,1). Therefore, among these
eigenfunctions and up to a constant, only z0 does not vanish in (0,1). Getting
rid of the normalization condition z(0) = 1, we may conclude the following:

Corollary 3.3. Let V be continuous and positive on [0, 1]. Then the value
λ(V ) is the smallest eigenvalue λ0 for the boundary value problem (3.5). In
particular, λ0 admits the estimates (3.4).

4 Hardy Type Inequalities with Weights

As mentioned before, one may arrive at Sturm–Liouville equations starting
from Hardy type inequalities with weights. Here, we show how to treat the
constants in such inequalities using Corollary 3.3. To this end, consider the
functional

J(f) =

b∫

a

f ′(x)2q(x) dx

b∫

a

f(x)2p(x) dx

,

where p and q are positive continuous functions on a finite interval [a, b].
We denote byW 2

1 =W 2
1 [a, b] the Sobolev space of all absolutely continuous

functions f on [a, b] with square integrable (Radon–Nikodym) derivatives so
that J(f) is well defined for such functions provided that f �= 0 (identically).

Lemma 4.1. There exists a function f in W 2
1 , f �= 0, unique up to a con-

stant, where the functional J attains its minimum within W 2
1 under the re-

striction f(a) = 0.

The statement is well known (see, for example, [6] for related results). For
the sake of completeness, we include a proof of the following assertion.

Theorem 4.2. The quantity min{J(f) : f ∈W 2
1 , f �= 0, f(a) = 0} represents

the unique number λ > 0 such that the Sturm–Liouville equation

(f ′q)′ = −λfp (4.1)
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has a nontrivial nonnegative monotone solution on [a, b] with boundary con-
ditions

f(a) = f ′(b) = 0. (4.2)

Thus, it is equal to the smallest eigenvalue for this boundary value problem.

The argument consists of two parts.

Lemma 4.3. Assume that a function f in W 2
1 , f �= 0, minimizes J on W 2

1

under the restriction f(a) = 0. Then the derivative f ′ may be modified on a
set of Lebesgue measure zero such that the following properties are fulfilled:

1) f ∈ C1[a, b];
2) f is monotone, and moreover, f ′(x) �= 0, for all x ∈ [a, b);
3) f ′(b) = 0;
4) f ′q ∈ C1[a, b], and Equation (4.1) holds.

Proof. First note that, since f(a) = 0 and f �= 0, we have

b∫

a

f(x)2p(x) dx > 0 and

b∫

a

f ′(x)2q(x) dx > 0.

Now, we take an arbitrary h ∈ W 2
1 with h(a) = 0 and consider for small ε

the functions fε = f + εh. By the Taylor expansion, as ε→ 0,

J(fε)=J(f)

⎡
⎢⎢⎢⎣1+2ε

⎛
⎜⎜⎜⎝

b∫
a

f ′(x)h′(x)q(x) dx

b∫
a

f ′(x)2q(x) dx
−

b∫
a

f(x)h(x)p(x) dx

b∫
a

f(x)2p(x) dx

⎞
⎟⎟⎟⎠+O(ε2)

⎤
⎥⎥⎥⎦ .

Since J(fε) � J(f), the expression in the round brackets must be zero, i.e.,

b∫

a

(f ′(x)q(x))h′(x) dx = λ

b∫

a

(f(x)p(x))h(x) dx.

Using

h(x) =

x∫

a

h′(t) dt, a � x � b,

we rewrite the above expression as

b∫

a

(f ′(x)q(x))h′(x) dx =

b∫

a

(
λ

b∫

x

f(t)p(t) dt
)
h′(x) dx.



Hardy Type Inequalities via Riccati and Sturm–Liouville Equations 79

Since h′ may be arbitrary in L2(a, b), we conclude that for almost all x ∈ (a, b)

f ′(x)q(x) = λ

b∫

x

f(t)p(t) dt. (4.3)

This equality may be regarded as a definition of f ′. Thus, we may assume that
(4.3) holds for all x ∈ [a, b], and as a result, immediately obtain properties
1), 3), and 4).

To get 2), we consider the function

g(x) =

x∫

a

|f ′(t)| dt.

Then g(a) = 0 and g′(x) = |f ′(x)| for almost all x ∈ (a, b), so that

b∫

a

g′(x)2q(x) dx =

b∫

a

f ′(x)2q(x) dx.

We also have g(x) � |f(x)| for all [a, b], which implies

b∫

a

g(x)2p(x) dx �
b∫

a

f(x)2p(x) dx

with equality possible only when g(x) = |f(x)|, for all x ∈ [a, b] (since both
g and f are continuous). This must be indeed the case since, otherwise,
J(g) < J(f) contradicts the basic assumption on f . Hence either f ′ � 0
almost everywhere or f ′ � 0 almost everywhere, and thus f is monotone.

Assume that f ′ � 0 almost everywhere, and thus f ′ � 0 everywhere by
the continuity of f ′. Since f(a) = 0 and f �= 0 (identically), we get f(b) > 0.
Hence f must be positive at least in a neighborhood of b, and this yields that
the right-hand side of (4.3) is positive whenever a � x < b. Hence f ′(x) > 0
on (a, b) according to (4.3). Lemma 4.3 follows. 
�

Lemma 4.4. Given λ > 0, assume that the boundary value problem (4.1),
(4.2) has a nontrivial monotone solution. Then for all f ∈ W 2

1 , f �= 0, we
have J(f) � λ.

The assumption about monotonicity is necessary. For example, in the case
p ≡ q ≡ 1, on the interval [0, 3π/2] there is solution f(x) = sinx to (4.1) with
λ = 1, which satisfies the boundary conditions (4.2). However, the infimum
of J is attained at ψ(x) = sin(x/3) and is equal to 1/9.
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Proof. The argument is not new; it was used, in particular, in [4]. Let ψ be a
nontrivial nondecreasing solution. In particular, ψ ∈ C1[a, b], ψ′q ∈ C1[a, b],
and ψ satisfies (4.1), (4.2). Integrating (4.1) over the interval (x, b) and using
ψ′(b) = 0, we obtain (4.3) for ψ,

ψ′(x)q(x) = λ

b∫

x

ψ(t)p(t) dt, a � x � b. (4.4)

Arguing as above, since ψ(a) = 0 and ψ �= 0 (identically), we get ψ(b) > 0,
and so ψ must be positive at least in a neighborhood of b. According to (4.4),
we get ψ′(x) > 0 whenever a � x < b.

Now, we take an arbitrary f in W 2
1 with f(a) = 0 and write for x ∈ (a, b)

f(x) =

x∫

a

f ′(t) dt =

x∫

a

f ′(t)√
ψ′(t)

√
ψ′(t) dt,

so that, by the Schwarz inequality,

f(x)2 �
x∫

a

f ′(t)2

ψ′(t)
dt

x∫

a

ψ′(t) dt =

x∫

a

f ′(t)2

ψ′(t)
dt ψ(x).

Hence, by (4.4),

λ

b∫

a

f(x)2p(x) dx � λ
b∫

a

⎛
⎝

x∫

a

f ′(t)2

ψ′(t)
dt ψ(x)

⎞
⎠ p(x) dx

=

b∫

a

f ′(t)2

ψ′(t)

⎛
⎝λ

b∫

t

ψ(x)p(x) dx

⎞
⎠ dt =

b∫

a

f ′(t)2q(t) dt.

The proof is complete. 
�

Proof of Theorem 4.2. We combine Lemmas 4.3 and 4.4 (recalling an argu-
ment before Corollary 3.3 about zeros of eigenfunctions). 
�

Now, let us state a certain duality between Hardy type inequalities.

Lemma 4.5. For every c > 0 the following two inequalities are equivalent:

c

b∫

a

f2 p dx �
b∫

a

f ′2 q dx, for all f ∈ W 2
1 with f(a) = 0; (4.5)
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c

b∫

a

f2/q dx �
b∫

a

f ′2/p dx, for all f ∈W 2
1 with f(b) = 0. (4.6)

In particular, the optimal constants c in (4.5) and (4.6) coincide.

Proof. It suffices to show that (4.5) implies (4.6). Denote by λ an optimal
constant in (4.5) so that c � λ. By Theorem 4.2, there is a nonzero monotone
function ψ ∈ C1[a, b] such that ψ′q ∈ C1[a, b], and ψ satisfies the equation
(ψ′q)′ = −λψp with boundary conditions ψ(a) = ψ′(b) = 0. In particular,
the equality (4.4) holds. Define

y(x) =

b∫

x

ψ(t)p(t) dt, a � x � b.

This function is monotone, belongs to C1[a, b], and satisfies the boundary
conditions y(b) = 0 and y′(a) = 0. In addition, y′/p = −ψ belongs to C1[a, b].
Moreover, the equality (4.4) can be rewritten in terms of y as

(y′
p

)′ = −λ y
q
,

which is again a Sturm–Liouville equation with respect to the functions 1/q
and 1/p (in place of previous p and q). By Theorem 4.2, we conclude that
(4.6) holds with constant λ in place c. 
�

As a consequence, we obtain Theorem 1.2 and the following assertion.

Corollary 4.6. The smallest constant C such that the inequality

b∫

a

f(x)2p(x) dx � C
b∫

a

f ′(x)2q(x) dx (4.7)

holds for all f in W 2
1 with f(a) = 0, satisfies

A(p, q) � C � 4A(p, q). (4.8)

Recall that

A(p, q) = sup
a<x<b

[ x∫

a

1
q(t)
dt

b∫

x

p(t) dt
]
.

Proof of Theorem 1.2 and Corollary 4.6. We use Lemma 4.5. Without loss of
generality, we assume that



82 S. Bobkov and F. Götze

b∫

a

p(x) dx = 1.

Introduce the distribution function

F (x) =

x∫

a

p(t) dt

and its inverse F−1 : [0, 1] → [a, b]. Changing the variable x = F−1(t), we
rewrite (4.5) as

c

1∫

0

f(F−1(t))2 dt �
1∫

0

f ′(F−1(t))2
q(F−1(t))
p(F−1(t))

dt.

In terms of z(t) = f(F−1(t)), we again arrive at the Hardy type inequality
on [0, 1]

c

1∫

0

z(t)2 dt �
1∫

0

z′(t)2 p(F−1(t)) q(F−1(t)) dt

with boundary condition z(0) = 0. By Lemma 4.5, this is equivalent to

c

1∫

0

z(t)2
1

p(F−1(t)) q(F−1(t))
dt �

1∫

0

z′(t)2 dt (4.9)

in the class of all z ∈ W2[0, 1] such that z(1) = 0. Thus, the minimal constant
c = c(p, q) in (4.5) coincides with the optimal constant c = c(V ) in (4.9) on
[0,1] under the restriction z(1) = 0 and with respect to the weight function

V (t) =
1

p(F−1(t)) q(F−1(t))
.

On the other hand, by Theorem 4.2, c(p, q) is the smallest eigenvalue λ0 =
λ0(p, q) for the boundary value problem (4.1), (4.2), while c(V ) is the smallest
eigenvalue λ(V ) for the boundary value problem (3.5):

z′′ = −λV z, z′(0) = z(1) = 0.

Hence λ0(p, q) = λ(V ) = 1/C, where C is the optimal constant in (4.7). By
Corollary 3.3, all these quantities admit the estimates (3.4). However,

sup
0<t<1

(1 − t)V (t) = sup
0<t<1

(1 − t)
t∫

0

1
p(F−1(s)) q(F−1(s))

ds
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= sup
0<t<1

(1− t)
F−1(t)∫

a

1
q(x)

dx

= sup
a<r<b

(1− F (r))

r∫

a

1
q(x)

dx

= sup
a<r<b

b∫

r

p(x) dx

r∫

a

1
q(x)

dx.

Therefore, (3.4) turns into (4.8). Consequently, Theorem 1.2 and Corollary 4.6
are proved. 
�

5 Poincaré Type Inequalities

Similarly to Theorem 1.2, we consider here the Sturm–Liouville equation

(f ′q)′ = −λfp, (5.1)

but with boundary conditions

f ′(a) = f ′(b) = 0. (5.2)

As before, our case is regular, i.e., p and q are assumed to be positive contin-
uous functions on a finite interval [a, b]. Denote by m the (unique) number

in (a, b) such that

m∫

a

p(x) dx =

b∫

m

p(x) dx and introduce the quantities

A0 = sup
a<x<m

m∫

x

1
q(t)
dt

x∫

a

p(t) dt, A1 = sup
m<x<b

x∫

m

1
q(t)
dt

b∫

x

p(t) dt.

Theorem 5.1. The second smallest eigenvalue λ1 for the boundary value
problem (5.1)-(5.2) satisfies

1
2

min(A0, A1) � 1
λ1

� 4 min(A0, A1).

Recall that the smallest eigenvalue λ0 is zero (and corresponds to the
eigenfunction f ≡ 1). Often, λ1 is called the first nontrivial eigenvalue.



84 S. Bobkov and F. Götze

Proof. As in Theorem 1.2, it is well known that λ1 represents the best con-
stant in the Poincaré type inequality

λ1

b∫

a

f(x)2p(x) dx �
b∫

a

f ′(x)2q(x) dx, (5.3)

where f is an arbitrary function in W 2
1 [a, b] such that

b∫

a

f(x)p(x) dx = 0. (5.4)

We connect (5.3) and (5.4) to Hardy type inequalities and then apply Corol-
lary 4.6. To this end, we observe that up to an absolute factor, in front of λ1
in (5.3), the restriction (5.4) can be replaced by

f(m) = 0. (5.5)

Indeed, without loss of generality, we may assume that

b∫

a

p(x) dx = 1

and denote by μ(dx) the measure p(x) dx on [a, b]. Then (5.3) and (5.4) can
be written as

λ1Varμ(f) ≡ λ1
[∫
f2 dμ−

(∫
f dμ

)2
]

�
b∫

a

f ′(x)2q(x) dx, (5.6)

which holds for all f in W 2
1 without any restrictions. Hence if

c

∫
f2 dμ �

b∫

a

f ′(x)2q(x) dx (5.7)

holds assuming (5.5), we obtain (5.6) with λ1 = c since Varμ(f) �
∫
f2 dμ.

Conversely, assume that (5.6) is fulfilled for a constant λ1. Take any func-
tion f in W 2

1 such that f = 0 on [a,m]. Then, by the Cauchy inequality,

(∫
f dμ

)2

=
(∫
f 1[a,m] dμ

)2

� 1
2

∫
f2 dμ,
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where 1[a,m] denotes the characteristic function of the interval [a,m]. Hence∫
f2 dμ � 1

2
Varμ(f) and, by (5.6), we obtain (5.7) for such a function f

with c = λ1/2. The same holds when f = 0 on [m, b]. At last, just assuming
(5.5), we can apply (5.7) to f0 = f 1[a,m] and f1 = f 1[m,b] with c = λ1/2.
Adding the two corresponding inequalities, we arrive at (5.7) for f . Thus,
the optimal constants in the Poincaré type inequality (5.6) and in the Hardy
type inequality (5.7) (the latter being considered under (5.5)) are connected
via

1
2c

� 1
λ1

� 1
c
. (5.8)

It is obvious that c = min(c0, c1), where c0 and c1 are optimal in

c0

m∫

a

f(x)2p(x) dx �
m∫

a

f ′(x)2q(x) dx,

c1

b∫

m

f(x)2p(x) dx �
b∫

m

f ′(x)2q(x) dx

under the restriction (5.5). Therefore, by Corollary 4.6, we have A0 � 1
c0

�
4A0 and A1 � 1

c1
� 4A1. In view of (5.8), we arrive at the inequality of

Theorem 5.1. 
�
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