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of permutation invariant sets. Bibliography: 10 titles.

1. Introduction

Denote by P the uniform probability distribution (i.e., the restricted Lebesgue measure) on the
n-dimensional cube [0, 1]n. A well-known dimension free concentration property of this measure
indicates that, for any measurable set A ⊂ Rn with P(A) � 1/2,

P(A+ rB2) � 1 − e−cr
2
, r > 0. (1.1)

Here, B2 stands for the Euclidean ball in Rn with unit radius and center at the origin, so that the
Minkowski sum A+ rB2 represents an open r-neighborhood of A with respect to the Euclidean
distance, and c > 0 is a numerical constant. For example, the following argument, proposed in
[1], may be used to reach the inequality (1.1). Consider the map

T (x1, . . . , xn) = (Φ(x1), . . . ,Φ(xn))

from Rn onto (0, 1)n, where Φ is the standard normal distribution function on the line. It pushes
forward the canonical Gaussian measure γn on Rn into P, i.e., P(A) = γn(T−1(A)), and has a
Lipschitz constant

‖T‖Lip = ‖Φ‖Lip =
1√
2π
.

Therefore, starting with the Gaussian isoperimetric inequality

γn(A+ rB2) � Φ
(
Φ−1(γn(A)) + r

)
,

which holds for all measurable sets A ⊂ Rn and, in the case γn(A) � 1/2, implies

γn(A+ rB2) � 1 − e−r
2/2,

we arrive at (1.1) with c = π. Many other approaches to this concentration result are also
available; see [2] for the modern exposition of the concentration of measure phenomenon.

On a functional language, (1.1) is equivalent to saying that, for any f : Rn → R with

‖f‖Lip � 1
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and P-mean
Ef =

∫

[0,1]n

f(x) dx,

we have
P{|f − Ef | � r} � 2 e−cr

2
, h > 0 (1.2)

(for a certain constant c > 0). The right-hand side of (1.2) is asymptotically sharp in the class
of all Lipschitz functions. However, in many interesting cases, the estimate (1.2) appears to
be rather rough. For example, the values of the Lipschitz function f(x) = max{x1, . . . , xn}
are concentrated around the point 1 and, moreover, the concentration is getting stronger for
growing n. More generally, when one might want to improve (1.2), one considers the problem
of the deviations of U -statistics

f(x) =
∑

U(xi1 , . . . , xik),

where U is a “nice” function of k � n variables and where summation is performed over all
collections of integers 1 � i1 < · · · < ik � n.

These examples inspire to consider the concentration property of the uniform distribution,
as well as of other product measures, in the class of permutation invariant subsets of the space.
Let us say that a set A ⊂ Rn is symmetric under permutations of coordinates (or just per-
mutation invariant) if with every point x = (x1, . . . , xn) it contains all points of the form
x = (xπ(1), . . . , xπ(n)), where π is an arbitrary permutation of {1, . . . , n}. For such sets (1.1)
may considerably be sharpened.

Theorem 1.1. For any measurable set A ⊂ Rn, symmetric under permutations of coordi-
nates and with P(A) � 1/2,

P(A+ rB∞) � 1 − e−cnr
2
, r > 0, (1.3)

where c > 0 is an absolute constant.

In the sequel, Bp denotes the unit �p-ball for the norm

‖x‖p = (|x1|p + · · · + |xn|p)1/p
(where x = (x1, . . . , xn) ∈ Rn, 1 � p � ∞). In particular, B∞ = (−1, 1)n is the open n-
dimensional cube in Rn with side (−1, 1).

A functional formulation of Theorem 1.1 is as follows:

Theorem 1.2. Let f be a function on [0, 1]n, symmetric under permutations of coordinates
and such that, for all x, y ∈ [0, 1]n,

|f(x) − f(y)| � ‖x− y‖∞. (1.4)

Then, for all r > 0 with some absolute constant c > 0,

P{|f − Ef | > r} � 2 e−cnr
2
. (1.5)

Thus, in the class of permutation invariant subsets of [0, 1]n there is a stronger concentration
of Gaussian type. To compare (1.1) and (1.3), let us rewrite the latter as

P
(
A+

r√
n
B∞

)
� 1 − e−cr

2
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and note that
A+

r√
n
B∞ ⊂ A+ rB2.

Similarly, on functions the condition (1.4) is telling us that f is differentiable almost everywhere
(a.e.), and its gradient satisfies

‖∇f‖1 =
n∑

i=1

∣∣
∣∣
∂f(x)
∂xi

∣∣
∣∣ � 1 a.e.

Since
‖∇f‖1 �

√
n ‖∇f‖2,

(1.5) implies the Gaussian deviation inequality (1.2).

Theorems 1.1–1.2 can be reduced to an appropriate concentration problem about the uniform
distribution µn on the simplex

∆n = {y ∈ Rn
+ : y1 + · · · + yn � 1}

with respect to the �1-norm. What is needed for (1.3) to hold is the following assertion.

Theorem 1.3. For any measurable set A ⊂ ∆n with µn(A) � 1/2, with some absolute
constant c > 0,

µn(A+ rB1) � 1 − e−cnr
2
, r > 0. (1.6)

This concentration inequality is known, although it was stated for the �1-ball B1 in place
of ∆n (which is, in fact, equivalent to the case of the simplex). More precisely, if νn is the
normalized Lebesgue measure on B1 and a set A ⊂ B1 has νn-measure at least 1/2, it was first
shown by Arias-de-Reyna and Villa [3] that

νn(A+ rB1) � 1 − n e−cnr
2
.

(Actually, they established this inequality for all �p-balls with 1 � p � 2.) Afterwards, Schecht-
man [4] removed the unnecessary factor n. In both cases, the proof is essentially based on
Talagrand’s isoperimetric theorem for the product exponential measure [5]. Although this deep
theorem is now standard and there are several different approaches to it (cf. [6, 7]), we present
a direct inductive proof of the concentration inequality (1.6).

2. Reduction to the Simplex

Given a permutation π of {1, . . . , n}, introduce

Ω(π) =
{
x ∈ [0, 1]n : 0 � xπ(1) � . . . � xπ(n) � 1

}
.

Let Ωn correspond to the identity permutation π(i) = i. We thus obtain a modulo 0 partition
of the cube into n! subsets. In particular, for any measurable set A in [0, 1]n

P(A) =
1
n!

∑

π

Pπ(A) (2.1)

and

P(A+ rB∞) =
1
n!

∑

π

Pπ(A+ rB∞),
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where Pπ denotes the uniform distribution on Ωπ. If A is symmetric under permutations of
coordinates, the terms in each sum coincide, so

P(A) = Pn(A), P(A+ rB∞) = Pn(A+ rB∞),

where Pn temporarily stands for the uniform distribution on Ωn.
Similarly to (2.1), given a (measurable, bounded) function f on [0, 1]n, we have

∫
f dP =

1
n!

∑

π

∫
f dPπ.

If f is invariant under permutations of coordinates, the P-distribution of f coincides with its
Pn-distribution, and the same can be said about ‖∇f‖ with respect to any permutation invariant
norm on Rn.

Now, let us consider the measure Pn. Its supporting set Ωn may be identified with the
simplex

∆n = {y ∈ Rn
+ : y1 + · · · + yn � 1}

via the map
T : x→ y = (x1, x1 − x2, . . . , xn − xn−1).

This map pushes forward Pn into the uniform measure µn on ∆n. Hence for any measurable
set A ⊂ Rn we have

Pn(A) = µn(T (A))

and, in view of the linearity of T ,

Pn(A+ rB∞) = µn(T (A) + rT (B∞)).

Note that T (B∞) contains the �1-ball B1: starting with a point y = (y1, . . . , yn) such that
|y1|+ · · ·+ |yn| � 1, the point T−1(y) has coordinates (y1, y1 +y2, . . . , y1 + · · ·+yn), so it belongs
to B∞. Consequently,

Pn(A+ rB∞) � µn(T (A) + rB1).

By the same reasons, starting with a locally Lipschitz function f on Ωn, the function y →
f(T−1(y)) = f(y1, y1 + y2, . . . , y1 + · · · + yn) is defined on ∆n and satisfies

‖∇f(T−1(y))‖∞ � ‖(∇f)(T−1)‖1.

This can be summarized in the following.

Lemma 2.1. Given numbers p ∈ (0, 1), r > 0 and a function R on [p, 1], any concentration
property on the simplex of the form

µn(A+ rB1) � R(µn(A)),

holding for all measurable sets A ⊂ ∆n with µn(A) � p, implies a similar property on the cube

P(A + rB∞) � R(P(A))

in the class of all measurable sets A ⊂ [0, 1]n, symmetric under permutations of coordinates and
such that P(A) � p.

Let us also state a functional form of Lemma 2.1.
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Lemma 2.2. Let α = α(r) be defined on (0,+∞). Assume that for every function f on ∆n

such that |f(x) − f(y) � ‖x− y‖1, whenever x, y ∈ ∆n, we have

µn

{∣
∣∣
∣f −

∫
f dµn

∣
∣∣
∣ � r

}
� α(r), r > 0.

Then, for every function f on [0, 1]n, invariant under permutations of coordinates and such that

|f(x) − f(y) � ‖x− y‖∞,
whenever x, y ∈ [0, 1]n, we have

P
{∣∣

∣∣f −
∫
f dP

∣∣
∣∣ � r

}
� α(r), h > 0.

Remark 2.3. As the above discussion shows, instead of the permutation symmetry in the
conclusions in Lemma 2.2 and therefore in Theorem 1.2, it suffices to require that Pπ-means of
f on Ωπ are equal to each other. Similarly, in Lemma 2.1 and Theorem 1.1 one may only require
that intersections A ∩ Ωπ have equal volumes.

3. Distribution of the Last Coordinate

Thus, Lemmas 2.1 and 2.2 reduce the study of distributions of permutation invariant func-
tionals on the cube to the study of distributions of general functionals on the probability space
(∆n, µn). As the first step, it is useful to look at the last coordinate

ηn(x) = xn, x = (x1, . . . , xn),

and see how it is concentrated around its µn-mean. Denote by Fn the distribution function of
ηn. It should be clear that

Fn(t) = 1 − (1 − t)n, 0 � t � 1,

and, by a direct computation,

Eηn =
1

n+ 1
, Var(ηn) =

n

(n+ 1)2(n+ 2)
.

The variance is of order
1
n2

. We will need a refinement of this property in terms of the tails of
Lipschitz functions of ηn.

Lemma 3.1. For any function g : (0, 1) → R with ‖g‖Lip � σ and Eg(ηn) = 0

Eeλg(ηn) � e4λ
2σ2/n2

, for |λ|σ � n

2
. (3.1)

Proof. By the homogeneity of (3.1) with respect to g, we may assume that σ = 1.
First, it is useful to represent the measure Fn as a Lipschitz transform of the canonical

two-sided exponential measure ν on the real line with density

p(t) =
1
2
e−|t|, t ∈ R.

Let

F (t) =

t∫

−∞
p(s) ds
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denote the corresponding distribution function, which has the inverse function F−1 : (0, 1) → R.
It is easy to check that

I(t) ≡ p(F−1(t)) = min{t, 1 − t}, 0 < t < 1.

Similarly, introduce

In(t) ≡ pn(F−1
n (t)) = n(1 − t)(n−1)/n, 0 < t < 1,

where pn = F ′
n is the density of ηn. Consider the increasing map Tn : R → (0, 1), which pushes

forward ν to the measure Fn, i.e., Tn(t) = F−1
n (F (t)). Then T ′

n(F
−1(t)) = I(t)/In(t), so Tn has

a Lipschitz seminorm

‖Tn‖Lip = sup
0<t<1

I(t)
In(t)

=
I(1

2)
In(1

2)
=

21/n

n
.

Hence the superposition h = g(Tn) has a Lipschitz seminorm at most
21/n

n
.

Now, we use the following property of the measure ν (cf. [8]), which is an equivalent
reformulation of the one-dimensional isoperimetric inequality

ν(A+ (−r, r)) � F (F−1(ν(A)) + r), r > 0.

Namely, for any function h : R → R with ‖h‖Lip � b, there is a nondecreasing function
h̃ : R → R, which has the same distribution under ν as h and such that

‖h̃‖Lip � b.

On the other hand (cf. [9, Lemma 2]), given λ ∈ R and a random variable η with finite first
moment, the quantity

E exp{λ(h(η) − Eh(η))}
is well defined for all nondecreasing h : R → R with ‖h‖Lip � b and is maximized in this class
at the linear function h(t) = bt. Assume that η is distributed according to ν, so that we may
put

ηn = Tn(η).

Applying this extremal property to the function h̃, which corresponds to h = g(Tn) and has a

Lipschitz seminorm at most
21/n

n
, we conclude that, whenever |λ| < n/21/n,

E eλg(ηn) = E eλh̃(η) � E e2
1/nλη/n =

1

1 − (21/nλ
n )2

.

One can now apply a simple bound
1

1 − s
� e2s,

holding in 0 � s � 1
2 , which implies

E eλg(ηn) � e2
1+2/n λ2/n2

,

provided that
(21/nλ

n

)2
� 1

2
,

i.e.,
|λ| � n 2−( 1

2
+ 1

n
).
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If n � 2, this range covers the interval |λ| � n/2, and we obtain (3.1).

Remark 3.2. The statement of Lemma 3.1 can be sharpened for n = 1. In this case, the
random variable η1 is uniformly distributed on (0,1), and, by a similar argument, for all λ ∈ R

Eeλg(η1) � Eeλσ(η1− 1
2
) =

sh(λσ/2)
λσ/2

� eλ
2σ2/8.

The next observation, obtained by a direct application of the Fubini theorem, shows how
the measure Fn is related to the uniform distribution µn on the simplex ∆n.

Lemma 3.3. Let ξn denote a random vector in Rn distributed according to µn. Then for
all n � 2 the random vectors

((1 − ηn)ξn−1, ηn) and ξn

are equidistributed provided that ξn−1 and ηn are independent.

4. Deviations of Lipschitz Functions on the Simplex

Now, we are prepared to study the deviation problem on the simplex and prove a functional
variant of Theorem 1.3. Recall that ∆n = {x ∈ Rn

+ : x1 + · · · + xn � 1} is equipped with the
uniform measure µn.

Theorem 4.1. For every function f on ∆n such that

|f(x) − f(y)| � ‖x− y‖1,

whenever x, y ∈ ∆n, we have

µn

{∣∣
∣∣f −

∫
f dµn

∣∣
∣∣ � r

}
� 2 e−cnr

2
, r > 0. (4.1)

where c > 0 is a numerical constant.

One may take c = 1/144, for example.
This inequality may equivalently be rewritten in terms of the Orlicz norm ‖ · ‖ψ2 generated

by the Young function ψ2(t) = et
2 − 1 as

∥
∥∥
∥f −

∫
f dµn

∥
∥∥
∥
ψ2

� C√
n

with some numerical constant C. In particular, the µn-variances of such functions are bounded
by C2/n (for some different constant).

Proof of Theorem 4.1. One may assume that f is smooth and is such that

max
1�i�n

∣
∣∣
∣
∂f(x)
∂xi

∣
∣∣
∣ � σ (4.2)

throughout the interior int (∆n) of the simplex (where σ is a positive parameter). Using induc-
tion on n, we verify under (4.2) the hypothesis

E eλf(ξn) � exp{λEf(ξn) + cnλ
2σ2} for |λ|σ � λn, (4.3)
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for suitably chosen sequences cn and λn, where ξn is a random vector in Rn with distribution
µn.

According to Remark 3.2, one may take c1 = 1/8, which fits any λ1 > 0.

Induction step. Let n � 2. We associate with f(x), x = (x1, . . . , xn−1, xn) ∈ ∆n, the
functions

g(u, t) = f((1 − t)u, t), h(u) =

1∫

0

g(u, t) dFn(t) = Eg(u, ηn),

where u = (u1, . . . , un−1) ∈ ∆n−1, 0 < t < 1, and where a random variable ηn has the distribu-
tion Fn, as in the previous section. Then for each i = 1, . . . , n− 1

∂g(u, t)
∂ui

= (1 − t)
∂f((1 − t)u, t)

∂xi

which, by (4.2), does not exceed σ(1 − t) in absolute value. Hence
∣
∣∣
∣
∂h(u)
∂ui

∣
∣∣
∣ � σ

1∫

0

(1 − t) dFn(t) = σ
n

n+ 1
. (4.4)

In addition,
∂g(u, t)
∂t

= −
n−1∑

i=1

∂f((1 − t)u, t)
∂xi

ui +
∂f((1 − t)u, t)

∂xn
,

so again by (4.2),
∣∣
∣∣
∂g(u, t)
∂t

∣∣
∣∣ � σ

( n−1∑

i=1

ui + 1
)

� 2σ.

Hence, by Lemma 3.1 applied to the function t → g(u, t) with 2σ in place of the Lipschitz
seminorm, for all u ∈ ∆n−1

E eλg(u,ηn) � exp{λEg(u, ηn) + 16λ2σ2/n2} = eλh(u) e16λ
2σ2/n2

, |λ|σ � n

4
. (4.5)

According to (4.4), with respect to the �1-distance on ∆n−1 the function h has a Lipschitz
constant, bounded by σ n

n+1 . Hence, by the induction hypothesis (4.3) for the dimension n− 1,

E eλh(ξn−1) � exp{λEh(ξn−1) + cn−1(
n

n+ 1
)2λ2σ2} for |λ|σ � n+ 1

n
λn−1, (4.6)

where ξn−1 has distribution µn−1 (ξn−1 is supposed to be independent of ηn). Inserting u = ξn−1

in (4.5), integrating over µn−1, and applying (4.6), we arrive at

E eλg(ξn−1,ηn) � exp{λEh(ξn−1)} e
[
cn−1(

n
n+1

)2+ 16
n2

]
λ2σ2

, (4.7)

which holds for all λ such that

|λ|σ � min
{
n

4
,
n+ 1
n

λn−1

}
. (4.8)

But by Lemma 3.3, the random variables f(ξn) and g(ξn−1, ηn) are equidistributed. In
addition,

Eh(ξn−1) = Eg(ξn−1, ηn) = Ef(ξn).
Therefore, (4.7) and (4.8) imply the desired statement (4.3) for dimension n provided that

cn � cn−1

(
n

n+ 1

)2

+
16
n2
, λn � min

{
n

4
,
n+ 1
n

λn−1

}
.
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For the second inequality we may take λn = α(n + 1) with a constant satisfying

α(n + 1) � n

4
.

Since n � 2, the optimal choice is α = 1/6.
In terms of dn = (n + 1) cn, the first inequality may be rewritten as

dn �
(

1 − 1
n+ 1

)
dn−1 +

16 (n + 1)
n2

.

Hence to prove that the optimal value of dn is bounded by a constant d (which can be performed

by induction on n), it suffices to bound by d the quantity
16 (n + 1)2

n2
. The worst situation

corresponds to n = 2, which yields d = 36. Therefore, one may take cn = 36
n+1 .

Restricting ourselves to the case σ = 1 and Ef(ξn) = 0, we thus proved the following: If

max
1�i�n

∣
∣∣
∣
∂f(x)
∂xi

∣
∣∣
∣ � 1 (4.9)

in the interior int (∆n), then
Eeλf(ξn) � e36 λ

2/(n+1) (4.10)

as soon as

|λ| � n+ 1
6

.

But this range of λ is large enough in order to extend (4.10) to all λ on the real line. Indeed, for
some point x0 ∈ ∆n necessarily f(x0) = 0 (since f has mean zero). Since |f(x)−f(y)| � ‖x−y‖1,
the function f must take values in [−1, 1], so one always has

∫
eλf dµn � e|λ| � e36 λ

2/(n+1),

where the second inequality is valid for |λ| � n+1
36 . This allows one to cover the remaining values

of λ in (4.10).
Finally, starting with (4.10) and applying the Chebyshev inequality, we get for any r > 0

Prob {f(ξn) � r} � e−(n+1) r2/144, (4.11)

and, combining it with a similar inequality for the function −f ,

Prob {|f(ξn)| � r} � 2 e−(n+1) r2/144.

The latter yields the inequality (4.1) with c = 1/144.
At this step, the condition (4.9) may slightly be relaxed to the Lipschitz condition

|f(x) − f(y)| � ‖x− y‖1 (x, y ∈ ∆n).

Theorem 4.1 is proved. �

5. Gaussian Concentration on the Simplex

The transition from functional inequalities, such as (4.1) in Theorem 4.1, to concentration
inequalities, such as (1.6) in Theorem 1.3, is standard. Let us recall the argument. In fact, it is
better to start with the one-sided estimate (4.11), which we write here as

µn

{
f −

∫
f dµn � r

}
� e−cnr

2
, r > 0. (5.1)
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It holds with c = 1/144 for any function f on ∆n such that |f(x)− f(y)| � ‖x− y‖1, whenever
x, y ∈ ∆n.

First, let us remind one general observation. Given a random variable ξ � 0 with a median
at zero, i.e., such that

Prob {ξ > 0} � 1
2
,

we have
Eξ �

√
Var(ξ). (5.2)

Indeed, putting F = {ξ > 0}, we get, by the Cauchy inequality,

(Eξ)2 = (E ξ 1F )2 � Eξ2 Prob (F ) � 1
2

Eξ2,

which is the same as (5.2).
Now, as was already mentioned, the inequality (4.1) implies that, up to some numerical

constant C > 0,

Varµn(f) � C2

n
, (5.3)

where Varµn denotes variance with respect to the measure µn. In particular, this may be applied
to the distance functions

fA(x) = dist(A,x) = inf
y∈A

‖x− y‖1, x ∈ ∆n,

associated with nonempty subsets A of ∆n. If, in addition,

µn(A) � 1
2
,

we may combine (5.2) and (5.3) to obtain

EµnfA =
∫
fA(x) dµn(x) � C√

n
.

Finally, for any

r � 2C√
n

we have

µn{fA � r} � µn

{
fA − EµnfA � r − C√

n

}
� µn

{
fA − EµnfA � r

2

}
� e−cnr

2/4.

where we applied (5.1) at the last step. The obtained inequality continues to hold for

0 < r <
2C√
n

with a smaller constant c (if needed) since

e−cnr
2/4 � 1

2
� µn{fA � r}.

It remains to note that {fA � r} represents the complement to the set A+ rB1 in ∆n, i.e., we
arrived at the concentration inequality of the form

1 − µn(A+ rB1) � e−cnr
2
, r > 0. (5.4)

Remark 5.1. Let us also mention an isoperimetric result of Sodin [10], which provides us
with a similar concentration inequality with respect to the Euclidean distance:

1 − µn(A+ rB2) � e−cnr, r > 0. (5.5)
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Using B2 ⊂ √
nB1 and making the change of variable, one obtains on the basis of (5.5) an

exponential bound
1 − µn(A+ rB1) � e−c

√
nr,

which is however weaker than (5.4).

Acknowledgement. The work is partially supported by the NSF grant.

References

1. B. S. Cirel’son, I. A. Ibragimov, V. N. Sudakov, “Norms of Gaussian sample functions,” In:
Proceedings of the Third Japan-USSR Symposium on Probability Theory (Tashkent, 1975),
pp. 20–41. Lect. Notes Math. 550, Springer, Berlin (1976).

2. M. Ledoux, The Concentration of Measure Phenomenon Am. Math. Soc., Providence, RI
(2001).

3. J. Arias-de-Reyna, R. Villa, “The uniform concentration of measure phenomenon in �np
(1 � p � 2),” In: Geometric Aspects of Functional Analysis, pp. 13–18. Lect. Notes Math.
1745, Springer, Berlin (2000).

4. G. Schechtman, “An editorial comment on the preceding paper: “The uniform concentra-
tion of measure phenomenon in �np (1 � p � 2)” by J. Arias-de-Reyna and R. Villa,” In:
Geometric Aspects of Functional Analysis, pp. 19–20. Lect. Notes Math. 1745, Springer,
Berlin (2000).

5. M. Talagrand, “A new isoperimetric inequality and the concentration of measure phenom-
enon” In: Geometric Aspects of Functional Analysis (1989–90), pp. 94–124. Lect. Notes
Math. 1469, Springer, Berlin (1991).

6. B. Maurey, “Some deviation inequalities,” Geom. Funct. Anal. 1, No. 2, 188–197 (1991).
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