
Journal of Mathematical Sciences, Vol. 166, No. 3, 2010

PERTURBATIONS IN THE GAUSSIAN ISOPERIMETRIC
INEQUALITY

S. G. Bobkov
University of Minnesota
127 Vincent Hall, Minneapolis, MN, 55455, USA
bobko001@umn.edu UDC 517.9

An isoperimetric inequality of Gaussian type is derived for the class of probability mea-
sures on the Euclidean space, having perturbed log-concave densities with respect to the
standard Gaussian measure. Bibliography: 23 titles.

1. Introduction

Let γn denote the standard Gaussian measure on the Euclidean space Rn with density
dγn(x)
dx

=
1

(2π)n/2
e−|x|2/2, x ∈ Rn.

The Gaussian isoperimetric inequality states that, for any measurable set A ⊂ Rn and any
h > 0,

γn(Ah) � Φ
(
Φ−1(γn(A)) + h

)
, (1.1)

where
Ah = {x ∈ Rn : ∃y ∈ A, |x− y| < h}

denotes an open h-neighborhood of A (for the Euclidean distance). Hereinafter, we use the
standard notation

ϕ(x) =
1√
2π

e−x2/2, Φ(x) =

x∫

−∞
ϕ(y) dy (−∞ � x � +∞),

for the marginal density and the marginal distribution function of γn with the inverse function
Φ−1 : [0, 1] → [−∞,+∞].

In other words, among all subsets A of Rn with a fixed measure t = γn(A), the value γn(Ah)
attains minimum for half-spaces of measure t.

Letting h → 0 in (1.1), in the limit one arrives at an equivalent isoperimetric inequality,
which may be written as

γ+
n (A) � I(µ(A)), (1.2)

where

γ+
n (A) = lim inf

h→0

γn(Ah) − γn(A)
h
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is the Gaussian perimeter of A, and where

I(t) = ϕ(Φ−1(t)), 0 � t � 1,

is the isoperimetric profile (also called the isoperimetric function or the area minimizing function)
for the measure γn.

The inequality (1.1) was discovered in the mid 1970’s independently by Sudakov and Cirel’son
[1], and Borell [2]. It has become of a fundamental importance in the theory of Gaussian random
processes, and it is not surprising that for many years this result continued to attract a lot of
attention. Nowadays several different proofs of (1.1) are known; let us mentioned them.

1. The original proof of [1] and [2] based on the isoperimetric property of balls on the sphere
(a theorem due to P. Lévy and E. Schmidt).

2. The proof based on the Brunn–Minkowski type inequality due to Ehrhard (cf. [3]–[7]).

3. The semigroup proof involving Ornstein–Uhlenbeck operators [8, 9].

4. The proof based on a certain functional form of the isoperimetric inequality on the discrete
cube [10].

5. The proof based on the localization lemma of Lovász–Simonovits [11].

Some of the developed approaches allowed one to involve in (1.1)-(1.2) different non-Gaussian
probability measures. In particular, as was established by Bakry and Ledoux [8], one has a
similar isoperimetric inequality of Gaussian type

µ(Ah) � Φ
(
Φ−1(µ(A)) + h

)
, (1.3)

for any probability measure µ on Rn, which has a log-concave density with respect γn. Equiva-
lently, it is the case where µ has density of the form

dµ(x)
dx

= e−
1
2
|x|2−v(x), x ∈ Ω, (1.4)

with some convex function v : Ω → R, defined on an open convex set Ω in Rn (bounded or
not). A different proof of this result is given in [11]. On the other hand, Caffarelli [12] showed
that any such measure µ represents a contraction (i.e., the image under a Lipschitz map with
Lipschitz constant at most 1) of the measure γn. Hence the inequality (1.3) for µ, having a
log-concave density with respect γn, may also be derived from the purely Gaussian case (1.1).

2. Perturbations

The goal of this paper is to extend the isoperimetric inequality (1.3) to more general probabil-
ity measures, which have perturbed log-concave densities with respect to the standard Gaussian
measure.

Theorem 2.1. Let µ be a probability measure on an open convex set Ω in Rn with density
(1.4), where v is a continuous function on Ω such that

v∗(x) � v(x) � v∗(x) + c, x ∈ Ω, (2.1)

for some convex function v∗ on Ω and some constant c � 0. Then, for any measurable set
A ⊂ Rn and h > 0,

µ(Ah) � Φ
(
Φ−1(µ(A)) + e−ch

)
. (2.2)
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The statement may be sharpened by considering various functional forms for (2.2). In
particular, we have the following assertion.

Theorem 2.2. Under the assumption of Theorem 1.1, for any smooth function f on Rn

with values in [0, 1],
I(Ef) � E

√
I(f)2 + e2c |∇f |2. (2.3)

Here |∇f | denotes the Euclidean length of the gradient of f , and the expectation

Ef =
∫
f dµ

is understood with respect to the measure µ. By a simple approximation argument, the inequal-
ity (2.3) may be extended to the class of all locally Lipschitz functions f : Rn → [0, 1] with the
generalized modulus of the gradient, defined by

|∇f(x)| = lim sup
y→x

|f(x) − f(y)|
|x− y| , x ∈ Rn. (2.4)

Such functions are differentiable almost everywhere, and for all points x of differentiability of f ,
(2.4) leads to the usual definition

|∇f(x)|2 =
n∑

i=1

|∂f(x)
∂xi

|2.

In view of the elementary bound
√
a2 + b2 � |a| + |b| (a, b ∈ R),

(2.3) yields
I(Ef) −EI(f) � ec E |∇f | (2.5)

in the same class of functions. Moreover, approximating by smooth functions f the indicator
functions 1A of Borel subsets of the Euclidean space, (2.5) turns into the isoperimetric inequality
for µ-perimeter (like (1.2)),

µ+(A) � e−c I(µ(A)). (2.6)
The latter may easily be “integrated” with respect to the parameter h to obtain (2.2) (cf.,
for example, [13, 14] for details). As for the converse implication, it is also simple, so the
inequalities (2.2), (2.5), and (2.6) are equivalent.

However, the functional inequality (2.3) is much more delicate, and we are not sure that it
can be obtained on the basis of (2.2) when dealing with general measures.

The main advantage of the functional form (2.3) over (2.2) is its tensorization property.
Namely (cf. [10]), starting with a probability measure µ on Rn satisfying (2.3) for a given con-
tinuous function I(t) � 0, we obtain automatically a similar inequality (i.e., (2.3) and therefore
(2.2) as a consequence) for all product measures

µN = µ⊗ · · · ⊗ µ

on RnN with the same function I and the same constant ec.
Another advantage of (2.3) is that it contains a number of canonical analytic inequalities.

For example, applying it to functions of the form εf with a bounded smooth f � ε0 > 0 and
ε→ 0, and using the asymptotic

I(t) ∼ t
√

2 log(1/t)
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for small values of t, we get in the limit

Ef log f − Ef log Ef � e2c

2
E

|∇f |2
f

.

By a simple approximation, this inequality extends to arbitrary smooth functions f > 0 on Ω
with finite Ef . Replacing f with f2, we obtain a logarithmic Sobolev inequality in the standard
form

Ef2 log f2 − Ef2 log Ef2 � 2e2c E |∇f |2, (2.7)
which holds in the class of all smooth f on Ω with finite second moment Ef2. (In fact, if the
right-hand side of (2.7) is finite, Ef2 has to be finite, as well.)

Applying (2.7) to f + C with C → +∞, we obtain a Poincaré-type inequality

Ef2 − (Ef)2 � e2c E |∇f |2. (2.8)

It may also be obtained directly from the functional form (2.3) by applying it to functions of the
form t+ εf with an arbitrary fixed t ∈ (0, 1) and ε → 0 (in this derivation, one should use the
fact that the Gaussian isoperimetric function satisfies the differential equation I ′′(t) = −1/I(t)
in 0 < t < 1).

In the Gaussian case µ = γn, we have c = 0, and then both (2.7) and (2.8) are well known
(the logarithmic Sobolev inequality (2.7) is due to Gross [15]). More generally, we have c = 0,
when µ is log-concave with respect to γn, i.e., when it has density

p(x) = e−
1
2
|x|2−v(x)

with convex v [8]. In particular, (2.8) may be rewritten in this case as
1
2

∫
(f(x) − f(y))2 p(x) p(y) dxdy �

∫
|∇f |2 p(x) dx. (2.9)

There is a standard argument, which allows one to get on the basis of (2.9) similar Poincaré-
type inequalities for perturbed probability measures. Namely, assume that ν has density

q(x) = e−
1
2
|x|2−v(x),

where now the function v is not necessarily convex, but satisfies the condition (2.1) of Theorem
2.1. Then

1 �
∫
e−

1
2
|x|2−v∗(x) dx � ec,

so
p(x) = e−

1
2
|x|2−v∗(x)−c∗

represents a density of some probability measure, say µ, for a suitable constant c∗ ∈ [0, c]. It is
clear that

e−c q(x) � p(x) � ec q(x)
for all x, and since p satisfies (2.9), we obtain immediately

e−2c

2

∫
(f(x) − f(y))2 p(x) p(y) dxdy � ec

∫
|∇f |2 p(x) dx.

Equivalently,
Eνf

2 − (Eνf)2 � e3c Eν |∇f |2,
where the expectations are now taken with respect to ν. This is, however, weaker than the
Poincaré-type inequality (2.8).

A similar argument, using linearization of the entropy functional (also leading to a worse
behavior of the constant as a function of the parameter c) may be applied to get an analogue of
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the logarithmic Sobolev inequality (2.7) if we start from the particular case c = 0. However, no
direct argument seems to properly work if we wish to reach the functional inequality (2.3) on the
basis of the same inequality for the class of probability measures, having log-concave densities
with respect to γn.

Therefore, a different approach is needed to prove Theorems 2.1 and 2.2. We discuss sepa-
rately the one-dimensional case in Section 3. Then we describe a general localization principle,
which is needed to reduce Theorem 2.2 to dimension one, and make final steps of the proof (Sec-
tion 4). In Section 5, some elementary computations are performed to illustrate the perturbed
isoperimetric inequality.

3. One-Dimensional Case

In dimension one, Theorem 2.2 is obtained by combining the Gaussian case in (2.3), when
µ = γ1, with the following lemma.

Lemma 3.1. Let µ be a probability measure on an open interval ∆ ⊂ R with density

dµ(x)
dx

= e−|x|2/2−v(x),

where v is a continuous function on ∆ such that

v∗(x) � v(x) � v∗(x) + c, x ∈ ∆, (3.1)

for some convex function v∗ : ∆ → R and a constant c � 0. Then µ represents a contraction of
the Gaussian measure on R with mean zero and variance e2c.

It should be clear that the smallest possible value of c in (3.1) is given by

c = sup
x∈∆

[v(x) − v∗(x)], (3.2)

where v∗ is the convex envelope of v on ∆, i.e.,

v∗(x) = sup{�(x) : � is affine, v � � on ∆}, x ∈ ∆.

By the lemma, there is a map T : R → ∆ with Lipschitz constant ‖T‖Lip � ec, which
transforms the standard Gaussian measure γ1 to the measure µ. We will make use of the one-
dimensional inequality (2.3) in the case µ = γ1 [10]. It gives that, for any locally Lipschitz
u : R → [0, 1],

I

(∫
u dγ1

)
�

∫ √
I(u)2 + |u′|2 dγ1.

Applying this inequality to the function u = f(T ) with f : R → [0, 1] locally Lipschitz, and
using

|u′| � ec |f ′(T )|,
where |u′| and |f ′| may be understood in the generalized sense according to the definition (2.4),
we arrive at

I

(∫
f(T ) dγ1

)
�

∫ √
I(f(T ))2 + e2c |f ′(T )|2 dγ1.

Since the distribution of f(T ) under γ1 coincides with the distribution of f under the measure
µ, we get

I

(∫
f dµ

)
�

∫ √
I(f)2 + e2c |f ′|2 dµ. (3.3)
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This is the desired inequality (2.3) of Theorem 2.2 in dimension one.

Proof of Lemma 3.1. First, let us reformulate the condition (3.1). It is equivalent to the
property that, for each point x0 ∈ ∆, there is an affine function � such that

(a) v(x0) = �(x0),

(b) v(x) � �(x) − c for all x ∈ ∆.

Indeed, assume that, for each point x0 ∈ ∆, there is an affine function � = �x0 with the
properties (a)–(b). Then the function

v∗(x) = sup
x0∈∆

[�x0(x) − c]

is convex and satisfies (3.1).
Conversely, if (3.1) is fulfilled, by the convexity of v∗, for any x0 ∈ ∆ there is a tangent

affine function �∗ to v∗ at this point. Put

� = �∗ + c∗,

where c∗ = v(x0)−v∗(x0). Then � is the required affine function: �(x0) = v(x0) and � � v∗+c �
v + c on ∆.

Now, rewrite the density of µ as

q(x) = ϕ(x) e−v(x)

(where the new v differs from the original one by a summand) and denote by

F (x) = µ((−∞, x]) =

x∫

−∞
q(y) dy

the corresponding distribution function. It is strictly increasing and continuous on the support-
ing interval ∆ = (a, b) of the measure µ. Introduce the converse function F−1 : (0, 1) → ∆ and
put q = 0 outside ∆.

The next argument is similar to the one in [11]. The conclusion of Lemma 3.1 may equiva-
lently be stated as the inequality

q(F−1(t)) � e−cϕ(Φ−1(t)) = e−cI(t) for all t ∈ (0, 1).

In a different manner, given x0 ∈ ∆ and t ∈ (0, 1), if

µ(−∞, x0) � t. µ(x0,+∞) � 1 − t, (3.4)

then
q(x0) � e−cI(t). (3.5)

Thus, fix a point x0 ∈ R and a number t ∈ (0, 1). We will establish (3.5) for the larger class
M of all finite positive Borel measures µ on the real line with densities

q(x) = ϕ(x)e−v(x),

where v : R → (−∞,+∞] is an arbitrary function such that

∆ = {x ∈ R : v(x) < +∞}
represents an open interval, where v is continuous and satisfies the conditions (3.1) and (3.4).
Note that necessarily x0 ∈ ∆.
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We want to minimize the quantity q(x0) as a functional on M , i.e., to find or estimate from
below

κ = inf
µ∈M

q(x0).

Introduce the subclass M0 ⊂M of all finite positive measures µ on the real line with densities

q(x) = ϕ(x) e−�(x),

where � is affine, and also put
κ0 = inf

µ∈M0

q(x0).

Now, take µ in M with its own q, v, and ∆, and assume that (3.1) is fulfilled on the interval
∆. Hence there is an affine function � with properties (a)–(b). Consider the measure µ on the
real line with density

q(x) = ϕ(x) e−(�(x)−c).

By property (b),
q(x) � q(x) for all x ∈ R,

and therefore, µ satisfies (3.4), so µ ∈M0. By property (a),

q(x0) = ecq(x0).

It follows that
κ � e−c

κ0.

Thus, to prove (3.5) and therefore the lemma, it remains to show that κ0 � I(t).
For any measure µ ∈M0, its density may be written as

q(x) = Aϕ(x)eλx = Aeλ
2/2ϕ(x− λ)

with some constants A > 0 and λ ∈ R. Since
x0∫

−∞
ϕ(x)eλx dx = eλ

2/2Φ(x0 − λ),

+∞∫

x0

ϕ(x)eλx dx = eλ
2/2(1 − Φ(x0 − λ)),

the condition (3.4) turns into

Aeλ
2/2Φ(x0 − λ) � t, Aeλ

2/2(1 − Φ(x0 − λ)) � 1 − t,

under which we need to show that

q(x0) = Aeλ
2/2ϕ(x0 − λ) � I(t).

Equivalently, replacing B = Aeλ
2/2, y = x0 − λ, we need to see that

B Φ(y) � t, B (1 − Φ(y)) � 1 − t =⇒ Bϕ(y) � I(t).

This is the same as the inequality

max
{
t
ϕ(y)
Φ(y)

, (1 − t)
ϕ(y)

1 − Φ(y)

}
� I(t) for all y ∈ R. (3.6)

Note that the function Φ(y) is log-concave, which follows, for example, from the log-concavity
of the measure γ1. Hence

(log Φ(y))′ =
ϕ(y)
Φ(y)
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is a non-increasing function and attains its minimum in the interval y � y0 = Φ−1(t) at the
endpoint y0. Thus,

t
ϕ(y)
Φ(y)

� t
ϕ(y0)
Φ(y0)

= I(t), y � y0.

This proves (3.6) for all y � y0. Since the function 1 − Φ(y) is log-concave, as well, a similar
argument applies to the interval y � y0. Lemma 3.1 is proved. �

4. Localization. Proof of Theorem 2.2

Reduction of Theorem 2.2 to dimension one uses the localization lemma of Lovász and
Simonovits [16] (cf. also [17, 18] for further developments of the method itself). More precisely,
we need a little modified version of the localization lemma, given in [19, Corollary 2.4].

Lemma 4.1. Let R and S be continuous functions on a bounded open convex set Ω in Rn,
integrable with respect to the Lebesgue measure and such that

∫
R(x) dx = 0,

∫
S(x) dx > 0. (4.1)

Then one can find vectors a, b ∈ Ω and a log-concave function ψ on [0, 1] such that
1∫

0

R(ta+ (1 − t)b)ψ(t) dt = 0,

1∫

0

S(ta+ (1 − t)b)ψ(t) dt > 0. (4.2)

Moreover, ψ can be chosen to be of the form

ψ(t) = �(t)n−1

for some nonnegative affine function � on [0, 1].

In [19], this statement is formulated under the assumption that S is lower semi-continuous
and bounded. However, the argument leading to the proof shows that we may get rid of the
boundedness of S at the expense of the continuity (since the inequalities (2.2) in [19, p. 546]
remain valid for a smaller open convex subset Ω′ of Ω with closure in Ω, and then S will be
bounded on Ω′).

Now, let µ be an absolutely continuous probability measure on an open convex set Ω ⊂ Rn

with density
p = e−|x|2/2−v(x), x ∈ Ω.

Assume that v is continuous on Ω. Given vectors w, θ ∈ Rn, |θ| = 1, and a compactly supported
log-concave function ψ on R, let us call the one-dimensional density

q(s) =
1
Z
p(w + sθ)ψ(s), s ∈ R, (4.3)

a generalized conditional distribution of µ, where Z is a normalizing factor, so that
∫
q(s) ds = 1

(and where we may also assume that w + sθ ∈ Ω for all s from the compact support of ψ).

Lemma 4.2. Assume that every generalized conditional distribution of µ represents a con-
traction of the Gaussian measure on the real line with mean zero and variance σ2. Then for any
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locally Lipschitz function f on Rn with values in [0, 1]

I(Ef) � E
√
I(f)2 + σ2 |∇f |2. (4.4)

The expectations are understood with respect to the measure µ.

Proof. First let us note that Ω may be assumed to be bounded. Otherwise, apply the
inequality (4.4) to the normalized restrictions µn of µ to Ωn = Ω∩B(0, n) and let n→ ∞. Then
if (4.4) holds for µn, in the limit it will hold for µ, as well. Here, we used the property that every
generalized conditional distribution of µn represents a generalized conditional distribution of µ.

Thus, assume that Ω is bounded. It is enough to derive (4.4) for the class of continuously
differentiable functions f : Rn → [0, 1] with bounded partial derivatives. Let us formulate (4.4)
in a different manner: For any α ∈ (0, 1) and any f

if Ef = α, then I(α) � E
√
I(f)2 + σ2 |∇f |2.

Fix a number α ∈ (0, 1) and (in order to get a contradiction) assume that the above impli-
cation does not hold, i.e.,

Ef = α, I(α) > E
√
I(f)2 + σ2 |∇f |2.

Equivalently,
E (f − α) = 0, E

[
I(α) −

√
I(f)2 + σ2 |∇f |2

]
> 0,

so that (4.1) is fulfilled for

R(x) = (f(x) − α) p(x),

S(x) =
[
I(α) −

√
I(f(x))2 + σ2 |∇f(x)|2

]
p(x).

Both functions are continuous on Ω. Hence, by Lemma 4.1, the inequality (4.2) is fulfilled for
some vectors a, b ∈ Ω and a log-concave function ψ on [0, 1].

The case a = b in (4.2) is impossible since it would lead to R(a) = 0, S(a) > 0, i.e.,

f(a) − α = 0, I(α) −
√
I(f(a))2 + σ2 |∇f(a)|2 > 0,

which is the same as √
I(α)2 + σ2 |∇f(a)|2 < I(α).

Thus, necessarily a 
= b. Put

θ =
a− b

|a− b| , w = b

and make the change of the variable s = |a− b|t in order to rewrite (4.2) as
|a−b|∫

0

R(w + sθ) ψ̃(s) ds = 0,

|a−b|∫

0

S(w + sθ) ψ̃(s) ds > 0,

(4.5)

where
ψ̃(s) = ψ(

s

|a− b|).
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Note that this function is supported and is log-concave on the interval ∆ = (0, |a−b|). Moreover,
in terms of the probability measure ν on ∆ with density q(s) defined in (4.3) for the function
ψ̃, (4.5) takes the form ∫

(f(w + sθ)− α) dν(s) = 0, (4.6)

∫ [
I(α) −

√
I(f(w + sθ))2 + σ2 |∇f(w + sθ)|2

]
dν(s) > 0. (4.7)

Now, the function g(s) = f(w + sθ) is differentiable on the real line and has derivative

g′(s) = 〈∇f(w + sθ), θ〉 ,
so

|g′(s)| � |∇f(w + sθ)|.
Hence (4.6) and (4.7) imply

∫
(g − α) dν = 0,

∫ [
I(α) −

√
I(g)2 + σ2 |g′|2

]
dν > 0,

and all together

I

(∫
g dν

)
>

∫ √
I(g)2 + σ2 |g′|2 dν. (4.8)

But this contradicts to the assumption that ν represents a contraction of the Gaussian measure
on the real line with mean zero and variance σ2 = e2c. Indeed, for such measures according to
Lemma 3.1 we have the inequality (3.3), i.e., (4.8) with the opposite sign. Lemma 4.2 is proved.

Proof of Theorem 2.2. Let

p(x) = e−|x|2/2−v(x), x ∈ Ω,

be the density of µ. Any generalized conditional distribution of µ has density the form

q(s) =
1
Z
p(w + sθ)ψ(s)

=
1
Z

exp
{
− s2

2
− 〈w, θ〉 s− |w|2

2
− v(w + sθ)− V (s)

}
, s ∈ R,

where ψ(s) = e−V (s) with convex V : R → (−∞,+∞]. One may restrict this density to the
open interval ∆ on the real line, where V is finite and w + sθ ∈ Ω. Hence

q(s) = e−
1
2

s2−v(s), where v(s) = v(w + sθ) + V (s), (4.9)

with a (finite) convex function V on ∆.
Now, by the basic assumption (2.1), for all s ∈ ∆

v∗(w + sθ) + V (s) � v(w + sθ) + V (s) � v∗(w + sθ) + V (s) + c.

It means that the condition (3.1) of Lemma 3.1 is fulfilled for the function v. Hence, by Lemma
3.1, the measure with density q represents a contraction of the Gaussian measure on the real
line with mean zero and variance e2c.

It remains to apply Lemma 4.2 with σ2 = e2c.
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5. Examples and Remarks

As the above proof shows, Theorem 2.2 may be stated under a slightly weaker assumption
on the function v. It might be reasonable to use the following definition.

Definition. Let us say that a function v : Rn → (−∞,+∞] is c-quasiconvex (c � 0) if
Ω = {x : v(x) < +∞} represents an open convex set in Rn and for each point x0 ∈ Ω and a line
L, passing through x0, there is an affine function � such that

(a) v(x0) = �(x0),

(b) v(x) � �(x) − c for all x ∈ Ω ∩ L.

One may also say that v is c-quasiconvex on Ω.

In dimension one, this definition is equivalent to the property (3.1). Hence v is c-quasiconvex
on Ω ⊂ Rn, if and only if, for any line L such that Ω ∩ L 
= ∅,

(vL)∗ � v � (vL)∗ + c on Ω ∩ L,
where (vL)∗ is the convex envelope on L of the restriction v|L to the interval ∆ = Ω ∩ L.

In particular, the optimal value of c, for which v is c-quasiconvex, satisfies

c � sup
x

[v(x) − v∗(x)],

where v∗ is the convex envelope of v on Ω. In dimension one, we have equality, but it is not
clear whether it is also true for n � 2.

Anyway, the inequality (2.3) remains valid as long as v is c-quasiconvex on Ω. Moreover,
Theorem 2.2 may formally be generalized by comparing µ with non-standard Gaussian measures
like in the following.

Theorem 5.1. Let µ be a probability measure on Rn with density
dµ(x)
dx

= e−|x|2/2σ2−v(x), (5.1)

where σ > 0 is a parameter and v is a c-quasiconvex function on Rn (c � 0). Then for any
locally Lipschitz function f on Rn with values in [0, 1]

I

(∫
f dµ

)
�

∫ √
I(f)2 + C2|∇f |2 dµ, C = σec. (5.2)

Let us mention a few examples, where one can easily compute the optimal value of c on the
basis of the one-dimensional formula (3.2).

1. Assume that a continuous function v is convex on the half-axis (−∞, x1] and is convex
on the half-axis [x2,+∞) for some x1 < x2. Let � be the affine function whose graph passes
through the points (x1, v(x1)), (x2, v(x2)). Assume that the graph of v lies above the graph of
� on the interval [x1, x2]. Then v is c-quasiconvex, where

c = max
x1�x�x2

[v(x) − �(x)].

2. If, in addition, the function v is even on the real line and concave on the interval [−x2, x2],
then c = v(0) − v(x2).
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3. For example, for the polynomial

v(x) = Ax4 +Bx2

with A > 0 we have c = 0 if B � 0. In the other case,

v′′(x) = 12Ax2 + 2B = 0 ⇔ x1,2 = ±
√

−B
6A

,

so c =
5B2

36A
.

4. More generally, consider an arbitrary polynomial of degree 4,

v(x) = Ax4 +Bx3 + Cx2 +Dx+ E with A > 0.

The affine part Dx+E has no influence on c. To reduce computations to the previous example,
note that after a proper shifting we have

v

(
x− B

4A

)
= Ax4 +

(
C − 3B2

8A

)
x2 + affine part.

Hence

c = 0 if C � 3B2

8A
,

in which case v is convex, and

c =
5 (C − 3B2

8A )2

36A
if C � 3B2

8A
.

5. Given parameters p > 2 and σ > 0, consider the function

v(x) =
1
p
|x|p − 1

2σ2
|x|2.

It is easy to see in this case,

c =
p− 2
2p

σ
− 2p

p−2 . (5.3)

Formula (5.3) continues to hold for a similar function v on Rn (for the Euclidean norm | · |).
It may be used to derive an inequality of the form

I

(∫
f dµp

)
�

∫ √
I(f)2 + C2

p |∇f |2 dµp (5.4)

for the spherically invariant probability measure µp on Rn with density

dµp(x)
dx

=
1
Z
e−

1
p
|x|p, x ∈ Rn,

where Z is a normalizing constant (which depends both on p and n). Put σ = 1 and represent

the density of µp in the form (5.1), in which case c =
p− 2
2p

, according to (5.3). In view of (5.2),

we then have the following assertion.

Corollary 5.2. For any locally Lipschitz function f : Rn → [0, 1] the inequality (5.4) holds
for the measure µp, p � 2, with constant

C2
p = exp{p− 2

p
}.
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Note that C2 = 1, which corresponds to the Gaussian case µ2 = γn, and Cp � e for all p � 2.
An inequality similar to (5.4) may also be obtained by noting that µp represents a transform of γn

under a map having a finite Lipschitz constant. This route involves some routine computations
or estimation of the Lipschitz constant, while the approach based on the perturbations (Theorem
2.2) seems to be much simpler.

In the case 1 � p < 2, which was studied by many authors, the inequality (5.4) is no longer
true for the Gaussian isoperimetric function I (cf., for example, [20, 21, 22, 23], where the
isoperimetric problem and related functional inequalities were considered for the measures µp

on the real line and their products µn
p on Rn).

Note also that, in some examples, Theorem 5.1 is more suitable in comparison with Theorem
2.2 due to the flexible parameter σ > 0 (which can be used for the optimization of the constant
C in (5.2)).
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