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Abstract Concentration properties of the general empirical distribution functions
and the rate of convergence of spectral empirical distributions to the semi-circle
law in the case of symmetric high-dimensional random matrices are studied under
Poincaré-type inequalities.
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1 Introduction

Let {&jx}1<j<k<n be a family of independent random variables on some proba-
bility space with mean E&;; = 0 and variance Var(§;;) = 1. Put &;;, = &; for
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1 <k < j <n. Then we have a symmetric n x n random matrix

&n &2 - &
W — 1 | &1 &2 - &y
= ﬁ . . . .

E;;I S}:l2 E;;n

Introduce its (real random) eigenvalues X < ... < X, and define an empirical (spec-
tral) distribution function Fj,(x) = %card{i <n:X; <x} together with the average
marginal distribution function of the spectrum

F(x) = EF,(x) = % ZP{X,- <x}, xeR.
i=1

Under mild moment assumptions on the entries &, and when the dimension 7 is
large, F is known to be close to the distribution function of the standard semi-circle
law G (Wigner’s law, cf. e.g. [29, 30]). Here G has density g(x) = % Vi —x2, -2 <
x < 2. When quantifying asymptotic approximation, one often uses the Kolmogorov
distance

Ap=|F =G| =sup|F(x) — G(x)|.
X
More information about the rate of fluctuations is encoded in the distance

Af=E|F, — G| =Esup|F,(x) — G(x)|.
X

A difficult open problem concerning the Wigner theorem is to determine the rates
at which A, and A’ tend to zero for growing dimension. The only case where the
asymptotic of A, is known (to be of order 1/n) is when the entries have a normal
distribution [20]. This case is special, since here the joint distribution of the spectrum
is known explicitly, and one may apply the technique of orthogonal polynomials. The
general picture is however unclear, and we do not know, for example, whether the be-
havior of A, has a universal character (as in the classical central limit theorem), or
it essentially reflects the underlying distributions of the entries. Nevertheless, under
various moment hypotheses, upper bounds for A, and A’ are known; see for example
[2, 3, 18]. The best known general result in this direction is the estimate A, < C//n
in case of bounded 4-th moments of the entries, and similarly for A*, however, un-
der a slightly stronger moment assumption, cf. [3, 19]. There are also other results,
quantifying in particular the closeness of F;, to G on very small intervals of length of
order (logn)*/n using logarithmic Sobolev inequalities, cf. [16, 17].

Another interesting related problem is the concentration property of spectral em-
pirical distributions and, as part of it, the problem of the rates of the Kolmogorov
distance ||F,, — F||. It represents a special case of a more general scheme, where
one deals with independent or dependent observations X1, ..., X, taken from a law
on R”. The joint distribution of eigenvalues is a natural example, and it motivates
us to study deviations of F), from the mean F under analytical hypotheses, such as
Poincaré or logarithmic Sobolev inequalities.
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Let us recall that a probability measure  on R is said to satisfy a Poincaré-
type or spectral gap inequality with constant o' (¢ > 0) if for any bounded smooth
function g on R? with gradient Vg,

Var(g) 502[ Vel dpu, (L.1)

where Var(g) = [ g2du — ( [gd w)? stands for the variance of g under the mea-
sure u. In this case we write PI(o'2) for short. This and related hypotheses have proved
to be rather useful in the study of various forms of concentration of spectral empirical
distributions, as shown, for example, in the papers by A. Guionnet and O. Zeitouni
[23], S. Chatterjee and A. Bose [14], and K.R. Davidson and S.J. Szarek [15]; cf.
also [8, 25, 26]. A remarkable feature of this approach in the spectral analysis is that
no specific knowledge about the non-explicit mapping from a random matrix to its
spectrum is required, and instead, it suffices to use only general Lipschitz properties,
which are satisfied by this mapping.

In this paper we show that in the matrix model described above, the amount of
concentration of the spectral empirical distribution F;, around its mean F' (a property
which may be expressed, for example, in terms of Stieltjes transforms of F},) is in
a certain sense responsible for the rates of A, and A%. Using this observation, we
prove the following.

Theorem 1.1 If the distributions of & j’s satisfy the Poincaré-type inequality PI(c?)
on the real line, then

A, < Cn?3, (1.2)

where the constant C depends on o only. Moreover,
A < Cn 3 log?(n+ 1. (1.3)

A bound similar to (1.2) is known to hold in the case where &, have a common
distribution with a non-trivial Gaussian component [21]. In the purely Gaussian case,
the right-hand side of (1.3) may be replaced with Clog(n + 1) n=%/3 [31]. In fact, it
follows from results of [8] that this mild improvement may be obtained when the & j;’s
satisfy a logarithmic Sobolev inequality (a hypothesis which is stronger than PI). See
also Remark 7.4 below for comments on the class of probability distributions on the
line satisfying Poincaré-type inequalities.

Although the quantity A, may be related to the concentration property of spec-
tral empirical distributions, we first study deviations of F,, from F in terms of the
Levy distance L(F},, F) and then consider the deviations from G in terms of the
Kolmogorov distance || F,, — G| via A,. This may be done for a general model of
observations X = (X1, ..., X;) whose joint distribution satisfies a Poincaré-type in-
equality. At some step we then arrive at the following.
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Theorem 1.2 Assume the random vector X has a distribution satisfying PI(UnZ)
on R". For any distribution function G with finite Lipschitz semi-norm M = | G||Lip,

2\!/3 14+ A
E|F, - G| < C[||F—G|I + (%”) } log? <2+ (172””1) (1.4)

n

where A, = L max; ; |EX; — EXy|, and where the constant C depends on M only.

On

The Lipschitz semi-norm is defined in the usual way as [G|Lp =
Sup, W, and its finiteness is equivalent to the property that G is absolutely
continuous and has a bounded density g, and then necessarily esssup, g(x) =
|G llLip. Theorem 1.2 will be used by taking for G the standard semi-circle law.

In the matrix situation of Theorem 1.1, we have a,% =202 /n, while A, is of or-
der at most +/n. Hence, Theorem 1.2 allows us to reduce (1.3) to the inequality (1.2).
Moreover, as we will see, the proof of (1.2) itself is essentially based on the concentra-
tion of Stieltjes transforms of F;,, and such a property appeals to using Poincaré-type
inequalities, as well as the bound (1.4) of Theorem 1.2.

In this connection, let us mention a result of S. Chatterjee and A. Bose [14], who
used Fourier transforms to derive from PI(c2) a bound of a similar nature for the

Wigner matrix model E | F, — G| <2|[F — G|| + C(%)/4.

The paper is organized as follows. In Sects. 2, 3 we consider general bounds on
the Lévy and Kolmogorov distances between distribution functions in terms of their
Stieltjes transforms. In Sects. 4, 5 we discuss applications of the Poincaré-type in-
equalities to linear functionals of the empirical measures and specialize them to the
case of Stieltjes transforms. The results thus obtained are applied in Sect. 6 to explore
the concentration property of the empirical measures in terms of the Lévy and Kol-
mogorov distances. In particular, Theorem 1.2 is proved. In Sect. 7 general results
are specialized to the matrix case; in particular, we clarify the relationship between
Theorems 1.2 and 1.1. Inequality (1.2) of Theorem 1.1 is proved under concentration
assumptions in Sect. 8. The proof of a combinatorial Proposition 5.1 for the moments
of Stieltjes transforms is postponed to the Appendix.

2 Bounds on Lévy Distance in Terms of Stieltjes Transform

Given a distribution function F(x), x € R, its Stieltjes transform is defined as the
analytic function in the upper complex half-plane

too
SF(Z)Z/ < dF(x),

oo X—2Z

where z=u +iv,u € R, v=Im(z) > 0.

In this section we derive bounds on the Lévy distance in terms of the Stieltjes
transform. Given distribution functions F and G on the real line, the Lévy distance
L(F, G) between F and G is defined as

L(F,G)=inf(§ >0: F(x —8) =8 < G(x) < F(x +8) + 8, Vx € R}.
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Proposition 2.1 Let F and G be distribution functions. Given v > 0, let an interval
[, B] C R be chosen to satisfy G(a) <vand 1 — G(B) <v. Then

L(F,G) < sup
x€la—2v, B+2v]

+4v 4+ 50v sup Im(Sg (x + iv)).

xeR

/ Im(Sr(2) — S (2)) du

—0o0

Let H denote the distribution function of the standard Cauchy law, and let H,
denote the distribution function of the Cauchy law with parameter v > 0, that is, with
density

dH, (x) _ v

= , eR.
dx 7 (x2 4+ v2) *

hy(x) =

When F has density f, the function u — %Im(S r(u + iv)) represents the convolu-
tion f * h, in the classical sense. In general, for any x € R, with previous notation
z=u + iv we have the relation

1 X +0o0
;/ Im(SF(2)) du 2/ F(x —y)dHy(y),

—00 —0o0

which in the case of two distribution functions yields the identity

X +o0 _ _ _
/ Im(SF(u+iv)—SG(u+iv))du=v/ Fazn=6a=y v a1

—o0 —00 y2 +0?

As for the Lévy distance, it may be related to more accessible quantities. For § > 0
introduce

LI (F,G)=sup[F(x) —G(x+8],  Lj(F,G)=sup[G(x)— F(x +8)],

and define
Ls(F,G) =max{L] (F,G), Ly (F,G)}.

As a result, we obtain a family of metric-like functionals Ls for the space of all
distribution functions on the real line, and one of them Lo(F, G) = sup, |F(x) —
G (x)| represents the (uniform) Kolmogorov distance. The relationship with the Lévy
distance is given by L(F, G) <8 < Ls(F, G) < §. In addition, for all §,8" > 0,

Ls(F,G) <8 = L(F, G) <max{$§, §'}. 2.2)
With these preparations, we are ready to turn to the proof of Proposition 2.1.

Proof of Proposition 2.1. Our task is to show a lower bound of the integral on the
right-hand side of (2.1). Let’s call it /(x). Given a parameter a > 0, which will be
chosen later on, we split / (x) into the two regions |y| < av and |y| > av,

Fix—y)—Gx—y) Fix—y)—G(x—y)
Ip=v 5 5 dy, Li=v 5 5 dy.
lyl<av yetv ly|>av ye+v
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Changing the variable y = v¢ and using monotonicity of the distribution functions,
for the first region we get

F(x — _ _
IO=/ (x—vt) —G(x —vt) dr
[t|<a

241

Z/ F(x—av)—G(x—l—av)d
[t|<a t2+1

t = (F(x —av) —G(x +av)) - -my,
2.3)

where

1 1
=H(—a,a) = — ———dt
v ( ) JT/|;|<al2+1

is the Cauchy measure of the interval (—a, a). Similarly, for the second region we
may write

11=/ F(x—vt)—G(x—vt)dt
|t|>a

241
F(x —vt) — G(x — vt +2av)
= > dt
t|>a = +1
G(x — vt +2av) — G(x — vt
+/ (x —vt+ 2av) (x—v )dt 2.4)
t|>a ~+1
< Logy(F,G) (1 —y)+J, (2.5)

where J denotes the second integral in (2.4). In order to estimate this integral, assume
temporarily that G has a density g. Then extending this integral to the whole real line,

we have
J < / f )y as
x—vi<s<x—vi+2av 1= +1

+00
- nv/ g(x +vt) (H@t) — H(t — 2a)) dt. (2.6)

—00

Now, simple calculus arguments show that

H(#) —H@{ —2a) <C for all ¢ real,
bid

1
2+1)

with constant C =2a (a + /1 + a2 )2. Indeed, by the mean value theorem, we have

H() — H(t —2a) = %, for some point s € (t — 2a, t). Hence, one may take

241 241
C=2asup sup ——— =2asup ———5—-.
1>0 1—2a<s<t $°+ 1 r>2q (t —2a)*+1

By direct differentiation, the last supremum is attained for t = a ++/1 + aZ.
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Using this in (2.6), we obtain

+0oo t
JSCU/ 7g(x+v)dt
o 121

+00 _ +00
= 02/ Mdy:Cv/ —dG().
o Y- tv o (x—=y)*+v
In other words,
J < CvIm(Sg(x +iv)). 2.7

Clearly (by Fatou’s lemma, for example, applied to the functional J), the inequality
(2.7) is stable under weak limits of probability measures on the line. Therefore, it may
be extended to all distribution functions G, regardless of whether they are absolutely
continuous or not.

Now, applying (2.7) in (2.5), we get

It < Lygy(F,G)-2n(1 —y) + CvIm(Sg (x +iv)). (2.8)

In a similar manner,

1 =/ G(x —vt) — G(x — vt — 2av) dr
|t|>a

241

Gx—vt—-2 —F(x —vt
+/ (x—v 2av) (x —vt) dt
|t|>a t=+1

< Logy(F,G)-t(1—y)+J'
with J’ satisfying (2.7), as well. Hence, (2.8) may be replaced with
|| < Lagv(F,G) - (1 —y) + Cv Im(Sg (x +iv)).
Now, combining this with (2.3) and using I (x) = Iop + I} > Iy — |I1], we get

I(x) > (F(x —av) — G(x +av)) -my
— Logy(F,G) - (1 —y) — CvIm(Sg(x + iv)). 2.9)

The next step is to interchange the role of F and G, still keeping the quantity
Im(Sg (x + iv)) on the right. Indeed, the analogue of (2.3) would be

—Ip > (G(x —av) — F(x +av)) -wy.
Using —1(x) = —1y — Iy = —1y — |11|, we get another variant of (2.9),

—I(x) > (G(x —av) — F(x 4+ av)) -y
— Logy(F, G) (1 —y) — Cv Im(Sg(x + iv)).
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Combining both inequalities, we obtain
y max{F(x —av) — G(x + av), G(x —av) — F(x + av)}

1
= (I =y)Low(F,G) + - 17 (x)] + % Im(Sg (x +iv)). (2.10)

By the very definition, the sup of the max in (2.10) over all x equals Ls(F, G)
with § = 2av. However, we do not lose much by restricting that sup to the interval
A =[a —av, B+ av]. Indeed, if x <« — av, by the assumption G(«) < v,

F(x —av)— Gx +av) < F(a —2av) =G(a) + [F(a — 2av) — G(a)]

<v+ sup[F(x —av) — G(x +av)].
XEA

In the case x > B + av, using G(B) > 1 — v, we have F(x —av) — G(x +av) <
1 — G(B) <wv. Hence,

L{(F,G) <v+ sup[F(x —av) — G(x +av)].

xXeA

By a similar argument, Ly (F, G) < v + sup,A[G(x — av) — F(x + av)]. These
two inequalities yield

Ls(F,G) <v+ supmax{F(x —av) — G(x +av), G(x —av) — F(x + av)}.

XEA

Using this bound in (2.10), we arrive at

1 Cv
Y (L2gv(F, G)—v) < (1=y) Logv(F, G)+ = SUPII(X)I+7 supIm(Sg (x +iv)).
XeA b

Therefore, if y > 1/2 (equivalently, when a > 1),

1
Lywo(F.G) < ——— sup [I(x)]
av 72y —1) en

yv Cv ;
Im(S .
+2y—1+n(2y—l) sup m(Sg (x +iv))

Recalling property (2.2), we conclude that

1
L(F,G) Smax{Zav, _ sup [1(x)]
77(2]/ - 1) x€la—av,B+av]

+

yv Cv .
Im(S. . 2.11
2y—1+7r(2y—1) sup m( c(x+zv))} (2.11)

It remains to choose a value for the parameter a or . Note a = tan(%). Taking,
for example, y = % or equivalently, a = +/3, we notice that the term % =2vis
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majorized by 2av < 4v, while % < 1. In addition,

1 —
TCy—D —
C=2a(a+V1+a?) =22V/3+12=4825...

Thus, (2.11) gives

L(F,G) < sup [ (x)| +4v+50v sup Im(Sg(x +iv)),
x€la—2v,B+2v] X

which is the desired statement. O

Contour integration To estimate the Lévy distance L (F, G) with the help of Propo-
sition 2.1, it might be useful, as was noted in [19] for similar aims, to change in the
integral

/ Im(SF(2) — S (2)) du

the contour of integration. Recall that z = u +iv with u € R, v =Im(z) > 0.
Note that the function u — Im(SF(z)) is positive and integrable on the real line,
with fj:j Im(SF(u +iv)) du = . Hence, for all x real,

X X
/ Im(Sg(u+iv))du = Im{ lim / Sr(u+ iv)du}.
00 A—+o00 J_ 4

Thus, we take a large positive A > —x, and for v; > vy > 0, introduce the rectangle
with sides Cy =[—A, x]+ivg, Co = A+i[vg, vi], C3 =[x, —A]+iv,Cs=—A+
i[v1, vol. By Cauchy’s theorem, we have by contour integration

R 4
f (SF(u+ivy) — Sg(u+ivp))du = — Zf (Sr(z) = Sg(2))dz, (2.12)
—A i=2 Y Ci

and the same holds for the imaginary parts of the integrals. It is easy to see that the
integral over Cy4 in (2.12) is vanishing in the limit as A — +oo. The integral over
C3 may be bounded uniformly over all x by fj:; |Sp(u+ivy) — Sg(u +ivy)|du.
Hence, whenever v| > vy > 0, for all x € R,

‘ / Im(SFg(u +ivg) — Sg(u +ivg))du

+o0
Sf [SF(u+iv)) — Sg(u+iv))|du

—00

+ . (2.13)

/vl(Sp(x +iv) — Sg(x +iv))dv
vo

Combined with the bound of Proposition 2.1, (2.13) yields the following.
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Corollary 2.2 Let F and G be arbitrary distribution functions. With some universal
constant ¢ > 0, for all vi > vy > 0,

cL(F,G) <vo+vo supIm(Sg(x +ivp))
xeR

+0o0
+/ 1SF -+ iv1) — S G + ivy)] du

—00

+ sup
x€la—2vg, B+2v0]

/Ul(Sp(x+iv)—Sg(x+iv))dv , (2.14)
vo

where a < B are chosen to satisfy G(a) <vgand 1 —G(B) < vg.

3 Remarks on Kolmogorov Distance

In general, the behavior of the function v — Im(Sg (x 4 iv)) near zero reflects local
smoothness properties of the distribution function G at a given point x. In particular,
it may be related to its concentration function Qg (h) =sup,(G(x + h) — G(x)), or
to, what is more convenient for our purposes,

dg(vg) = sup w, vg > 0.

[x—y|>vo |x — yl
To see this, let us represent the Stieltjes transform of G (or its imaginary part) as

oo

Im(Sg (x + iv)) — 7 G(x) = %/

m (G(x + Ut) - G()C)) dt,

which implies

Im(Sg(x +iv)) < +2f+oo 2 Qe dr

m x+iv T+ - —_— v .

¢ =TT )y a2 <C

If £ denotes a positive random variable with density p(t) = (lfﬁ)z, we obtain from

the definition that

U (vg) = sup sup Im(Sg(x +iv)) <7 +2EE& 55 (vok). (3.1

X v>yg

For example, if G has a finite Lipschitz semi-norm M = ||G||Lip (equivalently,
when G has a density g bounded by the constant M), then both §g and Ug are
bounded functions in vg. More precisely,

+00
Im(Sg (x + iv)) = v/ g M.

- ° 7 <
oo (G —w) + i)
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Note that in this case the Lévy and Kolmogorov distances are equivalent in the sense
that L(F,G) < ||F — G|| < (1 4+ M) L(F, G). Hence, inequality (2.14) of Corol-
lary 2.2 will now take the form

+00
CIF — Gl < v +f 1Sk + iv1) — S (u + ivy)] du
—00
v
+ sup / (Sp(x+iv) —Sg(x +iv))dv (3.2)
x€la—2vg, B+2v0] [

with constant ¢, depending on M only.
We will use this bound in the case where G is the distribution function of the
semi-circle law with density g(x) = G'(x) = % V4 —x2 I{jx<2).

Corollary 3.1 If G is the distribution function of the standard semi-circular law, and
F is any distribution function, we have for all vi > vy > 0, up to some universal
constant ¢ > 0,

c|F =G| <vp+ sup
xe[-2,2]

/UI(SF(x +iv) — Sg(x +iv))dv
vo

+00
—+—/ |Sp(u+ivy) — Sg(u +ivy)|du.

—00

4 Empirical Poincaré Inequalities

Assume that the random variables X1, ..., X, have a joint distribution y on R", sat-
isfying the Poincaré-type inequality (1.1). Given a bounded smooth complex-valued
function f on the real line, one may apply (1.1) to

X))+ -+ fxn)
g(xl,...,xn)zf - f O =/den, 4.1
where F}, is the empirical measure, defined for “observations” X1 = xq, ..., X, = x,.
Since
|f DR+ @)1
IVe(xi,....xp)|* = p L o = f|f’|2an, 4.2)

we obtain an integro-differential inequality, which may be viewed as an empirical
Poincaré-type inequality for the measure u:

Proposition 4.1 Under Pl(c2), for any smooth F-integrable function f : R — C,
such that f' belongs to L*(R, dF),

o ro o

2 2
<Z / \f'2dF. (4.3)
n
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Recall that F = EF,, denotes the mean of the empirical distribution functions un-
der the measure . The inequality holds for all locally Lipschitz functions with the
generalized modulus of the derivative | f'(x)| = lim SUp,_, W As long as
[1f'1>dF is finite, [ | f|dF is finite, and (4.3) holds.

Proposition 4.1 may be extended to all L”-spaces by applying the following gen-
eral property of Poincaré-type inequalities.

Lemma 4.2 Under PI(c?), any Lipschitz function g on R" has a finite exponential
moment. More precisely, if [ gdu =0 and llgliLip < 1, then

ulg >t} <377, t>0. (4.4)
Moreover, for any locally Lipschitz g on R" with p-mean zero,

lgllp <oplVglp, p=2. 4.5)
Here || gllLip = sup,, %‘;@)l with respect to the Euclidean distance in R”, and
the generalized modulus of the gradient is defined by |Vg(x)|
limsup,,_, . W.

For a proof of (4.4), which is known as a variant of the well-known Gromov—
Milman concentration inequality [13, 22], we refer to [11], see also [1] or [25]. As
for (4.5), in a more general scheme of Poincaré-type inequalities with weights, it may
be found in [12]. Applying (4.5) to g = [ f dF, as in (4.1), we obtain the following.

Proposition 4.3 Under Pl(02), for any smooth F-integrable function f : R — C,
forall p>2,

E‘/den—/de

In particular,
E‘/den—/de

5 Moments of Stieltjes Transforms

p/2
5(01’) </|f|dF> . (4.6)

< (‘”’) /|f P dF. @.7)

The inequality (4.6) may be much sharper than (4.7), especially for f’s, which behave
like a delta function. This may be seen by looking at the function f(x) = ﬁ with
complex parameter z = u + iv, where u € R is arbitrary and v > 0 is small. In that

case we deal with the Stieltjes transforms

oo 1 <& 1 oo
s = [ arRm=1 Y s@= dF ()

oo X —Z j:le_z oo X —Z
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of the empirical measures F;,, and their mean F' = EF,, with respect to the measure u

on R”. As discussed above, the closeness of s, to s for small v bears important infor-

mation on the closeness of F;, to F in the sense of the Lévy distance, for example.
Note that the empirical Poincaré-type inequality (4.3) gives

2

Els(2) — 5(2)2 s—/| FAF() = T In(). 5.1)

where we combined the identity

Im(s(z)) = v f dF(x)

lx —z/?
with the bound |x — z| > v. Therefore, if Im(s(z)) happens to be bounded for small
v (which is the case, e.g., when F has a bounded density), then the variance of s, (z)

. . 2
can be estimated by a quantity of order >~
In order to get more information on the fluctuations s,(z) — s(z), a natural step
could be to try to extend (5.1) to L ,-norms

152 (2) = @l = (Elsa(2) —s(2)?)"”

by proving similar bounds of order —=77 as in the case p = 2. Let, for example,

)
p =4. Appealing to (4.7) would then give

40)* 4o
Elsy(z) —s@)[* < (G) /| dF( )_( ) Im(s(z)).

That is, ||s,(z) — s(z)||l4 is bounded by a quantity of order f —="—7, Which is worse
than what we have in the case p = 2. On the other hand, (4.6) gives

2
Els,(z) —s(2)|* < (f x 7 dFy (x)> (5.2
The expectation on the right-hand side may be further estimated by the empirical
Poincaré inequality (4.3) with f(x) = et Using | f'(x)| < 4 g We get

</| an<x>> </| A dFG )) )2f| dF()

1 2 (40)?
< (—31m<s<z))> + =5 Im(s(2).
v nv

Applying this bound in (5.2), we obtain that, up to some numerical constant ¢ > 0,

04 06
cE5,(2) —s@)|* < — Im%(5(2)) + — Im(s(2)). (5.3)
n2yo n3v9

Therefore, ||s,(z) — s(z)]l4 is bounded by a similar quantity of order ﬁ as in the
case p =2, provided that W is of order at most 1.
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By a routine combinatorial argument, the inequality (5.3) may be extended to
higher powers of 2 by means of the following statement.

Proposition 5.1 Under PI(c?), for any integer p =25 (k > 1) and any z = u + iv,
v>0,

p2r
(12)”

ko /g2 \(=3pp >
Elsn(2) =s@)I" = JX_; (W) [Im(s (z))]2" . (54

Details of the proof of Proposition 5.1 are given in the Appendix.
On the basis of (5.4), we derive a bound for the moments ||s,(z) — s(z)||, with
arbitrary real p > 2. Put S =Im(s(z)) and ¢ = —Z=. If ¢ < 1, it follows from (5.4)

ans.
that
pr S /2
(127 Es@ —s@I" ="y S <P+ 9.

j=1

Hence, [|5,(z) —s (@)l < 12cp2«/1 + S. For the range 2k < p< 2k+1 the previous
bound, applied to 2¢*!, immediately yields

lls2(2) — s(2)||p < 48cp* 1+, c= \/% S =Im(s(2)), (5.5

which is thus valid for all p > 1 (the case 1 < p < 2 may be settled just via (5.1)).
Using Chebyshev’s inequality and optimizing over p, one derives from (5.5) bounds
on large deviations, such as

P{l5,(2) — s(2)| > 96T+ St} <3¢V, 1>0.

For further applications, however, it will be more convenient to work with the
“vertical” integrals, appearing in Corollary 2.2, that is, integrals of the form

J(x):/vl(s,,(x—i—iv) —s(x +iv))dv,

0

where x € R and v > vp > 0 are fixed parameters. Note that the value S in (5.5) may
be bounded by the quantity

Ur(vg) = sup sup Im(s(x +iv)).

xeRv=vg

Hence, if \/% <1, we get from (5.5) that the L”-norms ||J (x)||, = (E |J(x)|P)1/P,
nv(‘)

p > 1, satisfy

v
17O p S/ llsn (x +iv) — s(x +iv)|| dv < C p? (5.6)
Uy

0
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with C =96 \/ZTO V1 4+ UF(vg). This bound on the growth of moments allows us to

control the maxima
Iy =max{[J(xl, ..., [J(xn)]}

over a large number of points x1, ..., xy on the line. Indeed, for any p > 1, we can
write J1 < |J(x)I? +...4 | (xn)|?, so that by (5.6),

EJy < (E[JGDI? +---+EJen)I?) " < CNYP p2,

e . . _ 2.1/3
Optimizing over all p (which should be of order log N) and choosing vy = ("7) /3,

so that \/Ls = 1, we arrive at the following.
nvo
Corollary 5.2 Under PI(O’Z), we have for all x1, ..., xy € Rand vi > vy = ("n—2)1/3,

up to some numerical constant C,

E max
1<k<N

/ l(sn(xk +iv) —s(xg +iv))dv| < Cvgy/ 1+ Up(vg) 10g2(1 + N).

vo

6 Concentration of Empirical Distribution Functions in Lévy and Kolmogorov
Metrics

We shall now proceed to the final steps in the study of rates of approximation of
empirical distribution functions F, by the mean measure F' = EF,, in terms of the
Lévy and Kolmogorov metrics. To this aim, we apply Proposition 2.1 to the pair
(Fy, F) in place of (F, G) and then combine it with Corollary 5.2.

Thus, again, let X = (X1, ..., X,,) be arandom vector in R” with joint distribution
W, satisfying the Poincaré-type inequality with constant o-2. Note that the measure j
is restricted by a parameter A, defined by

[EX; —EX;| < Ao, 1<j, k<n.

Under these hypotheses, we prove the following theorem.

Theorem 6.1 Let vy = ((:1—2)1/ 3. With some absolute constant C we have

5 1+A
EL(F,, F) = Cvo(1 +Ur(vo))log”(2+ ——|, (6.1)
Vo

where Up(v0) = SUPycR SUPy>,, Im(s(x +iv)).

The quantity Ur(vg) was discussed in Sect. 3, where it was related to uniform
smoothness properties of F, cf. (3.1). Also, recall that, for z =u +iv (1 € R, v > 0),

1
5@) =Esn(Z)=/EdF(x)
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stands for the Stieltjes transform of F, and we use s,(z) = f xsz dF,,(x) to denote
the Stieltjes transform of empirical distribution functions F,,.

If F has a finite Lipschitz semi-norm M = || F||Lip, then ||F, — F| < (1 +
M)L(F,, F) and Ur(v) < M, for all v > 0, so the bound (6.1) may be simplified.

Corollary 6.2 If M = || F||Lip is finite,

o\'? (1+A)n
E|F, —F <C(1+M(—) log(2+—7—). 6.2)
n o

where C is an absolute constant.

Thus, if 62 is of order 1 and A = O(nk) with some finite k, then

log2 n

E|[F, = Fll < C(+M)—.

In fact, in the matrix model (cf. next section), o2 will be of order 1 /n, while A will be
of order at most /n. Hence, in that case the bound (6.2) would give E ||F,, — F|| <

If we do not know whether F is Lipschitz, it might be reasonable to replace F in
(6.2) by a different distribution G at the expense of an additional error term || F — G||.
Indeed, one may apply a general bound

T||F =G|
Ur(v) = —— + Mm,
vo

where now M = ||G||Lip. Using this in (6.1) we arrive at

2\1/3 14A
E|F, =Gl SC{IIF—G||+(“7> }10g2<2+(072)n>

with a constant C, depending on M only. This is exactly the inequality of Theo-
rem 1.2, stated in the Introduction.

Let us turn to the proofs. In order to bound the vertical integral in (2.14), we need
the following.

Lemma 6.3 Under PI(GZ),fOV all v >0,

o0 n

+o00 ) ) o 1 72
E |sp(u+iv) —s(u+iv)|du < —(v + Dv )
Vn
where D is the variance of a random variable with distribution F .

Proof A similar argument was used in [9], and we include it for completeness. Put
o) =E|s,(u +iv) — s(u +iv)|. By the empirical Poincaré-type inequality (2.3),
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applied to the function f(z) = cf. (3.1), we have

xZ’

o 1 1/2
w2 7 ([ G ro)

Hence, for any a real, we obtain by Cauchy’s inequality that

2
1
(fowan) = [owra—ur s | o—an

2 2
sﬂf/(“ “) +U2dudF(x)

nv (x —u)2 +0v?2)

2 2 2
="n_:/f(” R G ) PP Y

(u? +v2)?

2
_or (Z +5 /(x —a)zdF(x)>,
nv v v

where ¢ = [ m dt < 7. It remains to choose a = [ x d F(x). O

Proof of Theorem 6.1. Since L(F,, F) <1, we may assume that vy does not exceed
a small numerical constant.

Given g > 0 to be specified later, put o = —8, ap = —Bp, where By = 8 + 2vo.
By Proposition 2.1, with some universal constant ¢ > 0 we have

¢L(F,, F) <vy+ v Ur(vg)

+ sup

x€lao, Bol

/x Im(s, (4 +ivg) — s(u +ivy))du|, (6.3)

—00
provided that F(«x) <vp and 1 — F(8) < vg. Divide the symmetric interval [, Bo]
into 2N subintervals [xk, xx+1] with endpoints x; = % (Bo— @), k=—N,...,N.
Since in general |SF(z)] < %, we get

Bo — a0
Nvy

Xk+1
/ Im(s, (u +ivg) — s(u +ivg))du

k

2
< — (kg1 —Xp) =
Vo

Hence, up to the summand B ?v;ao , the supremum in (6.3) may be restricted to the

points xx, k = —N,..., N — 1. Applying the inequality (2.13) to each such point
with arbitrary v; > vy, we get

+o00
cL(Fy, F) < vo+ vy Ur(vo) +/ [sn(u +ivy) —s(u+ivy)|du
—0o0
Bo — o Vi . .
+ +  max (sp(xp +iv) —s(xp +iv))dv]|.
Nuvg —N<k<N—1|Jy,

Here, by Lemma 6.3 with v = vy, the mean of this horizontal integral is vanishing
as v; — 400. The mean of the maximum may be bounded by virtue of Corollary 5.2,

@ Springer



J Theor Probab (2010) 23: 792-823 809

which should be used with 2N points x; (k= —N, ..., N — 1). We thus obtain for
the expectation (with some other numerical constant)

—«
cEL(F,, F) <vg+voUFr(vo) + ﬁONU 0 + voy/ 1 4+ Up(vg) 10g2(2N +1),
0

which can be simplified as

¢EL(F,, F) <vo(1 + UF(U()))(I + ﬂ(;v_fo —|—10g2(N)>.
Yo

To optimize over N, we do not lose much by taking N =1 4 [B] with B = (8p —
ozo)/vg. Using, say, vg < 1, we then get

cEL(F,, F) <vo(l + UF(U()))|:2 + log? (1 4 Po _3‘)‘0)]. (6.4)
Yo

It remains to choose S to satisfy the requirements F(«) <wvg and 1 — F(8) < vp.
Without loss of generality we may assume —Ao < EX; < Ao, for all j <n. By
Lemma 4.2 with g(x) = x;, cf. (4.4), for all & > 0,

P{X; —EX; >oh} <3¢, P{X;—EX; <—och}<3e".

Therefore, P{X; > h} < 3¢~ =4 and P{X; < —h} < 3e~""=4 | whenever h > A.
Averaging over all i’s, we obtain similar bounds for the mean distribution function
F =EF,, that is,

1= F(h) <3e "4 F(—h) <3 "4 (h> A).

Hence, one may take « = —f with § = A + log %, and then g = A + 2vp + log Uio
Since vp does not exceed a small numerical constant, the expression under the log
sign may be bounded, up to a (universal) factor, by 1+ 1:@’4 . Therefore, the expression
0

in the square brackets in (6.4) does not exceed, up to a factor, log?(2 +

Thus, Theorem 6.1 is proved. O

1+A
V0 )

7 High-Dimensional Random Matrices

We can now apply the bound, obtained in Theorem 1.2, to spectral empirical dis-
tributions. Let {§;1}1<j<k<n be a family of independent random variables on some
probability space with mean E&;; = 0 and variance Var(§;;) = 1. Put §j; = &;, for
k < j. Then we have a symmetric n x n random matrix W with entries

1 .
ij:ﬁsj’k’ lfj,kfn.
Arrange its (real random) eigenvalues in the increasing order: X| < --- < X,,. With
particular values X1 = x1, ..., X;, = X, one associates an empirical (spectral) distri-

bution function F, with mean (expected) measure F = EF;,.
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The joint distribution P of the collection {§x}1<;j<k<n represents a product prob-
ability measure on the Euclidean space R" of dimension N = n(n + 1)/2, while the
joint distribution p of the spectral values X ; is a probability measure on R", obtained
from P as the image under the map 7' from symmetric matrices to their eigenvalues.
We will apply the following elementary lemma.

Lemma 7.1 Let 1, ..., uy be probability measures on R, satisfying PI(c2). The
image W of the product measure P = 11 @ --- ® un under any Lipschitz map T :
RN — R” satisfies PI(02||T||§ip).

In our specific matrix situation, the map 7 : R*"+1/2 _ R” has Lipschitz semi-

norm |7 [|Lip = % To be more precise, by Hoffman-Wielandt’s theorem (cf., e.g.,
[4], p. 165), the Hilbert—Schmidt norm satisfies

n n
1 2
DX =X < IW=Wihs=— > len—Eul <= 3 len—&l

i=1 Jk=1 1<j<k=n
for any collections {&;r};j<x and {Sjk}/jgk with eigenvalues (X1,..., X,),
(X7, ..., X)), respectively. This is a well-known fact, used in concentration prob-

lems, cf., e.g., [8, 15, 23, 26].
Therefore, if the distributions of & j;’s satisfy a one-dimensional Poincaré-type in-
equality with common constant o2, then y satisfies a Poincaré-type inequality on R”

. 2 S . .
with constant 0,12 = 2% (which is asymptotically much better). Note that necessarily
o> ng ¢ = 1. In addition, since max; |[EX ;| is of order o, the other involved para-

meter of the measure A, = Gin max; i [EX; — EX]| is of order at most J/n. Hence,
Theorem 1.2 yields the following for our matrix model.

Corollary 7.2 If the distributions of & i satisfy PI(c2) on the real line, then for any
distribution function G with finite Lipschitz semi-norm M = ||G||Lip,

2/3
E|F,-G| =< C[IIF—GII-F(%) }ng(n-irl), (7.1)

where the constant C depends on M, only.
The statement may be applied to G = F itself, but it is more natural to consider

for G the standard semi-circle law. The problem is then to estimate || F' — G]|.
Introduce the resolvent function of the matrix W,

R =W-z)"', z=u+iv, ucR, v>0,

where I denotes the identity matrix (of size n x n), and the Stieltjes transforms
1 1
sn(2) = -TrR(Z) = | ——dFy(x),
n xX—z

@ Springer



J Theor Probab (2010) 23: 792-823 811

5(2) = Esy(z) = / ﬁ JF ).

Since under the PI(o%)-hypothesis, imposed on the distributions of the random
variables £, the joint distribution of the eigenvalues of W satisfies PI(O’,%) on R”

. 2 . .
with 0,12 = 2%, we may apply the moment estimates for ||s, — s|[, developed in

Sect. 5. In particular, inequalities (5.1) and (5.3) for the even moments p = 2 and
p = 4 take the form

Elsy () = 5@ = b Im(s(2), 7.2)
n=v

Elsu(0) — 5@ < 2 I (5(2)) + — Im(s(2)) (7.3)
n’v n-v

with constants C;’s depending on o, only. As it turns out, these are the concentration
inequalities, which control the distance from F to the semi-circle law G.

Theorem 7.3 Assume that the random variables & ji are independent with E€ j; =0,
E |Ejk|2 =1,E |fjk|4 < My < +00, and that they satisfy the conditions (7.2)—(7.3).
Then

Ap=|IF — G|l <Cn %3,

where G denotes the distribution function of the standard semi-circle law, and where
the constant C depends on C;’s and My, only.

Combined with Corollary 7.2, this assertion implies the main Theorem 1.1. The
proof of Theorem 7.3 requires some preparations and is given in the next section.

Remark 7.4 1t is well known that Poincaré-type inequalities on the real line may be
reduced to Hardy-type inequalities with weights. Necessary and sufficient conditions
for a measure on the positive half-axis to satisfy a Hardy-type inequality with general
weights were found by M.G. Kac and L.S. Krein [24]. We refer the interested reader
to [28] and [27] for a full characterization, and here just recall a principal result (see
also [7] for a different approach).

Let 1 be a probability measure on the line with median m, that is, (—o0, m) < %
and p(m, +00) < % Define

*oodt
Ao(p) = sup [M(—oo,X) / 5

x<m pl/.(
+00 d
Aj(un) = sup |:,u(x,+oo)/ ! :|,
x>m x pp.(t)

where p, denotes the density of the absolutely continuous component of p with
respect to the Lebesgue measure, and where we set Ag = 0, respectively A =0, if
u(—o0,m) =0 or u(m,+o00) =0. Then u satisfies PI(c%) with some finite constant
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if and only if both Ag(1) and Aj(u) are finite. Moreover, the optimal value of o2
satisfies

co(Ao(i) + A1(w) < 02 < c1(Ao(p) + A1 (),

where cg and ¢ are positive universal constants.

Necessarily, 4 must have a non-trivial absolutely continuous part with a density
which is positive almost everywhere on the supporting interval. To roughly describe
the whole picture in the case where w is absolutely continuous and has a positive,
continuous well-behaving density, one may note that the Poincaré constant is finite,
as long as the measure has a finite exponential moment. In particular, any probability
measure with a logarithmically concave density satisfies PI(oz) with a finite o, cf. [5].

Let us also note that the measure u may have a non-trivial discrete component in
order to satisfy PI(o%). However, purely discrete measures do not satisfy PI(o%). For
example, Theorem 1.1 may not be applied to the Bernoulli measure (with two atoms).

Remark 7.5 1t should be clear that an attempt to obtain a good estimate for A’
includes in particular a certain concentration result on empirical measures. One
can argue whether the PI(c2)-hypothesis is artificial or close to being necessary in
statements on the rates of A% such as in Theorem 1.1. In this context let us men-
tion the concentration result concerning the functionals M, = max{&y,...,&,} and
m, =min{&q, ..., &,}, generated by a sequence of i.i.d. random variables with given
distribution @ on the line. It turns out (cf. [6, 10]) that the variances Var(M,,) and
Var(m,,) are bounded for the growing dimension 7 if and only if the measure u sat-
isfies a Poincaré-type inequality in the class of convex functions. Already this simple
example suggests that some kinds of Poincaré-type inequalities may appear naturally
also in the context of spectral empirical measures.

8 Proof of Theorem 7.3

Keeping the previous notation, we start with some auxiliary lemmas. Denote by
t(z) = f ﬁ dG (x) the Stieltjes transform of the standard semi-circle law.

Lemma 8.1 Write for z=u +iv, v >0,
527 +25(2) +1=8,(2) 8.1)

with some function 6, (z). Then, with some absolute constant C, for all |u| <2,

C 6, (2)] .
max{Im(s(z)), v1/41m%(s(z)), Vvl

ls(z) —t(2)| <

Proof Applying the well-known identity 7(z)? + z¢(z) + 1 = 0, we may write
|1(2) = s(2)[1(z) +5(2) + 2] = [, (2.
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Note that |7 (z) 4+ s(z) 4+ z| = Im(s(z)) and, on the other hand,

Im{~/72 — 4}
—

[t(z) +s(2) +z| =Im{z +1(2)} >
Since Re{z2 — 4} < 0 in |u| < 2, we have Im{~/z2 — 4} > % [v/z2 —4]|. But

|v/22 — 4| = max{y/]z = 2[. y/|z + 21} min{\/]z — 21, v/Iz + 21},

s0 |[vVz2 — 4| > max{~2 —u, /2 +u, »/v}. This completes the proof of the lemma.
O

The next step is to obtain a representation like (8.1) and derive a bound on §,(z).
Given an 1 x n matrix A, we denote by A/) the principal submatrix of order n — 1,
i.e., AU is obtained from A by deleting the j-th row and the j-th column. Let Z(j )
denote the sum over all indices from {1, ...,n}\ {j}. Let

RV (2) = (W) — ZI)*I,

where I denotes (with subindex or without) the identity matrix of a corresponding
size.

In the next statements we assume the conditions of Theorem 7.3 are satisfied and
that all constants may depend on the values of Cy (k =1, 2, 3) and M.

Lemma 8.2 There exists a constant C such that

1 On(2)

= , 8.2
$@) 24+s@)  z+s5@) 8:2)
where
1 1
ClIm2(s(z))  ClIm(s(z)) CIm2(s(z)) ClIm(s(z))
|8ﬂ(z)| S 3 2.3 3 3 + 3 . (8'3)
nv? nev n2v |z 45| n2v?z 452
Proof We use a well-known representation (cf. (4.6) in [19], p. 236)
Rjj(2) : + ! (gj1+--+¢€ja)Rjj(2) (8.4)
(7)) = — g4 dg; - (2), ]
H z+s(i)  z+s(2) /! 74T
where
1 1 .
gjlzﬁfjj, 8j2=—; (TI‘R—TI‘R(])),

1«0 ~
en=- ki =R,

1
ej4=AR) = (TrR~ETrR).
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Put 8,(2) = 841 + - - - + 84a(z), where
l n
Onv(2) = ; Z}Egij//(Z)~
j:

By (8.4), 8,1(2) =81, (2) + - + 6.7 (2) with

nl

1 n
5" (2) = - > EejiejnR;;().
j=1

Applying Cauchy’s inequality and a simple bound % Z’;:l IR;; @< % Im(s, (2)),
we get

1 1
1 n 2 1 n 2 CI 1
160(2)| < <; ZE|gjj|4> (;ZE|RJ-J-(Z)|2) < w (8.5)
j=1 j=1

Using

ITrR — TrRY| < v, (8.6)
1
we also have |8,(121) @ =< M Similarly,
n2v2

1 1
1< 21 & 2 ClIm(s(2)
69 )] < (E ;E|a,-1|2|e,~3|2> (; ;Emﬁ(mz) G

Simple calculations show that |8,(j) (2)] < EImEQ) By (8.6), [5,2(2)| < L5 Im? (5(2)).
292 2
Furthermore, using the representation " "

1

JJ —Z+ ﬁélj —TrR(I) ( J JJ )
we get
1 <& 82‘3
18:3(2) < = ) [E L —R;;(2)|.
! n ; —z+ 72 &j; — TrRU) 7

Once more, applying Holder’s inequality, we obtain

n 1 ()1242 3 n 3
1 = (Tr [IRY|%) 1
1803(2)] < (; > E ! ) (; » E|Rn~(z>|2>
Jj=1

o I-zt gpgjj—  TIROP

S CIm%(S(Z))'

3
nv2

(8.8)
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By the assumptions (7.2)—(7.3), we have |§,4(z)| < % This completes the
proof. g

Put vg = max{Cn_%, y A} for sufficiently small y > 0.
Corollary 8.3 There exist positive constants C| and Cy such that for any v > vg, we
have |s(z)| < Cy and

|z +5(2)] > Ca. (8.9)

Proof As before, let F(x) = EF,(x). Since s(z) — t(z) = [ F&=G1) gy we

—00 (X—Z)2
have |s(z) —1(z)] < T2 < Z8a < T 5o

v — Y’
b4
[s(2)] <1+ —. (8.10)
14
Relations (8.2), (8.3), and inequality (8.10) together imply (8.9). Il

Now, define the quantity A(R) = % |TrR — ETrR| and introduce the event A4 =
{AR) < nlz+ s(z)|}, where 7 is a sufficiently small positive absolute constant. We
use I; 43 to denote the corresponding indicator random variable.

Lemma 8.4 There exists a constant C, such that for any v > vy,
1 n
- Y EIR;;(»))? .
0 Z | ]j(z)| I{.A} <C
j=1
Proof Let B = % Z;f:l E|Rj; (2))? I 4. The representation (8.4) yields

C

1 n
<——  (14+=Y"E|g1PIR;i @I
|z+s(z)|2( n; el IR @F I

1 o 1 «
+— 2 Elepl IRjj @ I+~ 3 Elejsl) R,-,-(z)|21{,4})
j=1 j=1

_ ¢ 1S o g
* |z+s(Z)I2E|A(R)| (n;m”(z)' )I{A}‘

From this,

Cy

1 n
B<—|1+- Eleji’|R;i ()| I
o (147 SEe Py

1 1
+— 2 Elepl IR I+ ZE|e,-3|2|Rjj(z>|21{A}>. (8.11)
j=1 j=1
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Applying Cauchy’s inequality, we get

1

1 1
1 — Cimax;E2|6;;* [1 & :
n Y ElejilP IR @1 Iy < # . Y _EIR;@F I

j=1 j=1

1
C E2|E 4

_ Cimax; B2 (5517 o1 (8.12)
nv
By the inequality (8.6) and Corollary 8.3, we get

1 & Cq

— Y Elep)?|Rjj()? L4y < — B.

. ]ZI lej2l? IR} @) Iy <

Furthermore, using an analogue of Rosenthal’s inequality for quadratic forms (con-
sidered in [19], p. 274), for all p > 1, we have with some constants C = C(p), de-
pending on p,

c 1 A C 1 S\
Elejs” < —E(-Tr[RD[) < E(Im{-TrRY
! n? n nPu? n
<

€ (mlelmry L E|AR) + —— 8.13
S U T +nl’v1’ IAR)] +nl’vl’ - @13

This inequality and the conditions (7.2)—(7.3) together imply that, for p =1, ...,4,

Cpls()? C
npP P n2P 1)517/2 ’

2
Elej3|7" <

Define £2 = }l Z?:l lej3 |2 IR;; (@))? I; 4. The representation (8.4) implies that

ln
Ele|* + - E£-28-2R~22[
le 31 +n; lej3171e117 IR ()1 I gy

2. C
= or (

1 1
+— D ElejslPlepl IRjj Pl + — Y Elejsl* R} ) [{A})
j=1 j=1

242
" lz+s(2)]? FIATITE

This inequality implies

1 n
Elejsl*+ — ) Elejil* IR} I
j=1

2. C
b= or (

1 1 &
+— D Elepl* IR @F Iia + ~ ZE|8j3|4|Rjj(Z)|21{A})-
j=1 j=1
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Using (8.13) with p =4 and Holder’s inequality, after simple calculations we get

E 2
S S TSP

nv n2v = n*o n2y3

C <Im(s(z)) 1 1 (Im(s(z)))2> B (8.14)

Inequalities (8.11), (8.12), and (8.14) together imply that there exists a constant
¢ > 0, such that for v > vy = max{cn_%, y ALY,

o 1 C

B<— % piy &
|z +5(2)] |z +5(2)|?

for sufficiently small absolute o > 0. This inequality completes the proof of
Lemma 8.4. O

Now we may obtain an improved bound for §, (z).

Lemma 8.5 There exist positive constants C1 and Ca, such that for any v > vy,

I
CiIm(s(2)) +9.

Sn ()] <
|Vl( )|_ l’l2U3 nv

Proof Introduce a new quantity

- 1 <&
Biv(@) = Z;Eeijjj @14
]=

It is straightforward to check that

s(z) — liER"(Z)I < ME'E(TIR(Z)—ETI‘R(Z)) :
n AL S Y @ el
- CIm(s(z)).
nZy3
This inequality and equality (8.4) imply that
1 COIm(s(z)) ~
=— 8, (2),
5(2) +5(2) 203 +8,(2)
where 8,(2) = 8,1(2) + -+ - + 84(2). Define
n
$(v)
B = Ecjiejy Rij(2) 14
1 (2) nG+5@) ; gj1€jv Rjj(2) 14
Note that, by inequality (8.5) and Lemma 8.5,
~ C
50 @) < - (8.15)
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Applying Lemma 8.4 and Cauchy’s inequality, we obtain
~ C
52| < p (8.16)

From inequality (8.7) and Lemma 8.4 it follows that

1 1
7(3) ClIm?2(s(z)) ~4) CIm2(s(z))
\5’11 (Z)i = nfv and 18, ()| < W (8.17)
Furthermore,
1
~ 1 n 1 n 5 2 C
5i2@)] = 5= D EIR;@I 4 = — D EIR;@OP Ly) = —. (8.18)
n*v n \ nv

Inequality (8.8) and Lemma 8.4 imply |§n3 @< %, while by the conditions (7.2)—
(7.3), we have
CIm(s(2))

—3 (8.19)

|8na] < 1804 (2)| <
It remains to combine the inequalities (8.15)—(8.19). The proof of the lemma is com-

plete. U

Proof of Theorem 7.3 We put v] = 1 and apply Corollary 3.1. As shown in [19] (cf.
the inequality (4.30) therein), there exists a constant C > 0 such that

o0 C
/ [s(u+ivy) —t(u+ivy))|du < —.
oo n

Hence, we need to bound the “vertical” integral in Corollary 3.1 only. According to
Lemma 8.1,

Clm(s(z))  C
20 T
n<v nv

D=

Is(z) —t(2)| < |8, (2)| min{

— v
Im(s(z))

By Lemma 8.5,

I ~
160 (2)| < WHMN <
n<v

These inequalities together imply that, for all v > vg, we have |s(z) — 1(2)| < MLM
After integration we get

vl C 2
ls(z) —t(x)|dv < < Cn75.
/uo n./vo

This completes the proof of Theorem 7.3 and thus of Theorem 1.1. U
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Appendix: Proof of Proposition 5.1

By Proposition 4.3, for any smooth F-integrable function f : R — C, for all p > 2,

E‘/denp /de,,

Here and below we set ¢ = o'/+/n. The same inequality may be applied to the function
| £'1? with power p/2 (when p > 4), and the argument can be repeated.

More generally, consider the case p = 2K (k > 1 integer) and, starting with fo = f,
assume we have a collection of non-negative smooth functions f;, 1 < j <k, such
that

< 2°

p/2
+ 27 (cp)? E(/lf’|2dF,,) ) 9.1)

A1 R=IAR o o= ) 9.2)

Then by the repeated use of (9.1),
P 5
+ 27 (cp)’ E (/ A an)

E'/de,, ’ ffodF
p ) 5
f fodF| +27+% (cp)? ( f fldF>

s (3) o f o)

At the end of this iteration we will arrive at the bound

p P

E‘/den /de
k—1 » » cp % y

£ Y2 ey (7) "'<zf 1) (/ ff‘”)

j=1

4
Dyp_ P cp\?
+2P+2+ TR (cp)? (7) .. <2k 1) /fde

To simplify, first note that p —|— +- —|— < 2p, which may be used for the powers
of 2, while it is important to mamtaln the correct power of c:

1

As for the products of the powers of , all of them are bounded by the last product
(when j =k — 1), which is equal to

P k
(2 (2) 2= []e)? = 23512 pk=12kH 2
2) \4 P

<?2f

<?2?

<2°

B
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Since (k — 1) 251 42 < 2k - 2%, one may bound the above product by 222 pr.
Using these remarks and bounds, we obtain that

E’/den

P

/de’ +@pr Y T (/f,dF)
j=1

1
+@p) TP / fedF.

p
<2?

Replacing 27 with (2p)?P here, we can summarize the result in a separate statement.

Thus, assume as before that a probability measure p on R” satisfies a Poincaré-
type inequality with constant o2, Let F, denote the empirical measures with mean
F =EF, with respect to u.

Lemma 9.1 Given a smooth F-integrable function f : R — C, for any collection of
non-negative smooth functions (fj)1<j<k, satisfying (9.2) we have

p kK . 7
/de‘ +Zc(2_2_/——1)17 (ff/dF)zj,
j=1

p
=

2p) P E ‘ / fdF,

where p=2F and c = o/ /n.

Let us now apply this observation to the functions of the form f(x) = |x — z|™¢
with parameters z =u +iv (u € R, v > 0) and ¢ > 0. Since

’ qlx —ul —g—1
= < —
@)1= =gl =2,

one may take f](x)=¢>|x — z|~?4? which is of the same form (up to a factor).
Hence, by the same argument, one may take

f) =g* Qg +2)% v — 2| TP = g% 2g +2)? x — g THHO.
Similarly, in the next step,

£3(x) = ¢% 2q +2)* (4q + 6)? |x — |~ @@a+O+D)
= 618 (2q + 2)4 (49 + 6)2 Ix — Z|—(8q+14)_

More generally, on the j-th step,
2/ 2i-1 2! —a;
fi)=ay ai ...aj_y lx —z|7Y,

where the sequence a; is defined recursively by the relation a4 = 2a; + 2 with
initial value agp = g. The solution to this recursive problem is

aj=Q2+q)2 2.
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Consequently, using a; < (2 +¢q) 2/,

i oi-l I Jq2i Vg2l 2020 11201420024y (i—1)2]
C.,Eag a? ---ajz-_li(2+q)2+2 +eed2! 9027 41:277 142202 (1) 2"

We have 2/ +2/=1 ... 421 =2/+1 _ 2 < 2/+! Furthermore,
1.2 4220724 4 (j—1)-2' = Zg.zjfﬁ =2/ Zg.2*€<2j+l'

With these two bounds, we get C; < (2(2 + q))zm  Therefore,
J
i) < Q2+ gn? |x -z @0,

and using |x — z| > v,

/ fidF <2Q2+q)?" / x — 2| (@02 =D g p(x)

<ee+q? — Y 4r)
- 1 w023 | x— g2 T

Therefore, recalling that f e Iz dF(x) =Im(Sr(2)),

r

7 1 ;
(ffj dF>2 <Q2Q2+g)* @32 Am(SF(2))P/? .

Similarly, when j =0,

1 1 v 1
/de=/|x_Z|q dF < o /|x— dF(x) = Im(SF(z))

As a result, we obtain the following from Lemma 9.1.

Corollary 9.2 For any integer k > 1 and q > 0, forallz=u +iv,u e R,v >0,

1 p
@p)~?r E( an(x>)
|lx — z|4

-y m(SF@)”
k
1 1 j
T+ YT o ISP NI,
j=1

where p=2F and c = o/ /n.
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Now, let us return to Proposition 4.3 and apply (4.6) to the particular function
f(x) = ;= Writing s,,(z) = SF, (2), s(2) = SF(2), the inequality (4.6) yields, for all
p= 2,

p/2
Els,(2) —s@)|” < (cp)? E(/ X 7 dF, (x)> . 9.3)

But by Corollary 9.2 with ¢ = 4 and p/2 in place of p (where p = 2%, k > 2),

p/2
_pE</ T m)

<=7 U3p 75 (s ()17

k—1
» (1=3p 1 p/2i!
+(12) Z}C 7 iy, I
J

Hence, with (9.3),
PP Elsp(2) — s(2)|”

p
< —575 (M@

k—1
2L 1 j+1
+(12)7 Y7 T e (s ()1
; v
j=1

This may be simplified by replacing j + 1 with j, which yields the desired inequality

k

(I=39p )
Els,(2) —s()|” < Z( ) [Im(s (2))17/%.

p2P

(12)»

Proposition 5.1 is proved.
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