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The Entropy Per Coordinate of a Random Vector is
Highly Constrained Under Convexity Conditions

Sergey Bobkov and Mokshay Madiman, Member, IEEE

Abstract—The entropy per coordinate in a log-concave random
vector of any dimension with given density at the mode is shown
to have a range of just 1. Uniform distributions on convex bodies
are at the lower end of this range, the distribution with i.i.d. ex-
ponentially distributed coordinates is at the upper end, and the
normal is exactly in the middle. Thus, in terms of the amount of
randomness as measured by entropy per coordinate, any log-con-
cave random vector of any dimension contains randomness that
differs from that in the normal random variable with the same
maximal density value by at most 1/2. As applications, we obtain an
information-theoretic formulation of the famous hyperplane con-
jecture in convex geometry, entropy bounds for certain infinitely
divisible distributions, and quantitative estimates for the behavior
of the density at the mode on convolution. More generally, one may
consider so-called convex or hyperbolic probability measures on
Euclidean spaces; we give new constraints on entropy per coordi-
nate for this class of measures, which generalize our results under
the log-concavity assumption, expose the extremal role of multi-
variate Pareto-type distributions, and give some applications.

Index Terms—Convex measures, inequalities, log-concave, max-
imum entropy, slicing problem.

I. INTRODUCTION

A PROBABILITY density function (or simply “density”)
defined on the linear space is said to be log-concave if

(1)

for each and each . If is log-concave, we
will also use the adjective “log-concave” for a random variable

distributed according to , and for the probability measure
induced by it. (For discussion of the justification for such termi-
nology, see the beginning of Section VI.) Given a random vector

in with density , introduce the en-
tropy functional

provided that the integral exists in the Lebesgue sense; as usual,
we also denote this . Our main contribution in this paper
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is the observation that when viewed appropriately, every log-
concave random vector has approximately the same entropy per
coordinate as a related Gaussian vector.

Log concavity has been deeply studied in probability, sta-
tistics, optimization and geometry, and there are a number of
results that show that log-concave random vectors resemble
Gaussian random vectors. For instance, several functional
inequalities that hold for Gaussians also hold for appropriate
subclasses of log-concave distributions (see, e.g., [4], [5], [15]
for discussion of Poincare and logarithmic Sobolev inequalities
for log-concave measures). Observe that this is not at all ob-
vious at first glance- log-concave probability measures include
a large variety of distributions including the uniform distribu-
tion on any compact, convex set, the (one-sided) exponential
distribution, and of course any Gaussian. In this note, we give a
strong (quantitative) information-theoretic basis to the intuition
that log-concave distributions resemble Gaussian distributions.

To motivate our main results, we first observe that for 1-D
(one-dimensional) log-concave random variables

(2)

where is the standard deviation of . (An exact result to this
effect is contained in Proposition II.1 and proved in Section II.)
An upper bound for entropy in terms of standard deviation
clearly follows from the maximum entropy property of the
Gaussian; so it is the lower bound that is not obvious here.
Thus, the property (2) may be viewed as asserting compara-
bility between the entropy of a 1-D log-concave density and
that of a Gaussian density with the same standard deviation.

Our main purpose in this note is to describe a way to cap-
ture the spirit of the statement (2) in the setting of (multidimen-
sional) random vectors. To describe this extension, recall that
the norm of a measurable function is defined
as its essential supremum with respect to Lebesgue measure,

. Throughout this paper, we will write
for brevity. Any log-concave is continuous and

bounded on the supporting set , so we can
simply write .

Theorem I.1: If a random vector in has a log-concave
density , let in be any normally distributed random vector
with maximum density being the same as that of . Then

Equality holds in the lower bound if and only if is uniformly
distributed on a convex set with nonempty interior. Equality
holds in the upper bound if has coordinates that are i.i.d. ex-
ponentially distributed.

0018-9448/$26.00 © 2011 IEEE
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The observation that it is useful to consider Gaussian compar-
isons by matching rather than the first two moments may
be considered the key observation of this paper. Theorem I.1
follows easily from the following basic proposition (both are
proved in Section IV).

Proposition I.2: If a random vector in has density ,
then

If, in addition, is log-concave, then

Observe that the lower bound here is trivial, since

On the other hand, let us point out that the upper bound in Propo-
sition I.2 improves upon the naive Gaussian maximum entropy
bound (obtained without a log-concavity assumption). Indeed, if
the covariance matrix of with entries
is fixed, then is maximized for the normal distribution.
This property leads to the upper bound

(3)

where and . Now, according to
one general comparison principle (stated in Section III), in the
class of all probability densities, the quantity is min-
imized for the uniform distribution on ellipsoids. This property
yields

(4)

for some universal constant . Hence, modulo the constant
, (3) would indeed be improved if we replace with .
While Proposition I.2 is already remarkable in its own right,

log-concavity is a relatively strong assumption, and it would be
advantageous to loosen it. Inspired by this objective, one wishes
to study more general classes of probability distributions, satis-
fying weaker convexity conditions (in comparison with log-con-
cavity). As a natural generalization, we consider probability
densities of the form

(5)

where is a positive convex function on an open convex set
in . To see that this is a natural generalization, observe that
any log-concave density is of this form for any since
the exponential function composed with a convex function is
convex, and that log-concave distributions have finite moments
of all orders, whereas densities of the form (5) can be heavy-
tailed. For example, the Cauchy distribution on the real line has
density with being convex,
although it is certainly not log-concave.

Another example, which is of significant relevance to our de-
velopment, is the -dimensional Pareto distribution. For fixed
parameters and , this has the density

(6)

where is the normalizing factor, i.e.,

(As shown in Lemma A.1, Pareto distributions with do
not exist, since is finite if and only if .)

Theorem I.3: If a random vector in has a density of
the form (5) with , and if is fixed, the entropy

is maximal for the -dimensional Pareto distribution.

Since is an affine invariant, one may assume
without loss of generality. Also, put for definiteness

and write , and for the random
vector with density . Then Theorem I.3 may be equivalently
written as

(7)

Moreover, as shown in the Appendix,

where is the th falling factorial of
, and (7) takes the form

(8)

Hence, we recover Proposition I.2 in the limit as .
It is convenient, for the sake of comparison with Proposition

I.2, to write some consequences of Theorem I.3 in the following
form.

Corollary I.4: For the range with fixed (and
still for ), we have

where the constant depends on only. In fact, one may
take . However, in the larger range
with fixed

where the term may be explicitly bounded.

For the range , it is not possible to control in
terms of . In this case may be as large, as
we wish (which can be seen on the example of the Pareto distri-
bution with ). One explanation for this observation could
be the fact that the measures with densities (5) for may
not be convex (see Remark VI.2), or viewed another way that
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there do not exist Pareto distributions for (see Lemma
A.1). Thus, we still have a gap , when Theorem
I.3 is not applicable, and we cannot say whether one may bound

in terms of .
For ease of navigation, let us outline how this note is orga-

nized. In Sections II and III, we expand on the motivation for
considering Proposition I.2 by proving the statements (2) and
(4).

In Section IV, we prove our main results for log-concave
probability measures. In particular, Proposition I.2 and Theorem
I.1 emerge as consequences of a more general result that bounds
the Rényi entropy of any order using the maximum of the
density. As a corollary of this, we also show that any two Rényi
entropies become comparable for the class of log-concave den-
sities. In Section V, we use the preceding development to give a
new and easy-to-state entropic formulation of the famous slicing
or hyperplane conjecture. Indeed, the hyperplane conjecture can
be formulated as a multidimensional analogue of the property
(2), different from the multidimensional analogue already rep-
resented by Theorem I.1. Specifically, if is the “entropic
distance” of from Gaussianity (defined precisely later), then
the property (2) may be rewritten in the form for
some constant and every 1-D log-concave density , whereas
the hyperplane conjecture is shown to be equivalent to the state-
ment that for some universal constant and every
log-concave density on . Furthermore existing partial re-
sults on the slicing problem are used to deduce a universal bound
on for all log-concave densities on , although the
dominant term in this bound is rather than linear in .

Section VI begins the study of a more general class of prob-
ability measures, the so-called “convex probability measures”.
Sections VII and VIII are dedicated to proving Theorem I.3 (and
Corollary I.4); the former describes some necessary tools in-
cluding a result on norms of convex functions, and we complete
the proof in the latter.

Section IX develops several applications- to entropy rates of
certain discrete-time stochastic processes under convexity con-
ditions, to approximating the entropy of certain infinitely divis-
ible distributions, and to giving a quantitative version of an in-
equality of Junge concerning the behavior of on convolu-
tion. We end in Section X with some discussion.

II. ONE-DIMENSIONAL LOG-CONCAVE DISTRIBUTIONS

Proposition II.1: For a 1-D log-concave random variable
with standard deviation ,

for some positive constants . The optimal constant
is achieved for the normal, and the optimal constant

.
Proof: The upper bound holds without the log-concavity

assumption, and is obtained simply by using the Gaussian en-
tropy.

Since is log-concave, it is supported on an interval
(where may take the value and may take the value

), and moreover, it is strictly positive on this support interval

(being of the form with convex). If is the cumula-
tive distribution function of restricted to , its inverse

is well defined since the positivity of
implies that strictly increases on the support interval. Now

consider the function

In [10, Proposition A1], it was shown that is log-concave if
and only if is positive and concave on (0,1). Hence, for all

, , so that

Taking the supremum over all , one obtains

(9)

For 1-D log-concave densities , it was shown in [15,
Proposition 4.1] that

(10)

where is the median. Combining (9) and (10) gives

(11)

Applying Proposition I.2

which is the desired lower bound.

Even in this 1-D setting, the best constant and corre-
sponding extremal situations seem to be unknown; these would
be interesting to identify. Note that the inequalities in (10) are
sharp and are attained for the uniform and double exponential
distributions.

In Section V, we discuss the possible generalization of Propo-
sition II.1 to general dimension ; this is related to the hyper-
plane conjecture.

III. EXTREMAL PROPERTY OF ELLIPSOIDS

Here we recall the comparison property (4), mentioned in
Section I, concerning an extremal property of ellipsoids. It goes
back to the work of D. Hensley ([28], Lemma 2), who noticed
that, if a probability density on is maximized at the origin,
then the quantity

is minimized for the uniform distribution on the Euclidean
balls centered at the origin. More precisely, Hensley considered
only symmetric quasi-concave probability densities , and
later K. Ball ([6], Lemma 6) simplified the argument and ex-
tended this observation to all measurable densities satisfying

for all .
One may further generalize and strengthen this result, by ap-

plying affine transformations to the probability measures with
densities .
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Proposition III.1: Put

where is a given nondecreasing function in .
In the class of all absolutely continuous probability measures
on , the functional is minimized, when is a uniform
distribution on a Euclidean ball with center at the origin.

Proof: Since does not depend on , we may assume
. Denote by the uniform distribution on the Euclidean

ball with center at the origin and volume one (so that
, where is the volume of the unit ball). We need

to show that . Since both and are linear
with respect to , it suffices to consider the case , the
indicator function of a half-axis. Then the property
reads as

for
for .

This inequality is automatically fulfilled, when . In the
other case, due to the assumption (almost every-
where), we have

which is the statement.

As a corollary, we obtain the following observation.

Corollary III.2: Let be a random vector in with density
and nonsingular covariance matrix . If

for some universal constant .
Proof: Let us return to the basic case . Thus, the

functional is minimal for ,
the uniform distribution on the Euclidean ball with
center at the origin and volume one. Hence, the same is true
for the functionals

for any point and any linear map with
. Taking for the barycenter or mean of , this

functional may be written as

where denotes the trace of the covariance matrix
of . Minimizing over all ’s, the above integral turns into

(12)

where is the covariance matrix of . This follows from the
classical representation (see, e.g., [9, Proposition II.3.20]) for
the determinant of a positive-definite matrix

The point is that the quantity (12) is invariant both under all
shifts and all linear transforms of . In particular, it is constant
for the uniform distribution on all ellipsoids, which thus mini-
mize (12). Analytically, for any probability density

Since is of order for the growing dimension , the right
side is separated from zero by a universal constant.

In fact, this proof allows us to compute the optimal dimen-
sion-free constant. Recall that the volume of the unit ball is

. Restricting ourselves for simplicity
to even dimension , the optimal dimension-dependent lower
bound becomes

which by Stirling’s approximation is multiplicatively well-ap-
proximated for large by

As through the subsequence of even numbers, this
quantity converges to , which is, therefore, the
optimal dimension-free constant. Observe that when Corollary
III.2 is written with this dimension-free constant, equality is not
attained for any finite dimension but only asymptotically. In
Section V, we give a very simple proof of Corollary III.2 using
entropy that also naturally yields the exact dimension-free con-
stant.

IV. RÉNYI ENTROPIES OF LOG-CONCAVE DISTRIBUTIONS

Recall the definition of the Rényi entropy of order : for
, and a random vector in with density

where

is the usual -norm with respect to Lebesgue measure on .
By continuity, reduces to the Shannon differential en-
tropy as , and to as .
The definition of continues to make sense for
even though is then not a norm.

Theorem IV.1: Fix . If a random vector in
has density , then
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with equality if and only if has the uniform distribution on
a set of positive finite Lebesgue measure. If, in addition, is
log-concave, then

with equality for the -dimensional exponential distri-
bution, concentrated on the positive orthant with density

, .
Proof: The lower bound is trivial and holds without any

assumption on the density.
Let us derive the upper bound for . By definition of

log-concavity, for any

(13)

Taking the th root yields

Integrating with respect to and using the assumption that
, we get

It remains to optimize over ’s, so that

Taking implies or

so that

It is easy to check that a product of exponentials is an instance
of equality.

Thus, a maximizer of the Rényi entropy of order under a
log-concavity shape constraint and a supremum norm constraint
is the exponential distribution, irrespective of . This is not the
only maximizer- indeed, affine transforms with determinant 1
of an exponentially distributed random vector will also work.
Let us remark that if one instead imposes a variance constraint,
the maximizers of Rényi entropy are Student’s distributions as
shown by Costa, Hero and Vignat [22], which specialize to the
Gaussian for . (See also Johnson and Vignat [31] and
Lutwak, Yang and Zhang [36], [37] for additional related re-
sults.)

We may now prove some of the results stated in Section I.
Proof of Proposition I.2: Note that Proposition I.2 is just

a limiting version of Theorem IV.1, obtained by letting .
However, it is not automatic, since there exist densities such that

for every but . (An example of
such a density is

where is a normalizing constant.) Note that by L’Hôpital’s
rule, what one needs to show is that

exists and equals . This calls for three limit interchanges,
each of which can be justified by the Lebesgue dominated con-
vergence theorem if is finite for . In our context
of log-concave densities, this is always the case because of The-
orem IV.1 and the boundedness of log-concave densities. Alter-
natively, a direct proof of Proposition I.2 can be given similar to
that of Theorem IV.1 by integrating (13) with respect to , max-
imizing over , and then comparing derivatives in at .

Proof of Theorem I.1: To see the relationship with the
Gaussian, simply observe that the maximum density of the

distribution is . (Here as usual, we use
to denote the Gaussian distribution with mean and

covariance matrix .) Thus, matching the maximum density of
and the isotropic normal leads to ,

and

This completes the proof of Theorem I.1.

Theorem IV.1 also implies that for log-concave random vec-
tors, Rényi entropies of orders and are related for any

.

Corollary IV.2: If has a log-concave distribution on ,
and , then

Since Theorem IV.1 is just the special case of Corol-
lary IV.2, the two statements are mathematically equivalent.

While the preceding discussion relies heavily on the value of
the density at the mode, one can also extract information based
on the value at the mean. Let be a log-concave
function such that . Let be the barycenter or
mean of . Then it was shown by Fradelizi [25] that

Combining Proposition I.2 with Fradelizi’s lemma immediately
yields the following corollary.

Corollary IV.3: If a random vector has log-concave den-
sity , with mean and mode , then
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V. ENTROPIC FORMULATION OF THE SLICING PROBLEM

The main observation of this section is a relationship between
the entropy distance to Gaussianity and the isotropic con-
stant for densities of convex measures.

For a random vector with density on , the relative
entropy from Gaussianity or is defined by

where is the density of the Gaussian distribution with the same
mean and the same covariance matrix as . If has density ,
then one may write (see, e.g., Cover and
Thomas [24]).

For any probability density function on with covariance
matrix , define its isotropic constant by

The isotropic constant has a nice interpretation for uniform dis-
tributions on convex sets . If one rescales (by a linear trans-
formation) so that the volume of the convex set is 1 and the co-
variance matrix is a multiple of the identity, then is
the value of the multiple.

Observe that both and are affine invariants. The fol-
lowing result relating them may be viewed as an alternative form
of Theorem I.1 relevant to matching first and second moments
rather than the supremum norm.

Theorem V.1: For any density on

with equality if and only if is the uniform density on some
set of positive, finite Lebesgue measure. If is a log-concave
density on , then

with equality if is a product of 1-D exponential densities.
Proof: Let have covariance matrix . If

where and . Thus

and

where the inequalities come from Proposition I.2.

Note that this immediately gives an extremely simple alter-
nate proof of Corollary III.2. Indeed, since , we triv-
ially have

which is Corollary III.2 with the optimal dimension-free con-
stant.

On the other hand, whether or not the isotropic constant is
bounded from above by a universal constant for the class of uni-
form distributions on convex bodies is an open problem that has
attracted a lot of attention in the last 20 years. It was originally
raised by J. Bourgain [19] in (a slight variation of) the following
form.

Conjecture V.2: [SLICING PROBLEM OR HYPERPLANE

CONJECTURE] There exists a universal, positive constant (not
depending on ) such that for any convex set of unit volume
in , there exists a hyperplane such that the -dimen-
sional volume of the section is bounded below by .

There are several equivalent formulations of the conjecture,
all of a geometric or functional analytic flavor. Whereas Bour-
gain [19] and Milman and Pajor [42] looked at aspects of the
conjecture in the setting of centrally symmetric, convex bodies,
a popular formulation developed by Ball [6] is that the isotropic
constant of a log-concave measure in any Euclidean space is
bounded above by a universal constant independent of dimen-
sion. Connections of this question with slices of -concave mea-
sures are described in [12].

We will now demonstrate that the hyperplane conjecture has
a formulation in purely information-theoretic terms. It is useful
to start by mentioning the following equivalences.

Corollary V.3: Let be any nondecreasing sequence, and
. Then the following statements are

equivalent:
(i) For any log-concave density on , .

(ii) For any log-concave density on , .
(iii) , where the minimum is

taken over all Gaussian densities on , and the maximum
is taken over all log-concave densities on .

Proof: The equivalence of (i) and (ii) follows from The-
orem V.1, and that of (ii) and (iii) follows from the easily veri-
fied fact that , where is allowed to run
over all Gaussian distributions.

Furthermore, the seminal paper of Hensley [28] (cf. Milman
and Pajor [42]) showed that for an isotropic convex body , and
any hyperplane passing through its barycenter

where are universal constants. Hence the state-
ments of Corollary V.3, when restricted to uniform distributions
on convex sets, are also equivalent to the statement that

Thus, the slicing problem or the hyperplane conjecture is simply
the conjecture that can be taken to be constant (independent
of ), in any of the statements of Corollary V.3.
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Conjecture V.4 (Entropic Form of Hyperplane Conjecture):
For any log-concave density on and some universal con-
stant

This gives a pleasing formulation of the slicing problem as a
statement about the (dimension-free) closeness of log-concave
measure to a Gaussian measure.

Let us give another entropic formulation as a statement about
the (dimension-free) closeness of an arbitrary log-concave mea-
sure to a product measure. If is an arbitrary density on and

denotes the th marginal of , set

this is the “distance from independence”, or the relative entropy
of from the distribution of the random vector that has the same
1-D marginals as but has independent components. (For

, this reduces to the mutual information.)
Conjecture V.5 (Second Entropic Form of Hyperplane Con-

jecture): For any log-concave density on with identity co-
variance matrix, and some universal constant

Proof of Equivalence of Conjectures V.4 and V.5: The fol-
lowing identity is often used in information theory: if is an
arbitrary density on and is the density of some product
distribution (i.e., of a random vector with independent compo-
nents), then

(14)

where and denote the th marginals of and respec-
tively.

Now Conjecture V.4 is equivalent to its restriction to those
log-concave measures with zero mean and identity covariance
(since is an affine invariant). Applying the identity (14) to
such measures,

since the standard normal is a product measure. The lower
bound of Proposition II.1 asserts that for
1-D log-concave distributions; thus, each is bounded
from above by some universal constant. Thus, being
uniformly is equivalent to being uniformly .

Observe that mimicking Proposition II.1, Conjecture V.4 may
be written in the form: for a log-concave random vector
taking values in

(15)

or

(16)

where are universal constants, and is the normal with
the same covariance matrix as . Owing to (4), the form (15)
would strengthen the naive lower bound of Proposition I.2. As
for form (16), it looks like the lower bound of Theorem I.1, ex-
cept that the way in which the matching Gaussian is chosen is to
match the covariance matrix rather than the maximum density.

Existing partial results on the slicing problem already give
insight into the closeness of log-concave measures to Gaussian
measures. For many years, the best known bound in the slicing
problem for general bounded convex sets, due to Bourgain [20]
in the centrally-symmetric case and generalized by Paouris [44]
to the nonsymmetric case, was

Recently Klartag [34] removed the factor and showed
that . Using a transference result of Ball [6] from
convex bodies to log-concave functions, the same bound is seen
to also apply to , for a general log-concave density . Com-
bining this with Corollary V.3 leads immediately to the fol-
lowing result.

Proposition V.6: There is a universal constant such that for
any log-concave density on

Note that the property (2) (quantified by Proposition II.1)
for a 1-D log-concave density may be rewritten in the form

for some constant . Proposition V.6 is thus a
multidimensional version of the statement (2).

VI. CONVEXITY OF MEASURES

Convexity properties of probability distributions may be ex-
pressed in terms of inequalities of the Brunn-Minkowski-type.
A probability measure on is called -concave, where

, if it satisfies

(17)

for all and for all Borel measurable sets
with positive measure. Here

stands for the Minkowski sum of the two sets.
When , the inequality (17) becomes

and we arrive at the notion of a log-concave measure, introduced
by Prékopa, cf. [35], [46], [47]. In the absolutely continuous
case, the log-concavity of a measure is equivalent to the log-
concavity of its density, as in (1). When , the right-hand
side is understood as . The inequality (17) is
getting stronger as the parameter is increasing, so in the case

we obtain the largest class, whose members are called
convex or hyperbolic probability measures. For general ’s, the
family of -concave measures was introduced and studied by C.
Borell [17], [18].

A remarkable feature of this family is that many important
geometric properties of -concave measures, like the properties
expressed in terms of Khinchin and dilation-type inequalities,
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may be controlled by the parameter , only, and in essence do
not depend on the dimension (although the dimension may
appear in the density description of many -concave measures).

A full characterization of -concave measures was given by
C. Borell in [17], [18], cf. also [21]. Namely, any -concave
probability measure is supported on some (relatively) open
convex set and is absolutely continuous with respect
to Lebesgue measure on . Necessarily, , and
if has dimension , we have:

Proposition VI.1: An absolutely continuous probability mea-
sure on is -concave, where , if and only
if is supported on an open convex set , where it has a
positive density such that, for all and

(18)

where .
Following [3], we call non-negative functions , satisfying

(18), -concave. Thus, is -concave if and only if is
-concave.
If , one may represent the density in the form

with , , where is an arbitrary positive
convex function on , satisfying the normalization condition

. Moreover, the condition like in
Theorem I.3 corresponds to the range .

Remark VI.2: Note that a density of form , where
is an arbitrary positive convex function on and , need
not be the density of a convex measure. Indeed, it is not unless

itself can be written as a convex function raised to a large
enough power.

Proposition VI.1 remains to hold without the normaliza-
tion condition . In particular, if is a positive

-concave function on an open convex set in , then
the measure is -concave, that is, it satis-
fies the Brunn-Minkowski-type inequality (17). For example,
the Lebesgue measure on is -concave (in which case

).
This sufficient condition will be used in dimension one as the

following:

Corollary VI.3: Let . If is a positive concave func-
tion on an interval , then the measure on with
density is -concave.

VII. LOG-CONCAVITY OF NORMS OF CONVEX FUNCTIONS

In order to present the proof of our main result for -concave
probability measures (which we will do in Section VIII), we first
need to develop some functional-analytic preliminaries.

Given a measurable function on a measurable set
(of positive measure), we write

For the value , the above expression may be understood
as the geometric mean .

It is easy to see that the function is log-convex
(which is referred to as Lyapunov’s inequality). C. Borell com-

plemented this general property with the following remarkable
observation ([16, Theorem 2]).

Proposition VII.1: If is a convex body, and if is positive
and concave on , then the function

(19)

is log-concave for .
Here we use the standard binomial coefficients

Borell’s theorem, Proposition VII.1, may formally be gener-
alized to the class of -concave functions with , since
then with concave , and one may apply the log-con-
cavity result (19), as well as the inequality (21) to . However,
for the purpose of proving Theorem I.3, with the aim of going
beyond log-concave probability measures, we are mostly inter-
ested in the case where , when the function is convex.

Thus, what we require is a version of Proposition VII.1 for
convex functions . The following theorem, proved in [14], sup-
plies such a result.

Theorem VII.2: If is a positive, convex function on a open
convex set in , then the function

(20)

is log-concave on the half-axis .
It is interesting to note that Borell [16] obtained a different

proof of Berwald’s inequality [8], which is famous among func-
tional analysts, as a consequence of Proposition VII.1.

Proposition VII.3: For

(21)

Equality is achieved when the normalized norms are constant,
which corresponds to the linear function
on the convex body

Berwald’s inequality turns out to have interesting applica-
tions to information theory as well as convex geometry (see [13],
[14]).

VIII. ENTROPY OF -CONCAVE DISTRIBUTIONS

In this section, we explain how to use the remarkable prop-
erty of convex functions described by Theorem VII.2 in proving
Theorem I.3.

Proof: (of Theorem I.3.) Let be a probability
density for a random vector in with , where

is as in Theorem VII.2. Define to be zero outside . As is
shown in [11], the density admits a bound
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with some constant , so with some
(depending on ). Hence, the function

is finite and differentiable for with
. In particular

(22)

To proceed, assume , that is, . This as-
sumption can be made since the quantity of interest in Theorem
I.3, is an affine invariant; so one can scale to
make . Like in the proof of Theorem IV.1, for ,
write

which is valid for any . Integrating with respect to
over the whole space, we get

with equality at . Hence, we may compare derivatives of
both sides with respect to at this point, which gives

Optimizing over all ’s and using , we arrive at the
bound

(23)

Note that for the Pareto distribution there is equality at every
step made before (since in that case is affine).

Now, it is time to apply Theorem VII.2. Put
, so that is concave on the

half-axis . The concavity implies that

Equivalently, since and ,
we have

(24)

But (23) is telling us that , so by (24)

With the representation (22) we arrive at the bound (8)

From Lemma A.2, this is recognized as the entropy of the -di-
mensional Pareto density (6), and hence, Theorem I.3 describes
an extremal property of the Pareto distribution.

In fact, as done for log-concave distributions in Section IV,
it is possible obtain analogous bounds for the Rényi entropy of
any order. We only state the result here; it is proved in [14].

Theorem VIII.1: Fix . If a random vector in
has density and a -concave distribution for ,
then

where .
Consequently one has an extension of Corollary IV.2 to the

convex measure case: for as in Theorem VIII.1 and any

To conclude this section, we show how Theorem I.3 implies
Corollary I.4.

Proof: (of Corollary I.4.) For Corollary I.4 , observe that
in the regime

On the other hand, in the regime

as long as . This gives an explicit bound for the
term in the second part of Corollary I.4.

IX. APPLICATIONS

A. Entropy Rates

Our first application is to the entropy rate of (strongly) sta-
tionary log-concave random processes. We call a discrete-time
stochastic process log-concave if all its finite-dimen-
sional marginals are log-concave distributions. In particular, for
the process to be log-concave, it is necessary and sufficient
for the distribution of to be log-concave



BOBKOV AND MADIMAN: ENTROPY PER COORDINATE OF A RANDOM VECTOR IS HIGHLY CONSTRAINED 4949

for each . Note that an important special case of a log-concave
process is a Gaussian process.

An important functional of a discrete-time stochastic process
is its entropy rate, which is defined by

when the limit exists.
The only class of processes for which the computation of en-

tropy rate is tractable is the class of stationary Gaussian pro-
cesses. Indeed, a stationary zero mean Gaussian random process
is completely described by its mean correlation function

or, equivalently, by its power spectral density
function , the Fourier transform of the covariance function

For a fixed positive integer , the probability density function
of is the normal density with covariance matrix ,
whose entries are , and its entropy can be explicitly
written. This yields

Since is the Toeplitz matrix generated by the power spectral
density (or equivalently by the coefficients ), one has
from the theory of Toeplitz matrices [see, e.g., (1.11) in Gray
[26]] that

Below we point out that our inequalities give a way of obtaining
some information about the entropy rate of a stationary log-con-
cave process.

Corollary IX.1: For any stationary process whose finite
dimensional marginals are absolutely continuous with respect
to Lebesgue measure, let be the joint density of . If

then the entropy rate exists and . If, further-
more, is a log-concave process and

then

Proof: Let denote conditional entropy. As is well
known (see, e.g., Cover and Thomas [24]), for any stationary
process , the sequence is a nonincreasing
sequence, since

(Here one uses the fact that conditioning cannot increase en-
tropy, and the assumed stationarity.) Note also that

Since

we must have , which combined with
the monotonicity of implies that the limit exists and is equal
to some . Hence, the limit of , namely the entropy
rate, also exists and is equal to . The upper bound for the en-
tropy rate follows from Proposition I.2.

One interesting class of processes where this result may be of
utility, and where the study of entropy rate has attracted much
recent interest, is the class of hidden Markov processes.

Let us also note that reasoning similar to that in Corollary
IX.1 can be applied to bound the entropy rate of continuous-
time stationary log-concave processes as well (modulo some
additional technicalities).

B. Behavior of Maximum Density on Convolution

Our Proposition I.2 can be used to significantly generalize
and improve an inequality of Junge [32] for the behavior of the
maximum of a density on convolution.

Corollary IX.2: Let be the density of a -concave measure
on , where . Then, for any

Proof: We wish to apply Corollary I.4, which requires
for some . Since is the density of a

-concave measure, it is of the form with convex, with
(see Section VI). Thus, the optimal (dimension-

dependent!) that can be chosen in applying Corollary I.4 is
given by

in other words, one may take , for which
one has . Now if are i.i.d., and

, then

by using Corollary I.4, the Shannon-Stam entropy power in-
equality [49], and the first part of Proposition I.2. Exponenti-
ating yields the desired result.

In particular, for a log-concave density on
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While Junge [32] proved that for a symmetric, log-concave den-
sity

(25)

for some universal constant , Corollary IX.2 above general-
izes this by removing the symmetry assumption, making the
universal constant explicit, and slightly broadening the class of
densities allowed; also the proof is far more elementary.

Let us observe that in the three inequalities in the proof of
Corollary IX.2, one is tight only for uniforms on convex sets,
another only for Gaussians, and the third only for Pareto-type
distributions; so Corollary IX.2 is always loose, although it is
possible that could be the optimal dimension-free constant
in (25).

C. Infinitely Divisible Distributions

Our third application is to estimating the entropy of certain
infinitely divisible distributions. Let be a random vector in

with density and characteristic function

Recall that the distribution of is infinitely divisible if can be
realized as the sum of independent random vectors, for any
natural number . The Lévy-Khintchine representation the-
orem [1], [48] asserts that the distribution of is infinitely di-
visible if and only if there exist a symmetric nonnegative-defi-
nite matrix , and a Lévy measure such that
the characteristic function of is given by

for each . Here, a measure on is called a Lévy
measure if it satisfies and

The triplet is called the Lévy-Khintchine triplet of
. We write for the distribution of , and use the

abbreviation . Fixing is just fixing a
location parameter and does not matter for the entropy, whereas
fixing means that the infinitely divisible measure has no
Gaussian part.

We start with a 1-D result.

Corollary IX.3: Let be any log-concave Lévy measure sup-
ported on . Assume that the density of satisfies

. Then if is the density of ,

Proof: Yamazato [50] (see also Hansen [27] for an al-
ternative proof) showed that for infinitely divisible measures
supported on the positive real line, if the Lévy measure has a
log-concave density , then the density of the ID measure is
log-concave if and only if .

It is natural to ask how to bound the entropy in terms
of , especially when is not given explicitly but is (which

is typical in the case of infinitely divisible distributions). We
show below that some explicit bounds may be given when we
know something about convexity properties of the density. The
idea is to utilize the Rényi entropy of order 2, since it is directly
connected to the characteristic function by Plancherel’s identity.

To start with, assume is log-concave. Then by applying
Corollary IV.2 with and , one obtains

since by definition, . Note that the lower
bound here is universally true (for all random vectors ) as a
consequence of Jensen’s inequality; indeed, if has density

But Plancherel’s formula asserts that .
Hence:

Proposition IX.4: Let be a log-concave random vector in
with characteristic function . Then

where

Equivalently

This gives a reasonably strong approximation for the entropy of
a log-concave distribution that is only known through its char-
acteristic function: the gap between the upper and lower bounds
is just 1.

One would also hope to be able to bound the entropies of the
non-normal stable laws (which are not log-concave). As a step
in this direction, we have a generalization of Proposition IX.4
to the -concave case.

Theorem IX.5: If has a -concave distribution,

(26)

provided .
The upper bound is easy to see using Theorem I.3 (more pre-

cisely, inequality (8)) and the first part of Theorem IV.1; the
lower bound is as for Proposition IX.4.

Observe that can be explicitly computed in many in-
teresting cases via Plancherel’s formula. For instance, for 1-D
symmetric -stable measures with characteristic function

one obtains
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For the sake of illustration, let us apply our inequalities to
approximating the entropy of the Cauchy distribution, which
is also explicitly computable. Recall that the standard Cauchy
distribution (stable index , skewness parameter )
has density

and entropy . It is easy to check that the
Cauchy distribution is -concave (i.e., one can choose ),
so applying Theorem I.3 gives

since . On the other hand,
, so that is trapped in a

range of width centered at approximately
, which seems fairly good.

For multivariate symmetric -stable probability measures, a
representation of the Rényi entropy of order 2 is obtained by
Molchanov [43], in terms of the volume of a star body associated
with the measure. In particular, [43] uses the identity

for any symmetric -stable density ; as pointed out by a re-
viewer, the left side here is just the value of the self-convolution
of at 0, and for drawn independently from , stability
implies that has the same distribution as .
It is well known that symmetric stable random vectors are uni-
modal with mode at 0 (see, e.g., Kanter [33]); hence, one can
rewrite this as

However, this still does not seem as useful as using Plancherel’s
formula to connect with the characteristic function.

It seems plausible that large classes of infinitely divisible dis-
tributions are -concave, although we do not know any existing
general results in this direction (other than the log-concavity re-
sults mentioned earlier). If one were able to get estimates on
for an infinitely divisible distribution that is specified through its
characteristic function, (26) would immediately yield an upper
bound for entropy in terms of .

Some negative results on -concavity of stable laws actually
follow from the preceding discussion. Indeed, if is symmetric

-stable and -concave, one has

where the last inequality follows from a similar calculation as
in the proof of Corollary IX.2. Thus, one obtains

This is rather loose, since we already know that for , no
symmetric -stable distribution can be log-concave (as it would
otherwise have finite moments). However, it does give some
negative information for . For instance, it shows that
for fixed dimension , symmetric -stable distributions cease to
be -concave for any fixed as . This leads
us to the following conjecture.

Conjecture IX.6: Any strictly stable probability measure on
an infinite-dimensional separable Hilbert space is convex. In
the finite-dimensional case, one has a threshold phenomenon:
For fixed , a spherically symmetric stable distribution of
index on is -concave if and only if , where

is a constant depending only on and .

Recall that a random element in a separable Hilbert space
is said to have a strictly stable distribution with index
if , where the are independent
random elements with the same distribution as .

D. Entropy of Mixtures

Our fourth application is focused on estimating the entropy of
scale mixtures of Gaussians (or more generally log-concave dis-
tributions). Such distributions are of great interest in Bayesian
statistics.

Suppose one starts with a log-concave density ,
where is convex. A scale mixture using a mixing distribution
with density on the positive real line would have the density

More generally, one can consider “multivariate scale mixtures”
of form

where

is the density of when is distributed according to , and
represents the restriction of the Haar measure on the general

linear group equipped with the multiplicative operation
to the subset (which is both a semigroup with respect to
matrix multiplication and a cone, but not a group) of positive-
definite matrices.

Note that lower bounds on entropy of mixtures are easy to
obtain by using concavity of entropy, but upper bounds are in
general difficult. Indeed
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On the other hand, one has an upper bound under a log-con-
cavity assumption.

Theorem IX.7: Suppose is a scale mixture of the log-
concave density , using a mixing distribution with den-
sity on the positive-definite cone . Assume has a mode
at 0 (which for instance is the case when it is symmetric), and
that is log-concave. Then

Proof: The proof is obvious from Proposition I.2 and the
fact that the mixture density must also have its mode at 0.

The condition on Theorem IX.7 that the mixture be log-con-
cave may not be too onerous to check, at least in the case of
mixtures involving a 1-D scale, i.e., , with now a
prior on . A sufficient condition for to be log-concave
is obtained by requiring that the integrand above is log-concave
(thanks to the Prékopa-Leindler inequality), which means

is convex. For given , this may be checked by verifying posi-
tive-definiteness of the Hessian matrix of
for .

One has an even simpler statement for Gaussian mixtures,
which already appears to be new.

Corollary IX.8: Suppose the mixing distribution with density
on the positive real line is slightly stronger than log-concave,

in the sense that is convex. Writing for a
standard Gaussian on with density , let the random vector

, where is a scalar distributed according to ,
have the density . Then

Proof: One can write

since we are parametrizing using variance (rather than standard
deviation). Also, is convex as a function of

; indeed, the quadratic form induced by its Hessian
matrix when evaluated at is

. Combining this with the assumed log-concavity of , one
finds that the integrand above is log-concave, and hence, so is

(by the Prékopa-Leindler inequality). Then the first in-
equality of Corollary IX.8 follows from concavity of entropy,
while the second follows from Proposition I.2.

A limitation (perhaps unavoidable) of this result is that as di-
mension increases, the shape requirement on the prior be-
comes increasingly stringent.

X. DISCUSSION

A central result in our development was the identification
of the maximizer of Rényi entropy under log-concavity and
supremum norm constraints. We gave a number of probabilistic,
information theoretic and convex geometric motivations for
considering this entropy maximization problem.

There are some other works in which both log-concavity and
entropy appear, although they are only tangentially related to
the substance of this paper. Log-concavity plays a role in a
few other entropy bounding problems- see, for instance, Cover
and Zhang [23] and Yu [52]. Log-concavity (in the discrete
sense) also turns out to be relevant to the behavior of discrete
entropy; see Johnson [29] and [30] for examples. For instance,
Johnson [29] showed that the Poisson is maximum entropy
among all ultra-log-concave distributions on the non-negative
integers with fixed mean (ultra-log-concavity is a strengthening
of discrete log-concavity).

For completeness, let us also mention that a different max-
imum entropy characterization of 1-D generalized Pareto dis-
tributions was given by Bercher and Vignat [7]. However, their
characterization is rather different: in particular, they use Rényi
and Tsallis entropies rather than Shannon entropy, and also it
is not clear what the motivation is for the somewhat artificial
moment and normalization constraints they impose. While [7]
claims a connection to the Balkema-de Haans-Pickands theorem
for limiting distribution of excesses over a threshold, log-con-
cavity does not play a role in their development.

Our main goal in this paper was to better understand the
behavior of entropy for log-concave (and more generally, hyper-
bolic) probability measures, particularly as regards phenomena
that do not degrade in high dimensions. The information-the-
oretic perspective on convex geometry suggested in this paper
appears to be bearing fruit; for instance, in [13], we use some
of the results in this paper as one ingredient (among several) to
prove a “reverse entropy power inequality for convex measures”
analogous to Milman’s reverse Brunn-Minkowski inequality
[39]–[41], [45] for convex bodies.

We conclude with some open questions. First, the question of
characterizing the -concavity properties of infinitely divisible
laws using only knowledge of the characteristic function is an
interesting one, as discussed in Section IX-C. One also hopes
that Theorem I.3 can be improved to only require ; this
would immediately imply that many of the results in this paper
stated for -concave measures with (or their densities)
would have extended validity to general convex measures. And
finally, it would be nice to use the entropic formulation of the
hyperplane conjecture to improve the state-of-the-art partial re-
sults that exist.

APPENDIX

MULTIVARIATE PARETO DISTRIBUTION

There does not seem to be a canonical definition of a multi-
variate version for the Pareto distribution, although various ver-
sions appear to have been examined in the actuarial literature
(see, e.g., [2], [38], [51]). For our purposes, the distribution with
density defined in (6) is the relevant generalization. In this
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Appendix, we collect some simple observations about this mul-
tivariate Pareto family. Recall that

Lemma A.1: For any , the normalizing factor

is finite if and only if . Moreover, for

Proof: We prove the desired statement by induction. First

if
if

Now assume that the statement is true for , and observe
that

which is the required conclusion for .

In particular, is not a well defined density for , and
there is no Pareto distribution with such parameters.

Lemma A.2: For any and , the entropy of the
multivariate Pareto distribution is given by

Proof: If , then

where

With this notation, what we wish to prove is that

(27)

As in the proof of Lemma A.1, one can write the recursion

and it is a simple exercise using integration by parts to see that

(28)

Our goal is to prove the identity (27) by induction. To this end,
we compute using the induction hypothesis for

Recognizing the integral in the last expression as
and plugging in the evaluation (28), simple manipulations

give us (27). Observing that , the proof
of Lemma A.2 is complete.
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