
Journal of Mathematical Sciences, Vol. 179, No. 1, November, 2011

THE BRUNN-MINKOWSKI INEQUALITY IN SPACES
WITH BITRIANGULAR LAWS OF COMPOSITION

S. G. Bobkov

University of Minnesota
127 Vincent Hall, Minneapolis, MN, 55455, USA

bobko001@umn.edu UDC 517.9

Dedicated to N. V. Krylov on the occasion of his 70th birthday

The Brunn–Minkowski inequality and Prékopa–Leindler’s theorem are considered with

respect to bitriangular laws of composition on Euclidean spaces Rn. The result is illus-

trated by an example of the Heisenberg group Hn. Bibliography: 11 titles.

1 The Brunn–Minkowski Inequality

The classical Brunn–Minkowski inequality asserts that for all nonempty Borel measurable sets

A and B in Rn,

|A+B|1/n � |A|1/n + |B|1/n, (1.1)

where |A| stands for the n-dimensional volume (the Lebesgue measure) and A + B = {x + y :

x ∈ A, y ∈ B} is the Minkowski sum of the two sets (cf., for example, [1]).

In this note, we show that (1.1) has a natural generalization to certain summation-like

operations. We call a binary operation or composition

(x, y) = (x1, . . . , xn; y1, . . . , yn) → x⊕ y ∈ Rn (x, y ∈ Rn)

bitriangular if the coordinates of the “sum” have the form

(x⊕ y)k = xk + yk + ϕk−1(x1, . . . , xk−1; y1, . . . , yk−1) (1.2)

for some functions ϕk : Rk ×Rk → R, k = 1, . . . , n− 1 (with the convention that ϕ0 = 0). We

assume that these functions are continuous, which insures that the Minkowski “sum” A⊕ B =

{x⊕ y : x ∈ A, y ∈ B} is Lebesgue measurable for all Borel measurable A and B.

Note that such operations do not need be commutative, so the sets A⊕ B and B ⊕ A may

be different in general.

Theorem 1.1. Given a bitriangular operation in Rn, for all nonempty Borel sets A and B

in Rn

|A⊕B|1/n � |A|1/n + |B|1/n. (1.3)
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Although this kind of generalization might be of interest in itself, it is motivated in particular

by the example of the Heisenberg group Hn. This group is represented as the space Cn ×R ∼
R2n+1 with the (noncommutative) multiplication

[z1, . . . , zn, t].[z
′
1, . . . , z

′
n, t

′] = [z1 + z′1, . . . , zn + z′n, t+ t′ + ϕ],

where zi, z
′
i are complex, t, t′ are real, and

ϕ = 2
n∑

i=1

Im
(
ziz′i

)
.

Hence we deal here with the bitriangular law of composition in R2n+1 of the form (1.2) with

ϕ0 = · · · = ϕ2n−1 = 0 and ϕ2n = ϕ.

Corollary 1.2. For all nonempty Borel sets A and B in the Heisenberg group Hn

|A.B|1/(2n+1) � |A|1/(2n+1) + |B|1/(2n+1). (1.4)

Note that in analogy with the classical isoperimetric inequality, an isoperimetric problem

in Hn with respect to the Carnot–Carathéodory distance (or, an equivalent gauge distance)

suggests to consider a Brunn–Minkowski-type inequality

|A.B|1/Q � |A|1/Q + |B|1/Q (1.5)

for the homogeneous dimension Q = 2n+2 of Hn (which is stronger in comparison with (1.4)).

However, as shown by Monti [2], the inequality (1.5) cannot be true already for n = 1 (cf.

also [3]). Nevertheless, (1.4) does hold, although it does not seem to lead to an isoperimetric

inequality in Hn relating the size to the perimeter of sets.

Below (Section 2), first we recall a simple transportation argument leading to the Brunn–

Minkowski inequality (1.3) in the case of convex sets A and B. The general case, together with

one functional form of (1.3), is considered separately in Section 3.

2 Triangular Maps and Transportation Argument

Transference plans are a stardard tool to prove various geometric and analytic inequalities.

In 1950’s, Knothe [4] proposed to use triangular mappings to reach some generalizations of the

Brunn–Minkowski inequality. Let us recall and adapt the standard transportation argument to

the more general scheme of bitriangular maps.

A map T = (T1, . . . , Tn) : G → Rn defined in some region G ⊂ Rn is called triangular if for

any k = 1, . . . , n the kth coordinate of the map,

Tk = Tk(x1, . . . , xk), x = (x1, . . . , xn) ∈ G,

depends on the first k coordinates, only. Such maps can be constructed to transport any (regu-

larly behaving) probability measure to any other one, and we refer to [5, 6] for discussions and

detailed treatment. To avoid unessential technical moments, let us restrict ourselves to open,
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bounded convex sets A and B in Rn. Then there exists a unique continuous triangular map

T : A → B, which pushes forward the normalized Lebesgue measure on A to the normalized

Lebesgue measure on B, and such that every coordinate function Tk is increasing with respect to

the variable xk (while the remaining variables are fixed). Moreover, every Tk will be continuously

differentiable with respect to xk. In consequence, the map T satisfies the identity

n∏

k=1

∂Tk(x)

∂xk
=

|B|
|A| , x ∈ A.

A new map S(x) = x⊕ T (x) is also triangular and has coordinate functions

Sk(x) = xk + Tk(x) + ϕk−1(x1, . . . , xk−1;T1(x), . . . , Tk−1(x))

which are continuously differentiable and increasing with respect to xk’s. Hence, by the change

of the variable formula (cf. [5, Lemma 6.4] justifying this step),

|S(A)| =
∫

A

n∏

k=1

∂Sk(x)

∂xk
dx =

∫

A

n∏

k=1

(
1 +

∂Tk(x)

∂xk

)
dx �

∫

A

[
1 +

( n∏

k=1

∂Tk(x)

∂xk

)1/n]n
dx

=

∫

A

[
1 +

( |B|
|A|

)1/n]n
dx =

[
|A|1/n + |B|1/n

]n
.

Here, we made use of an elementary inequality for nonnegative reals

( n∏

k=1

(ak + bk)

)1/n

�
( n∏

k=1

ak

)1/n

+

( n∏

k=1

bk

)1/n

.

(Note the latter is a particular case of the Brunn–Minkowski inequality (1.1) for parallepipeds A

and B with sides ak and bk.) Now, since S(A) ⊂ A⊕B, we arrive at (1.3) for general (bounded)

convex bodies.

3 Generalization of the Prékopa–Leindler Theorem

Theorem 1.1 may be generalized from sets to functions similarly to the classical Prékopa–

Leindler theorem.

Theorem 3.1. Given t, s > 0, t+ s = 1, let u, v, w : Rn → [0,+∞) be measurable functions

satisfying

w(tx⊕ sy) � u(x)t v(y)s, x, y ∈ Rn. (3.1)

Then ∫
w �

(∫
u

)t(∫
v

)s

. (3.2)

In this statement, the underlying functions ϕk, defining the bitringular operation, are allowed

to depend on the parameters t, s (and the case ϕk = 0 returns us to the Prékopa–Leindler

theorem).
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In particular, the indicator functions u = 1A, v = 1B, w = 1tA⊕sB satisfy the hypothesis

(3.1), and then (3.2) yields

|tA⊕ sB| � |A|t |B|s. (3.3)

This is a “log-concave” variant of the Brunn–Minkowski inequality. Although formally (3.3)

is weaker in comparison with (1.3), the latter may be obtained from (3.3) by applying it to the

sets A′ = 1
α A, B′ = 1

β B with t = α/(α + β), s = β/(α + β), where α = |A|1/n, β = |B|1/n. In

that case, Theorem 3.1 should be used with the bitriangular operation corresponding to

ϕk(x; y) =
1

α+ β
ϕk((α+ β)x; (α+ β) y).

Then

tA′ ⊕ sB′ =
(

1

α+ β
A⊕ 1

α+ β
B

)
=

1

α+ β
(A⊕B),

where on the left-hand side and in the mid the binary operation is applied with the new functions

ϕk’s, while on the right-hand side, with original ϕk’s.

Hence, since |A′| = |B′| = 1, the inequality (3.3) with these sets and parameters turns into

(1.3).

Proof of Theorem 3.1. In dimension n = 1, Theorem 3.1 represents the usual one-

dimensional Prékopa–Leindler theorem [7]–[9]. A simple inductive proof of the multi-dimensional

case in the Prékopa–Leindle theorem is described in several books (cf., for example, [10, 11]),

and here we follow a standard argument with necessary modifications.

Thus, let n � 2. Assume that Theorem 3.1 is true for dimensions less than n. For fixed

vectors a = (x1, . . . , xn−1) ∈ Rn−1 and b = (y1, . . . , yn−1) ∈ Rn−1 consider the three functions

on the real line

u(xn) = u(a, xn), v(yn) = v(b, yn),

and

w(zn) = w(ta⊕ sb, zn + ϕn−1(ta, sb)),

where ta⊕ sb is defined in Rn−1 in the usual way for the collection ϕ0, . . . , ϕn−2.

Note that, by the very definition of the bitriangular operation, we always have the identity

t(a, xn)⊕ s(b, yn) = (ta⊕ sb, txn + syn + ϕn−1(ta, sb)).

Hence for all real xn, yn

w(txn + syn) = w(t(a, xn)⊕ s(b, yn)) � u(a, xn)
t v(b, yn)

s = u(xn)
t v(yn)

s,

where we have applied the hypothesis (3.1).

Thus, the triple (u, v, w) also satisfies the hypothesis (3.1) – in the one-dimensional case.

Using the equality
+∞∫

−∞
w(zn) dzn =

+∞∫

−∞
w(ta⊕ sb, zn) dzn,

we therefore obtain

+∞∫

−∞
w(ta⊕ sb, zn) dzn �

( +∞∫

−∞
u(a, xn) dxn

)t( +∞∫

−∞
v(b, yn) dyn

)s

.
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But this means that the new three functions on Rn−1

f(a) =

+∞∫

−∞
u(a, xn) dxn, g(b) =

+∞∫

−∞
v(b, yn) dyn, h(c) =

+∞∫

−∞
w(c, zn) dzn

satisfy (3.1) in dimension n − 1. It remains to apply the induction hypothesis to the triple

(f, g, h), and the desired conclusion (3.2) follows by the Fubini theorem.

Theeorem 3.1 and thus Theorem 1.1 are proved in full generality.
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