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Abstract—A new effective equipartition property for log-
concave distributions on high-dimensional Euclidean spaces is
described, and some applications are sketched.

I. INTRODUCTION

Let X = (X1, X2, . . .) be a stochastic process with each
Xi taking values on the real line R. Suppose that the joint
distribution of Xn = (X1, . . . , Xn) has a density f with
respect to either Lebesgue measure on Rn. We are interested
in the random variable

h̃(Xn) = − log f(Xn).

In the discrete case, the quantity h̃(Xn) (using f for the
probability mass function in this case, thought of as the
density with respect to counting measure on some discrete
subset of Rn) is essentially the number of bits needed to
represent X by a coding scheme that minimizes average
code length (cf. [24]), and therefore may be thought of as the
(random) information content of Xn. Such an interpretation
is not justified in the continuous case, but the quantity h̃(Xn)
remains of central interest in information theory, statistical
physics, and statistics, and so we will with some abuse of
terminology continue to call it the information content. Its
importance in information theory comes from the fact that
it is the building block for Pinsker’s information density; its
importance in statistical physics comes from the fact that it
represents (up to an additive constant involving the logarithm
of the partition function) the Hamiltonian or energy of a
physical system under a Gibbs measure; and its importance
in statistics comes from the fact that it represents the log-
likelihood function in the nonparametric inference problem
of density estimation.

The average value of the information content of X is the
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differential entropy. Indeed, the entropy of Xn is defined by

h(Xn) = −
∫
f(x) log f(x) dx = −E log f(Xn),

when it exists. If the limit

h(X) := lim
n→∞

h(Xn)

n

exists, it is called the entropy rate of the process X.
The Shannon-McMillan-Breiman theorem [24], [16], [8]

is a central result of information theory; indeed, an early
form of this result was called by McMillan the “fundamental
theorem of information theory” [16]. (McMillan also gave it
the pithy and expressive title of the “Asymptotic Equipar-
tition Property”.) It asserts that for any stationary, ergodic
process whose entropy rate exists, the information content
per coordinate converges almost surely to the entropy rate.
This version, and a generalization involving log likelihood
ratios with respect to a Markov process, is due independently
to Barron [2] and Orey [20]; the definitive version for
asymptotically mean stationary processes is due to [2], and
Algoet and Cover [1] give an elementary approach to it. The
theorem implies in particular that for purposes of coding
discrete data from ergodic sources, it is sufficient to consider
“typical sequences”, and that the entropy rate of the process
plays an essential role in characterizing fundamental limits
of compressing data from such sources.

Our main goal in this note is to present a result akin
to the Shannon-McMillan-Breiman theorem for log-concave
distributions, which need not arise as marginals of an asymp-
totically mean stationary process (the most general condition
under which such a theorem is known). Log-concavity is a
global restriction on the joint distribution of the process, just
like stationarity or ergodicity; however it is a shape restric-
tion as opposed to a restriction requiring certain symmetries.
In fact, instead of establishing a limiting result involving
convergence to an entropy rate (which may not necessarily
exist for a “log-concave process”)– we give, in the finite-
dimensional (i.e., finite sample size) setting, exponential



probability bounds quantifying how close the information
content per coordinate must be to its mean. In other words,
one may think of our result as a “non-asymptotic equiparti-
tion principle” (NEP). It is well known that for stationary,
ergodic processes, such probability bounds are impossible
to obtain in general (they can only be usually obtained in
the simplest of models such as processes with independent
and identically distributed components, Gaussian processes,
or certain classes of Markov processes).

For the convenience of the reader, let us recall the notion
of a log-concave density. A probability density function (or
simply “density”) f defined on the linear space Rn is said
to be log-concave if

f(αx+ (1− α)y) ≥ f(x)αf(y)1−α, (1)

for each x, y ∈ Rn and each 0 ≤ α ≤ 1. If f is log-concave,
we will also use the adjective “log-concave” for a random
variable X distributed according to f , and for the probability
distribution induced by it. Log concavity has been deeply
studied in probability, statistics, optimization and geometry.
Log-concave probability measures include a large variety
of distributions including the uniform distribution on any
compact, convex set, the exponential and Laplacian (double-
exponential) distributions, and of course any Gaussian.

Section II contains the main effective equipartition result.
This is interpreted in terms of typical sets in Section III.
Sections IV and V describe how our main result can be
used as a step in proving a reverse entropy power inequality,
which is a result at the interface between convex geometry
and information theory. Finally, in Section VI, we develop
a version of the equipartition result for the mutual informa-
tion density, and discuss some possible applications of this
to communications. Although several of the key technical
results described in this note have recently appeared in [3],
[4], [6], our purpose here is to provide an exposition and
elaboration of those results, and to discuss their potential
consequences for the communication and control communi-
ties.

II. THE EQUIPARTITION PROPERTY

Suppose X is a random vector taking values in Rn. The
quantity h̃(X) − h(X) is the centered information content,
and is a central object of interest in information theory. Note
that the distribution of the difference h̃(X)−h(X) is stable
under all affine transformations of the space, in fact,

h̃(TX)− h(TX) = h̃(X)− h(X)

for all invertible affine maps T : Rn → Rn.
If X = (X1, . . . , Xn) has i.i.d. components, then

h̃(X)− h(X) =

n∑
i=1

h̃(Xi)− h(Xi)

is a sum of i.i.d. random variables, so that a
√
n-

normalization yields a central limit theorem (Gaussian ap-
proximation) for the centered information content. In partic-
ular, in this case, it would not be surprising to find that

P

{
1√
n

∣∣h̃(X)− h(X)
∣∣ ≥ t}

decays exponentially or even has a Gaussian tail as t
increases, and indeed, such a concentration inequality can
be proved under appropriate assumptions by standard large
deviation techniques. In particular, when X is standard
(multivariate) normal, we have the explicit formula

h̃(X)− h(X) =

n∑
i=1

X2
i − 1

2
,

whose distribution is related to the chi-squared distribution.
Thus, for any Gaussian distribution, tight concentration
inequalities for the normalized and centered information
content may be derived by simple explicit calculation. This
was done by Cover and Pombra [9] as an ingredient in
studying the feedback capacity of time-varying additive
Gaussian noise channels.

For general random vectors X , there is no reason to expect
that the centered information content of X , when normalized,
should be concentrated around 0 with high probability.
Nonetheless, our main result is the somewhat surprising fact
that not only does such a concentration property hold for any
log-concave X , but it holds uniformly for all log-concave
random vectors X .

Theorem 1: Suppose X = (X1, . . . , Xn) is distributed
according to a log-concave density f on Rn. Then, for all
t > 0,

P

{
1

n

∣∣h̃(X)− h(X)
∣∣ ≥ t} ≤ 2 e−ct

√
n,

where c ≥ 1/16.

Once again we emphasize that this a uniform bound–
the decaying quantity on the right side depends only on
t and n, and not on the density f (as long as it is log-
concave). In particular, Theorem 1 can be considered as a
generalization of the Cover-Pombra result from the finite-
dimensional family of n-dimensional Gaussian distributions
to the infinite-dimensional family of n-dimensional log-
concave distributions. However, the constant 1/16 is not tight
and can be improved.

Observe that Theorem 1 can be rewritten (by setting s =
t
√
n) as

P

{
1√
n

∣∣h̃(X)− h(X)
∣∣ ≥ s} ≤ 2 e−s/16.

Comparing this with the i.i.d. and Gaussian cases mentioned
earlier, we see that the normalization (with respect to n) in



Theorem 1 is chosen correctly and cannot be improved for
the class of log-concave distributions.

The exponential decay with respect to t in Theorem 1
may be improved to Gaussian decay, but only on an interval
0 < t < O(1) rather than on the whole real line.

Theorem 2: Let X be a random vector in Rn with log-
concave density f . For any 0 ≤ t ≤ 2,

P

{
1

n
| log f(X)−E log f(X)| ≥ t

}
≤ 4e−ct

2n,

where c ≥ 1/16.

Observe that, together, Theorems 1 and 2 can be thought
of in analogy to the Bernstein inequality, since they express
Gaussian decay for small deviation parameter, and exponen-
tial decay when the deviation parameter gets large.

We outline the proof template for both Theorems 1 and 2
below (see [3] for details):
Step 1: First, a one-dimensional version is proved. If a
random variable X has a log-concave density f , then

Ee
1
2 | log f(X)−E log f(X)| < 4. (2)

The basic idea here is to use the explicit representation
of X as F−1(U), where U is uniformly distributed on
(0,1), and the concavity of f ◦ F−1 that follows from log-
concavity of f . Observe that this first step already yields,
by Markov’s inequality, a strong concentration inequality for
the information content of any one-dimensional log-concave
random variable.
Step 2: A highly non-trivial dimension reduction technique,
the Lovász-Simonovits localization lemma, can be used to
reduce the desired statement for Rn to a one-dimensional
statement. Unfortunately this one-dimensional statement is
not the same as inequality (2); however it can be decom-
posed into a part that depends on Step 1, and a separate
inequality that expresses the concentration of the function
log Y for Y drawn from a class of “strongly” log-concave
one-dimensional distributions.
Step 3: The concentration inequality for log Y mentioned at
the end of Step 2 is proved.

III. TYPICAL SETS FOR LOG-CONCAVE DISTRIBUTIONS

As suggested in the Introduction, Theorems 1 and 2 may
be interpreted as a non-asymptotic equipartition property
(NEP) for log-concave distributions. Define the class of
typical observables as consisting of all those x ∈ Rn such
that f(x) lies between

exp

[
− n

(
h(X)

n
+ ε

)]
and exp

[
− n

(
h(X)

n
− ε
)]

for some small fixed ε > 0. This subset of Rn is called the
“typical set” since the probability that X lies in this set is
close to 1 (by Theorem 1) when the dimension n is large.

Thus, for large but finite n, the distribution of X is effectively
the uniform distribution on the typical set.

Our NEP also implies that among all sets of high prob-
ability, the typical set has the least volume (this can be
seen in the standard way). However sometimes it is useful
to consider one-sided relaxations of the typical set, and in
the log-concave context, superlevel sets of the density are
especially interesting.

Proposition 1: Let X have log-concave density f on Rn,
and consider

A(λ) = {x ∈ Rn : f(x) > λ}

with λ = e−(h(X)+nε). Then A(λ) is a bounded, convex set
such that P{X ∈ A(λ)} = p ≈ 1 (quantified by Theorem 1).
Furthermore, the volume of the set A(λ) can be sandwiched
as follows:

p

‖f‖∞
≤ |A(λ)| ≤ 1

λ
,

where ‖f‖∞ is the essential supremum of f (which is finite
since f is log-concave).

Proof: The convexity and boundedness of A(λ) follow
immediately from the fact that f is a log-concave density.
For the volume upper bound, note that

1 ≥
∫
A

f(x) dx ≥ λ|A(λ)|,

while for the lower bound, note that

p ≤ µ(A(λ)) =

∫
A(λ)

f(x) dx ≤ |A(λ)| · ‖f‖∞.

Proposition 1 is exploited in a later section as a step in
proving a reverse entropy power inequality for log-concave
distributions. It also implies that the typical set itself has
nice properties– it is the “annulus” between two nested
convex sets, and its volume can be upper and lower bounded
explicitly in terms of simple parameters.

Observe that a well known concentration property of the
standard Gaussian distribution implies that a random vector
from this distribution lies with high probability in a thin
shell around the sphere of radius

√
n. The concentration of

random vectors with arbitrary log-concave distributions in
an annulus between nested convex sets may be seen as a
generalization of this fact.

So far, our discussion has focused on typical sets for a
log-concave distribution in high but fixed dimension. Let us
comment now on the case where the dimension is increasing.
This could happen either because one is looking at higher-
dimensional marginals of a discrete-time stochastic process,
or because it is natural to consider triangular arrays of
random vectors Xn (rather than just a single linear stream
of random variables). Unlike the usual AEP for ergodic
processes, where the typical set is determined by a constant



(the entropy rate), the typical set in our context is pegged to
the possibly moving target h(Xn)/n. Indeed, recall that the
typical set is

A(n)
ε = {x ∈ Rn :

∣∣∣∣− 1

n
log f(Xn)− h(Xn)

n

∣∣∣∣ ≤ ε},
and for fixed ε, Theorem 1 implies that P (A

(n)
ε ) → 1 as

n → ∞. In fact, it is easy to see that Theorem 1 actually
answers the finer (and natural) question: how fast can we
decrease ε with n while keeping A(n)

ε a typical set?

Corollary 1: Suppose that X = (X1, X2, . . .) is a stochas-
tic process with finite dimensional marginals that are abso-
lutely continuous and log-concave. If nε2n →∞, and εn ≤ 2,
then

P (A(n)
εn )→ 1

as n→∞.

Note that the condition of Corollary 1 is satisfied if εn =

Ω

(√
log logn

n

)
.

IV. M -POSITION FOR LOG-CONCAVE DISTRIBUTIONS

The so-called M -position of convex bodies was introduced
by Milman in connection with reverse forms of the Brunn-
Minkowski inequality [17]. By now several equivalent def-
initions of this important concept are known, and for our
purposes we choose one of them. We refer the interested
reader to the book by Pisier [21], which also contains
historical remarks.

For any convex body A in Rn, define

M(A) = sup
|E|=|A|

|A ∩ E|1/n

|A|1/n
,

where the supremum is over all ellipsoids E with volume
|E| = |A|. The main result of Milman may be stated as fol-
lows (it was originally stated for centrally symmetric convex
bodies, but the symmetry assumption can be removed):

Proposition 2: If A is a convex body in Rn, then with
some universal constant c > 0

M(A) ≥ c.

If |A∩E|1/n ≥ c |A|1/n with c being the universal constant
of Proposition 2, then E is called an M -ellipsoid or Milman’s
ellipsoid.

It follows from the definition that, for any convex body
A in Rn, one can find an affine volume preserving map
u : Rn → Rn such that u(A) has a multiple of the unit
centered Euclidean ball as an M -ellipsoid. In that case, one
says that u(A) is in M -position. Or equivalently, A is in
M -position, if

|A ∩D|1/n ≥ c |A|1/n, (1)

where D is a Euclidean ball with center at the origin, such
that |D| = |A|, and where c > 0 is universal.

The definition of M -position may naturally be extended
to probability distributions.

Definition 1: Let µ be a distribution on Rn. Then we say
that µ is in M -position with constant c > 0, if

µ(D)1/n ≥ c, (2)

where D is a Euclidean ball with center at the origin of
volume |D| = 1.

Correspondingly, Proposition 2 can be generalized to log-
concave measures. In order to do this, we need some nor-
malization of the density (corresponding to normalization by
volume for the convex body case). A relevant normalization
is to constrain the maximum of the density.

Proposition 3: Let µ be a probability measure on Rn with
log-concave density f such that ‖f‖∞ ≥ 1. Then there exists
an affine volume-preserving map u : Rn → Rn such that
the image µ̃ == µu−1 of the measure µ under the map u
satisfies

µ̃(D)1/n ≥ cM ,

where D is the Euclidean ball of volume one, and cM ∈
(0, 1) is a universal constant.

We say that any log-concave probability measure µ on
Rn with density f such that ‖f‖∞ = 1 may be “put
in M -position” (i.e., by applying a linear transformation
of determinant ±1 to the random vector) with a universal
constant.

Proof: We may assume that ‖f‖∞ = 1. By Proposi-
tion 1, for some constant c0 > 0, the essential support of µ,
i.e., the set Kf = {f(x) ≥ cn0} has measure µ(Kf ) ≥ 1/2.
Hence, again by Proposition 1, we have

1

2
≤ |Kf |1/n ≤ c−10 .

Put K ′f = 1
|Kf |1/n

Kf , which is a convex body with
volume |K ′f | = 1. One may assume that K ′f contains the
origin and is already in M -position (otherwise, apply to K ′f
a linear, volume preserving map u to put it in M -position
and consider the image u(µ) in place of µ). We claim that
if K ′f is in M -position, then µ is also in M -position.

Indeed, if D is the Euclidean ball with center at the origin
of volume |D| = 1, then (1) is satisfied for the set A = K ′f
with a universal constant c > 0. Since K ′f ⊂ 2Kf , we have
|K ′f ∩D| ≤ |2Kf ∩D| ≤ 2n|Kf ∩D|. Therefore,

µ(D) ≥
∫
Kf∩D

f(x) dx ≥ cn0 |Kf ∩D|

≥ cn0 · 2−n|K ′f ∩D| ≥
(
c0c

2

)n
.

Proposition 3 is proved.



V. A REVERSE EPI

Given a random vector X in Rn with density f(x), the
entropy power is defined by N (X) = e2h(X)/n. The entropy
power inequality, due to Shannon and Stam [24], [25], asserts
that

N (X + Y ) ≥ N (X) +N (Y ), (3)

for any two independent random vectors X and Y in Rn,
for which the entropy is defined.

The entropy power inequality may be formally strength-
ened by using the invariance of entropy under affine trans-
formations of determinant ±1, i.e., N (u(X)) = N (X)
whenever |det(u)| = 1. Specifically,

inf
u1,u2

N (u1(X) + u2(Y )) ≥ N (X) +N (Y ), (4)

where the maps ui : Rn → Rn range over all affine
entropy-preserving transformations. It turns out that in exact
analogy to the so-called reverse Brunn-Minkowski inequality
of Milman [17] (see also [18], [19], [21]), which is a
celebrated result in convex geometry, the inequality (4) can
be reversed with a constant not depending on dimension if
we restrict to log-concave distributions.

Theorem 3: If X and Y are independent random vectors
in Rn with log-concave densities, there exist affine entropy-
preserving maps ui : Rn → Rn such that

N
(
X̃ + Ỹ

)
≤ C (N (X) +N (Y )), (5)

where X̃ = u1(X), Ỹ = u2(Y ), and where C is a universal
constant.

Specializing to uniform distributions on convex bodies, we
can show (details in [6]) that Theorem 3 recovers Milman’s
reverse Brunn-Minkowski inequality [17]. Thus one may
think of Theorem 3 as completing in a reverse direction the
usual analogy (see, e.g., [10]) between the Brunn-Minkowski
and entropy power inequalities.

To prove Theorem 3, we need two lemmas of independent
interest. The first is an entropy comparison inequality: in
terms of the “amount of randomness” as measured by
entropy per coordinate, any log-concave random vector of
any dimension contains randomness that differs from that in
the normal random variable with the same maximal density
value by at most 1/2. For our purposes, it is convenient to
write the lemma in the following form (see [5], where the
lemma is proved and several applications of it are studied,
for why it is equivalent to the previous statement).

Lemma 1: If a random vector X in Rn has log-concave
density f , then

h(X) ≤ n+ log ‖f‖−1∞ .

The second lemma we need is the “submodularity” prop-
erty of the differential entropy with respect to convolutions,

which is rather elementary but was first explicitly observed
(to our knowledge) in [15].

Lemma 2: Given independent random vectors X , Y , Z in
Rn with absolutely continuous distributions,

h(X + Y + Z) + h(Z) ≤ h(X + Z) + h(Y + Z)

provided that all entropies are well-defined.

This inequality is not hard to prove; indeed, it reduces
to the data processing inequality for mutual information.
However, although it is simple, it has some interesting
applications. First, it can be used as an ingredient in proving
the reverse entropy power inequality, which is why we
discuss it here. Other applications are discussed in [15], [14],
[6], [13].

Proposition 4: Let X be distributed according to a log-
concave measure µ on Rn, which is in M -position with the
universal constant cM , and has density f such that ‖f‖∞ ≥
1. Then

h(X + Z) ≤ cAn,

where Z is uniformly distributed on the Euclidean ball D of
volume one, and cA = 1 − log cM ∈ (1,∞) is an absolute
constant.

Proof: The density p of S = X̃ + Z is given by

p(x) =

∫
D

f(x− z) dz = µ(D − x).

Since µ is in M -position, we have

p(0) = µ̃(D) ≥ cnM .

with the universal constant cM ∈ (0, 1). In particular,
log ‖p‖∞ ≥ log p(0) ≥ n log cM . Applying Lemma 1 to
the random vector S gives

h(S) ≤ n+ log ‖p‖−1∞ ≤ (1− log cM )n,

which completes the proof.

We can now give the proof of Theorem 3.

Proof: Suppose X and Y have log-concave densities
f and g respectively. Note that Theorem 3 is homogeneous
with respect to scaling the random variables by a constant,
i.e.,

N
(
aX̃ + aỸ

)
≤ C (N (aX) +N (aY ))

is the same as (5) since N (aX) = a2N(X). Thus by
choosing a appropriately, we can assume without loss of
generality that ‖f‖∞ ≥ 1 and ‖g‖∞ ≥ 1.

Let u1 and u2 be the affine volume-preserving transfor-
mations that put X and Y in M -position (that these exist is
the content of Proposition 3). Since h(Z) = 0 for Z being



uniformly distributed on the Euclidean ball D of unit volume,
Lemma 2 implies

h(X̃ + Ỹ ) ≤ h(X̃ + Ỹ + Z) ≤ h(X̃ + Z) + h(Ỹ + Z),

when X̃, Ỹ , Z are independent random vectors. Now, by
Proposition 4, since X̃ and Ỹ are in M -position and the
maximum values of their density functions are at least 1,
each of the terms on the right is bounded from above by
cAn. Thus h(X̃ + Ỹ ) ≤ 2cAn, so that N (X̃ + Ỹ ) ≤ e4cA .
This completes the proof.

The universal constant provided by the proof of Theorem 3
is not explicit, and it is not easy to even get bounds on
it. However, in the special case where X and Y are not
just independent but also identically distributed, an explicit
constant can be obtained by other means; see [7] for details.

VI. ON APPLICATIONS TO COMMUNICATIONS

Although we have discussed implications of our NEP for
typical sets, we have not explicitly discussed the applications
to compression and communication. Since we are in a
continuous setting, these arise through the implications for
the information density. The (mutual) information density
between X and Y is defined by

ι(Xn, Y n) =
1

n
log

fXn,Y n(Xn, Y n)

fXn(Xn) · fY n(Y n)
,

and plays a key role in channel coding.

Theorem 4: Suppose that (Xn, Y n) taking values in Rn×
Rn has a log-concave density fXn,Y n . Then, for any 0 <
t ≤ 6 and any n,

P{ |ι(Xn, Y n)−Eι(Xn, Y n)| ≥ t} ≤ 10e−c
′nt2 , (6)

where c′ ≥ 1/144 is a universal constant.

Proof: Let us first note that the triangle inequality allows
us to reduce the event of interest to events that we know how
to treat.

P{ |ι(Xn, Y n)−Eι(Xn, Y n)| ≥ t}
= P{ | log fXn,Y n(Xn, Y n)−E log fXn,Y n(Xn, Y n)

− [log fXn(Xn)−E log fXn(Xn)]

− [log fY n(Y n)−E log fY n(Y n)]| ≥ nt}
≤ P{E1 ∪ E2 ∪ E3},

where

E1 = {| log fXn,Y n(Xn, Y n)−
E log fXn,Y n(Xn, Y n)| ≥ nt/3},

E2 = {| log fXn(Xn)−E log fXn(Xn)| ≥ nt/3},
E3 = {| log fY n(Y n)−E log fY n(Y n)| ≥ nt/3}.

Consequently, by the union bound,

P{ |ι(Xn, Y n)−Eι(Xn, Y n)| ≥ t}
≤ P (E1) + P (E2) + P (E3)

≤ 4e−2cnt
2/9 + 4e−cnt

2/9 + 4e−cnt
2/9.

Observe that the bounds in the last step hold by 3 uses of
Theorem 1, each under the assumption that t/3 ≤ 2. More-
over, the first term 4e−2cnt

2/9 = (2e−cnt
2/9)2 ≤ 2e−cnt

2/9

provided 2e−cnt
2/9 ≤ 1, but the upper bound in (6) is in any

case trivial (greater than 1) if this does not hold. The bound
c′ ≥ 1/144 follows from the bound on c in Theorem 1.

The constants in Theorem 4 can be significantly improved
by refining the constants in Theorem 1 beyond what is proved
in [3]; this, however, requires more work and we will develop
it elsewhere.

Note that Eι(Xn, Y n) = 1
nI(Xn;Y n); so Theorem 4

expresses the concentration of the information density around
the mutual information per symbol. Such concentration in-
equalities for the information density are exactly the kinds of
inequalities required for non-asymptotic information theory
(i.e., fundamental limits of communication for finite block
lengths, without assumptions on memory etc.). Although
questions about fundamental limits of communications in
non-asymptotic settings have been studied for a long time
(e.g., through reliability functions in Gallager’s book [11]),
classically these questions were studied for very special
channels like the binary symmetric channel (with the notable
exception of a paper of Strassen [26] focusing on general
discrete memoryless channels) or the bounds obtained were
not very satisfactory. However, non-asymptotic information
theory has seen a rapid resurgence in recent years, spurred by
work of Polyanskiy, Poor and Verdú [22], [23] and Hayashi
[12] (see also Yang and Meng [28], [27]). We believe that
Theorem 4 has implications for non-asymptotic information
theory, and expect to develop these in future work.

Theorem 4 also generalizes a key technical result of Cover
and Pombra [9] from additive Gaussian channels to additive
channels with log-concave noise, provided we restrict to
log-concave input distributions. Indeed, suppose the output
sequence Y n is given by Xn + Zn, where Xn is an input
sequence with log-concave joint distribution, and the noise
Zn has a log-concave joint density (it would be natural to
assume that the noise distribution is also symmetric about 0,
i.e., even, but we do not need this for the current discussion).
Then the joint density of (Xn, Y n) is given by

fXn,Y n(xn, yn) = fXn(xn)fZn(yn − xn)

= exp{−[V1(xn) + V2(yn − xn)]},

where V1, V2 are convex functions. Since V1(xn) +V2(yn−
xn) is convex in the pair (xn, yn), the joint density fXn,Y n

is log-concave, and so Theorem 4 is applicable. Of course,
in principle, one will not immediately get capacity results
from this observation because of the restriction on the input



distribution (although note that considerable dependence
both in the input and noise sequences is still allowed by the
restriction). However, we expect that the above observations
will still be useful in studying capacity of channels with
time-varying log-concave additive noise with and without
feedback, and expect to develop these in future work as well.
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