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1 The Reversibility Problem for the Entropy Power
Inequality

Given a random vector X in R
n with density f , introduce the entropy functional (or

Shannon’s entropy)

h.X/ D �
Z
Rn

f .x/ log f .x/ dx;

and the entropy power
H.X/ D e2h.X/=n;

provided that the integral exists in the Lebesgue sense. For example, if X is
uniformly distributed in a convex body A � R

n, we have

h.X/ D log jAj; H.X/ D jAj2=n;

where jAj stands for the n-dimensional volume of A.
The entropy power inequality due to Shannon and Stam indicates that

H.X C Y / � H.X/ C H.Y /; (1)

for any two independent random vectors X and Y in R
n, for which the entropy is

defined ([27, 28], cf. also [14, 15, 29]). This is one of the fundamental results in
Information Theory, and it is of large interest to see how sharp (1) is.

The equality here is only achieved, when X and Y have normal distributions with
proportional covariance matrices. Note that the right-hand side is unchanged when
X and Y are replaced with affine volume-preserving transformation, that is, with
random vectors

QX D T1.X/; QY D T2.Y / .jdet T1j D jdet T2j D 1/: (2)

On the other hand, the entropy power H. QX C QY / essentially depends on the choice
of T1 and T2. Hence, it is reasonable to consider a formally improved variant of (1),

inf
T1;T2

H. QX C QY / � H.X/ C H.Y /; (3)

where the infimum is running over all affine maps T1; T2 W Rn ! R
n subject to (2).

(Note that one of these maps may be taken to be the identity operator.) Now, equality
in (3) is achieved, whenever X and Y have normal distributions with arbitrary
positive definite covariance matrices.

A natural question arises: When are both the sides of (3) of a similar order? For
example, within a given class of probability distributions (of X and Y ), one wonders
whether or not it is possible to reverse (3) to get

inf
T1;T2

H. QX C QY / � C.H.X/ C H.Y // (4)

with some constant C .
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The question is highly non-trivial already for the class of uniform distributions
on convex bodies, when it becomes to be equivalent (with a different constant) to
the inverse Brunn-Minkowski inequality

inf
T1;T2

ˇ̌ QA C QB ˇ̌1=n � C
�jAj1=n C jBj1=n

�
: (5)

Here QA C QB D fx C y W x 2 QA; y 2 QBg stands for the Minkowski sum of
the images QA D T1.A/, QB D T2.B/ of arbitrary convex bodies A and B in R

n.
To recover such an equivalence, one takes for X and Y independent random vectors
uniformly distributed in A and B . Although the distribution of X CY is not uniform
in A C B , there is a general entropy-volume relation

1

4
jA C Bj2=n � H.X C Y / � jA C Bj2=n;

which may also be applied to the images QA; QB and QX , QY (cf. [3]).
The inverse Brunn-Minkowski inequality (5) is indeed true and represents a deep

result in Convex Geometry discovered by V. D. Milman in the mid 1980s (cf.
[21–24]). It has connections with high dimensional phenomena, and we refer an
interested reader to [1, 12, 16, 17]. The questions concerning possible description
of the maps T1 and T2 and related isotropic properties of the normalized Gaussian
measures are discussed in [6].

Based on (5), and involving Berwald’s inequality in the form of C. Borell [9], the
inverse entropy power inequality (4) has been established recently [2,3] for the class
of all probability distributions having log-concave densities. Involving additionally
a general submodularity property of entropy [19], it turned out also possible to
consider more general densities of the form

f .x/ D V.x/�ˇ; x 2 R
n; (6)

where V are positive convex functions on R
n and ˇ � n is a given parameter. More

precisely, the following statement can be found in [3].

Theorem 1.1. Let X and Y be independent random vectors in R
n with densities

of the form (6) with ˇ � 2n C 1, ˇ � ˇ0n .ˇ0 > 2/. There exist linear volume
preserving maps Ti W Rn ! R

n such that

H
� QX C QY � � Cˇ0 .H.X/ C H.Y //; (7)

where QX D T1.X/, QY D T2.Y /, and where Cˇ0 is a constant, depending on ˇ0,
only.

The question of what maps T1 and T2 can be used in Theorem 1.1 is rather
interesting, but certainly the maps that put the distributions of X and Y in M -
position suffice (see [3] for terminology and discussion). In a more relaxed form, one
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needs to have in some sense “similar” positions for both distributions. For example,
when considering identically distributed random vectors, there is no need to appeal
in Theorem 1.1 to some (not very well understood) affine volume-preserving
transformations, since the distributions of X and Y have the same M -ellipsoid. In
other words, we have for X and Y drawn independently from the same distribution
(under the same assumption on form of density as Theorem 1.1) that

H.X C Y / � Cˇ0 .H.X/ C H.Y // D 2Cˇ0 H.X/: (8)

Since the distributions of X and �Y also have the same M -ellipsoid, it is also true
that

H.X � Y / � Cˇ0 .H.X/ C H.Y // D 2Cˇ0 H.X/: (9)

We strengthen this observation by providing a quantitative version with explicit
constants below (under, however, a convexity condition on the convolved measure).
Moreover, one can give a short and relatively elementary proof of it without
appealing to Theorem 1.1.

Theorem 1.2. Let X and Y be independent identically distributed random vectors
in R

n with finite entropy. Suppose that X � Y has a probability density function of
the form (6) with ˇ � maxfn C 1; ˇ0ng for some fixed ˇ0 > 1. Then

H.X � Y / � Dˇ0 H.X/

and
H.X C Y / � D2

ˇ0
H.X/;

where Dˇ0 D exp.
2ˇ0

ˇ0�1
/.

In the special case of X and Y being log-concave, a similar quantitative result
was recently obtained by [18] using a different approach.

Let us return to Theorem 1.1 and the class of distributions involved there. For
growing ˇ, the families (6) shrink and converge in the limit as ˇ ! C1 to
the family of log-concave densities which correspond to the class of log-concave
probability measures. Through inequalities of the Brunn-Minkowski-type, the latter
class was introduced by A. Prékopa [25], while the general case ˇ � n was studied
by C. Borell [10, 11], cf. also [5, 13]. In [10, 11] it was shown that probability
measures � onRn with densities (6) (and only they, once � is absolutely continuous)
satisfy the geometric inequality

�
�
tA C .1 � t/B

� � �
t�.A/� C .1 � t/�.B/�

�1=�
(10)

for all t 2 .0; 1/ and for all Borel measurable sets A; B � R
n, with negative power

� D � 1

ˇ � n
:
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Such �’s form the class of so-called �-concave measures. In this hierarchy the limit
case ˇ D n corresponds to � D �1 and describes the largest class of measures on
R

n, called convex, in which case (10) turns into

�.tA C .1 � t/B/ � minf�.A/; �.B/g:

This inequality is often viewed as the weakest convexity hypothesis about a given
measure �.

One may naturally wonder whether or not it is possible to relax the assumption on
the range of ˇ in (7)–(9), or even to remove any convexity hypotheses. In this note
we show that this is impossible already for the class of all one-dimensional convex
probability distributions. Note that in dimension one there are only two admissible
linear transformations, QX D X and QX D �X , so that one just wants to estimate
H.X C Y / or H.X � Y / from above in terms of H.X/. As a result, the following
statement demonstrates that Theorem 1.1 and its particular cases (8)–(9) are false
over the full class of convex measures.

Theorem 1.3. For any constant C , there is a convex probability distribution � on
the real line with a finite entropy, such that

minfH.X C Y /; H.X � Y /g � C H.X/;

where X and Y are independent random variables, distributed according to �.

A main reason for H.X C Y / and H.X � Y / to be much larger than H.X/ is
that the distributions of the sum X CY and the difference X �Y may lose convexity
properties, when the distribution � of X is not “sufficiently convex”. For example,
in terms of the convexity parameter � (instead of ˇ), the hypothesis of Theorem 1.1
is equivalent to

� � � 1

.ˇ0 � 1/n
.ˇ0 > 2/; � � � 1

n C 1
:

That is, for growing dimension n we require that � be sufficiently close to zero (or
the distributions of X and Y should be close to the class of log-concave measures).
These conditions ensure that the convolution of � with the uniform distribution on a
proper (specific) ellipsoid remains to be convex, and its convexity parameter can be
controled in terms of ˇ0 (a fact used in the proof of Theorem 1.1). However, even if
� is close to zero, one cannot guarantee that X C Y or X � Y would have convex
distributions.

We prove Theorem 1.2 in Sect. 2 and Theorem 1.3 in Sect. 3, and then conclude
in Sect. 4 with remarks on the relationship between Theorem 1.3 and recent results
about Cramer’s characterization of the normal law.
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2 A “Difference Measure” Inequality for Convex Measures

Given two convex bodies A and B in R
n, introduce A � B D fx � y W x 2 A; y 2

Bg. In particular, A � A is called the “difference body” of A. Note it is always
symmetric about the origin.

The Rogers-Shephard inequality [26] states that, for any convex body A � R
n,

jA � Aj � C n
2n jAj; (11)

where C k
n D nŠ

kŠ.n�k/Š
denote usual combinatorial coefficients. Observe that putting

the Brunn-Minkowski inequality and (11) together immediately yields that

2 � jA � Aj 1
n

jAj 1
n

� �
C n

2n

� 1
n < 4;

which constrains severely the volume radius of the difference body of A relative to
that of A itself. In analogy to the Rogers-Shephard inequality, we ask the following
question for entropy of convex measures.

Question. Let X and Y be independent random vectors in R
n, which are identically

distributed with density V �ˇ , with V positive convex, and ˇ � nC� . For what range
of � > 0 is it true that H.X � Y / � C�H.X/, for some constant C� depending
only on �?

Theorems 1.2 and 1.3 partially answer this question. To prove the former, we
need the following lemma about convex measures, proved in [4].

Lemma 2.1. Fix ˇ0 > 1. Assume a random vector X in R
n has a density f D V �ˇ ,

where V is a positive convex function on the supporting set. If ˇ � n C 1 and
ˇ � ˇ0n, then

log kf k�11 � h.X/ � cˇ0n C log kf k�11 ; (12)

where one can take for the constant cˇ0 D ˇ0

ˇ0�1
.

In other words, for sufficiently convex probability measures, the entropy may be
related to the L1-norm kf k1 D supx f .x/ of the density f (which is necessarily
finite). Observe that the left inequality in (12) is general: It trivially holds without
any convexity assumption. On the other hand, the right inequality is an asymptotic
version of a result from [4] about extremal role of the multidimensional Pareto
distributions.

Now, let f denote the density of the random variable W D X�Y in Theorem 1.2.
It is symmetric (even) and thus maximized at zero, by the convexity hypothesis.
Hence, by Lemma 2.1,

h.W / � log kf k�11 C cˇ0n D log f .0/�1 C cˇ0n:
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But, if p is the density of X , then f .0/ D R
Rn p.x/2 dx, and hence

log f .0/�1 D � log
Z
Rn

p.x/ � p.x/ dx �
Z
Rn

p.x/Œ� log p.x/� dx

by using Jensen’s inequality. Combining the above two displays immediately yields
the first part of Theorem 1.2.

To obtain the second part, we need the following lemma on the submodularity of
the entropy of sums proved in [19].

Lemma 2.2. Given independent random vectors X; Y; Z in R
n with absolutely

continuous distributions, we have

h.X C Y C Z/ C h.Z/ � h.X C Z/ C h.Y C Z/;

provided that all entropies are well-defined and finite.

Taking X , Y and �Z to be identically distributed, and using the monotonicity of
entropy (after adding an independent summand), we obtain

h.X C Y / C h.Z/ � h.X C Y C Z/ C h.Z/ � h.X C Z/ C h.Y C Z/

and hence

h.X C Y / C h.X/ � 2h.X � Y /:

Combining this bound with the first part of Theorem 1.2 immediately gives the
second part.

It would be more natural to state Theorem 1.2 under a shape condition on the
distribution of X rather than on that of X � Y , but for this we need to have
better understanding of the convexity parameter of the convolution of two �-concave
measures when � < 0.

Observe that in the log-concave case of Theorem 1.2 (which is the case of ˇ !
1, but can easily be directly derived in the same way without taking a limit), one
can impose only a condition on the distribution of X (rather than that of X�Y ) since
closedness under convolution is guaranteed by the Prékopa-Leindler inequality.

Corollary 2.3. Let X and Y be independent random vectors in R
n with log-

concave densities. Then

h.X � Y / � h.X/ C n;

h.X C Y / � h.X/ C 2n:

In particular, observe that putting the entropy power inequality (1) and
Corollary 2.3 together immediately yields that
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2 � H.X � Y /

H.X/
� e2;

which constrains severely the entropy power of the “difference measure” of �

relative to that of � itself.
A result similar to Corollary 2.3 (but with different constants) was recently

obtained in [18] using a different approach.

3 Proof of Theorem 1.3

Given a (large) parameter b > 1, let a random variable Xb have a truncated Pareto
distribution �, namely, with the density

f .x/ D 1

x log b
1f1<x<bg.x/:

By the construction, � is supported on a bounded interval .1; b/ and is convex.
First we are going to test the inequality

H.Xb C Yb/ � CH.Xb/ (13)

for growing b, where Yb is an independent copy of Xb. Note that

h.Xb/ D
Z b

1

f .x/ log.x log b/ dx

D log log b C 1

log b

Z b

1

log x

x
dx D log log b C 1

2
log b;

so H.Xb/ D b log2 b.
Now, let us compute the convolution of f with itself. The sum Xb C Yb takes

values in the interval .2; 2b/. Given 2 < x < 2b, we have

g.x/ D .f � f /.x/ D
Z C1

�1
f .x � y/f .y/ dy D 1

log2 b

Z ˇ

˛

dy

.x � y/y
;

where the limits of integration are determined to satisfy the constraints 1 < y < b,
1 < x � y < b. So,

˛ D max.1; x � b/; ˇ D min.b; x � 1/;

and using 1
.x�y/y

D 1
x

. 1
y

C 1
x�y

/, we find that
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g.x/ D 1

x log2 b

�
log.y/ � log.x � y/

ˇ̌ˇ

xD˛
D 1

x log2 b
log

y

x � y

ˇ̌
ˇ̌ˇ

xD˛

D 1

x log2 b

�
log

ˇ

x � ˇ
� log

˛

x � ˛

�
:

Note that x � ˛ D x � max.1; x � b/ D min.b; x � 1/ D ˇ. Hence,

g.x/ D 2

x log2 b
log

ˇ

˛
D 2

x log2 b
log

min.b; x � 1/

max.1; x � b/
:

Equivalently,

g.x/ D 2

x log2 b
log.x � 1/; for 2 < x < b C 1;

g.x/ D 2

x log2 b
log

b

x � b
; for b C 1 < x < 2b:

Now, on the second interval b C 1 < x < 2b, we have

g.x/ � 2

x log2 b
log b D 2

x log b
<

2

.b C 1/ log b
< 1;

where the last bound holds for b � e, for example. Similarly, on the first interval
2 < x < b C 1, using log.x � 1/ < log b, we get

g.x/ � 2

x log b
<

1

log b
� 1:

Thus, as soon as b � e, we have g � 1 on the support interval. From this,

h.Xb C Yb/ D
Z 2b

2

g.x/ log.1=g.x// dx �
Z b

2

g.x/ log.1=g.x// dx:

Next, using on the first interval the bound g.x/ � 2
x log b

� 1
x

, valid for b � e2, we
get for such values of b that

h.Xb C Yb/ �
Z b

2

g.x/ log x dx D 2

log2 b

Z b

2

log.x � 1/ log x

x
dx:

To further simplify, we may write x � 1 � x
2

, which gives
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Z b

2

log.x � 1/ log x

x
dx �

Z b

2

log2 x

x
dx � log 2

Z b

2

log x

x
dx

D 1

3

�
log3 b � log3 2

� � log 2

2

�
log2 b � log2 2

�

>
1

3
log3 b � log 2

2
log2 b:

Hence, h.Xb C Yb/ > 2
3

log b � log 2; and so

H.Xb C Yb/ >
1

4
b4=3 .b � e2/:

In particular,

H.Xb C Yb/

H.Xb/
>

b1=3

4 log2 b
! C1; as b ! C1:

Hence, the inequality (13) may not hold for large b with any prescribed value of C .
To test the second bound

H.Xb � Yb/ � CH.Xb/; (14)

one may use the previous construction. The random variable Xb � Yb can take any
value in the interval jxj < b � 1, where it is described by the density

h.x/ D
Z C1

�1
f .x C y/f .y/ dy D 1

log2 b

Z ˇ

˛

dy

.x C y/y
:

Here the limits of integration are determined to satisfy 1 < y < b and 1 < x C y <

b. So, assuming for simplicity that 0 < x < b � 1, the limits are

˛ D 1; ˇ D b � x:

Writing 1
.xCy/y

D 1
x

. 1
y

� 1
xCy

/, we find that

h.x/ D 1

x log2 b

�
log.y/ � log.x C y/

ˇ̌ˇ

xD˛
D 1

x log2 b
log

.b � x/.x C 1/

b
:

It should also be clear that

h.0/ D 1

log2 b

Z b

1

dy

y2
D 1 � 1

b

log2 b
:
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Using log .b�x/.xC1/

b
< log.x C 1/ < x, we obtain that h.x/ < 1

log2 b
� 1, for

b � e2.
In this range, since .b�x/.xC1/

b
< b, we also have that h.x/ � 1

x log b
� 1

x
. Hence,

in view of the symmetry of the distribution of Xb � Yb,

h.Xb � Yb/ D 2

Z b�1

0

h.x/ log.1=h.x// dx

� 2

Z b=2

0

h.x/ log x dx

D 2

log2 b

Z b=2

2

log x

x
log

.b � x/.x C 1/

b
dx:

But for 0 < x < b=2,

log
.b � x/.x C 1/

b
> log

x C 1

2
> log x � log 2;

so

h.Xb � Yb/ >
2

log2 b

Z b=2

2

log2 x � log 2 log x

x
dx

D 2

log2 b

�
1

3
.log3.b=2/ � log3 2/ � log 2

2
.log2.b=2/ � log2 2/

�

>
2

log2 b

�
1

3
log3.b=2/ � 1

2
log2.b=2/

�

� 2

3
log b:

Therefore, like on the previous step, H.Xb � Yb/ is bounded from below by a
function, which is equivalent to b4=3. Thus, for large b, the inequality (14) may
not hold either.

Theorem 1.3 is proved.

4 Remarks

For a random variable X having a density, consider the entropic distance from the
distribution of X to normality

D.X/ D h.Z/ � h.X/;
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where Z is a normal random variable with parameters EZ D EX , Var.Z/ D
Var.X/. This functional is well-defined for the class of all probability distributions
on the line with finite second moment, and in general 0 � D.X/ � C1.

The entropy power inequality implies that

D.X C Y / � �2
1

�2
1 C �2

2

D.X/ C �2
2

�2
1 C �2

2

D.X/

� max.D.X/; D.Y //; (15)

where �2
1 D Var.X/, �2

2 D Var.Y /.
In turn, if X and Y are identically distributed, then Theorem 1.3 reads as follows:

For any positive constant c, there exists a convex probability measure � on R with
X; Y independently distributed according to �, with

D.X ˙ Y / � D.X/ � c:

This may be viewed as a strengthened variant of (15). That is, in Theorem 1.3 we
needed to show that both D.X C Y / and D.X � Y / may be much smaller than
D.X/ in the additive sense. In particular, D.X/ has to be very large when c is large.
For example, in our construction of the previous section

EXb D b � 1

log b
; EX2

b D b2 � 1

2 log b
;

which yields

D.Xb/ � 3

2
log b; D.Xb C Yb/ � 4

3
log b;

as b ! C1.
In [7, 8] a slightly different question, raised by M. Kac and H. P. McKean [20]

(with the desire to quantify in terms of entropy the Cramer characterization of the
normal law), has been answered. Namely, it was shown that D.X C Y / may be
as small as we wish, while D.X/ is separated from zero. In the examples of [8],
D.X/ is of order 1, while for Theorem 1.3 it was necessary to use large values
for D.X/, arbitrarily close to infinity. In addition, the distributions in [7, 8] are not
convex.
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