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dγ(x)
dx

= 1
(2π)n/2

e−|x|2/2

with respect to the Lebesgue measure. (Here and in the sequel |x| stands for the Euclidean 
norm of a vector x ∈ Rn.) One of the basic results in the Gaussian Analysis is the 
celebrated logarithmic Sobolev inequality

ˆ
f log f dγ −

ˆ
f dγ log

ˆ
f dγ ≤ 1

2

ˆ |∇f |2
f

dγ, (1.1)

holding true for all positive smooth functions f on Rn with gradient ∇f . In this explicit 
form it was obtained in the work of L. Gross [22], initiating fruitful investigations around 
logarithmic Sobolev inequalities and their applications in different fields. See e.g. a survey 
by M. Ledoux [24] and the books [25,1] for a comprehensive account of such activities 
up to the end of 90s. One should mention that in an equivalent form – as a relation 
between the Shannon entropy and the Fisher information, (1.1) goes back to the work 
by A.J. Stam [35], see [1, Chapter 10].

The inequality (1.1) is homogeneous in f , so the restriction 
´
f dγ = 1 does not lose 

generality. It is sharp in the sense that the equality is attained, namely for all f(x) = el(x)

with arbitrary affine functions l on Rn (in which case the measures μ = fγ are still 
Gaussian). It is nevertheless of a certain interest to realize how large the difference 
between both sides of (1.1) is. This problem has many interesting aspects. For example, 
as was shown by E. Carlen in [11], which was perhaps a first address of the sharpness 
problem, for f = |u|2 with a smooth complex-valued u such that 

´
|u|2 dγ = 1, (1.1) may 

be strengthened to
ˆ

|u|2 log |u|2 dγ +
ˆ

|Wu|2 log |Wu|2 dγ ≤ 2
ˆ

|∇u|2 dγ,

where W denotes the Wiener transform of u. That is, a certain non-trivial functional 
may be added to the left-hand side of (1.1).

One may naturally wonder how to bound from below the deficit in (1.1), that is, the 
quantity

δ(f) = 1
2

ˆ |∇f |2
f

dγ −
[ ˆ

f log f dγ −
ˆ

f dγ log
ˆ

f dγ

]
,

in terms of more explicit, like distribution-dependent characteristics of f showing its 
closeness to the extremal functions el (when δ(f) is small). Recently, results of this type 
have been obtained by A. Cianchi, N. Fusco, F. Maggi and A. Pratelli [13] in their study 
of the closely related isoperimetric inequality for the Gaussian measure. The work by 
E. Mossel and J. Neeman [28] deals with dimension-free bounds for the deficit in one 
functional form of the Gaussian isoperimetric inequality appearing in [7]. See also the 
subsequent paper by R. Eldan [17] where almost tight two-sided robustness bounds have 
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been derived. In [19,34] the authors deal with quantitative Brunn–Minkowski inequality 
(which is related to the isoperimetric problem in Euclidean space), while bounds on the 
deficit in the Sobolev inequalities can be found in e.g. [20,16] and in the Gagliardo–
Nirenberg–Sobolev inequality in [12] (see also the references therein for more on the 
literature).

As for (1.1), one may also want to involve distance-like quantities between the mea-
sures μ = fγ and γ. This approach looks even more natural, when the logarithmic 
Sobolev inequality is treated as the relation between classical information-theoretic dis-
tances as

D(X|Z) ≤ 1
2 I(X|Z). (1.2)

To clarify this inequality, let us recall standard notations and definitions. If random 
vectors X and Z in Rn have distributions μ and ν with densities p and q, and μ is 
absolutely continuous with respect to ν, the relative entropy of μ with respect to ν is 
defined by

D(X|Z) = D(μ|ν) =
ˆ

p(x) log p(x)
q(x) dx.

Moreover, if p and q are smooth, one defines the relative Fisher information

I(X|Z) = I(μ|ν) =
ˆ ∣∣∣∣∇p(x)

p(x) − ∇q(x)
q(x)

∣∣∣∣
2

p(x) dx.

Both quantities are non-negative, and although non-symmetric in (μ, ν), they may be 
viewed as strong distances of μ to ν. This is already demonstrated by the well-known 
Pinsker inequality [30], connecting D with the total variation norm:

D(μ|ν) ≥ 1
2‖μ− ν‖2

TV.

In the sequel, we mainly consider the particular case where Z is standard normal, so 
that ν = γ in the above formulas. And in this case, as easy to see, for dμ = f dγ with ´
f dγ = 1, the logarithmic Sobolev inequality (1.1) turns exactly into (1.2).
The aim of this note is to develop several lower bounds on the deficit in this in-

equality, 1
2I(X|Z) −D(X|Z), by involving also transport metrics such as the quadratic 

Kantorovich distance (see e.g. [38])

W2(X,Z) = W2(μ, γ) = inf
π

(¨
|x− z|2 dπ(x, z)

)1/2

(where the infimum runs over all probability measures on Rn × Rn with marginals μ
and γ). More generally, one may consider the optimal transport cost
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T (X,Z) = T (μ, γ) = inf
π

¨
c(x− z) dπ(x, z)

for various “cost” functions c(x − z).
The metric W2 is of weak type in the sense that it metrizes the weak topology in 

the space of probability measures on Rn (under proper moment constraints). It may 
be connected with the relative entropy by virtue of M. Talagrand’s transport-entropy 
inequality

W2(X,Z)2 ≤ 2D(X|Z), (1.3)

cf. [36]. In view of (1.2), this also gives an a priori weaker transport-Fisher information 
inequality

W2(X,Z) ≤
√
I(X|Z). (1.4)

In formulations below, we use the non-negative convex function

Δ(t) = t− log(1 + t), t > −1,

and denote by Z a random vector in Rn with the standard normal law.

Theorem 1.1. For any random vector X in Rn with a smooth density, such that I(X|Z)
is finite,

I(X|Z) − 2D(X|Z) ≥ nΔ
(
I(X)
n

− 1
)
. (1.5)

Moreover,

I(X|Z) − 2D(X|Z) ≥
(√

I(X|Z) −W2(X,Z)
)2

+ nΔ
(
W2(X,Z)√
I(X|Z)

(
I(X)
n

− 1
))

. (1.6)

As is common,

I(X) =
ˆ |∇p(x)|2

p(x) dx

stands for the usual (non-relative) Fisher information. Thus, (1.5)–(1.6) represent certain 
sharpenings of the logarithmic Sobolev inequality. The lower bounds of the deficit in (1.5)
and (1.6) are not simply comparable. However, in the next section, we recall that (1.5) is a 
self-improvement of the logarithmic Sobolev inequality that obviously follows from (1.6).
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An interesting feature of the bound (1.6) is that, by removing the last term in it, 
we arrive at the Gaussian case in the so-called HWI inequality due to F. Otto and 
C. Villani [29],

D(X|Z) ≤ W2(X,Z)
√
I(X|Z) − 1

2W
2
2 (X,Z). (1.7)

As for (1.5), its main point is that, when E|X|2 ≤ n, then necessarily I(X) ≥ n, and 
moreover, one can use the lower bound

1
n
I(X) − 1 = 1

n
I(X|Z) − 1

n
E|X|2 + 1 ≥ 1

n
I(X|Z).

Since Δ(t) is increasing for t ≥ 0, (1.5) is then simplified to

I(X|Z) − 2D(X|Z) ≥ nΔ
(

1
n
I(X|Z)

)
. (1.8)

In fact, this estimate is rather elementary in that it surprisingly follows from the log-
arithmic Sobolev inequality itself by virtue of rescaling (as will be explained later on). 
Here, let us only stress that the right-hand side of (1.8) can further be bounded from 
below. For example, by (1.2)–(1.3), we have

I(X|Z) − 2D(X|Z) ≥ nΔ
(

2
n
D(X,Z)

)
≥ nΔ

(
1
n
W 2

2 (X,Z)
)
.

But, 1
nW

2
2 (X, Z) ≤ 1

nE|X − Z|2 ≤ 4, and using Δ(t) ∼ t2

2 for small t, the above yields 
a simpler bound.

Corollary 1.2. For any random vector X in Rn with a smooth density and such that 
E|X|2 ≤ n, we have

I(X|Z) − 2D(X|Z) ≥ c

n
W 4

2 (X,Z), (1.9)

up to an absolute constant c > 0.

Remark. Dimensional refinements of the HWI inequality (1.7) similar to (1.6) were re-
cently considered by several authors. For instance, F.-Y. Wang obtained in [39] some 
HWI type inequalities involving the dimension and the quadratic Kantorovich distance 
under the assumption that the reference measure enjoys some curvature dimension con-
dition CD(−K, N) with K ≥ 0 and N ≥ 0 (see [3] for the definition). See also the recent 
paper [18] for dimensional variants of the HWI inequality in an abstract metric space 
framework. The standard Gaussian measure does not enter directly the framework of [39]
(or [18]), but we believe that it might be possible to use similar semigroup arguments 
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to derive (1.6). In the same spirit, D. Bakry, F. Bolley and I. Gentil [2] used semigroup 
techniques to prove a dimensional reinforcement of Talagrand’s transport-entropy in-
equality. Finally, let us mention that G. Toscani also obtained in [37] a bound similar to 
(1.9) but involving the total variation distance instead of the W2 distance.

Returning to (1.9), we note that, after a certain recentering of X, one may give some 
refinement over this bound, especially when D(X|Z) is small. Given a random vector X in 
Rn with finite absolute moment, define the recentered random vector X̄ = (X̄1, . . . , X̄n)
by putting X̄1 = X1 − EX1 and

X̄k = Xk − E (Xk|X1, . . . , Xk−1), k ≥ 2,

where we use standard notations for the conditional expectations.

Theorem 1.3. For any random vector X in Rn with a smooth density, such that I(X|Z)
is finite, the deficit in (1.2) satisfies

1
2I(X|Z) −D(X|Z) ≥ c

T 2(X̄, Z)
D(X̄|Z)

. (1.10)

Here the optimal transport cost T corresponds to the cost function Δ(|x − z|), c is a 
positive absolute constant and one uses the convention 0/0 = 0 in the right hand side.

In particular, in dimension one, if a random vector X has mean zero, we get that

1
2I(X|Z) −D(X|Z) ≥ c

T 2(X,Z)
D(X|Z) . (1.11)

The bound (1.10) allows one to recognize the cases of equality in (1.2) – this is only 
possible when the random vector X is a translation of the standard random vector Z
(an observation of E. Carlen [11] who used a different proof). The argument is sketched 
in Appendix C.

It is worthwhile noting that the transport cost T of Theorem 1.3 already appeared 
in the literature, cf. e.g. [8] or [5]. In particular, it was shown in [8] that this transport 
cost can be used to give an alternative representation of the Poincaré inequality. In fact, 
it may be connected with the classical Kantorovich transport distance W1 based on the 
cost function c(x, z) = |x −z|. More precisely, due to the convexity of Δ, there are simple 
bounds

W1(X,Z) ≥ T (X,Z) ≥ Δ
(
W1(X,Z)

)
∼ min

{
W1(X,Z),W 2

1 (X,Z)
}
.

Hence, if D(X̄|Z) ≤ 1, then according to (1.3), W 2
1 (X, Z) ≤ W 2

2 (X, Z) ≤ 2, and (1.10)
is simplified to
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1
2I(X|Z) −D(X|Z) ≥ c′

W 4
1 (X̄, Z)

D(X̄|Z)
, (1.12)

for some other absolute constant c′.
In connection with such bounds, let us mention a recent preprint by E. Indrei and 

D. Marcon [23], which we learned about while the current work was in progress. For 
a C2-smooth function V on Rn, let us denote by V ′′(x) the matrix of second partial 
derivatives of V at the point x. We use comparison of symmetric matrices in the usual 
matrix sense and denote by In the identity n × n matrix.

It is proved in [23] (Theorem 1.1 and Corollary 1.2) that, if a random vector X on 
Rn has a smooth density p = e−V satisfying εIn ≤ V ′′ ≤ M In (0 < ε < M), then

1
2I(X|Z) −D(X|Z) ≥ cW 2

2 (X − EX,Z) (1.13)

with some constants c = c(ε, M). In certain cases it is somewhat stronger than (1.11). 
We will show that a slight adaptation of our proof of (1.11) leads to a bound similar to 
(1.13).

Theorem 1.4. Let X be a random vector in Rn with a smooth density p = e−V with 
respect to Lebesgue measure such that V ′′ ≥ εIn, for some ε > 0. Then, the deficit in 
(1.2) satisfies

1
2I(X|Z) −D(X|Z) ≥ cmin(1, ε)W 2

2 (X̄, Z), (1.14)

for some absolute constant c.

Note that Theorem 1.4 holds under less restrictive assumptions on p than the re-
sult from [23]. In particular, in dimension 1, we see that the constant c in (1.13)
can be taken independent on M . In higher dimensions however, it is not clear how 
to compare W2(X̄, Z) and W2(X − EX, Z) in general. One favorable case is, for in-
stance, when the distribution of X is unconditional (i.e., when its density p satisfies 
p(x) = p(ε1x1, . . . , εnxn), for all x ∈ Rn and all εi = ±1). In this case, EX = 0 and 
X̄ = X, and thus (1.14) reduces to (1.13) with a constant c independent on M .

Let us mention that in Theorem 1.3 of [23], the assumption V ′′ ≤ M In can be relaxed 
into an integrability condition of the form 

´
‖V ′′‖r dx ≤ M , for some r > 1, but only at 

the expense of a constant c depending on the dimension n and of an exponent greater 
than 2 in the right-hand side of (1.13).

Finally, let us conclude this introduction by showing optimality of the bounds (1.11), 
(1.12), (1.14) for mean zero Gaussian random vectors with variance close to 1. An easy 
calculation shows that, if Z is a standard Gaussian random vector in Rn, then for any 
σ > 0,



S.G. Bobkov et al. / Journal of Functional Analysis 267 (2014) 4110–4138 4117
D(σZ|Z) = n

2
((
σ2 − 1

)
− 2 log σ

)
, I(σZ|Z) = nσ2

(
1
σ2 − 1

)2

,

so that

1
2I(X|Z) −D(X|Z) = n

2

(
1
σ2 − 1 + 2 log σ

)
∼ n(σ − 1)2, as σ → 1.

On the other hand,

W 2
2 (σZ,Z) = n(σ − 1)2, W1(σZ,Z) = |σ − 1|E|Z| 	 |σ − 1|

√
n,

and thus the three quantities W 2
2 (σZ, Z), T 2(σZ, Z)/D(σZ|Z) and W 4

1 (σZ, Z)/
D(σZ|Z) are all of the same order n(σ − 1)2, when σ goes to 1.

The paper is organized in the following way. In Section 2 we recall Stam’s formulation 
of the logarithmic Sobolev inequality in the form of an “isoperimetric inequality for 
entropies” and discuss the involved improved variants of (1.1). Theorem 1.1 is proved in 
Section 3. In Section 4 we consider sharpened transport-entropy inequalities in dimension 
one, which are used to derive bounds on the deficit like those in (1.11)–(1.14). For general 
dimensions Theorems 1.3 and 1.4 are proved in Section 5. For the reader’s convenience 
and so as to get a more self-contained exposition, we move to Appendices A, B and C
several known results and arguments.

2. Self-improvement of the logarithmic Sobolev inequality

To start with, let us return to the history and remind the reader Stam’s information-
theoretic formulation of the logarithmic Sobolev inequality. As a base for the derivation, 
one may take (1.2) and rewrite it in terms of the Fisher information I(X) and the 
(Shannon) entropy

h(X) = −
ˆ

p(x) log p(x) dx,

where X is a random vector in Rn with density p. Here the integral is well-defined, as 
long as X has finite second moment. Introduce also the entropy power

N(X) = exp
{
2h(X)/n

}
,

which is a homogeneous functional of order 2. The basic connections between the relative 
and non-relative information quantities are given by

D(X|Z) = h(Z) − h(X), I(X|Z) = I(X) − I(Z),

where Z has a normal distribution, and provided that E|X|2 = E|Z|2.
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More generally, assuming that Z is standard normal and E|X|2 < ∞, the first above 
equality should be replaced with

D(X|Z) = −h(X) + E
(
n

2 log(2π) + |X|2
2

)
,

while, as was mentioned before, under mild regularity assumptions on p,

I(X|Z) = I(X) + E|X|2 − 2n.

Inserting these expressions into the inequality (1.2), the second moment is canceled, 
and (1.2) becomes

I(X) + 2h(X) ≥ 2n + n log(2π).

However, this inequality is not homogeneous in X. So, one may apply it to λX in place 
of X with arbitrary λ > 0 and then optimize. The function

v(λ) = I(λX) + 2h(λX) = I(X)
λ2 + n log λ2 + 2h(X)

is minimized for λ2 = I(X)/n, and at this point the inequality becomes:

Theorem 2.1. (See [35].) If a random vector X in Rn has a smooth density and finite 
second moment, then

I(X)N(X)
2πe ≥ n. (2.1)

This relation was first obtained by Stam and is sometimes referred to as the isoperi-
metric inequality for entropies, cf. e.g. [15]. Stam’s original argument is based on the 
general entropy power inequality

N(X + Y ) ≥ N(X) + N(Y ), (2.2)

which holds for all independent random vectors X and Y in Rn with finite second 
moments (so that the involved entropies do exist, cf. also [6,27]). Then, (2.1) can be 
obtained by taking Y =

√
tZ with Z having a standard normal law and combining (2.2)

with the de Bruijn identity

d

dt
h(X +

√
tZ) = 1

2I(X +
√
tZ) (t > 0). (2.3)

Note that in the derivation (1.2) ⇒ (2.1) the argument may easily be reversed, so 
these inequalities are in fact equivalent (as noticed by E. Carlen [11]). On the other 
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hand, the isoperimetric inequality for entropies can be viewed as a certain sharpening of 
(1.1)–(1.2). Indeed, let us rewrite (2.1) explicitly as

ˆ
p(x) log p(x) dx ≤ n

2 log
(

1
2πen

ˆ |∇p(x)|2
p(x) dx

)
. (2.4)

It is also called an optimal Euclidean logarithmic Sobolev inequality; cf. [4] for a detail 
discussion including deep connections with dimensional lower estimates on heat kernel 
measures. In terms of the density f(x) =

√
2πex2/2p(x) of X with respect to γ we have

ˆ
p(x) log p(x) dx = n

2 log 1
2π − 1

2

ˆ
|x|2f(x) dγ(x) +

ˆ
f log f dγ,

while
ˆ |∇p(x)|2

p(x) dx =
ˆ |∇f(x)|2

f(x) dγ(x) −
ˆ

|x|2f(x) dγ(x) + 2n.

Inserting these two equalities in (2.4), we arrive at the following reformulation of Theo-
rem 2.1.

Corollary 2.2. For any positive smooth function f on Rn such that 
´
f dγ = 1, putting 

b = 1
n

´
|x|2f(x) dγ(x), we have

ˆ
f log f dγ ≤ n

2 log
(

1
n

ˆ |∇f |2
f

dγ + (2 − b)
)

+ n

2 (b− 1), (2.5)

which is exactly (1.5). In particular, if b ≤ 1,

ˆ
f log f dγ ≤ n

2 log
(

1
n

ˆ |∇f |2
f

dγ + 1
)
. (2.6)

An application of log t ≤ t −1 on the right-hand side of (2.5) returns us to the original 
logarithmic Sobolev inequality (1.1). It is in this sense that inequality (2.5) is stronger, 
although it was derived from (1.1). The point of self-improvement is that the log-value 
of

I =
ˆ |∇f |2

f
dγ

may be much smaller than the integral itself. This can be used, for example, in bounding 
the deficit δ(f) in (1.1). Indeed, when b ≤ 1, (2.6) yields

2δ(f) ≥ I − n log
(

1
I + 1

)
.

n
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That is, using again the function Δ(t) = t − log(t + 1), we have

2δ(f) ≥ nΔ
(

1
n

ˆ |∇f |2
f

dγ

)
.

But this is exactly the information-theoretic bound (1.8), mentioned in Section 1 as a 
direct consequence of (1.5).

As the function Δ naturally appears in many related inequalities, let us collect to-
gether a few elementary bounds that will be needed in the sequel.

Lemma 2.3. We have:

a) Δ(ct) ≥ min(c, c2)Δ(t), whenever c, t ≥ 0;
b) Δ(t) ≥ 1

2 t
2, for all −1 < t ≤ 0;

c) Δ(t) ≥ Δ(a)
a2 t2, for all 0 ≤ t ≤ a (a > 0);

d) (1 − log 2) min{t, t2} ≤ Δ(t) ≤ t, for all t ≥ 0.

Moreover, for any random variable ξ ≥ 0,

(1 − log 2) min
{
Eξ, (Eξ)2

}
≤ EΔ(ξ) ≤ Eξ.

Proof. a) In case 0 ≤ c ≤ 1, the required inequality follows from the representation

Δ(ct) =
ctˆ

0

Δ′(s) ds =
ctˆ

0

s

1 + s
ds = c2

tˆ

0

u

1 + cu
du.

In case c ≥ 1, it becomes log(1 + ct) ≤ c log(1 + t), which is obvious.
b) This bound immediately follows from the Taylor expansion for the function 

− log(1 − s).
c) It is easy to check that the function Δ(

√
x) is concave in x ≥ 0. Hence, the optimal 

value of the constant c in Δ(t) ≥ ct2 on the interval [0, a] corresponds to the endpoint 
t = a.

d) For t ≥ 1, the first inequality becomes ct ≤ t − log(1 + t), where c = 1 − log 2. Both 
sides are equal at t = 1, and we have inequality for the derivatives at this point. Hence, 
it holds for all t ≥ 1. For the interval 0 ≤ t ≤ 1, the inequality Δ(t) ≥ ct2 is given in c).

Finally, an application of Jensen’s inequality with the convex function Δ together 
with Δ(ξ) ≤ ξ leads to the last bounds of the lemma. �
3. HWI inequality and its sharpening

We now turn to the remarkable HWI inequality of F. Otto and C. Villani and state 
it in full generality. Assume that the probability measure ν on Rn has density
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dν(x)
dx

= e−V (x)

with a twice continuously differentiable V : Rn → R.

Theorem 3.1. (See [29].) Assume that V ′′(x) ≥ κIn for all x ∈ Rn with some κ ∈ R. 
Then, for any probability measure μ on Rn with finite second moment,

D(μ|ν) ≤ W2(μ|ν)
√

I(μ|ν) − κ

2W
2
2 (μ, ν). (3.1)

We refer to [14] for a simple proof of (3.1) based on optimal transport.
This inequality connects together all three important distances: the relative entropy 

(which sometimes is denoted by H), the relative Fisher information I, and the quadratic 
transport distance W2. It may equivalently be written as

D(μ|ν) ≤ 1
2εI(μ|ν) + ε− κ

2 W 2
2 (μ, ν) (3.2)

with an arbitrary ε > 0. Taking here ε = κ, one gets

D(μ|ν) ≤ 1
2κI(μ|ν). (3.3)

If ν = γ, we arrive in (3.3) at the logarithmic Sobolev inequality (1.1) for the Gaussian 
measure, and thus the HWI inequality represents its certain refinement. In particular, 
(3.1) may potentially be used in the study of the deficit in (1.1), as is pointed in Theo-
rem 1.1.

In the proof of the latter, we will use two results. The following lemma, reversing the 
transport-entropy inequality, may be found in the survey by Raginsky and Sason [33], 
Lemma 15. It is due to Y. Wu [40] who used it to prove a weak version of the Gaussian 
HWI inequality (without the curvature term −1

2W
2
2 (X, Z) appearing in (1.7)). The proof 

of Lemma 3.2 is reproduced in Appendix A.
For a random vector X in Rn with finite second moment, put

Xt = X +
√
tZ (t ≥ 0),

where Z is a standard normal random vector in Rn, independent of X.

Lemma 3.2. (See [40].) Given random vectors X and Y in Rn with finite second mo-
ments, for all t > 0,

D(Xt|Yt) ≤
1
2tW

2
2 (X,Y ).

We will also need a convexity property of the Fisher information in the form of the 
Fisher information inequality. As a full analog of the entropy power inequality (2.2), it 
was apparently first mentioned by Stam [35].
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Lemma 3.3. Given independent random vectors X and Y in Rn with smooth densities,

1
I(X + Y ) ≥ 1

I(X) + 1
I(Y ) . (3.4)

Proof of Theorem 1.1. Let Z be standard normal, and let the distribution of X not be 
a translation of γ (in which case both sides of (1.5) and of (1.6) are vanishing).

We recall that, if Y is a normal random vector with mean zero and covariance matrix 
σ2In, then

D(X|Y ) = h(Y ) − h(X) + 1
2σ2

(
E|X|2 − E|Y |2

)
.

In particular,

D(X|Z) = h(Z) − h(X) + 1
2
(
E|X|2 − E|Z|2

)
,

where E|Z|2 = n. Using de-Bruijn’s identity (2.3), d
dth(Xt) = 1

2I(Xt), we therefore 
obtain that, for all t > 0,

D(Xt|Zt) = h(Zt) − h(Xt) + 1
2(1 + t)

(
E|Xt|2 − E|Zt|2

)
= h(Zt) − h(Xt) + 1

2(1 + t)
(
E|X|2 − E|Z|2

)

=
(
h(Z) − h(X)

)
+ 1

2

tˆ

0

(
I(Zτ ) − I(Xτ )

)
dτ + 1

2(1 + t)
(
E|X|2 − E|Z|2

)

= D(X|Z) + 1
2

tˆ

0

(
I(Zτ ) − I(Xτ )

)
dτ − t

2(1 + t)
(
E|X|2 − E|Z|2

)
.

Equivalently,

D(X|Z) = D(Xt|Zt) + 1
2

tˆ

0

(
I(Xτ ) − I(Zτ )

)
dτ

+ t

2(1 + t)
(
E|X|2 − E|Z|2

)
. (3.5)

In order to estimate from above the last integral, we apply Lemma 3.3 to the couple 
(X, 

√
τZ), which gives

I(Xτ ) ≤
1

1 + 1√
= nI(X)

n + τI(X) .

I(X) I( τZ)



S.G. Bobkov et al. / Journal of Functional Analysis 267 (2014) 4110–4138 4123
Inserting also I(Zτ ) = n
1+τ , we get

tˆ

0

(
I(Xτ ) − I(Zτ )

)
dτ ≤

tˆ

0

(
nI(X)

n + τI(X) − n

1 + τ

)
dτ

= n

2 log n + tI(X)
n(1 + t) .

Thus, from (3.5),

D(X|Z) ≤ D(Xt|Zt) + n

2 log n + tI(X)
n(1 + t) + t

2(1 + t)
(
E|X|2 − n

)
.

Furthermore, an application of Lemma 3.2 together with the identity

E|X|2 − n = I(X|Z) − I(X) + n

yields

D(X|Z) ≤ 1
2tW

2
2 (X,Z) + n

2 log n + tI(X)
n(1 + t)

+ t

2(1 + t)
(
I(X|Z) − I(X) + n

)
. (3.6)

As t goes to infinity in (3.6), we get in the limit

D(X|Z) ≤ 1
2I(X|Z) − n

2 Δ
(
I(X)
n

− 1
)
,

which is exactly the required inequality (1.5) of Theorem 1.1.
As for (1.6), let us restate (3.6) as the property that the deficit I(X|Z) − 2D(X|Z) is 

bounded from below by

I(X|Z) − 1
t
W 2

2 (X,Z) − n log n + tI(X)
n(1 + t) − t

1 + t

(
I(X|Z) − I(X) + n

)
. (3.7)

Assuming that X is not normal, we end the proof by choosing the value

t = W2(X,Z)√
I(X|Z) −W2(X,Z)

, (3.8)

which is well-defined and positive. Indeed, by the assumption that I(X|Z) is finite, 
W2(X, Z) is finite as well (according to the inequality (1.4), for example). Moreover, the 
case where 

√
I(X|Z) = W2(X, Z) is impossible, since then 2D(X|Z) = I(X|Z). But the 



4124 S.G. Bobkov et al. / Journal of Functional Analysis 267 (2014) 4110–4138
latter is only possible, when the distribution of X represents a translation of γ, by the 
result of E. Carlen on the equality cases in (1.1) (cf. also Appendix C).

Putting for short W = W2(X, Z), I = I(X|Z), I0 = I(X), we finally note that the 
expression (3.7) with the value of t specified in (3.8) turns into

I −W (
√
I −W ) − n log

1 + W√
I−W

I0
n

√
I√

I−W

− W√
I
(I − I0 + n)

= (
√
I −W )2 − n log

(
1 + W√

I

(
I0
n

− 1
))

+ n
W√
I

(
I0
n

− 1
)

= (
√
I −W )2 + nΔ

(
W√
I

(
I0
n

− 1
))

. �

4. Sharpened transport-entropy inequalities on the line

Nowadays, Talagrand’s transport-entropy inequality (1.2),

1
2W

2
2 (μ, γ) ≤ D(μ|γ), (4.1)

has many proofs (cf. e.g. [9]). In the one dimensional case it admits the following refine-
ment, which is due to F. Barthe and A. Kolesnikov.

Theorem 4.1. (See [5].) For any probability measure μ on the real line with finite second 
moment, having the mean or median at the origin,

1
2W

2
2 (μ, γ) + 1

4T
′(μ, γ) ≤ D(μ|γ), (4.2)

where the optimal transport cost T ′ is based on the cost function c′(x − z) = Δ( |x−z|√
2π ).

It is also shown in [5] that the constant 1
4 may be replaced with 1 under the median 

assumption. Anyhow, the deficit in (4.1) can be bounded in terms of the transport 
distance T which represents a slight weakening of W2 (since the function Δ(t) = t −
log(t + 1) is almost quadratic near zero).

In [5], the reinforced transport inequality above was only stated for probability mea-
sures with median at 0, but the argument can be easily adapted to the mean zero case. 
For the sake of completeness, the proof of Theorem 4.1 is recalled in Appendix B. In 
order to work with the usual cost function c(x − z) = Δ(|x − z|), the inequality (4.2)
will be modified to

1
W 2

2 (μ, γ) + 1 T (μ, γ) ≤ D(μ|γ) (4.3)
2 8π
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under the assumption that μ has mean zero. (Here we use the elementary inequality 
Δ(ct) ≥ c2Δ(t), for 0 ≤ c ≤ 1, t ≥ 0, cf. Lemma 2.3.)

As a natural complement to Theorem 4.1, it will be also shown in Appendix B that, 
under an additional log-concavity assumption on μ, the transport cost T in the inequal-
ities (4.2)–(4.3) may be replaced with W 2

2 . That is, the constant 1
2 in (4.1) may be 

increased.

Theorem 4.2. Suppose that the probability measure μ on the real line has a twice contin-
uously differentiable density dμdx (x) = e−v(x) such that, for a given ε > 0,

v′′(x) ≥ ε, x ∈ R. (4.4)

If μ has mean at the origin, then with some absolute constant c > 0 we have
(

1
2 + cmin{1,

√
ε }

)
W 2

2 (μ, γ) ≤ D(μ|γ). (4.5)

Here, one may take c = 1 − log 2.
Let us now explain how these refinements can be used in the problem of bounding the 

deficit in the one dimensional logarithmic Sobolev inequality. Returning to (4.3), we are 
going to combine this bound with the HWI inequality (3.1). Putting

W = W2(μ, γ), D = D(μ|γ), I = I(μ|γ),

we rewrite (3.1) as

I − 2D ≥ (
√
I −W )2.

On the other hand, applying the logarithmic Sobolev inequality I ≥ 2D, (4.3) yields 
I ≥ W 2 + 1

4πT , where T = T (μ, γ). Hence,

I − 2D ≥
(√

W 2 + 1
4πT −W

)2

= W 2
(√

1 + T
4πW 2 − 1

)2

.

Here, by the very definition of the transport distance, one has T ≤ W 2, so ε = T
4πW 2 ≤

1
4π . This implies that 

√
1 + ε− 1 ≥ cε with c = 4π(

√
1 + 1

4π − 1). Thus, up to a positive 
numerical constant,

D + c
T 2

W 2 ≤ 1
2I. (4.6)

In order to get a more flexible formulation, denote by μt the shift of the measure μ,

μt(A) = μ(A− t), A ⊂ R (Borel),
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which is the distribution of the random variable X + t (with fixed t ∈ R), when X has 
the distribution μ. As easy to verify,

D(μt|γ) = D(μ|γ) + t2

2 + tEX,

1
2I(μt|γ) = 1

2I(μ|γ) + t2

2 + tEX.

Hence, the deficit

δ(μ) = 1
2I(μ|γ) −D(μ|γ)

in the logarithmic Sobolev inequality (1.2) is translation invariant: δ(μt) = δ(μ). Ap-
plying (4.6) to μt with t = − ́ x dμ(x), so that μt would have mean zero, therefore 
yields:

Corollary 4.3. For any non-Gaussian probability measure μ on the real line with finite 
second moment, up to an absolute constant c > 0,

D(μ|γ) + c
T 2(μ−t, γ)
W 2

2 (μ−t, γ) ≤ 1
2I(μ|γ), (4.7)

where the optimal transport cost T is based on the cost function Δ(|x − z|), and where 
t =

´
x dμ(x). In particular,

D(μ|γ) + c

2
T 2(μ−t, γ)
D(μ−t|γ) ≤ 1

2I(μ|γ). (4.8)

Here the second inequality follows from the first one by using W 2
2 ≤ 2D. It will be 

used in the next section to perform tensorisation for a multidimensional extension. Note 
that (4.8) may be derived directly from (4.3) with similar arguments. Indeed, one can 
write

I − 2D ≥ (
√
I −W )2 ≥ (

√
2D −W )2

= (2D −W 2)2

(
√

2D + W )2
≥ (2D −W 2)2

(2
√

2D)2
≥ T 2

128π2D2 ,

thus proving (4.8) with constant c = 1/(128π2).
Let us now turn to Theorem 4.2 with its additional hypothesis (4.4). Note that the 

property v′′ ≥ 0 describes the so-called log-concave probability distributions on the real 
line (with C2-smooth densities), so (4.4) represents its certain quantitative strengthening. 
It is also equivalent to the property that X has a log-concave density with respect to the 
Gaussian measure with mean zero and variance ε.



S.G. Bobkov et al. / Journal of Functional Analysis 267 (2014) 4110–4138 4127
Arguing as before, from (4.5) we have

I − 2D ≥ W 2(√1 + cmin{1,
√
ε } − 1

)2
.

Hence, we obtain:

Corollary 4.4. Let μ be a probability measure on the real line with mean zero, and satis-
fying (4.4) with some ε > 0. Then, up to an absolute constant c > 0,

D(μ|γ) + cmin{1, ε}W 2
2 (μ, γ) ≤ 1

2I(μ|γ), (4.9)

5. Proof of Theorems 1.3 and 1.4

As the next step, it is natural to try to tensorize the inequality (4.8) so that to extend 
it to the multidimensional case.

If x = (x1, . . . , xn) ∈ Rn, denote by x1:i the subvector (x1, . . . , xi), i = 1, . . . , n. Given 
a probability measure μ on Rn, denote by μ1 its projection to the first coordinate, i.e., 
μ1(A) = μ(A ×Rn−1) for Borel sets A ⊂ R. For i = 2, . . . , n, let μi(dxi|x1:i−1) denote the 
conditional distribution of the i-th coordinate under μ knowing the first i −1 coordinates 
x1, . . . , xi−1. Under mild regularity assumptions on μ, all these conditional measures are 
well-defined, and we have a general formula for the “full expectation”

ˆ
h(x) dμ(x) =

ˆ
h(x1, . . . , xn)μn(dxn|x1:n−1) . . . μ2(dx2|x1)μ1(dx1), (5.1)

for any bounded measurable function h on Rn. For example, it suffices to require that μ
has a smooth positive density, which is polynomially decaying at infinity. Then we will 
say that μ is regular. In many inequalities, the regularity assumption is only technical 
for purposes of the proof, and may easily be omitted in the resulting formulations.

The distance functionals D, I, and T satisfy the following tensorisation relations with 
respect to product measures similarly to (5.1). To emphasize the dimension, we denote 
by γn the standard Gaussian measure on Rn.

Lemma 5.1. For any regular probability measure μ on Rn with finite second moment,

D(μ|γn) = D(μ1|γ1) +
n∑

i=2

ˆ
D
(
μi(·|x1:i−1)|γ1

)
dμ(x),

I(μ|γn) ≥ I(μ1|γ1) +
n∑

i=2

ˆ
I
(
μi(·|x1:i−1)|γ1

)
dμ(x),

T (μ, γn) ≤ T (μ1, γ1) +
n∑

i=2

ˆ
T
(
μi(·|x1:i−1), γ1

)
dμ(x).
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Note that this statement remains to hold also for other product references measures 
νn on Rn in place of γn (with necessary regularity assumptions for the case of Fisher 
information).

Applying the first two inequalities, we see that the deficit δ satisfies a similar property,

δ(μ) ≥ δ(μ1) +
n∑

i=2

ˆ
δ
(
μi(·|x1:i−1)

)
dμ(x). (5.2)

Proof of Lemma 5.1. The equality for the relative entropy is a straightforward calcula-
tion. We refer to Appendix A of [21] for a (general) tensorisation inequality for transport 
costs. Below, we sketch the proof of the inequality involving Fisher information.

Let μ be a regular probability measure on Rn admitting a smooth density f with 
respect to γn. Note that the first marginal μ̃ of μ on the first n −1 coordinates has density 
f̃(x1:n−1) =

´
f(x1:n−1, xn) γ(dxn) and that μn(·|x1:n−1) has density f(xn|x1:n−1) =

f(x1:n−1, xn)/f̃(x1:n−1). We have

I(μ|γn) =
n−1∑
i=1

ˆ (∂xi
f)2

f
(x) γn(dx) +

ˆ (∂xn
f)2

f
(x) γn(dx)

=
n−1∑
i=1

ˆ (ˆ (∂xi
f)2

f
(x1:n−1, xn) γ1(dxn)

)
γn−1(dx1:n−1)

+
ˆ

I
(
μn(·|x1:n−1)|γ1

)
μ̃(dx1:n−1)

≥
n−1∑
i=1

ˆ (∂xi f̃)2

f̃
(x1:n−1) γn−1(dx1:n−1) +

ˆ
I
(
μn(·|x1:n−1)|γ1

)
μ̃(dx1:n−1)

= I(μ̃|γn−1) +
ˆ

I
(
μn(·|x1:n−1)|γ1

)
dμ(x),

where the inequality holds by an application of Jensen’s inequality with the function 
ψ(u, v) = u2/v which is convex on the upper half-plane R×(0, ∞). The proof is completed 
by induction. �
Proof of Theorem 1.3. Let us apply the one dimensional result (4.8) with constant 
c = 1/(128π2) in (5.2) to the measures μ1 and μi(·|x1:i−1). Put t1 =

´
x1 μ1(dx1),

ti(x) = ti(x1, . . . , xi−1) =
ˆ

xi μi(dxi|x1:i−1), x = (x1, . . . , xn) ∈ Rn,

and denote by μ̃i(·|x1:i−1) the corresponding shift of μi(·|x1:i−1) as in Corollary 4.3: 
μ̃i(·|x1:i−1) = μi(·|x1:i−1)−ti . Then we have

256π2δ(μ) ≥ T 2(μ̃1, γ1)
D(μ̃1|γ1)

+
n∑ ˆ T 2(μ̃i(·|x1:i−1), γ1)

D(μ̃i(·|x1:i−1)|γ1)
dμ(x).
i=2
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By Jensen’s inequality with the convex function ψ(u, v) = u2/v (u ∈ R, v ≥ 0),

256π2δ(μ) ≥ T 2(μ̃1, γ1)
D(μ̃1|γ1)

+
n∑

i=2

(
´
T (μ̃i(·|x1:i−1), γ1) dμ(x))2´
D(μ̃i(·|x1:i−1)|γ1) dμ(x)

≥ (T (μ̃1, γ1) +
∑n

i=2
´
T (μ̃i(·|x1:i−1), γ1) dμ(x))2

D(μ̃1|γ1) +
∑n

i=2
´
D(μ̃i(·|x1:i−1)|γ1) dμ(x)

,

where the last bound comes from the inequality

n∑
i=1

ψ(ui, vi) ≥ ψ

(
n∑

i=1
ui,

n∑
i=1

vi

)
,

which is due to the convexity of ψ and its 1-homogeneity. Note that the first inequality 
could also be proved by using Cauchy–Schwarz inequality.

Now consider the map T : Rn → Rn defined for all x ∈ Rn by

T (x) =
(
x1 − t1, x2 − t2(x1), . . . , xn − tn(x1, x2, . . . , xn−1)

)
.

By definition, T pushes forward μ onto μ̄. The map T is invertible and its inverse U =
(u1, . . . , un) satisfies

u1(x) = x1 + t1,

u2(x) = x2 + t2
(
u1(x)

)
,

...

ui(x) = xi + ti
(
u1(x), . . . , ui−1(x)

)
,

...

un(x) = xn + tn
(
u1(x), . . . , un−1(x)

)
.

It is not difficult to check that μ̄1 = μ̃1 and for all i ≥ 2, μ̄i(·|x1:i−1) =
μ̃i(·|u1(x), . . . , uk−1(x)). Therefore, since U pushes forward μ̄ onto μ,

T (μ̃1, γ1) +
n∑

i=2

ˆ
T
(
μ̃i(·|x1:i−1), γ1

)
dμ(x)

= T (μ̄1, γ1) +
n∑

i=2

ˆ
T
(
μ̃i

(
·|u1(x), . . . , ui−1(x)

)
, γ1

)
dμ̄(x)

= T (μ̄1, γ1) +
n∑ ˆ

T
(
μ̄i(·|x1:i−1), γ1

)
dμ̄(x) ≥ T (μ̄, γn),
i=2



4130 S.G. Bobkov et al. / Journal of Functional Analysis 267 (2014) 4110–4138
where we made use of Lemma 5.1 on the last step. The same with equality sign holds 
true for the D-functional. As a result, in terms of the recentered measure μ̄, we arrive 
at the following bound:

D(μ|γn) + 1
256π2

T 2(μ̄, γn)
D(μ̄|γn) ≤ 1

2I(μ|γn). (5.3)

Thus, we have established in (5.3) the desired inequality (1.10) with constant c =
1

256π2 . �
Remark 5.2. In order to relate the transport distance T to W1, one may apply Lemma 2.3. 
Following the very definition of the transport distances, it implies that

(1 − log 2) min
{
W1(μ, ν),W 2

1 (μ, ν)
}
≤ T (μ, ν) ≤ W1(μ, ν),

for all probability measures μ and ν on Rn.

The proof of Theorem 1.4 will make use of the classical Prékopa–Leindler theorem, 
which we state below.

Theorem 5.3. (See [31,32,26].) For a number t ∈ (0, 1), assume that measurable functions 
f, g, h : Rd → R satisfy

h
(
(1 − t)x + ty

)
≤ (1 − t)f(x) + tg(y), for all x, y ∈ Rd.

Then
ˆ

e−h(z) dz ≥
( ˆ

e−f(x) dx

)1−t( ˆ
e−g(y) dy

)t

.

Proof of Theorem 1.4. It is similar to the proof of Theorem 1.3. The main point is that, 
if μ has a smooth density f = e−V with respect to Lebesgue measure, with a V such 
that V ′′ ≥ εIn for some ε > 0, then the first marginal μ1 has a density of the form e−v1

with v′′1 ≥ ε. Moreover, for each i = 2, . . . , n and all x ∈ Rn, the one dimensional condi-
tional probability μi(·|x1:i−1) has a density e−vi(xi|x1:i−1) with (∂2/∂x2

i )vi(xi|x1:i−1) ≥ ε. 
Indeed, by definition of conditional probabilities,

vi(xi|x1:i−1) = − log
(ˆ

e−V (x1:i,yi+1:n) dyi+1 · · · dyn
)

+ w(x1:i−1),

where w(x1:i−1) = log(
´
e−V (x1:i−1,yi:n) dyidyi+1 · · · dyn) does not depend on xi. Since 

V ′′ ≥ εIn, for any i = 2, . . . , n and any x ∈ Rn, the function

(yi, yi+1, . . . , yn) �→ V (x1:i−1, yi, . . . , yn) − ε
y2
i
2
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is convex. Thus defining, for t ∈ (0, 1), x ∈ Rn and ai, bi ∈ R, the functions

f(yi+1, . . . , yn) = V (x1:i−1, ai, yi+1:n) − ε

2a
2
i ,

g(yi+1, . . . , yn) = V (x1:i−1, bi, yi+1:n) − ε

2b
2
i ,

h(yi+1, . . . , yn) = V
(
x1:i−1, (1 − t)ai + tbi, yi+1:n

)
− ε

2
(
(1 − t)ai + tbi

)2
,

one sees that

h
(
(1 − t)yi+1:n + tzi+1:n

)
≤ (1 − t)f(yi+1:n) + tg(zi+1:n), for all y, z ∈ Rn.

Therefore, applying Theorem 5.3 to the triple (f, g, h), one gets easily that

vi
(
(1 − t)ai + tbi|x1:i−1

)
≤ (1 − t)vi(ai|x1:i−1) + tvi(bi|x1:i−1) −

ε

2 t(1 − t)(ai − bi)2.

Since vi is smooth, this inequality is equivalent to (∂/∂xi)2vi(xi|x1:i−1) ≥ ε. A similar 
conclusion holds for v1. Therefore, μ1 and the conditional probabilities μi(·|x1:i−1) verify 
the assumption of Corollary 4.4. Thus, applying the tensorisation formula (5.2), we get

δ(μ) ≥ cmin{1, ε}
(
W 2

2 (μ̃1, γ1) +
n∑

i=2
W 2

2
(
μ̃i(·|x1:i−1), γ1

))
,

where, as before, μ̃i(·|x1:i−1) is the shift of μi(·|x1:i−1) by its mean. Reasoning as in the 
proof of Theorem 1.3, we see that the quantity inside the brackets is bounded from below 
by W 2

2 (μ̄, γn). �
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Appendix A. The reversed transport-entropy inequality

Here we include a simple proof of the general inequality of Lemma 3.2,

D(Xt|Yt) ≤
1
2tW

2
2 (X,Y ), t > 0,

where X and Y are random vectors in Rn with finite second moments.
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We denote by pU the density of a random vector U and by pU |V =v the conditional 
density of U knowing the value of a random vector V = v. Note that the regularized 
random vectors Xt = X +

√
tZ have smooth densities.

By the chain rule formula for the relative entropy, one has

D(X,Y,Xt|X,Y, Yt) = D(Xt|Yt) +
ˆ

D(pX,Y |Xt=v|pX,Y |Yt=v)pXt
(v) dv,

and therefore

D(X,Y,Xt|X,Y, Yt) ≥ D(Xt|Yt).

On the other hand, we also have

D(X,Y,Xt|X,Y, Yt) =
¨

D(pXt|(X,Y )=(x,y)|pYt|(X,Y )=(x,y))pX,Y (x, y) dxdy.

Now observe that pXt|(X,Y )=(x,y) is the density of a normal law with mean x and 
covariance matrix tIn, and similarly for pYt|(X,Y )=(x,y). But

D(x +
√
tZ|y +

√
tZ) = |x− y|2

2t ,

so

D(X,Y,Xt|X,Y, Yt) = 1
2t

¨
|x− y|2pX,Y (x, y) dxdy = 1

2tW
2
2 (X,Y ),

where the last equality follows by an optimal choice for the coupling density of X and Y .

Appendix B. Reinforced transport-entropy inequalities

In this section, we explain how to derive Theorem 4.1 in the form (4.3).

Proof of Theorem 4.1. To derive the inequality (4.3) for probability measures with mean 
zero, we follow an argument of [5]. Let μ be a probability measure on R such that D(μ|γ)
is finite and consider the monotone rearrangement map T transporting γ onto μ. It is 
defined by T (x) = F−1

μ ◦ Fγ(x), where Fμ(x) = μ(−∞, x] and Fγ(x) = γ(−∞, x] are 
the corresponding distribution functions, and F−1

μ (t) = inf{x ∈ R : Fμ(x) ≥ t} is the 
generalized inverse of Fμ (defined for 0 < t < 1). It is well known that T pushes forward 
γ on μ and achieves the minimal value in the optimal transport problem:

W 2
2 (μ, γ) =

ˆ (
T (x) − x

)2
dγ(x).

The starting point is the following inequality going back to Talagrand’s paper [36]
(see Eq. (2.5) of [36]):
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D(μ|γ) ≥ 1
2W

2
2 (μ, γ) +

ˆ (
T ′(x) − 1 − log T ′(x)

)
dγ(x)

≥ 1
2W

2
2 (μ, γ) +

ˆ
Δ
(∣∣T ′(x) − 1

∣∣) dγ(x), (B.1)

where the second inequality comes from the fact that Δ(x) ≥ Δ(|x|) for all x > −1. On 
the other hand, γ is known to satisfy the Cheeger-type analytic inequality

λ

ˆ ∣∣f −m(f)
∣∣ dγ ≤

ˆ ∣∣f ′∣∣ dγ (B.2)

with optimal constant λ =
√

2
π (see e.g. Theorem 1.3 of [10]). Here, f : R → R may 

be an arbitrary locally Lipschitz function with Radon–Nikodym derivative f ′, and m(f)
denotes a median of f under γ. According to Theorem 3.1 of [10], (B.2) can be generalized 
as

ˆ
L
(
f −m(f)

)
dγ ≤

ˆ
L
(
cLf

′/λ
)
dγ (B.3)

with an arbitrary even convex function L : R → [0, ∞), such that L(0) = 0, L(t) > 0 for 
t > 0, and

cL = sup
t>0

tL′(t)
L(t) < ∞,

where L′(t) may be understood as the right derivative at t.
We apply (B.3) with L(t) = Δ(|t|) = |t| − log(1 + |t|) in which case cL = 2, so that

ˆ
Δ
(∣∣f −m(f)

∣∣) dγ ≤
ˆ

Δ
(
2
∣∣f ′∣∣/λ) dγ. (B.4)

It will be convenient to replace here the median with the mean γ(f) =
´
f dγ. First 

observe that, by Jensen’s inequality, (B.4) yields

Δ
(∣∣γ(f) −m(f)

∣∣) ≤ ˆ
Δ
(
2
∣∣f ′∣∣/λ) dγ. (B.5)

Hence, using once more the convexity of Δ together with (B.4)–(B.5) for the function 
2f , we get

ˆ
Δ
(∣∣f − γ(f)

∣∣) dγ ≤ 1
2

ˆ
Δ
(
2
∣∣f −m(f)

∣∣) dγ + 1
2Δ

(
2
∣∣γ(f) −m(f)

∣∣)
≤
ˆ

Δ
(
4
∣∣f ′∣∣/λ) dγ.
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Equivalently,
ˆ

Δ
(∣∣f ′∣∣) dγ ≥

ˆ
Δ
(
λ

4
∣∣f − γ(f)

∣∣) dγ.

To further simplify, one may use the lower bound a) of Lemma 2.3 which yields

ˆ
Δ
(∣∣f ′∣∣) dγ ≥

(
λ

4

)2 ˆ
Δ
(∣∣f − γ(f)

∣∣) dγ.
It remains to apply the latter with f(x) = T (x) − x when estimating the last integral in 
(B.1). Since μ and γ have mean zero, this gives

D(μ|γ) ≥ 1
2W

2
2 (μ, γ) + 1

8π

ˆ
Δ
(
T (x) − x

)
dγ(x),

and the last integral is certainly greater than (and actually equals to) T (μ, γ). �
Proof of Theorem 4.2. Let us return to the inequality (B.1), i.e.,

D(μ|γ) ≥ 1
2W

2
2 (μ, γ) +

ˆ
Δ
(
T ′(x) − 1

)
dγ(x). (B.6)

The basic assumption (4.4) ensures that T has a Lipschitz norm ≤ 1√
ε
, so T ′(x) ≤ 1√

ε
. 

Using in (B.6) the lower quadratic bounds on Δ given in b) and c) of Lemma 2.3, we 
obtain that

D(μ|γ) ≥ 1
2W

2
2 (μ, γ) + c(ε)

ˆ (
T ′(x) − 1

)2
dγ(x), (B.7)

where

c(ε) = 1
2 , for ε ≥ 1, c(ε) =

Δ( 1√
ε
− 1)

( 1√
ε
− 1)2

, for 0 < ε < 1.

On the other hand, applying the Poincaré-type inequality for the Gaussian measure

Varγ(f) ≤
ˆ

f ′2 dγ

with f(x) = T (x) − x, together with the assumption that 
´
x dμ(x) =

´
T (x) dγ(x) = 0, 

the last integral in (B.7) can be bounded from below by
ˆ (

T (x) − x
)2

dγ(x) = W 2
2 (μ, γ).

It remains to use, for 0 < ε < 1, the bound Δ(a) ≥ (1 − log 2) min{a, a2}. The inequality 
(4.5) is proved. �
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Appendix C. Equality cases in the logarithmic Sobolev inequality for the standard 
Gaussian measure

In this last section, we show how Theorem 1.3 can be used to recover the following 
result by E. Carlen [11].

Theorem C.1. (See [11].) Let μ be a probability measure on Rn such that D(μ|γ) < ∞. 
We have

D(μ|γ) = 1
2I(μ|γ),

if and only if μ is a translation of γ.

In what follows, we denote by Sn the set of permutations of {1, . . . , n}. If μ is a 
probability measure on Rn, we denote by μσ its image under the permutation map

(x1, . . . , xn) �→ (xσ(1), . . . , xσ(n)).

If μ has density f with respect to the standard n-dimensional Gaussian measure γ, then 
the density of μσ with respect to γ is given by

fσ(x1, . . . , xn) = f(xσ−1(1), . . . , xσ−1(n)).

Obviously,

I(μσ|γ) = I(μ|γ) and D(μσ|γ) = D(μ|γ).

Hence, we have the following automatic improvement of Theorem 1.3.

Theorem C.2. Let X be a random vector in Rn with law μ. Then,

D(μ|γ) + c max
σ∈Sn

T 2(μσ, γ)
D(μσ|γ) ≤ 1

2I(μ|γ),

where μσ is the law of the random vector Y σ defined by

Y σ
i = Xσ(i) − E(Xσ(i)|Xσ(1), . . . , Xσ(i−1)).

Proof of Theorem C.1. To avoid complicated notations, we will restrict ourselves to the 
dimension n = 2. We may assume that μ has a smooth density p with respect to the 
Lebesgue measure such that D(μ|γ) = 1

2I(μ|γ) < ∞. Necessarily, μ has a finite second 
moment, and moreover, μσ = γ, for all σ ∈ S2, i.e., for σ = id = (12) and σ = (21).
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For a random vector X with law μ, put m1 = EX1, m2 = EX2, a(X1) = E(X2|X1)
and b(X2) = E(X1|X2). The probability measure γ = μid represents the image of μ
under the map (x1, x2) �→ (x1 −m1, x2 − a(x1)). It then easily follows that

p(x1, x2) = 1
2π exp

(
−1

2(x1 −m1)2 −
1
2
(
x2 − a(x1)

)2)

for almost all (x1, x2) ∈ R2. Since also γ = μ(2,1), the same reasoning yields

p(x1, x2) = 1
2π exp

(
−1

2(x2 −m2)2 −
1
2
(
x1 − b(x2)

)2)
,

for almost all (x1, x2) ∈ R2. Therefore, for almost all (x1, x2) ∈ R2, it holds

(x1 −m1)2 +
(
x2 − a(x1)

)2 = (x2 −m2)2 +
(
x1 − b(x2)

)2
.

Let us denote by A the set of all couples (x1, x2) for which there is equality, and for 
x1 ∈ R, let Ax1 = {x2 ∈ R : (x1, x2) ∈ A} denote the corresponding section of A. By 
Fubini’s theorem,

0 =
∣∣R2 \A

∣∣ =
∞̂

−∞

∣∣R \Ax1

∣∣ dx1,

where | · | stands for the Lebesgue measure of a set in the corresponding dimension. 
Hence, for almost all x1, the set R \Ax1 is of Lebesgue measure 0. For any such x1,

2x2
(
m2 − a(x1)

)
+ a(x1)2 −m2

2 + (x1 −m1)2 ≥ 0, ∀x2 ∈ Ax1 .

Thus, a(x1) = m2 (otherwise letting x2 → ±∞ would lead to a contradiction). This 
proves that a = m2 almost everywhere, and therefore, the random vector (X1−EX1, X2−
EX2) is standard Gaussian. But this means that μ is a translation of γ. �
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