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1 Introduction

Let X1, . . . , Xn be independent (not necessarily identically distributed) random
variables with mean EXk = 0 and finite variances σ 2

k = EX2
k (σk > 0). Put

Bn = ∑n
k=1 σ

2
k . Under additional moment assumptions, the normalized sum

Sn = X1 + · · · + Xn√
Bn

has approximately a standard normal distribution in a weak sense. More precisely (see
[19]), the closeness of the distribution function Fn(x) = P{Sn ≤ x} to the standard
normal distribution function

�(x) = 1√
2π

x∫

−∞
e−y2/2 dy

has been studied intensively in terms of the Lyapunov ratios

Ls =
∑n

k=1 E |Xk |s
Bs/2

n

.

In particular, if all Xk have finite third absolute moments, the classical Berry–Esseen
theorem indicates that

sup
x

|Fn(x)−�(x)| ≤ C L3, (1.1)

where C is an absolute constant (cf. e.g. [12,14,19]).
One of the most remarkable features of (1.1) is that the number of summands does

not explicitly appear in it, while in the i.i.d. case, that is, when Xk have identical
distributions, L3 is of order 1√

n
, which is best possible for the Kolmogorov distance

under the 3-rd moment condition (see, for example [19, p.169]).
In this paper we consider the closeness of Fn to � in terms of generally stronger

distances, such as total variation and relative entropy. Given two distribution functions
F and G, introduce the notation

‖F − G‖TV = 2 sup
A

∣
∣
∣
∣
∣
∣

∫

A

d F(x)−
∫

A

dG(x)

∣
∣
∣
∣
∣
∣
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Entropic bounds 437

for the total variation distance between F and G (where the supremum is running over
all Borel subsets A of the real line). If F is absolutely continuous with respect to G (as
measures) and has density u = d F/dG, one defines the Kullback–Leibler distance or
the relative entropy of F with respect to G by

D(F ||G) =
+∞∫

−∞
u log u dG.

If F is not absolutely continuous with respect to G, one puts D(F ||G) = +∞.
Our aim is to establish bounds for ‖Fn−�‖TV and D(Fn||�) by using the Lyapunov

ratios similarly as in (1.1). Note, however, that these distances are not informative, for
example, when all summands have discrete distributions, in which case ‖Fn −�‖TV =
2, D(Fn||�) = +∞. Therefore, some assumptions are needed or desirable, such as
absolute continuity of distributions FXk of Xk . But even with this assumption we
cannot exclude the case that our distances from Sn to the normal law may be growing
when the FXk are close to discrete distributions. To prevent such behaviour, one may
require that the densities of Xk should be bounded on a reasonably large part of the
real line. This can be guaranteed quite naturally, for instance, by using the entropy
functional, defined for a random variable X with density p by

h(X) = −
+∞∫

−∞
p(x) log p(x) dx .

Once X has a finite second moment, the entropy is well-defined as a Lebesgue integral,
although the value h(X) = −∞ is possible. Introduce a related functional

D(X) = h(Z)− h(X) =
+∞∫

−∞
p(x) log

p(x)

q(x)
dx,

where Z is a normal random variable with density q(x) = 1√
2πσ 2

exp{− (x−a)2

2σ 2 }
having the same mean a and variance σ 2 as X . Note that this functional is affine
invariant, that is, D(c0 + c1 X) = D(X), for all c0 ∈ R, c1 �= 0, and in this sense it
depends neither on the mean, nor the variance of X .

The quantity D(X)may also be regarded as the relative entropy D(FX ||FZ ), where
FX and FZ are the corresponding distributions of X and Z . It represents the Kullback–
Leibler distance from FX to the class of all normal laws on the real line and is often
referred to as the “entropic distance to normality”. In general, 0 ≤ D(X) ≤ +∞,
and the equality D(X) = 0 is possible, when X is normal, only. Moreover, by the
Pinsker-Csiszár-Kullback inequality [11,13,17,21], the entropic distance dominates
the total variation in the sense that

D(X) ≥ 1

2
‖FX − FZ‖2

TV.
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438 S. G. Bobkov et al.

Thus, finiteness of D(X) guarantees that FX is separated from the class of discrete
probability distributions, and if it is small, one may speak about the closeness of FX

to normality in a rather strong sense. Using D for both purposes, one can obtain
refinements of Berry–Esseen’s inequality (1.1) in terms of the total variation and the
entropic distances to normality for the distributions Fn . The fact that the convergence
in the central limit theorem can be studied in terms of the entropy was first noticed by
Linnik [18], see also Brown [8], Barron [2], Carlen and Soffer [9].

We start with a quantitative bound for the total variation distance.

Theorem 1.1 Let D be a non-negative number. Assume that the independent random
variables X1, . . . , Xn have finite third absolute moments, and that D(Xk) ≤ D(1 ≤
k ≤ n). Then

‖Fn −�‖TV ≤ C L3, (1.2)

where the constant C = CD depends on D, only.

In particular, if all Xk are identically distributed with EX2
1 = 1, we get

‖Fn −�‖TV ≤ C√
n

E |X1|3 (1.3)

with a constant C depending on D(X1), only. Although (1.2)–(1.3) seem to be new,
related estimates in the i.i.d.-case were studied by many authors. For example, in the
early 1960s Mamatov and Sirazhdinov [27] found an exact asymptotic ‖Fn −�‖TV =

c√
n

+ o( 1√
n
), where the constant c is proportional to |EX3

1|, and which holds under
the assumption that the distribution of X1 has a non-trivial absolutely continuous
component (cf. also [22,25]).

Now, let us turn to the entropic distance to normality.

Theorem 1.2 Assume that the independent random variables X1, . . . , Xn have finite
fourth moments, and that D(Xk) ≤ D(1 ≤ k ≤ n). Then

D(Sn) ≤ C L4, (1.4)

where C = CD depends on D, only.

In (1.2) and (1.4) one may take CD = ec(D+1), where c is an absolute constant.
Moreover, as we will see in Theorems 11.2 and 12.3 below, CD can be chosen to be
independent of D (i.e., to be just a numerical constant), provided that the respective
Lyapunov ratios are smaller than a certain numerical value, while D is not too large,
namely, if

D ≤ c log
1

L3
and D ≤ c log

1

L4

with some absolute constant c > 0.
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Entropic bounds 439

These Berry–Esseen-type estimates are consistent in view of the Pinsker inequality.
In some sense, one may consider (1.4) as a stronger assertion than (1.2), which is indeed
the case, when L4 is of order L2

3. (In general L2
3 ≤ L4.)

In the i.i.d. case as in (1.3), the inequality (1.4) becomes

D(Sn) ≤ C

n
EX4

1,

where C depends on D(X1) only. Thus, we obtain an error bound of order O(1/n)
under the 4th moment assumption. Note that the property D(Sn) → 0 always holds
under the second moment assumption (with finite entropy of X1). This is the statement
of the entropic central limit theorem, which is due to Barron [2]. Here, the convergence
may have an arbitrarily slow rate. Nevertheless, the expected typical rate D(Sn) =
O( 1

n ) was known to hold in some cases, for example, when X1 has a distribution
satisfying an integro-differential inequality of Poincaré-type. These results are due
to Artstein et al. [1], and Barron and Johnson [3]; cf. also [16]. Recently, an exact
asymptotic for D(Sn) has been studied in [5]. If the entropy and the 4th moment of
X1 are finite, it was shown that

D(Sn) = c

n
+ o

(
1

n log n

)

, c = 1

12
(EX3

1)
2.

Moreover, with finite 3rd absolute moment (and infinite 4th moment) such a relation
may not hold, and it may happen that D(Sn) ≥ n−(1/2+ε) for all n large enough with
a given prescribed ε > 0. This holds, for example, when X1 has density

p(x) =
+∞∫

1/e

1

σ
√

2π
e−x2/2σ 2

d P(σ ),

where P is a probability measure on ( 1
e ,+∞) with density d P(σ )

dσ = (σ log σ)−4

for σ ≥ e and with an arbitrary extension to the interval 1
e < σ < e satisfying

∫ +∞
1/e σ 2 d P(σ ) = 1.

Therefore, in the general non-i.i.d.-case, the Lyapunov coefficient L3 cannot be
taken as an appropriate quantity for bounding the error in Theorem 1.2, and L4 seems
more relevant. This is also suggested by the result of [1] for the weighted sums

Sn = a1 X1 + · · · + an Xn (a2
1 + · · · + a2

n = 1)

of i.i.d. random variables Xk such that EX1 = 0 and EX2
1 = 1. Namely, it is proved

there that

D(Sn) ≤ L(a)

c/2 + (1 − c/2)L(a)
D(X1), (1.5)
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440 S. G. Bobkov et al.

where L(a) = a4
1 + · · · + a4

n and c ≥ 0 is an optimal constant in the Poincaré-
type inequality c Var(u(X1)) ≤ E [u′(X1)]2. But for the sequence ak Xk and s = 4,
the corresponding Lyapunov coefficient is exactly L4 = L(a)EX4

1. Therefore, when
c = c(X1) is positive, (1.5) yields the estimate

D(Sn) ≤ 2D(X1)

c EX4
1

L4,

which is of similar nature as in (1.4).
Another interesting feature of (1.4) is that it may be connected with transportation

cost inequalities for the distributions Fn of Sn in terms of the quadratic Kantorovich
distance W2 (also called the Wasserstein distance). For random variables X and Z
with finite second moments and distributions FX and FZ , this distance is defined by

W 2
2 (FX , FZ ) = inf

π

+∞∫

−∞

+∞∫

−∞
|x − y|2 dπ(x, y),

where the infimum is taken over all probability measures π on the plane R2 with
marginals FX and FZ . The value W 2

2 (FX , FZ ) is interpreted as the minimal expenses
needed to transport FZ to FX , provided that it costs |x − y|2 to move any “particle”
x to any “particle” y.

The metric W2 is of weak type in the sense that it can be used to metrize the weak
convergence of probability distributions ([29]). Moreover, if Z ∼ N (0, 1) is standard
normal, this distance, i.e., W2(FX , FZ ) = W2(FX ,�), may be bounded in terms of
the relative entropy by virtue of Talagrand’s transportation inequality

W 2
2 (FX ,�) ≤ 2D(FX ||�) (1.6)

(cf. [28], or [7] for a different approach). If additionally X has mean zero and unit
variance, then D(FX ||�) = D(X). Hence, applying (1.6) with X = Sn , we get, by
Theorem 1.2,

W2(Fn,�) ≤ C
√

L4, (1.7)

where C depends on D. In fact, this inequality holds true with C being an absolute
constant. This result is due to Rio [23], who also studied more general Wasserstein
distances Wr , by relating them to Zolotarev’s “ideal” metrics. It has also been noticed
in [23] that the 4th moment condition is essential, so the Laypunov’s ratio L4 in (1.7)
cannot be replaced with L3 including the i.i.d.-case (like in Theorem 1.2).

The paper starts with general bounds on the total variation and the Kullback–Leibler
distance to the standard normal law in terms of characteristic functions. In the proof of
Theorems 1.1–1.2, these bounds will be applied to special probability distributions F̃n

that approximate Fn sufficiently well. These distributions are constructed according to
the so-called quantile density decomposition whose general properties are discussed
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Entropic bounds 441

separately. Several sections are devoted to the construction and the study of basic
properties of F̃n and their characteristic functions.

2 General bounds on total variation and entropic distance

Assume that a random variable X has an absolutely continuous distribution F with
density p and finite first absolute moment. We do not require that it has mean zero
and/or unit variance.

First, we recall an elementary bound for the total variation distance ‖F −�‖TV in
terms of the characteristic function

f (t) = E eit X =
+∞∫

−∞
eitx p(x) dx (t ∈ R).

Introduce the characteristic function g(t) = e−t2/2 of the standard normal law.
In the sequel, we use the notation

‖u‖2 =
⎛

⎝

+∞∫

−∞
|u(t)|2 dt

⎞

⎠

1/2

to denote the L2-norm of a measurable complex-valued function u on the real line
(with respect to Lebesgue measure).

Proposition 2.1 We have

‖F −�‖2
TV ≤ 1

2
‖ f − g‖2

2 + 1

2
‖ f ′ − g′‖2

2. (2.1)

This bound is standard (cf. e.g. [15, Lemma 1.3.1]). In fact, the inequality (2.1)
remains to hold for an arbitrary probability distribution in place of � with finite first
absolute moment and characteristic function g. However, the general case will not
be needed in the sequel. Note that the assumption E |X | < +∞ guarantees that f is
continuously differentiable, so that the last L2-norm in (2.1) makes sense.

Let Z denote a standard normal random variable, with density ϕ(x) = 1√
2π

e−x2/2.
Consider the relative entropy

D(X ||Z) = D(F ||�) =
+∞∫

−∞
p(x) log

p(x)

ϕ(x)
dx . (2.2)

As a preliminary bound for this quantity, we first derive:
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442 S. G. Bobkov et al.

Lemma 2.2 For all T ≥ 0,

D(X ||Z) ≤ e−T 2/2 + √
2π

T∫

−T

(p(x)− ϕ(x))2 ex2/2 dx

+ 1

2

∫

|x |≥T

x2 p(x) dx +
∫

|x |≥T

p(x) log p(x) dx . (2.3)

Proof We split the integral in (2.2) into the two regions. For the interval |x | ≤ T ,
using the elementary inequality t log t ≤ (t − 1)+ (t − 1)2, t ≥ 0, we have

T∫

−T

p

ϕ
log

p

ϕ
ϕ dx ≤

T∫

−T

(
p

ϕ
− 1

)

ϕ dx +
T∫

−T

(
p

ϕ
− 1

)2

ϕ dx

=
∫

|x |≥T

(ϕ − p) dx +
T∫

−T

(p−ϕ)2
ϕ

dx

= 2 (1−�(T ))−
∫

|x |≥T

p(x) dx+√
2π

T∫

−T

(p(x)−ϕ(x))2 ex2/2 dx .

For the second region, just write

∫

|x |≥T

p(x) log
p(x)

ϕ(x)
dx =

∫

|x |≥T

p(x) log p(x) dx

+ log
√

2π
∫

|x |≥T

p(x) dx + 1

2

∫

|x |≥T

x2 p(x) dx .

It remains to collect these relations and use log
√

2π < 1 together with a well-known
elementary inequality 1 −�(T ) ≤ 1

2 e−T 2/2. Thus, Lemma 2.2 is proved. �

Remark If p is bounded by a constant M , the estimate (2.3) yields

D(X ||Z) ≤ e−T 2/2 + √
2π

T∫

−T

(p(x)− ϕ(x))2 ex2/2 dx

+ 1

2

∫

|x |≥T

x2 p(x) dx + log M
∫

|x |≥T

p(x) dx .

This bound might be of interest in other applications, although it involves the maximum
of the density. For our purposes, the important integral in (2.3),

∫
|x |≥T p(x) log p(x) dx,
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Entropic bounds 443

will be bounded in a different way and in terms of the characteristic functions, without
involving the parameter M .

3 Entropic distance and Edgeworth-type approximation

To estimate the integrals in (2.3) in terms of the characteristic functions like in Propo-
sition 2.1, define

ϕα(x) = ϕ(x)

(

1 + α
x3 − 3x

3!
)

,

where α is a parameter. These functions appear with α proportional to n−1/2 in the
Edgeworth-type expansions up to order 3 for densities of the normalized sums Sn =
X1+···+Xn√

Bn
of i.i.d. summands, cf. e.g. [19]. In the non-i.i.d. case such expansions hold

as well with

α = 1

B3/2
n

n∑

k=1

EX3
k .

Note that every ϕα has the Fourier transform

gα(t) =
+∞∫

−∞
eitxϕα(x) dx = g(t)

(

1 + α
(i t)3

3!
)

,

where g(t) = e−t2/2.

Proposition 3.1 Let X be a random variable with E |X |3 < +∞. For all α ∈ R,

D(X ||Z) ≤ α2 + 4 (‖ f − gα‖2 + ‖ f ′′′ − g′′′
α ‖2), (3.1)

where Z is a standard normal random variable and f is the characteristic function
of X.

The assumption on the 3rd absolute moment is needed to ensure that f has first
three continuous derivatives.

As a particular case, the inequality (3.1) is valid for α = 0, as well. Then it becomes

D(X ||Z) ≤ 4 (‖ f − g‖2 + ‖ f ′′′ − g′′′‖2),

which may be viewed as a full analog of Proposition 2.1. However, with properly cho-
sen values of α, (3.1) may provide a much better asymptotic approximation (especially
when applying it to the sums of independent random variables).
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444 S. G. Bobkov et al.

Proof We may assume that the characteristic function f and its first three derivatives
are square integrable, so that the right-hand side of (3.1) is finite. Note that in this
case, X has an absolutely continuous distribution with some density p.

We apply Lemma 2.2. Given T ≥ 0 to be specified later on, let us start with the
estimation of the last integral in (2.3). Define the even function p̃(x) = p(x)+ p(−x),
so that p log p ≤ p log+ p̃ (where we use the notation a+ = max{a, 0}). Subtracting
ϕα(x) from p(x) and then adding, one can write

∫

|x |≥T

p(x) log p(x) dx ≤
∫

|x |≥T

p(x) log+ p̃(x) dx

≤
+∞∫

−∞
|p(x)−ϕα(x)| log+ p̃(x) dx

+
∫

|x |≥T

ϕα(x) log+ p̃(x) dx .

But the function ϕα − ϕ is odd, so the last integral does not depend on α and is equal
to

∫

|x |≥T

ϕ(x) log+ p̃(x) dx . (3.2)

To estimate it from above, one may use Cauchy’s inequality together with the ele-
mentary bound (log+ t)2 ≤ Ct , where the optimal constant C is equal to 4e−2. Since∫ +∞
−∞ p̃(x) dx = 2, (3.2) does not exceed

⎛

⎜
⎝

∫

|x |≥T

ϕ(x)2 dx

⎞

⎟
⎠

1/2 ⎛

⎜
⎝

∫

|x |≥T

(
log+ p̃(x)

)2
dx

⎞

⎟
⎠

1/2

≤
⎛

⎜
⎝

∫

|x |≥T

ϕ(x)2 dx

⎞

⎟
⎠

1/2

2
√

2

e
.

On the other hand,

⎛

⎜
⎝

∫

|x |≥T

ϕ(x)2 dx

⎞

⎟
⎠

1/2

=
(

1√
π

(
1 −�(T

√
2)

))1/2

≤ 1

π1/4
√

2
e−T 2/2,

where we applied the inequality 1 − �(x) ≤ 1
2 e−x2/2 (x ≥ 0). Thus, using 2

√
2

e ·
1

π1/4
√

2
< 1 to simplify the constant, we get

∫

|x |≥T

p(x) log p(x) dx ≤
+∞∫

−∞
|p(x)− ϕα(x)| log+ p̃(x) dx + e−T 2/2.
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Here, again by the Cauchy inequality, the last integral does not exceed

2
√

2

e

⎛

⎝

+∞∫

−∞
(p(x)− ϕα(x))

2 dx

⎞

⎠

1/2

= 2
√

2

e
· 1√

2π

⎛

⎝

+∞∫

−∞
| f (t)− gα(t)|2 dt

⎞

⎠

1/2

,

where we applied Plancherel’s formula. The constant in front of the last integral is
smaller than 1

2 , so we arrive at the estimate

∫

|x |≥T

p(x) log p(x) dx ≤ 1

2
‖ f − gα‖2 + e−T 2/2. (3.3)

Now, let us turn to the next to the last integral in (2.3). Once more, subtracting
ϕα(x) from p(x) and then adding, one can write

∫

|x |≥T

x2 p(x) dx ≤
∞∫

−∞
x2 |p(x)− ϕα(x)| dx +

∫

|x |≥T

x2 ϕα(x) dx .

Since the function ϕα − ϕ is odd, the last integral is equal to

∫

|x |≥T

x2ϕ(x) dx = 2√
2π

+∞∫

T

x2 e−x2/2 dx = 2(1 −�(T ))+ 2√
2π

T e−T 2/2

(by direct integration by parts). Hence, using 2(1 −�(T )) ≤ e−T 2/2 once more, we
get

1

2

∫

|x |≥T

x2 p(x) dx ≤ 1

2

+∞∫

−∞
x2 |p(x)− ϕα(x)| dx

+ 1

2
e−T 2/2 + 1√

2π
T e−T 2/2. (3.4)

In addition, by Cauchy’s inequality,

⎛

⎝

+∞∫

−∞
x2 |p(x)− ϕα(x)| dx

⎞

⎠

2

≤
+∞∫

−∞

dx

1 + x2

+∞∫

−∞
(1 + x2) x4 (p(x)− ϕα(x))

2 dx

= π

+∞∫

−∞
(x4 + x6) (p(x)− ϕα(x))

2 dx
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≤ π

+∞∫

−∞
(1 + 2x6) (p(x)− ϕα(x))

2 dx .

But, by Plancherel’s formula,

+∞∫

−∞
(p(x)− ϕα(x))

2 dx = 1

2π
‖ f − gα‖2

2 (3.5)

+∞∫

−∞
x6 (p(x)− ϕα(x))

2 dx = 1

2π
‖ f ′′′ − g′′′

α ‖2
2. (3.6)

Hence,

+∞∫

−∞
x2 |p(x)− ϕα(x)| dx ≤

(
1

2
‖ f − gα‖2

2 + ‖ f ′′′ − g′′′
α ‖2

2

)1/2

≤ ‖ f − gα‖2 + ‖ f ′′′ − g′′′
α ‖2,

and from (3.4),

1

2

∫

|x |≥T

x2 p(x) dx ≤ 1

2
e−T 2/2 + 1√

2π
T e−T 2/2

+ 1

2
‖ f − gα‖2 + 1

2
‖ f ′′′ − g′′′

α ‖2. (3.7)

Using the bounds (3.3) and (3.7) in the inequality (2.3), we therefore obtain that

D(X ||Z) ≤ 5

2
e−T 2/2 + 1√

2π
T e−T 2/2

+√
2π

T∫

−T

(p(x)− ϕ(x))2 ex2/2 dx

+‖ f − gα‖2 + ‖ f ′′′ − g′′′
α ‖2. (3.8)

Next, let us consider the integral in (3.8). First, writing

p(x)− ϕ(x) = (
p(x)− ϕα(x)

) + α
x3 − 3x

3! ϕ(x)

and applying an elementary inequality (a + b)2 ≤ a2

1−t + b2

t (a, b ∈ R, 0 < t < 1)
with t = 1/6, we get
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(p(x)− ϕ(x))2 ≤ 6

5
(p(x)− ϕα(x))

2 + α2 (x
3 − 3x)2

6
ϕ(x)2,

or equivalently,

(p(x)− ϕ(x))2 ex2/2 ≤ 6

5
(p(x)− ϕα(x))

2 ex2/2 + 1√
2π

α2 (x
3 − 3x)2

6
ϕ(x).

Integrating this inequality over the interval [−T, T ] and using E (Z3 − 3Z)2 = 6,
where Z ∼ N (0, 1), we obtain

√
2π

T∫

−T

(p(x)− ϕ(x))2 ex2/2 dx ≤ 6

5

√
2π

T∫

−T

(p(x)− ϕα(x))
2 ex2/2 dx + α2.

(3.9)

To estimate the last integral, first note that the function t → et/2/(2+t) is increasing
for t ≥ 0. Hence, for all |x | ≤ T ,

ex2/2 = ex2/2

2 + x2 (2 + x2) ≤ eT 2/2

2 + T 2 (3 + x6),

and thus, using (3.5)–(3.6),

T∫

−T

(p(x)− ϕα(x))
2 ex2/2 dx ≤ eT 2/2

2 + T 2

T∫

−T

(3 + x6) (p(x)− ϕα(x))
2 dx

≤ 3

2π

eT 2/2

2 + T 2 (‖ f − gα‖2
2 + ‖ f ′′′ − g′′′

α ‖2
2).

Putting ε = ‖ f − gα‖2 + ‖ f ′′′ − g′′′
α ‖2, we therefore get from (3.9)

√
2π

T∫

−T

(p(x)− ϕ(x))2 ex2/2 dx ≤ 18

5
√

2π

eT 2/2

2 + T 2 ε
2 + α2.

Inserting this inequality in (3.8) leads to

D(X ||Z) ≤ 5

2
e−T 2/2 + 1√

2π
T e−T 2/2 + 18

5
√

2π

eT 2/2

2 + T 2 ε
2 + ε + α2. (3.10)

It remains to optimize this bound over all T ≥ 0. As before, consider the function
ψ(t) = et/2/(2 + t). It is increasing for t ≥ 0 with ψ(0) = 1

2 . If 0 ≤ ε ≤ 2, define
T = Tε to be the (unique) solution to the equation
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ψ(T 2) = 1

ε
.

In this case,

T e−T 2/2 · 1

ε
= T e−T 2/2 · eT 2/2

2 + T 2 ≤ 1

2
,

so T e−T 2/2 ≤ ε
2 . Furthermore, note that

e−T 2/2 · 1

ε
= e−T 2/2 · eT 2/2

2 + T 2 ≤ 1

2
,

so e−T 2/2 ≤ ε
2 . Applying these bounds in (3.10), we arrive at

D(X ||Z) ≤ 5ε

4
+ 1√

2π

ε

2
+ 18

5
√

2π
ε + ε + α2 ≤ 4ε + α2,

which is exactly the desired inequality (3.1).
In case ε ≥ 2, let us return to (3.8) and apply it with T = 0. This yields

D(X ||Z) ≤ 5

2
+ ε < 4ε,

which is even better than (3.1). Thus, Proposition 3.1 is proved. �


4 Quantile density decomposition

In order to effectively apply Propositions 2.1 and 3.1, one has to manage two different
tasks. The first one is to estimate integrals such as

T∫

−T

| f (t)− gα(t)|2 dt,

T∫

−T

| f ′′′(t)− g′′′
α (t)|2 dt

over sufficiently large t-intervals with properly chosen values of the parameterα. When
the characteristic function f has a multiplicative structure, i.e., corresponds to the sum
of a large number of small independent summands, this task can be attacked by using
classical Edgeworth-type expansions (for characteristic functions). Such expansions
are well-known for the non-i.i.d. case, as well, and we consider one of them in Sect. 12.

The second task concerns an estimation of integrals such as

∫

|x |≥T

| f (t)|2 dt,
∫

|x |≥T

| f ′′′(t)|2 dt,
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which in general do not need to be small or even finite. The finiteness is guaranteed, for
example, when f is the Fourier transform of a bounded density p. For some purposes
such as obtaining local limit theorems, it is therefore natural to restrict oneself to
the case of bounded densities. For other purposes, such as an estimation of the total
variation or relative entropy, the density p may be slightly modified, so that the new
density, say p̃, will be bounded, and at the same time will only slightly change the
total variation distance or relative entropy with respect to the standard normal law.

To this aim, we shall use the so-called quantile density decomposition, based on
the following elementary observation. (This decomposition will be needed regardless
of whether the densities are bounded or not.)

Proposition 4.1 Let X be a random variable with density p. Given 0 < κ < 1, the
real line can be partitioned into two Borel sets A0, A1 such that p(x) ≤ p(y), for all
x ∈ A0, y ∈ A1, and

∫

A0

p(x) dx = κ,

∫

A1

p(x) dx = 1 − κ.

The argument is based on the continuity of the measure p(x) dx and is omitted.
Clearly, for some real number mκ we get

A0 ⊂ {x ∈ R : p(x) ≤ mκ}, A1 ⊂ {x ∈ R : p(x) ≥ mκ}.
Here, mκ represents a quantile (or one of the quantiles) for the function p viewed
as a random variable on the probability space (R, p(x) dx). In other words, mκ =
mκ(p(X)) is a quantile of order κ for the random variable p(X). If κ = 1

2 , the index
is usually omitted, and then m = m(p(X)) denotes a median of p(X).

Definition 4.2 Define the densities p0 and p1 to be the normalized restrictions of p
to the sets A0 and A1, respectively. As a result, we have an equality

p(x) = κp0(x)+ (1 − κ) p1(x), (4.1)

which we call the quantile density decomposition for p (respectively—the median
density decomposition, when κ = 1

2 ).

Let us mention one obvious, but important property of the functionals mκ(p(X)),
assuming that X has a finite second moment.

Proposition 4.3 The functionals

Qκ(X) = mκ(p(X))
√

Var(X)

are affine invariant. That is, for all a ∈ R and b �= 0, Qκ(a + bX) = Qκ(X).

More precisely, let p and q denote the densities of the random variables X and
a + bX , respectively. If mκ(p(X)) is a specific quantile participating in the definition
of Qκ(X), we have the relation mκ(q(a + bX)) = |b|−1 mκ(p(X)) which should be
used in order to define Qκ(a + bX). With this agreement, Qκ(a + bX) = Qκ(X).
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5 Properties of the quantile decomposition

In this section we establish basic properties of the quantile density decomposition.
Although for purposes of Theorems 1.1–1.2 the median decomposition is sufficient,
the general case is no more difficult (but may be used to provide more freedom espe-
cially for improving D-dependent constants).

First, let us bound from above the quantiles mκ = mκ(p(X)) in terms of the entropic
distance to normality.

Proposition 5.1 Let X be a random variable with finite variance σ 2 (σ > 0), having
an absolutely continuous distribution, and let 0 < κ < 1. Then

mκ ≤ 1

σ
√

2π
e(D(X)+1)/(1−κ).

In particular,

m ≤ 1

σ
√

2π
e2D(X)+2.

Proof By Proposition 4.3, we may assume that X has mean zero and variance one.
Let A = {x ∈ R : p(x) ≥ mκ}. By the definition of the quantiles,

∫

A

p(x) dx ≥ 1 − κ.

Since p(x) ≥ mκ on the set A, we have

+∞∫

−∞
p(x) log

(

1 + p(x)

ϕ(x)

)

dx ≥
∫

A

p(x) log

(

1 + mκ

ϕ(x)

)

dx

≥
∫

A

p(x) log
mκ

ϕ(x)
dx

= log(mκ

√
2π)

∫

A

p(x) dx + 1

2

∫

A

x2 p(x) dx

≥ (1 − κ) log(mκ

√
2π).

On the other hand, using an elementary inequality t log(1 + t)− t log t ≤ 1 (t ≥ 0),
we get

+∞∫

−∞
p(x) log

(

1 + p(x)

ϕ(x)

)

dx =
+∞∫

−∞

p(x)

ϕ(x)
log

(

1 + p(x)

ϕ(x)

)

ϕ(x) dx
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≤
+∞∫

−∞

p(x)

ϕ(x)
log

p(x)

ϕ(x)
ϕ(x) dx + 1 = D(X)+ 1.

Hence, (1 − κ) log(mκ

√
2π) ≤ D(X)+ 1, and the proposition follows. �


Now, let V0 and V1 be random variables with densities p0 and p1 from the quantile
decomposition (4.1). They have means a j = E Vj and variances σ 2

j = Var(Vj ),
connected by

κa0 + (1 − κ) a1 = EX,

and

(κa2
0 + (1 − κ) a2

1)+ (κσ 2
0 + (1 − κ) σ 2

1 ) = EX2, (5.1)

provided that X has a finite second moment.
The next step is to prove upper bounds for the entropies of V0 and V1.

Proposition 5.2 If X has mean zero and finite second moment, then

κD(V0)+ (1 − κ) D(V1) ≤ D(X)− κ log κ − (1 − κ) log(1 − κ).

In particular, in case of the median decomposition,

D(V0)+ D(V1) ≤ 2D(X)+ 2 log 2.

Proof Let Var(X) = σ 2(σ > 0). We may assume that D(X) is finite. By Defini-
tion 4.2,

−h(V0) =
+∞∫

−∞
p0(x) log p0(x) dx

=
∫

A0

(p(x)/κ) log(p(x)/κ) dx = − log κ + 1

κ

∫

A0

p(x) log p(x) dx,

and similarly, −h(V1) = − log(1 − κ) + 1
1−κ

∫
A1

p(x) log p(x) dx . Adding the two
equalities with weights, we get

− κh(V0)− (1 − κ) h(V1) = −κ log κ − (1 − κ) log(1 − κ)− h(X). (5.2)

Recall that

D(V0) = h(Z0)− h(V0), where Z0 ∼ N (a0, σ
2
0 ),

D(V1) = h(Z1)− h(V1), where Z1 ∼ N (a1, σ
2
1 ),

D(X) = h(Z) − h(X), where Z ∼ N (0, σ 2).

123



452 S. G. Bobkov et al.

Hence, from (5.2),

κD(V0)+ (1 − κ) D(V1) = κh(Z0)+ (1 − κ) h(Z1)

− κ log κ − (1 − κ) log(1 − κ)+ (D(X)− h(Z))

= κ log(σ0
√

2πe )+ (1 − κ) log(σ1
√

2πe )

−κ log κ−(1−κ) log(1−κ)+(D(X)− log(σ
√

2πe ))

= −κ log κ − (1 − κ) log(1 − κ)+ D(X)+ log
σκ0 σ

1−κ
1

σ
.

Finally, by (5.1), and the arithmetic-geometric inequality,

σ 2κ
0 σ

2(1−κ)
1 ≤ κσ 2

0 + (1 − κ) σ 2
1 ≤ σ 2,

so,
σκ0 σ

1−κ
1
σ

≤ 1. Proposition 5.2 is proved. �

The following bounds provide a quantitative measure in terms of D(X) of non-
degeneracy of the distributions of Vj via positivity of their variances σ 2

j .

Proposition 5.3 Let X be a random variable with mean zero and varianceσ 2 (σ > 0),
having finite entropy. Then

σ0 > σ e−(D(X)+4)/κ , σ1 > σ e−(D(X)+4)/(1−κ).

Proof By homogeneity with respect to σ , one may assume that σ = 1.
We modify the argument from the proof of Proposition 5.1. First note that

log(σ0
√

2πe ) = D(V0)−
+∞∫

−∞
p0(x) log p0(x) dx

≥ −
+∞∫

−∞
p0(x) log p0(x) dx

= −
∫

A0

(p(x)/κ) log(p(x)/κ) dx

= log κ − 1

κ

∫

A0

p(x) log p(x) dx, (5.3)

where A0 is a set from Definition 4.2.
In order to estimate the last integral, put r(x) = e−a2x2/2 with parameter a > 0.

Using the property r(x) ≤ 1 and once more the inequality t log(1 + t) ≤ t log t
+ 1(t ≥ 0), we get
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∫

A0

p(x) log p(x) dx ≤
+∞∫

−∞
p(x) log

(

1 + p(x)

r(x)

)

dx

=
+∞∫

−∞

p(x)

r(x)
log

(

1 + p(x)

r(x)

)

r(x) dx

≤
+∞∫

−∞

[
p(x)

r(x)
log

p(x)

r(x)
+ 1

]

r(x) dx

=
+∞∫

−∞
p(x) log p(x) dx + a2

2

+∞∫

−∞
p(x) x2 dx +

+∞∫

−∞
r(x) dx

= D(X)− log(
√

2πe)+
(

a2

2
+ 1

a

√
2π

)

.

The right-hand side is minimized for a = (2π)1/6 in which case we obtain that

∫

A0

p(x) log p(x) dx ≤ D(X)− log(
√

2πe )+ 3

2
(2π)1/3 < D(X)+ 1.35.

Together with (5.3), the above estimate yields

log(σ0
√

2πe ) > log κ − 1

κ
(D(X)+ 1.35).

But log(
√

2πe ) ∼ 1.42 < 1.42
κ

, so log σ0 > log κ− 1
κ
(D(X)+2.77), or equivalently,

σ0 > κ e−(D(X)+2.77)/κ .

Finally, using κ > e−1/κ , the above estimate may be simplified to

σ0 > e−(D(X)+3.77)/κ ,

which gives the first estimate on σ0. The second estimate for σ1 is similar. �


Note that in case of the median decomposition, Proposition 5.3 becomes

σ0 > cσ e−2D(X), σ1 > cσ e−2D(X),

where c is a positive absolute constant. One may take c = e−8, for example.
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6 Entropic bounds for cramer constants of characteristic functions

If a random variable X has an absolutely continuous distribution with density, say p,
then, by the Riemann–Lebesgue theorem, its characteristic function

f (t) = E eit X =
+∞∫

−∞
eitx p(x) dx (t ∈ R)

satisfies f (t) → 0, as t → ∞. Hence, for all T > 0,

δX (T ) = sup
|t |≥T

| f (t)| < 1.

An important problem is how to quantify this separation property (that is, sep-
aration from 1) by giving explicit upper bounds on the quantity δX (T ), sometimes
called Cramer’s constant. (At least δX (T ) < 1 is referred to as Cramer’s condition
(C).) This problem arises naturally in local limit theorems for densities of the sums
of non-identically distributed independent summands (cf. e.g. [26]). Furthermore, it
appears in the study of bounds and rates of convergence in the central limit theorem
for strong metrics including the total variation and relative entropy. For our purposes,
it is desirable to bound δX (T ) explicitly in terms of the entropy of X or, what is more
relevant, in terms of the entropic distance to normality D(X). A preliminary answer
may be given in terms of the variance σ 2 = Var(X), when it is finite, and where the
density p is uniformly bounded.

Proposition 6.1 Assume p(x) ≤ M a.e. Then, for all t real,

| f (t)| ≤ 1 − c
min{1, σ 2t2}

M2σ 2 , (6.1)

where c > 0 is an absolute constant.

In a slightly different form, this bound was obtained in the mid 1960s by
Statulevičius [26]. He also considered more complicated quantities reflecting the
behavior of the density p on non-overlapping intervals of the real line.

The inequality (6.1) can be generalized by involving non-bounded densities, but
then M should be replaced by other quantities such as quantiles mκ = mκ(p(X)) of
the random variable p(X). One can also remove any assumption on the moments of
X by replacing the standard deviation by the quantiles of the random variable X − X ′,
where X ′ is an independent copy of X . We refer to [6] for details, where the following
bound is derived.

Proposition 6.2 Let X be a random variable with finite variance σ 2 and finite entropy.
Then, for all t real,

| f (t)| ≤ 1 − c min{1, σ 2t2} e−4D(X), (6.2)

where c > 0 is an absolute constant.

123



Entropic bounds 455

At the expense of a worse constant in the exponent, this bound can be derived
directly from (6.1) by combining it with Propositions 5.1 and 5.3.

Indeed, we may assume that EX = 0. Let V0 and V1 be random variables with
densities p0 and p1 from the median decomposition (4.1), that is, for κ = 1

2 , and
denote by f0 and f1 the corresponding characteristic functions, so that f = 1

2 f0+ 1
2 f1.

Hence, for all t ,

| f (t)| ≤ 1

2
| f0(t)| + 1

2
. (6.3)

Since p0 is bounded—more precisely, p0(x) ≤ m = m(p(X)), one can apply Propo-
sition 6.1 to the random variable V0 with M = m. Then (6.1) and (6.3) give

| f (t)| ≤ 1 − c
min{1, σ 2

0 t2}
2m2σ 2

0

,

where σ 2
0 = Var(V0).

Note that σ 2
0 ≤ 2σ 2, according to (5.1). Hence, by Proposition 5.1,

m2σ 2
0 ≤ 2m2σ 2 ≤ 1

π
e4D(X)+4.

This gives

| f (t)| ≤ 1 − c1 min{1, σ 2
0 t2} e−4D(X).

But, by Proposition 5.3, σ 2
0 > c2σ

2 e−4D(X), hence,

| f (t)| ≤ 1 − c3 min{1, σ 2t2} e−8 D(X)

with some absolute constants c j > 0 ( j = 1, 2, 3).

7 Repacking of summands

We now consider a sequence of independent (not necessarily identically distributed)
random variables X1, . . . , Xn and their sum Sn = X1+· · ·+Xn . Let EXk = 0,EX2

k =
σ 2

k (σk > 0). One may always assume without loss of generality that σ 2
1 +· · ·+σ 2

n = 1,
so that Var(Sn) = 1.

In addition, all Xk are assumed to have absolutely continuous distributions, having
finite entropies in each place where the functional D is used.

To study integrability properties of the characteristic function fn of Sn (more
precisely—of its slightly modified variants f̃n), it will be more convenient to work
with a different representation,

Sn = V1 + · · · + VN ,
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where the new independent summands represent appropriate partial sums of the Xl

resulting in almost equal variances, such that at the same time the number of blocks,
N , is still reasonably large. Such a representation may be introduced just by taking

Vk =
∑

nk−1<l≤nk

Xl , (7.1)

where n0 = 0 and nk = max{ l ≤ n : σ 2
1 + · · · + σ 2

l ≤ k
N }. In order that Vk have

almost equal variances, the number of new summands should be restricted in terms of
the parameter

σ = max
l
σl

which in general may be an arbitrary real number between 1√
n

and 1.

Lemma 7.1 If N ≤ 1
2σ 2 , then for each k = 1, . . . , N,

1

2N
< Var(Vk) <

2

N
. (7.2)

Proof If n1 = n, then necessarily N = 1 and V1 = Sn , so (7.2) holds immediately.
If n1 < n, then, by the definition, Var(V1) ≤ 1

N and Var(V1 + Xn1+1) >
1
N . The

latter implies Var(V1) >
1
N − σ 2 ≥ 1

2N , thus proving (7.2) for k = 1.
Now, let 2 ≤ k ≤ N . Again by the definition, Var(Snk ) ≤ k

N and Var(Snk−1+1) >
k−1

N . The latter implies Var(Snk−1) >
k−1

N − σ 2. Combining the two bounds, we get

Var(Vk) = Var(Snk )− Var(Snk−1) ≤ k

N
−

(
k − 1

N
− σ 2

)

= 1

N
+ σ 2 <

2

N
.

On the other hand,

Var(Vk) >

(
k

N
− σ 2

)

− k − 1

N
= 1

N
− σ 2 ≥ 1

2N
.

Lemma 7.1 is proved. �

Thus, to obtain the property (7.2), it seems suggestive to take N = [ 1

2σ 2 ] (the
integer part). However, this choice is not used in the Proof of Theorems 1.1–1.2, since
we need to express N as a suitable function of Lyapunov’s coefficients.

As another useful property of the representation (7.1), let us mention the following.

Lemma 7.2 If maxl≤n D(Xl) ≤ D, then maxk≤N D(Vk) ≤ D, as well.

This is due to the general bound D(X + Y ) ≤ max{D(X), D(Y )}, which holds
for arbitrary independent random variables with finite second moments and absolutely

123



Entropic bounds 457

continuous distributions. It can easily be derived, for example, from the entropy power
inequality

e2h(X+Y ) ≥ e2h(X) + e2h(Y ),

cf. [10].
Now, let ρk denote density of the random variable Vk . For each ρk , one may consider

a median density decomposition

ρk(x) = 1

2
ρk0(x)+ 1

2
ρk1(x) (7.3)

in accordance with Definition 4.2 for the parameter κ = 1
2 .

In particular, ρk0(x) ≤ m, where m = m(ρk(Vk)) is a median of the random
variable ρk(Vk). Note that by Proposition 5.1 with X = Vk and Lemmas 7.1–7.2, if
max j≤n D(X j ) ≤ D, we immediately obtain that

m(ρk(Vk)) ≤ 1

vk
√

2π
e2D+2 ≤ √

N e2D+2, (7.4)

where vk = √
Var(Vk).

Let Vkj be random variables with densities ρk j and characteristic functions

ρ̂k j (t) = E eitVk j =
+∞∫

−∞
eitx ρk j (x) dx, j = 0, 1.

We collect their basic properties in the following lemma.

Lemma 7.3 Assume that N ≤ 1
2σ 2 and maxl≤n D(Xl) ≤ D. For all k ≤ N and

j = 0, 1,

a) D(Vkj ) ≤ 2D + 2,
b) Var(Vkj ) >

1
2N e−4(D+4),

c) |ρ̂k j (t)| ≤ 1 − c e−12 D for all |t | ≥ √
N with an absolute constant c > 0.

Proof The first assertion follows from Lemma 7.2 and Proposition 5.2 applied with
X = Vk . For the second one, combine Proposition 5.3 with X = Vk and Lemmas 7.1–
7.2 to get

vk j > vk e−2(D(Vk )+4) ≥ vk e−2(D+4) ≥ 1√
2N

e−2(D+4),
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where v2
k j = Var(Vkj ) (vk j > 0). For the assertion in c), combine Proposition 6.2 for

X = Vkj and the previous steps, which give

|ρ̂k j (t)| ≤ 1 − c min{1, v2
k j t

2} e−4D(Vkj )

≤ 1 − c min{1, e−4(D+4) t2/(2N )} e−4(2D+2)

≤ 1 − c′ min{1, t2/N } e−12 D

with some absolute constants c, c′ > 0. �


8 Decomposition of convolutions

Starting from the representation Sn = V1 + · · · + VN with the summands defined in
(7.1), one can write the density of SN as the convolution

pn = ρ1 ∗ · · · ∗ ρN ,

where ρk denotes the density of Vk . Moreover, a direct application of the median
decomposition (7.3) leads to the representation

pn = 2−N
∑

(ρ
δ1
10 ∗ ρ1−δ1

11 ) ∗ · · · ∗ (ρδN
N0 ∗ ρ1−δN

N1 ),

where the summation is carried out over all 2N sequences δk with values 0 and 1, and
with the convention that

ρ
δk
k0 ∗ ρ1−δk

k1 =
{
ρk0, if δk = 1,
ρk1, if δk = 0.

Let an integer number m0 ≥ 0 be given (For our purposes, since we will need to
control 3 derivatives in Proposition 3.1, one may take m0 = 3). For N ≥ m0 + 1, we
split the above sum into the two parts, so that

pn = qn0 + qn1,

where

qn0 = 2−N
∑

δ1+···+δN>m0

(ρ
δ1
10 ∗ ρ1−δ1

11 ) ∗ · · · ∗ (ρδN
N0 ∗ ρ1−δN

N1 ),

qn1 = 2−N
∑

δ1+···+δN ≤m0

(ρ
δ1
10 ∗ ρ1−δ1

11 ) ∗ · · · ∗ (ρδN
N0 ∗ ρ1−δN

N1 ).
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Put

εn =
+∞∫

−∞
qn1(x) dx = 2−N

m0∑

k=0

N !
k! (N − k)! .

One can easily see that

εn ≤ 2−(N−1) N m0 . (8.1)

Definition 8.1 Put

p̃n(x) = pn0(x) = 1

1 − εn
qn0(x), (8.2)

and similarly pn1(x) = 1
εn

qn1(x). Thus, we get the decomposition

pn(x) = (1 − εn)pn0(x)+ εn pn1(x). (8.3)

Accordingly, introduce the associated characteristic functions

f̃n(t) = fn0(t) =
+∞∫

−∞
eitx p̃n(x) dx, fn1(t) =

+∞∫

−∞
eitx pn1(x) dx .

The probability densities p̃n(x) = pn0(x) are bounded and provide a strong approx-
imation for pn(x). Indeed, from (8.3) it follows that

| p̃n(x)− pn(x)| = εn|pn0(x)− pn1(x)| (8.4)

which together with the bound (8.1) immediately implies:

Proposition 8.2 For all n ≥ N ≥ m0 + 1,

+∞∫

−∞
| p̃n(x)− pn(x)| dx ≤ 2−(N−2) N m0 .

In particular, the corresponding characteristic functions satisfy, for all t ∈ R,

| f̃n(t)− fn(t)| ≤ 2−(N−2) N m0 . (8.5)

Note that that Proposition 8.2 uses an absolute continuity of distributions of Xk ,
only (for the construction of p̃n and f̃n), and does not need any moment assumption.

To obtain a bound for the derivatives of characteristic functions similar to (8.5),
we involve basic hypotheses EXk = 0,EX2

k < +∞, assuming that the sum Sn =
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X1 +· · ·+ Xn has the second moment ES2
n = 1. We shall use the associated Lyapunov

ratios, thus given by

Ls =
n∑

k=1

E |Xk |s .

Our basic tool will be Rosenthal’s inequality

E |Sn|s ≤ Cs

⎛

⎝1 +
n∑

j=1

E |X j |s
⎞

⎠ = Cs (1 + Ls), s ≥ 2, (8.6)

which holds true with some constants Cs , depending on s, only (cf. e.g. [20,24]). Note
that in case 1 ≤ s ≤ 2, there is also an obvious bound E |Sn|s ≤ 1.

Proposition 8.3 Assume that Ls is finite (s ≥ 2). For all n ≥ N ≥ m0 + 1,

+∞∫

−∞
|x |s | p̃n(x)− pn(x)| dx ≤ Cs(1 + Ls) 2−(N−3) N m0+s .

In particular, if s is an integer, the sth derivative of the corresponding characteristic
functions satisfies, for all t real,

| f̃ (s)n (t)− f (s)n (t)| ≤ Cs(1 + Ls) 2−(N−3) N m0+s .

Here, the constant Cs is the same as in (8.6). For the values s = 1 and s = 2,
it is better to use E |Sn| ≤ 1 and ES2

n = 1 instead of (8.6). For s = 3, Rosenthal’s
inequality can be shown to hold with constant C3 = 2. Hence, we obtain:

Corollary 8.4 Let n ≥ N ≥ m0 + 1 and t ∈ R. Then, for s = 1, 2, we have

| f̃ (s)n (t)− f (s)n (t)| ≤ 2−(N−3) N m0+s .

Moreover, if L3 is finite,

| f̃ ′′′
n (t)− f ′′′

n (t)| ≤ (1 + L3) 2−(N−4) N m0+3.

Proof of Proposition 8.3 Let Vkj (1 ≤ k ≤ N , j = 0, 1) be independent random
variables with respective densities ρk j from the median decomposition (7.3) for the
random variables Vk . For each sequence δ = (δk)1≤k≤N with values 0 and 1, the
convolution

ρ(δ) = (ρ
δ1
10 ∗ ρ1−δ1

11 ) ∗ · · · ∗ (ρδN
N0 ∗ ρ1−δN

N1 )
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represents the density of the sum

S(δ) =
N∑

k=1

(δk Vk0 + (1 − δk)Vk1).

By the assumption, all moments E |Xk |s are finite, and (7.3) yields

E |Vk |s = 1

2
E |Vk0|s + 1

2
E |Vk1|s . (8.7)

Hence, for the Ls-norm ‖S(δ)‖s = (E |S(δ)|s)1/s , using the Minkowski inequality,
we have

‖S(δ)‖s ≤
N∑

k=1

‖δk Vk0 + (1 − δk)Vk1‖s

≤
N∑

k=1

(δk ‖Vk0‖s + (1 − δk) ‖Vk1‖s)

≤ 21/s
N∑

k=1

‖Vk‖s, (8.8)

where (8.7) was used in the last step. But

1

N

N∑

k=1

‖Vk‖s = 1

N

N∑

k=1

(E |Vk |s)1/s ≤
(

1

N

N∑

k=1

E |Vk |s
)1/s

, (8.9)

so

E |S(δ)|s ≤ 2N s−1
N∑

k=1

E |Vk |s ≤ 2N s E |Sn|s,

where we used E |Vk |s ≤ E |Sn|s (due to Jensen’s inequality).
Write E |S(δ)|s = ∫ +∞

−∞ |x |s ρ(δ)(x) dx . Recalling the definition of qnj and εn , we
get

+∞∫

−∞
|x |s qn0(x) dx = 2−N

∑

δ1+···+δN>m0

E |S(δ)|s ≤ 2 E |Sn|s (1 − εn) N s,

+∞∫

−∞
|x |s qn1(x) dx = 2−N

∑

δ1+···+δN ≤m0

E |S(δ)|s ≤ 2 E |Sn|s εn N s .
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Hence, by the definition of pn0,

+∞∫

−∞
|x |s pn0(x) dx ≤ 2 E |Sn|s N s,

and similarly for pn1. But, from (8.4),

|x |s | p̃n(x)− pn(x)| ≤ εn|x |s (pn0(x)+ pn1(x)),

so, applying (8.1),

+∞∫

−∞
|x |s | p̃n(x)− pn(x)| dx ≤ E |Sn|s 2−(N−3)N m0+s .

It remains to apply (8.6). �


9 Entropic approximation of pn by p̃n

As before, let X1, . . . , Xn be independent random variables with EXk = 0,EX2
k = σ 2

k
(σk > 0), such that σ 2

1 + · · · + σ 2
n = 1. Moreover, let Xk have absolutely continuous

distributions with finite entropies, and let pn denote the density of the sum

Sn = X1 + · · · + Xn .

Put σ 2 = maxk σ
2
k .

The next step is to extend the assertion of Propositions 8.2–8.3 to relative entropies
with respect to the standard normal distribution on the real line with density

ϕ(x) = 1√
2π

e−x2/2.

Thus put

Dn =
∫

pn(x) log
pn(x)

ϕ(x)
dx, D̃n =

∫

p̃n(x) log
p̃n(x)

ϕ(x)
dx .

Recall that the modified densities p̃n are constructed in Definition 8.1 with arbitrary
integers 0 ≤ m0 < N ≤ n on the basis of the representation (7.1), based on the
independent random variables Vk and the median decomposition (7.3) for the densities
ρk of Vk .

Proposition 9.1 Let D = maxk D(Xk). Given that m0 + 1 ≤ N ≤ 1
2σ 2 , we have

|D̃n − Dn| < 2−(N−6) N m0+1 (D + 1). (9.1)

123



Entropic bounds 463

We shall use a few elementary properties of the convex function L(u) = u log u
(u ≥ 0).

Lemma 9.2 For all u, v ≥ 0 and 0 ≤ ε ≤ 1,

a) L((1 − ε) u + εv) ≤ (1 − ε) L(u)+ εL(v);
b) L((1 − ε) u + εv) ≥ (1 − ε) L(u)+ εL(v)+ uL(1 − ε)+ vL(ε).

Proof of Proposition 9.1 Define

Dnj =
∫

pnj (x) log
pnj (x)

ϕ(x)
dx ( j = 0, 1),

so that D̃n = Dn0, where the densities pnj have been defined in (8.2)–(8.3).
By Lemma 9.2 a), Dn ≤ (1 − εn)Dn0 + εn Dn1. On the other hand, by Lemma 9.2

b),

Dn ≥ ((1 − εn)Dn0 + εn Dn1)+ εn log εn + (1 − εn) log(1 − εn).

The two estimates give

|D̃n − Dn| ≤ εn(Dn0 + Dn1)− εn log εn − (1 − εn) log(1 − εn). (9.2)

Hence, we need to give appropriate bounds on both Dn0 and Dn1.
To this aim, as before, let Vkj (1 ≤ k ≤ N , j = 0, 1) be independent random

variables with respective densities ρk j from the median decomposition (7.3) for Vk ,
and put v2

k j = Var(Vkj ). As in the previous section, for each sequence δ = (δk)1≤k≤N

with values 0 and 1, consider the convolution

ρ(δ) = (ρ
δ1
10 ∗ ρ1−δ1

11 ) ∗ · · · ∗ (ρδN
N0 ∗ ρ1−δN

N1 ),

i.e., the densities of the random variables

S(δ) =
N∑

k=1

(δk Vk0 + (1 − δk)Vk1).

By convexity of the function u log u,

Dn1 ≤ 1

εn
2−N

∑

δ1+···+δN ≤m0

+∞∫

−∞
ρ(δ)(x) log

ρ(δ)(x)

ϕ(x)
dx, (9.3)

Dn0 ≤ 1

1 − εn
2−N

∑

δ1+···+δN>m0

+∞∫

−∞
ρ(δ)(x) log

ρ(δ)(x)

ϕ(x)
dx . (9.4)
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In general, if S denotes a random variable with variance v2 (v > 0) having density
ρ, and if Z is a standard normal random variable, the relative entropy of S with respect
to Z is connected with the entropic distance to normality D(S) by the simple formula

D(S||Z) =
∫

ρ(x) log
ρ(x)

ϕ(x)
dx = D(S)+ log

1

v
+ ES2 − 1

2
. (9.5)

In the case S = S(δ), applying Lemma 7.3 b), we have

v2 =
N∑

k=1

[ δkv
2
k0 + (1 − δk) v

2
k1] ≥ 1

2
e−4(D+4),

hence

log
1

v
≤ 2D + 9.

In addition, by (8.8)–(8.9) in the particular case s = 2, and using
∑N

k=1 Var(Vk) =
Var(Sn) = 1, we have ES(δ)2 ≤ 2N . Therefore, for the random variable S = S(δ)
we obtain from (9.5)

D(S(δ)||Z) ≤ D(S(δ))+ (2D + 9)+ N . (9.6)

The remaining term, D(S(δ)), can be estimated by virtue of the same general
inequality D(X + Y ) ≤ max{D(X), D(Y )} mentioned after Lemma 7.2. This bound
can be applied to all summands of S(δ), which together with Lemma 7.3 a) gives

D(S(δ)) ≤ max
1≤k≤N

max{D(Vk0), D(Vk1)} ≤ 2D + 2.

Applying this in (9.6), we arrive at

+∞∫

−∞
ρ(δ)(x) log

ρ(δ)(x)

ϕ(x)
dx = D(S(δ)||Z) ≤ 4D + 11 + N .

Finally, by (9.3)–(9.4), we have similar bounds for Dn0 and Dn1, namely,

Dn0 ≤ 4D + 11 + N , Dn1 ≤ 4D + 11 + N .

Having obtained these estimates, we are prepared to return to (9.2), which thus
gives

|D̃n − Dn| ≤ 2εn (4D + 11 + N )+ εn log
1

εn
+ (1 − εn) log

1

1 − εn
. (9.7)
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To simplify this bound, consider the function H(ε) = ε log 1
ε

+ (1 − ε) log 1
1−ε ,

which is defined for 0 ≤ ε ≤ 1, is concave and symmetric about the point 1
2 , where it

attains its maximum H( 1
2 ) = log 2. Recall (8.1), that is, εn ≤ dn = 2−(N−1) N m0 .

If dn ≥ 1
2 , then

H(εn) ≤ log 2 ≤ 2dn = 2−(N−2) N m0 . (9.8)

Note that

log
1

dn
= m0 log

1

N
+ (N − 1) log 2 < N .

Hence, in the other case dn ≤ 1
2 , we have

H(εn) ≤ H(dn) ≤ 2dn log
1

dn
≤ 2−(N−2) N m0+1. (9.9)

Comparing (9.8) and (9.9), we see that they can be combined to the following estimate

H(εn) ≤ 2−(N−2) N m0+1,

which is valid regardless of whether dn is greater or smaller than 1
2 .

Using this estimate in (9.7), we finally get

|D̃n − Dn| ≤ 2−(N−2) N m0 (4D + 11 + N )+ 2−(N−2) N m0+1

= 2−(N−2) N m0 (4D + 11 + 2N ).

Since 4D + 11 + 2N < 24 N (D + 1), we arrive at the desired inequality (9.1). �


10 Integrability of characteristic functions f̃n and their derivatives

Now we turn to the question of quantitative bounds for the modified characteristic
functions f̃n in terms of the maximal entropic distance to normality

D = max
k≤n

D(Xk).

Again, let X1, . . . , Xn be independent random variables with EXk = 0,EX2
k = σ 2

k
(σk > 0), such that σ 2

1 +· · ·+σ 2
n = 1. Moreover, all Xk are assumed to have absolutely

continuous distributions with finite entropies.
We assume that the modified density p̃n and its characteristic function f̃n have been

constructed for arbitrary integers m0 + 1 ≤ N ≤ n. Put σ = maxk σk .
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Proposition 10.1 If m0 ≥ 1 and m0 + 1 ≤ N ≤ 1
2σ 2 , then

∫

|t |≥√
N

| f̃n(t)|2 dt ≤ C
√

N e−cN (10.1)

with some positive constants C and c, depending on D, only.

In fact, one can choose the constants to be of the form C = e2D+4 and c = c0e−12 D ,
where c0 is a positive absolute factor.

Proof Consider any convolution

ρ = (ρ
δ1
10 ∗ ρ1−δ1

11 ) ∗ · · · ∗ (ρδN
N0 ∗ ρ1−δN

N1 )

participating in the definition of qn0, that is, with δ1 + · · · + δN > m0. It has the
characteristic function

ρ̂(t) =
+∞∫

−∞
eitxρ(x) dx =

N∏

k=1

ρ̂k0(t)
δk ρ̂k1(t)

1−δk , (10.2)

where ρ̂k j denote the characteristic functions of the random variables Vkj from the
median decomposition (4.1) with X = Vk (1 ≤ k ≤ N , j = 0, 1). In every such
convolution there are at least m0 + 1 terms ρk0 for which δk = 1. Without loss of
generality, let k = N be one of them, so that δN = 1. Then, we may write

ρ̂(t) = ρ̂N0(t)
N−1∏

k=1

ρ̂k0(t)
δk ρ̂k1(t)

1−δk . (10.3)

By Lemma 7.3 c), and using the inequality 1 − x ≤ e−x (x ∈ R), we get for all
|t | ≥ √

N ,

|ρ̂k j (t)| ≤ exp{−c0e−12 D} (10.4)

with some absolute constant c0 > 0. Inserting this in (10.3) and using N ≥ 2 leads to

|ρ̂(t)|2 ≤ A |ρ̂N0(t)|2, A = exp{−c0e−12 D N }, (10.5)

where c0 > 0 is a different absolute constant.
Now, integrate (10.5) over the region |t | ≥ √

N and use Plancherel’s formula.
Applying the property ρN0(x) ≤ m = m(ρN (VN )), we get

∫

|t |≥√
N

|ρ̂(t)|2 dt ≤ A

+∞∫

−∞
|ρ̂N0(t)|2 dt = 2π A

+∞∫

−∞
ρN0(x)

2 dx ≤ 2π A m. (10.6)
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But, as noted in (7.4), we have m ≤ e2D+2
√

N , so together with 2π < e2 (10.6) gives
the desired bound

∫

|t |≥√
N

|ρ̂(t)|2 dt ≤ e2D+4
√

N e−cN (c = c0e−12 D)

for ρ̂. But f̃n is a finite convex combination of such functions, and (10.1) immediately
follows. �


Next, we shall extend Proposition 10.1 to the derivatives of f̃n , which are needed up
to order s = 3 in case of finite 4th moments of Xk . Assume that s ≥ 1 is an arbitrary
integer.

Consider the characteristic functions ρ̂ in (10.2). Recall that f̃n represents a convex
combination of such characteristic functions over all sequences δ = (δ1, . . . , δN ) such
that δ1 + · · · + δN ≥ m0 + 1. Hence, it will be sufficient to derive an estimate, such
as (10.1), for any admissible fixed sequence δ.

Put

uk = ρ̂
δk
k0 ρ̂

1−δk
k1 (1 ≤ k ≤ N ),

which is the characteristic function of the random variable δk Vk0 + (1 − δk) Vk1.
Thus, ρ̂ = ∏N

k=1 uk . For the sth derivative of the product we write a general
polynomial formula

ρ̂(s) =
∑ (

s
s1 . . . sN

)

u(s1)
1 . . . u(sN )

N ,

where the summation runs over all integer numbers s1, . . . , sN ≥ 0, such that
s1 + · · · + sN = s.

Fix such a sequence s1, . . . , sN . Note that it contains at most s non-zero terms. The
sequence δ = (δ1, . . . , δN ) defining ρ satisfies δ1 + · · ·+ δN ≥ m0 + 1. Hence, in the
row u(s1)

1 , . . . , u(sN )
N there are at least m0+1 terms corresponding to δk = 1. Therefore,

if m0 ≥ s, there is at least one index, say k, for which δk = 1 and in addition sk = 0.
For simplicity, let k = N , so that

ψ ≡ u(s1)
1 . . . u(sN )

N = ρ̂N0 u(s1)
1 . . . u(sN−1)

N−1 . (10.7)

If sk > 0, then

|u(sk )
k (t)| ≤ E |δk Vk0 + (1 − δk) Vk1|sk ≤ max{E |Vk0|sk ,E |Vk1|sk }.

But, by the decomposition (7.3) and Jensen’s inequality,

1

2
E |Vk0|sk + 1

2
E |Vk1|sk = E |Vk |sk ≤ E |Sn|sk ,
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so |u(sk )
k (t)| ≤ 2 E |Sn|sk . Hence,

∏

sk>0

|u(sk )
k (t)| ≤ 2s

∏

sk>0

E |Sn|sk ≤ 2s
∏

sk>0

(E |Sn|s)sk/s = 2s E |Sn|s . (10.8)

When sk = 0, we apply the estimate (10.4) on Cramer’s constants, which may be
used in (10.7). Note that (10.4) is fulfilled for at least (N − 1) − (s − 1) ≥ N − m0
indices k ≤ N − 1. Hence, using also (10.8), we get

|ψ(t)| ≤ C |ρ̂N0(t)| exp{−c0(N − m0) e−12 D}, C = 2s E |Sn|s .

In case N ≥ 2m0, one may simplify this bound by writing N − m0 ≥ N
2 . In

addition, since the sum of the multinomial coefficients in the representation of ρ̂(s) is
equal to N s , and using Jensen’s inequality for the quadratic function, we arrive at

|ρ̂(s)(t)|2 ≤ A |ρ̂N0(t)|2, A = C N s exp{−c0e−12 D N },

with some absolute constant c0 > 0. It remains to integrate this inequality like in
(10.6) over the region |t | ≥ √

N and apply the estimate (7.4). As a result, we obtain

∫

|t |≥√
N

|ρ̂(s)(t)|2 dt ≤ Ae2D+4
√

N .

Since f̃n is a convex combination of the functions ρ̂(s), a similar inequality holds
for f̃n(t), as well. That is,

∫

|t |≥√
N

| f̃ (s)n (t)|2 dt ≤ 2s E |Sn|s e2D+4 exp{−c0e−12 D N } N s+1/2.

For s = 1 and s = 2, we have E |Sn|s ≤ 1, while for s ≥ 3, one may use Rosenthal’s
inequality (8.6). In particular, for s = 3 it gives E |Sn|3 ≤ 2(1 + L3).

Summarizing the results obtained so far, we have:

Proposition 10.2 Let m0 ≥ 3 and 2m0 ≤ N ≤ 1
2σ 2 . Then

∫

|t |≥√
N

| f̃ (s)n (t)|2 dt ≤ C N s+1/2 e−cN (s = 1, 2) (10.9)

with positive constants C and c, depending on D, only. Moreover, if Ls is finite, s ≥ 3
integer, and m0 ≥ s, then

∫

|t |≥√
N

| f̃ (s)n (t)|2 dt ≤ C · Cs(1 + Ls) N s+1/2 e−cN .
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Here, the constants C = e2D+4 and c = c0e−12 D are of the same form as in
Proposition 10.1, and Cs is a constant in Rosenthal’s inequality (8.6). In particular,
for s = 3, we arrive at

∫

|t |≥√
N

| f̃ ′′′
n (t)|2 dt ≤ C(1 + L3) N 7/2 e−cN . (10.10)

Note also that, for s = 0, (10.9) is true, as well, and returns us to Proposition 10.1.

11 Proof of Theorem 1.1 and its refinement

We are now ready to complete the proof of Theorems 1.1–1.2 and develop some
refinements. Thus, let X1, . . . , Xn be independent random variables with mean zero
and finite third absolute moments, having finite entropies, and such that the sum
Sn = X1 + · · · + Xn has variance Var(Sn) = 1. The relevant quantity in our bounds
will be the Lyapunov coefficient

L3 =
n∑

k=1

E |Xk |3

and the maximal entropic distance to normality D = maxk D(Xk).
To bound the total variation distance ‖Fn −�‖TV from the distribution Fn of Sn to

the standard normal law�, one may apply the general bound (2.1) of Proposition 2.1.
However, it is only applicable when the characteristic function fn of Sn and its deriv-
ative are square integrable. But even in the case that, for example, each density pn

of Sn is bounded individually, we still could not properly bound the maximum of the
convolutions of these densities explicitly in terms of D and L3. That is why, we are
forced to consider modified forms of pn .

Thus, consider these modifications p̃n together with their Fourier transforms f̃n

described in Definition 8.1. By the triangle inequality,

‖Fn −�‖TV ≤ ‖F̃n −�‖TV + ‖F̃n − Fn‖TV, (11.1)

where F̃n denotes the distribution with density p̃n .
In the construction of p̃n it suffices to take the values m0 = 3 and 6 ≤ N ≤ 1

2σ 2 .
Then, by Proposition 8.2,

‖F̃n − Fn‖TV =
+∞∫

−∞
| p̃n(x)− pn(x)| dx ≤ 2−(N−2) N 3. (11.2)

This gives a sufficiently good bound on the last term in (11.1), if N is sufficiently
large.
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The first term on the right-hand side of (11.1) can be bounded by virtue of (2.1),
which gives

‖F̃n −�‖2
TV ≤ 1

2
‖ f̃n − g‖2

2 + 1

2
‖( f̃n)

′ − g′‖2
2, (11.3)

where g(t) = e−t2/2. To estimate the L2-norms, first write

1

2
‖ f̃n − g‖2

2 ≤ 1

2

∫

|t |≤√
N

| f̃n(t)− g(t)|2 dt

+
∫

|t |>√
N

| f̃n(t)|2 dt +
∫

|t |>√
N

g(t)2 dt.

Since | f̃n(t)− fn(t)| ≤ 2−(N−2) N 3, we have

1

2

∫

|t |≤√
N

| f̃n(t)−g(t)|2 dt ≤
∫

|t |≤√
N

| f̃n(t)− fn(t)|2 dt +
∫

|t |≤√
N

| fn(t)− g(t)|2 dt

≤
∫

|t |≤√
N

| fn(t)− g(t)|2 dt + 2−(2N−5) N 7/2. (11.4)

In addition, by Proposition 10.1,

∫

|t |≥√
N

| f̃n(t)|2 dt ≤ C
√

N e−cN (11.5)

with C = e2D+4 and c = c0e−12 D , where c0 is an absolute positive constant.
Using a well-known bound 1 − �(x) ≤ 1

x ϕ(x) (x > 0), we easily get
∫
|t |>√

N g(t)2 dt < e−N . Together with (11.4)–(11.5), and since one may always

assume that c0 ≤ 1
2 , the latter gives

1

2
‖ f̃n − g‖2

2 ≤
∫

|t |≤√
N

| fn(t)− g(t)|2 dt + C
√

N e−cN (11.6)

with D-dependent constants C = C0e2D and c = c0e−12 D (where C0 and c0 are
numerical).

A similar analysis based on the application of Proposition 8.3 (cf. Corollary 8.4)
and Proposition 10.2 with s = 1 leads to an analogous estimate

1

2
‖( f̃n)

′ − g′‖2
2 ≤

∫

|t |≤√
N

| f ′
n(t)− g′(t)|2 dt + C N 3/2 e−cN .
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Together with (11.6) it may be applied in (11.3), and then we get

‖F̃n −�‖2
TV ≤

∫

|t |≤√
N

| fn(t)− g(t)|2 dt+
∫

|t |≤√
N

| f ′
n(t)− g′(t)|2 dt + C N 3/2 e−cN .

It is time to appeal to the classical theorem on the approximation of fn by the
characteristic function of the standard normal law, cf. e.g. [4].

Lemma 11.1 Assume L3 ≤ 1. Up to an absolute constant A, in the interval |t | ≤
L−1/3

3 we have

| fn(t)− g(t)| ≤ AL3 e−t2/4,

and similarly for the first three derivatives of fn − g.

In fact, the above inequality holds in the larger interval |t | ≤ 1/(4L3). But this will
not be needed for the present formulation of Theorem 1.1.

Thus, if in addition to the original condition 6 ≤ N ≤ 1
2σ 2 we require that

√
N ≤

L−1/3
3 , Lemma 11.1 may be applied, and we get

‖F̃n −�‖TV ≤ AL3 + C N 3/2 e−cN .

Using this together with (11.2) in (11.1), we arrive at

‖Fn −�‖TV ≤ AL3 + C N 3/2 e−cN , (11.7)

where A is some positive absolute constant, while C = C0e2D and c = c0e−12 D , as
before.

Proof of Theorem 1.1 To finish the argument, we may take N = [ 1
2 L−2/3

3 ], so that√
N ≤ L−1/3

3 . In view of the elementary bound σ ≤ L1/3
3 , the condition N ≤ 1

2σ 2 is
fulfilled, as well. Finally, the condition N ≥ 6 just restricts us to smaller values of L3,
and, for example, L3 ≤ 1

64 would work. Indeed, in this case, 1
2 L−2/3

3 ≥ 8, so N ≥ 8.

Thus, if L3 ≤ 1
64 , then (11.7) holds true. But since N ≥ 1

4 L−2/3
3 , the last term

in (11.7) is dominated by any power of L3 (up to constants). For example, using
ex ≥ 1

2 x3 (x ≥ 0), we get

N 3/2 e−cN ≤ 2

c3 N−3/2 ≤ 16

c3 L3 = 16

c3
0

e36D L3.

Hence, (11.7) implies

‖Fn −�‖TV ≤ C L3, (11.8)

with C = C0e36D , where C0 is a positive numerical constant.
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Finally, if L3 >
1

64 , (11.8) automatically holds with C = 128, and Theorem 1.1 is
proved. �


Note, however, that the inequality (11.7) contains more information in comparison
with Theorem 1.1. Again assume, as above, that L3 ≤ 1

64 and take N = [ 1
2 L−2/3

3 ]. If
D ≤ 1

24 log 1
L3

, then

cN ≥ c0e−12 D · 1

4
L−2/3

3 ≥ c0 L1/2
3 · 1

4
L−2/3

3 = c0

4
L−1/6

3

and C = C0e2D ≤ C0L−1/12
3 . Hence,

C N 3/2 e−cN ≤ C0 L−1/12
3 · L−1

3 · e− c0
4 L−1/6

3 ≤ C ′
0 L3

with some absolute constant C ′
0. As a result, (11.7) yields ‖Fn −�‖TV ≤ (A+C ′

0) L3,
and we arrive at:

Theorem 11.2 Assume that the independent random variables Xk have mean zero
and finite third absolute moments. If L3 ≤ 1

64 and D(Xk) ≤ 1
24 log 1

L3
(1 ≤ k ≤ n),

then

‖Fn −�‖TV ≤ C L3, (11.9)

where C is an absolute constant.

One should note that in the range L3 >
1

64 the inequality (11.9) holds, as well,
namely, with C = 128 and without any constraint on D(Xk).

12 Proof of Theorem 1.2 and its refinement

In the proof of Theorem 1.2, we apply the general bound (3.1) of Proposition 3.1
to the modified densities p̃n constructed under the same constraints m0 = 3 and
6 ≤ N ≤ 1

2σ 2 , as in the proof of Theorem 1.1. It then gives

D̃n ≤ α2 + 4(‖ f̃n − gα‖2 + ‖( f̃n)
′′′ − g′′′

α ‖2),

where D̃n is the relative entropy of F̃n with respect to � and

gα(t) = g(t)

(

1 + α
(i t)3

3!
)

, α =
n∑

k=1

EX3
k .

As we know from Proposition 9.1, D̃n provides a good approximation for the
entropic distance Dn = D(Sn), namely

|D̃n − Dn| < 2−(N−6) N 4 (D + 1).
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Hence,

Dn ≤ α2 + 4(‖ f̃n − gα‖2 + ‖( f̃n)
′′′ − g′′′

α ‖2)+ 2−(N−6)N 4 (D + 1). (12.1)

On the other hand, the closeness of fn and gα on relatively large intervals is provided
by:

Lemma 12.1 Assume L4 ≤ 1. Up to an absolute constant A, in the interval |t | ≤
L−1/6

4 we have

| fn(t)− gα(t)| ≤ AL4 e−t2/4, (12.2)

and similarly for the first four derivatives of fn − gα .

Again, we refer to [4], where one can find several variants of such bounds.
We also use the following elementary relations, cf. e.g. [19, p. 139, Lemma 2].

Lemma 12.2 α2 ≤ L2
3 ≤ L4.

Now, assume that L4 ≤ 1. To estimate the L2-norms in (12.1), again write

‖ f̃n − gα‖2
2 ≤

∫

|t |≤√
N

| f̃n(t)− gα(t)|2 dt

+ 2
∫

|t |>√
N

| f̃n(t)|2 dt + 2
∫

|t |>√
N

|gα(t)|2 dt. (12.3)

Using | f̃n(t) − fn(t)| ≤ 2−(N−2) N 3 and the inequality (12.2) with |t | ≤ √
N ≤

L−1/6
4 , we have

∫

|t |≤√
N

| f̃n(t)− gα(t)|2 dt ≤ 2
∫

|t |≤√
N

| f̃n(t)− fn(t)|2 dt

+ 2
∫

|t |≤√
N

| fn(t)− gα(t)|2 dt

≤ AL2
4 + 2−(2N−5) N 7/2 (12.4)

with some absolute constant A.
The middle integral on the right-hand side of (12.3) has been already estimated in

(11.5).
In addition, using t6g(t) ≤ 63/e3, we have

|gα(t)|2 = g(t)2
(

1 + α2 t6

36

)

< (1 + α2) g(t) ≤ 2 g(t),
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where we applied Lemma 12.2 together with the assumption L4 ≤ 1 (so that |α| ≤ 1).
Hence,

∫

|t |>√
N

|gα(t)|2 dt < 2
∫

|t |>√
N

e−t2/2 dt < 2 e−N/2.

One may combine this bound with (11.5) and (12.4), and then (12.3) gives

‖ f̃n − gα‖2
2 ≤ AL2

4 + 2−(2N−5) N 7/2 + C
√

N e−cN + 4 e−N/2

with C = e2D+4 and c = c0e−12 D as in (11.5), where c0 is an absolute positive
constant. Since one may always choose c0 ≤ 1

2 , the above inequality may be simplified
as

‖ f̃n − gα‖2 ≤ AL4 + C N 1/4 e−cN

with some absolute constant A and D-dependent constants C = C0e2D and
c = c0e−12 D .

By a similar analysis based on the application of Corollary 8.4 and Proposition 10.2
with s = 3 (cf. (10.10)), we also have an analogous estimate

‖ f̃ ′′′
n − g′′′

α ‖2 ≤ AL4 + C N 7/4 e−cN .

Hence, (12.1) together with Lemma 12.2 yields

Dn ≤ AL4 + C N 7/4 e−cN , (12.5)

where A is absolute, and C = C0e2D and c = c0e−12 D , as before. The obtained
estimate holds true, as long as 6 ≤ N ≤ 1

2σ 2 and
√

N ≤ L−1/6
4 with L4 ≤ 1.

Proof of Theorem 1.2 The last condition,
√

N ≤ L−1/6
4 , is satisfied for N =

[ 1
2 L−1/3

4 ]. Then, by the elementary bound σ ≤ L1/4
4 , we also have N ≤ 1

2σ 2 . The

condition N ≥ 6 restricts us to smaller values of L4. If, for example, L4 ≤ 4−6, we
have 1

2 L−1/3
4 ≥ 8 and hence N ≥ 8.

Thus, if L4 ≤ 4−6, then (12.5) holds true. But, since N ≥ 1
4 L−1/3

4 , the last term in
(12.5) is dominated by any power of L4. In particular, using ex ≥ 1

25 x5 (x ≥ 0), we
get

N 2 e−cN ≤ 25

c5
N−3 ≤ 25 · 45

c5
L4 = 25 · 45

c5
0

e60 D L4.
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Hence, (12.5) yields

Dn ≤ C L4 (12.6)

with C = C1e2D e60 D = C1 e62 D , where C1 is an absolute constant.
Finally, for L4 > 4−6, one may use the relation Dn ≤ D (according to the entropy

power inequality), which shows that (12.6) holds with C = 46 D. Theorem 1.2 is
proved. �


Now, again assume, as above, that L4 ≤ 4−6 and take N = [ 1
2 L−1/3

4 ]. If D ≤
1
48 log 1

L4
, then cN ≥ c0 L1/4

4 · 1
4 L−1/3

4 = c0
4 L−1/12

4 and C = C0e2D ≤ C0 L−1/24
4 .

Hence,

C N 7/4 e−cN ≤ C0 L−1/24
4 · L−7/12

4 exp
{
−c0

4
L−1/12

4

}
≤ C ′

0L4

with some absolute constant C ′
0. As a result, (12.5) yields Dn ≤ (A + C ′

0) L4, and we
arrive at another variant of Theorem 1.2.

Theorem 12.3 Assume that the independent random variables Xk have mean zero and
finite fourth absolute moments. If L4 ≤ 2−12 and D(Xk) ≤ 1

48 log 1
L4
(1 ≤ k ≤ n),

then

D(Sn) ≤ C L4,

where C is an absolute constant.

Here, the two assumptions about L4 and D = maxk D(Xk) may be united by
just one relation L4 ≤ min{2−12, e−48D}. When not paying attention to the value of
numerical constants, this relation may be written in a more compact form as

L4 ≤ c e−D/c,

where c > 0 is an absolute constant.
Let us illustrate this result in the scheme of weighted sums

Sn = a1 X1 + · · · + an Xn

of independent identically distributed random variables Xk , such that EX1 =
0,EX2

1 = 1, and with coefficients such that a2
1 + · · · + a2

n = 1. In this case
L4 = EX4

1

∑n
k=1 a4

k , so Theorem 12.3 is applicable, when the last sum is sufficiently
small.

Corollary 12.4 Assume that X1 has density with finite entropy, and let EX4
1 < +∞.

If the coefficients satisfy

n∑

k=1

a4
k ≤ c

EX4
1

e−D(X1)/c,
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then

D(Sn) ≤ C EX4
1

n∑

k=1

a4
k ,

where C and c are positive absolute constants.

For example, in case of equal coefficients, so that Sn = X1+···+Xn√
n

, the conclusion
becomes

D(Sn) ≤ C

n
EX4

1, for all n ≥ n1,

which holds true with an absolute constant C and n1 = 212e48D(X1) EX4
1.

13 The case of bounded densities

In this Section we add a few remarks about Theorems 1.1–1.2 for the case where the
densities of the summands Xk are bounded.

First, let us note that, if a random variable X has an absolutely continuous distrib-
ution with a bounded density p(x) ≤ M , where M is a constant, and if the variance
σ 2 = Var(X) is finite (σ > 0), then X has finite entropy, and moreover,

D(X) ≤ log(Mσ
√

2πe). (13.1)

Indeed, if Z is a standard normal random variable, and assuming (without loss of
generality) that σ = 1, we have

D(X) = h(Z)− h(X) = log(
√

2πe)+
+∞∫

−∞
p(x) log p(x) dx,

which immediately implies (13.1).
It is worthwile to note that, similarly to D, the functional X → Mσ is affine

invariant, where M = ess supx p(x). Therefore, Mσ does not depend neither on the
mean, nor the variance of X . In addition, one always has Mσ ≥ 1√

12
, and the equality

is achieved only for X which is uniformly distributed in a finite interval of the real
line. (Without proof this lower bound is already mentioned in [26].)

Using (13.1), Theorems 1.1 and 1.2 admit formulations involving the maximum of
the densities. In the statement below, let (Xk)1≤k≤n be independent random variables
with mean zero and variances σ 2

k = EX2
k (σk > 0), such that

∑n
k=1 σ

2
k = 1. Let Fn be

the distribution function of the sum Sn = X1 + · · · + Xn .

Corollary 13.1 Assume that every Xk has density bounded by Mk. If maxk Mkσk ≤
M, then

‖Fn −�‖TV ≤ C L3, (13.2)
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where the constant C depends on M, only. Moreover,

D(Sn) ≤ C L4. (13.3)

Here, one may take C = C0 Mc with some positive absolute constants C0 and c.
In particular, consider the weighted sums

Sn = a1 X1 + · · · + an Xn

of independent identically distributed random variables Xk , such that EX1 =
0,EX2

1 = 1, and with coefficients satisfying a2
1 + · · · + a2

n = 1. If X1 has density,
bounded by M , (13.2)–(13.3) yield respectively

‖Fn −�‖TV ≤ CM E |X1|3
n∑

k=1

|ak |3, D(Sn) ≤ CM EX4
1

n∑

k=1

a4
k ,

where CM depends on M , only. (One may take CM = C0 Mc.)
Moreover, if

∑n
k=1 |ak |3 or, respectively,

∑n
k=1 a4

k are sufficiently small, the con-
stant CM may be chosen to be independent of M . In particular, in the i.i.d. case, where
Sn = X1+···+Xn√

n
, the last bound may also be written with an absolute constant C , i.e.,

D(Sn) ≤ C

n
EX4

1, for all n ≥ n1.

One may take, e.g., n1 = 212(M
√

2πe)48 EX4
1.
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26. Statulevičius, V.A.: Limit theorems for densities and the asymptotic expansions for distributions of

sums of independent random variables. Theory Probab. Appl. 10(4), 682–695 (1965)
27. Sirazhdinov, S.H., Mamatov, M.: On mean convergence for densities. Theory Probab. Appl. 7(4),

424–428 (1962)
28. Talagrand, M.: Transportation cost for Gaussian and other product measures. Geom. Funct. Anal. 6(3),

587–600 (1996)
29. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American

Mathematical Society, Providence (2003)

123


	Berry--Esseen bounds in the entropic central limit theorem
	Abstract
	1 Introduction
	2 General bounds on total variation and entropic distance
	3 Entropic distance and Edgeworth-type approximation
	4 Quantile density decomposition
	5 Properties of the quantile decomposition
	6 Entropic bounds for cramer constants of characteristic functions
	7 Repacking of summands
	8 Decomposition of convolutions
	9 Entropic approximation of pn by tilde p n
	10 Integrability of characteristic functions tilde f n and their derivatives
	11 Proof of Theorem 1.1 and its refinement
	12 Proof of Theorem 1.2 and its refinement
	13 The case of bounded densities
	Acknowledgments
	References


