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Following Borell [1], we say that a Radon probabil�
ity measure μ on a locally convex space E is α�concave
(–∞ ≤ α ≤ 1) if it obeys the Brunn–Minkowski�type
inequality

(1)
for any nonempty compact sets A, B ⊂ E and all 0 < t < 1.
Here, we use the standard notation for Minkowski
weighted averaging of sets, i.e., (1 – t)A + tB = {(1 –
t)a + tb: a ∈ A, b ∈ B}. The same definition is used
for general (positive) measures, not necessarily proba�
bility.

In spite of the long history of study, α�concave
measures remain very popular in probability theory
and convex geometry. Even in the case α = 0, where
inequality (1) takes the form

we come to the important class of logarithmically con�
cave measures, which includes, in particular, all Gaus�
sian measures. On Euclidean space E = �n, the class
of logarithmically concave measures was first consid�
ered by Prékopa [2]; in the one�dimensional case, it
was studied earlier by other authors [3, 4].

Inequality (1) becomes less restrictive as the
parameter α decreases, and in the limit case α = –∞,
we obtain the largest class, which is described by the
inequality

Such measures are said to be convex (in Borell’s termi�
nology) or hyperbolic (this term was suggested later by
V.D. Mil’man).

α�Concave probability measures arise as distribu�
tions of certain random processes, so that the dimen�
sionless character of inequality (1) turns out to be very
useful in studying various properties of processes with
distribution μ. Moreover, many assertions depend

μ 1 t–( )A tB+( ) 1 t–( )μ A( )α tμ B( )α+[ ]
1/α

≥

μ 1 t–( )A tB+( ) μ A( )1 t– μ B( )t
,≥

μ 1 t–( )A tB+( ) min μ A( ) μ B( ),{ }.≥

only on the convexity parameter α; interesting exam�
ples related to Brownian motion are given in [1].
Borell has also investigated the most general properties
of α�concave measures, such as the zero�one law and
the integrability of norms.

A more detailed analysis of α�concave measures on
finite�dimensional spaces, in particular, solving isope�
rimetric problems and studying Sobolev�type integro�
differential inequalities and Khintchine�type inequal�
ities for various functionals, has become possible after
Lovász and Simonovits [5] had introduced the so�
called localization lemma.

Theorem 1 [5]. If lower semicontinuous integrable
functions u, v: �n → � satisfy the condition

then there always exist points a, b ∈ �n and a positive
affine function l on (0, 1) for which

There also exist other versions of this important
theorem ([6]; see also [7]). The approach of Lovász
and Simonovits, developing ideas of Payne and Wein�
berger [8], is based on the notion of a needle, arising as
a result of the localization of sets on which the inte�
grals of the functions u and v remain positive (simul�
taneously). Later, Fradelizi and Guédon suggested an
alternative approach based on a description of extre�
mal compactly supported α�concave measures fol�
lowed by the application of the well�known Krein–
Milman theorem (see [9]).

The localization lemma is stated for the Lebesgue
measure on �n (as a conjecture) and for a measure
with weight ln – 1 on an interval [a, b] (as a conclusion).
In both cases, it deals with α�concave measures for

u x( ) xd
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n

∫ 0,> >

u 1 t–( )a tb+( )l t( )n 1– td

0
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0
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α = . It turns out that Theorem 1 can be extended by

fixing α on arbitrary (including infinite�dimensional)
spaces.

Theorem 2. Let (E, μ) be a complete locally convex
space with finite α�concave measure. If lower semicon�
tinuous μ�integrable functions u and v on E satisfy the
condition

then there exist points a, b ∈ E and a finite α�concave
measure ν concentrated on Δ = [a, b] such that

Theorem 1 is often applied to reduce various inte�
gral relations in �n to similar inequalities on a straight
line, although with an additional weight under the
integral sign. By virtue of Theorem 2, if such a relation
must cover the class of all α�concave measures on E,
then the problem reduces to obtaining the required
result for α�concave measures concentrated on
straight lines in the space E.

By way of example, we give several inequalities for
measures of sets arising as a result of applying a con�
traction�type operation:

Here, A is a Borel measurable subset of a closed convex
set F ⊂ E, Δ is any segment inside F, and mΔ is the nor�
malized Lebesgue measure on Δ (a uniform distribu�
tion).

For example, if F = E and A is the complement to a
centrally symmetric open convex set B ⊂ E, then Aδ =

E\ B.

Theorem 3. Let (E, μ) be a complete locally convex
space with α�concave probability measure concentrated
on a closed convex set F. For any Borel measurable set
A ⊂ F and any δ ∈ [0, 1] such that μ*(Aδ) > 0, we have

(2)

Here, μ* denotes the outer measure associated with μ.
In space �n, Theorem 3 was proved in [10, 11]. It

generalizes a result of Nazarov et al. [12] for logarith�
mically concave measures. In this case, the sets Aδ are
universally measurable, and inequality (2) takes the
form

For applications, it is useful to state Theorem 3 in
terms of distributions of functionals on the space E.
For each Borel measurable μ�almost everywhere finite
function f: E → [–∞, ∞] and any 0 < ε < 1, we define
the so�called modulus of regularity

1
n
��
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μ A( ) δμ* Aδ( )α 1 δ–( )+[ ]
1/α

.≥
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where the supremum is over all points x, y ∈ E such
that | f(x)| < ∞.

Corollary 1. For any 0 < λ < esssup| f | and ε ∈ (0, 1),

(3)
where δ = δf (ε).

As mentioned in [13], the behavior of the quantity
δf(ε) at small ε is responsible for the probabilities of
both small and large deviations of f with respect to the
measure μ (see also [10]).

For example, if f is a measurable μ�almost every�
where finite norm on E (not identically zero), then

In this case, setting

we see that inequality (3) takes the form

(4)

According to Theorem 3, this inequality holds for any
centrally symmetric Borel measurable convex set B
in a complete locally convex space E endowed with a
α�concave probability measure μ. In the case α = 0,
we obtain the exponential estimate

for the class of all logarithmically concave measures.
By using the localization lemma, this inequality was
first proved by Lovász and Simonovits for balls and
then extended by Guédon to arbitrary symmetric bod�
ies in space �n [5, 14].

For α < 0, (4) leads to similar estimates with a poly�
nomial decrease with respect to r.

It is also easy to derive estimates for small ball prob�
abilities on the basis of (4). For example, under the

condition μ(B) ≤ , we conclude that

with the constant Cα =  (α ≤ 0).

Finally, note that, for infinite�dimensional α�con�
cave probability measures, the condition α ≤ 0 is nec�
essary [15].
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