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1 Introduction

Let {Xn}n≥1 be independent identically distributed (i.i.d. ) randomvariableswithmean
EX1 = 0 and variance EX2

1 = 1. Put

Sn :=
n∑

k=1

Xk, Sn := max
k=1,...,n

Sk, n ∈ N.
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Throughout, we denote by Z a standard normal random variable with its density
ϕ(x) := 1√

2π
e−x2/2 and use the symbol ⇒ to denote convergence in distribution.

The classical central limit theorem states that

Sn/
√
n ⇒ Z as n → ∞. (1.1)

In 1986, Barron [4] established an entropic version of this result, the so-called entropic
central limit theorem. To formulate it, first let us introduce some notation. Let Y be a
random variable with density ψ , and let X be a random variable whose distribution is
absolutely continuous with respect to that of Y . The relative entropy of X with respect
to Y is defined by

D(X | Y ) :=
∫

{ψ(x)>0}
L

(
p(x)

ψ(x)

)
ψ(x) dx, (1.2)

where p is the density of X , L(x) := x log x for x > 0 and L(x) := 0 for x = 0.
In case the distribution of X is not absolutely continuous with respect to that of Y , put
D(X | Y ) := ∞. Then, the entropic central limit theorem by Barron states that

D(Sn/
√
n | Z) → 0 as n → ∞ (1.3)

if and only if D(Sn0 | Z) < ∞ for some n0 ∈ N. This result is motivated, inter alia,
by the distinguished property of the standard normal distribution that it maximizes
(Shannon) entropy.

Barron’s result has sparked much further research on entropic limit theorems. For
instance, there are several publications devoted to the rate of convergence, see Artstein
et al. [3], Johnson and Barron [17], Johnson [16], and Bobkov et al. [8]. Entropic limit
theorems have also been derived for certain non-normal limit distributions within the
class of stable laws, cf. [9,16,19].

All these limit distributions arise in connection with sums of i.i.d. random variables
and are therefore infinitely divisible. Our aim is to investigate a different situation,
namely for the maxima of sums of i.i.d. summands, with a limit distribution that is not
infinitely divisible. Here, the analog of the classical central limit theorem is given by
the Erdős-Kac limit theorem [12], which states that

Sn/
√
n ⇒ |Z | as n → ∞. (1.4)

The distribution of |Z |, which has density ϕ+(x) :=
√

2
π
e−x2/2 1(0,∞)(x), is com-

monly called the one-sided (or reflected) standard normal law. As explained below,
this distribution plays a similar role to the normal distribution in that it maximizes
entropy among all positive random variables with fixed second moment. It is therefore
quite natural to ask whether the Erdős-Kac limit theorem [12] also admits an entropic
formulation.

To state a corresponding assertion, we introduce more notation. Given a random
variable X such that P(X > 0) > 0, let X̃ have the same distribution as X conditioned
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to be positive, i.e. P(X̃ ∈ A) = P(X ∈ A|X > 0) for Borel sets A on the real line.
Then, the relative entropy of X conditioned to be positive with respect to a positive
random variable Y with density ψ is defined by

D+(X | Y ) := D(X̃ | Y ). (1.5)

In the sequel, Y will always be given by |Z | or some scalar multiple of it. Our main
result is as follows:

Theorem 1.1 Suppose that X1, X2, . . . are i.i.d. random variables with a density,
mean zero and variance one. Then,

D+(Sn/
√
n | |Z |) → 0 as n → ∞ (1.6)

if and only if

D+(X1 | |Z |) < ∞. (1.7)

In fact, the assumption that X1 has a density is only for convenience and could
be omitted. Note, however, that (1.7) implies that X1 has a density on the positive
half-line.

Let us recall that the relative entropy represents a rather strongmeasure of deviation
of distributions. Indeed, by the Pinsker-Csiszár-Kullback inequality,

D(X | Z) ≥ 1
2 (dTV(X, Z))2, (1.8)

where dTV(X, Z) denotes the total variation distance between the distributions of X
and Z (cf. [10,13,20,27]). Thus, (1.3) implies dTV(Sn/

√
n, Z) → 0 as n → ∞, and

hence (1.1). Similarly, (1.6) implies dTV(Sn/
√
n, |Z |) → 0, and hence (1.4). This

follows from (1.8) in combination with the well-known fact that, under our moment
assumptions,

P(Sn ≤ 0) = O(n−1/2) (1.9)

(cf. e.g. [14, pp. 414f]). In fact, for convergence in total variation distance, condition
(1.7) is not needed, and we prove the following:

Theorem 1.2 Suppose that X1, X2, . . . are i.i.d. random variables with a density,
mean zero and variance one. Then,

dTV(Sn/
√
n, |Z |) → 0 as n → ∞.

As already mentioned, both the centered and the one-sided normal distribution play
a special role from the viewpoint of information theory. Let us recall that for a random
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variable X with density p, the entropy (also called Shannon entropy or differential
entropy) is defined by

h(X) := −
∞∫

−∞
L(p(x)) dx,

where L is as in (1.2). If EX2 = σ 2 is finite, then the entropy is well defined, and

h(σ Z) − h(X) = D(X | σ Z) ≥ 0
(
Z ∼ N (0, 1)

)
,

with equality if and only if X and σ Z have the same distribution. Thus, the centered
normal distribution with second moment σ 2 maximizes entropy among all probability
measures with the same second moment. Moreover, in

D(X | τ Z) = −h(X) + 1
2 log(2πτ 2) + 1

2σ
2/τ 2 (τ > 0)

the right-hand side is minimized for τ = σ , so D(X | σ Z) may be interpreted as a
measure of deviation of the distribution of X from the class of all centered normal
distributions. Similarly, for a positive random variable X with finite second moment
EX2 = σ 2,

h(σ |Z |) − h(X) = D+(X | σ |Z |) ≥ 0,

with equality if and only if X andσ |Z | have the same distribution.Hence, the one-sided
normal distribution with second moment σ 2 maximizes entropy among all probability
measures on the positive half-line with the same second moment. Also, in

D+(X | τ |Z |) = −h(X) + 1
2 log(

1
2πτ 2) + 1

2σ
2/τ 2 (τ > 0)

the right-hand side is minimized for τ = σ . Therefore, as above, D+(X | σ |Z |) may
be interpreted as a measure of deviation of the distribution of X from the class of all
one-sided normal distributions.

In this respect, note that

E
(
max{Sn, 0}/√n

)2 = 1 + o(1) as n → ∞. (1.10)

(For instance, this follows from Proposition 6.1 and Eq. (5.8) below.) Combining
(1.9) and (1.10), it is easy to see that for large n, Sn/

√
n conditioned to be positive

has second moment approximately equal to 1, so that the comparison to |Z | in (1.6)
is natural.

Finally, let us emphasize the following curious difference between the entropic
central limit theorem and our Theorem 1.1. Even if X1 itself has density, Barron’s
characterization uses the finiteness of D(Sn0 | Z) for some n0 ∈ N (which may be
any natural number); see [4] for an example requiring n0 > 1. In contrast to that, our
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characterization uses n0 = 1 at once. More precisely, it follows from our proof that
D+(Sn0 | |Z |) < ∞ for some n0 ∈ N if and only if this is true for n0 = 1.

In the proof of (1.3) given in Barron [4], entropy convolution inequalities for sums
of independent random variables play a major role. In our analysis for the maxima
of sums, these inequalities still play a role in the proof of Theorem 1.1, but they
have less far-reaching consequences. To control the density of the maximum, we use
more classical methods and results based on Fourier analysis, see Nagaev [21,22] and
Aleshkyavichene [2]. This approach does not only lead to proofs of entropic limit
theorems (cf. [9]), but in principle, similarly as in Bobkov et al. [8], it should also lead
to results on the (exact) rate of convergence. Apparently, such refined results cannot
be obtained by using known information-theoretic tools.

A major ingredient in our proof will be the local limit theorem for maxima of sums
of i.i.d. random variables from [2], see also [1,24,29] for related results. To obtain
(1.6) under minimal conditions, we need to extend the result from [2] from bounded
to unbounded densities (see Proposition 4.2).

Let us introduce some conventions for the rest of the paper. We assume that the
random variables X j are i.i.d. and have a density, mean 0 and variance 1. Unless
otherwise indicated, we write p for their density, F for their distribution function and
f for their characteristic function. Moreover, pn, Fn, fn and pn, Fn, f n denote the
corresponding functions for the random variables Sn and Sn . (Let us emphasize that
Fn always stands for the distribution function of Sn in our paper, and never for the
function 1−Fn .)Wewrite p∗

n and p∗
n for the densities of the rescaled random variables

Sn/
√
n and Sn/

√
n.

For a real number x , set x+ := max{x, 0} and x− := max{−x, 0}. Unless otherwise
indicated,O-bounds and o-bounds refer to the case where n → ∞ and hold uniformly
in x (in the region under consideration). Finally,C1,C2, . . . denote positive constants,
which may depend on the distribution of the X j and which may change from step to
step.

The paper is organized as follows. Section 2 contains some preliminary remarks
on relative entropy. Sections 3–7 are devoted to the proof of the sufficiency part of
Theorem 1.1, while the necessity part of Theorem 1.1 is proved in Sect. 8. Section 9
contains the proof of Theorem 1.2.

2 Some Remarks on Relative Entropy

Throughout this section, letψ be a positive probability density on the positive half-line.
Given a non-negative measurable function p on the real line, set

D(p | ψ) :=
∞∫

0

L

(
p(x)

ψ(x)

)
ψ(x) dx, (2.1)

where L(x) is the function defined in the introduction.By abuse of terminology,wewill
call D(p | ψ) relative entropy even when p is not a probability density on the positive
half-line. Note that in the case that p is a probability density, we have D(p | ψ) ≥ 0
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by Jensen’s inequality. If p is an arbitrary non-negative measurable function, this need
not be true anymore, but we have at least D(p | ψ) ≥ min{L(x) : x ≥ 0} = −e−1.

Let us collect some basic properties of relative entropy which will be used later.
(Some of the proofs are straightforward, which is why we omit them.)

Lemma 2.1 Suppose that α is a positive real number and p is a non-negative mea-
surable function with

∫ ∞
0 p(x) dx < ∞. Then,

D(αp | ψ) = αD(p | ψ) + L(α)

∞∫

0

p(x) dx .

Lemma 2.2 Suppose that α1, . . . , αn are positive real numbers and p1, . . . , pn are
non-negative measurable functions with

∫ ∞
0 pk(x) dx < ∞, k = 1, . . . , n. Then,

D

(
n∑

k=1

αk pk

∣∣∣∣∣ ψ

)
≤

n∑

k=1

αk D(pk | ψ) +
(
log

n∑

k=1

αk

)
n∑

k=1

αk

∞∫

0

pk(x) dx .

Lemma 2.3 Suppose that ψ is decreasing on the positive half-line and that p and q
are probability densities on (0,+∞) and (−∞, 0), respectively. Then,

D(p ∗ q | ψ) ≤ D(p | ψ) + e−1.

Proof of Lemma 3 Since L is a convex function and q is a probability density on
(−∞, 0), it follows from Jensen’s inequality that

L

⎛

⎝
0∫

−∞
h(y) q(y) dy

⎞

⎠ ≤
0∫

−∞
L(h(y)) q(y) dy

for any non-negative measurable function h. We therefore obtain

D(p ∗ q | ψ) =
∞∫

0

L

⎛

⎝
0∫

−∞

p(x − y)

ψ(x)
q(y) dy

⎞

⎠ ψ(x) dx

≤
∞∫

0

0∫

−∞
L

(
p(x − y)

ψ(x)

)
q(y) dy ψ(x) dx

=
0∫

−∞

∞∫

0

p(x − y) log

(
p(x − y)

ψ(x)

)
dx q(y) dy.
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Since ψ(x) is decreasing in x , we have, for any y < 0,

∞∫

0

p(x − y) log

(
p(x − y)

ψ(x)

)
dx ≤

∞∫

0

p(x − y) log

(
p(x − y)

ψ(x − y)

)
dx

=
∞∫

0

L

(
p(u)

ψ(u)

)
ψ(u) du −

−y∫

0

L

(
p(u)

ψ(u)

)
ψ(u) du ≤ D(p | ψ) + e−1.

Combining these estimates, we get

D(p ∗ q | ψ) ≤ D(p | ψ) + e−1,

and the lemma is proved. ��
Lemma 2.4 Suppose that p and q are non-negative measurable functions with α :=∫ ∞
0 p(x) dx < ∞ and β := ∫ ∞

0 q(x) dx < ∞. Then,

D(p | ψ) + D(q | ψ) ≤ D(p + q | ψ)

≤ D(p | ψ) + D(q | ψ) + L(α+β) − L(α) − L(β).

Proof Suppose w.l.o.g. that α, β > 0. On the one hand, by Lemmas 2.1 and 2.2,
we have

D(p + q | ψ) = (α+β) D
(

α
α+β

p
α

+ β
α+β

q
β

| ψ
)

+ L(α + β)

≤ (α+β)
[

α
α+β

D
( p

α
| ψ) + β

α+β
D

(
q
β

| ψ
)]

+ L(α + β)

= αD
( p

α
| ψ) + βD

(
q
β

| ψ
)

+ L(α + β)

= D(p | ψ) + D(q | ψ) − L(α) − L(β) + L(α + β).

On the other hand, it is straightforward to check that L(x + y) ≥ L(x)+ L(y) for any
x, y ≥ 0, whence D(p + q | ψ) ≥ D(p | ψ) + D(q | ψ). ��

In particular, it follows from Lemmas 2.1 and 2.4 that for any non-negative mea-
surable functions p, q with

∫ ∞
0 p(x) dx < ∞,

∫ ∞
0 q(x) dx < ∞ and any α, β > 0,

we have

D(αp + βq | ψ) < ∞ if and only if D(p | ψ) < ∞ and D(q | ψ) < ∞. (2.2)

Lemma 2.5 Suppose that (pn) and (qn) are sequences of non-negative measurable
functions such that

∫ ∞
0 pn(x) dx = 1 + o(1) and

∫ ∞
0 qn(x) dx = o(1) as n → ∞.

Then,

D(pn + qn | ψ) = D(pn | ψ) + D(qn | ψ) + o(1) as n → ∞ .
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Proof This is an immediate consequence of Lemma 2.4. ��

In the following sections, ψ will always be given by the probability density

ϕ+(x) :=
√

2
π
e−x2/2 (x > 0) or its rescaled version ϕn,+(x) :=

√
2

πn e
−x2/2n

(x > 0), where n ∈ {1, 2, 3, . . .}. Note that ϕn,+ is the density of the one-sided nor-
mal distribution with second moment n. It is easy to check that for any non-negative
measurable function p, we have

D(
√
n p(

√
n · ) | ϕ+) = D(p | ϕn,+). (2.3)

3 Binomial Decomposition

In this section, we start with the proof of sufficiency in Theorem 1.1. In the sequel, by a
signed density, wemean anymeasurable function h(x) defined on the real line or on the
positive half-line such that

∫ ∞
−∞ |h(x)| dx < ∞. Since it is more convenient to work

with bounded densities, we use a binomial decomposition of the density p to write the
density p∗

n (restricted to the positive half-line) as the sum of two signed densities, a
bounded term q∗

n and a remainder term r∗
n . This representation will play an important

role in the proof of the sufficiency part of Theorem 1.1. Let us remark that binomial
decompositions are a well-known tool in the investigation of the classical central limit
theorem, see e.g. [15,28]. In connection with entropic central limit theorems, they
have recently been used in Bobkov et al. [8,9].

Recall that p is the density of X1. Write

p = (1 − 	)q1 + 	q2, (3.1)

where q1 is a bounded probability density with
∫ ∞
0 q1(x) dx > 0, q2 is a potentially

unbounded probability density, and 0 ≤ 	 < 1
2 . It follows that for any n ≥ 1,

pn(x) = p∗n(x) =
(

n∑

k=1

(n
k

)
(1 − 	)k	n−k

(
q∗k
1 ∗ q∗(n−k)

2

)
(x)

)
+ 	nq∗n

2 (x)

=: (1 − 	n)qn,1(x) + 	nqn,2(x), (3.2)

where qn,1(x) and qn,2(x) are again probability densities.
We now need the following formula due to Nagaev [23, Equation (0.8)]: Recall that

f denotes the characteristic function of X1 and Fn denotes the distribution function
of Sn := max{S1, . . . , Sn}. Then, for n ∈ N and t ∈ R, we have

Eeit Sn =
n∑

k=1

f k(t)ϕn−k(t), (3.3)
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where

ϕ0(t) := 1 and ϕk(t) :=
0∫

−∞
(1 − eitx) dFk(x) (k > 0). (3.4)

By (3.3) and the uniqueness theorem for Fourier transforms (of signed measures), it
follows that the density of Sn is given by

pn(x) =
n∑

k=1

(p∗k ∗ Gn−k)(x),

where

G0(dx) := δ0(dx), Gk(dx) := Fk(0)δ0(dx) − pk(x) 1(−∞,0)(x) dx for k > 0

and (p∗k ∗ Gn−k)(x) := ∫
p∗k(x − y)Gn−k(dy).

Using (3.2), we may write

pn(x) = qn(x) + rn(x), (3.5)

where

qn(x) :=
n∑

k=1

(1 − 	k)(qk,1 ∗ Gn−k)(x), rn(x) :=
n∑

k=1

	k(qk,2 ∗ Gn−k)(x). (3.6)

Note that each qn is bounded, since the qk,1 are bounded and theGn−k are finite signed
measures. The main idea is to use qn as a bounded approximation to pn . Of course,
qn and rn are only signed densities in general. However, they may be represented as
differences of non-negative densities by writing

qn(x) = q+
n (x) − q−

n (x) and rn(x) = rn,1(x) − rn,2(x),

where q+
n and q−

n denote the positive and negative part of qn and rn,1 and rn,2
are defined by

rn, j (x) :=
n∑

k=1

	k (
qk,2 ∗ G±

n−k

)
(x)

( j = 1, 2), where ± = + for j = 1, ± = − for j = 2, and G+
n−k and G−

n−k denote
the positive and negative part of the signed measure Gn−k . Note that rn,1 and rn,2 are
not the positive and negative part of rn in general.

Thus, we obtain

pn = (q+
n − q−

n ) + (rn,1 − rn,2) (3.7)
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or (equivalently)

pn + q−
n + rn,2 = q+

n + rn,1. (3.8)

Write p∗
n(x) := √

n pn(
√
n x), q∗

n(x) := √
n qn(

√
n x), r∗

n(x) := √
n rn(

√
n x), etc.

for the rescaled versions of the above densities. We then have the following result.

Lemma 3.1 (a)
∫ ∞
0 |p∗

n(x) − q∗
n(x)| dx = O(n−1/2).

(b)
∫ ∞
0 x2|p∗

n(x) − q∗
n(x)| dx = O(n−1/2).

(c) If (1.7) holds then D(p∗
n | ϕ+) = D((q∗

n)
+ | ϕ+) + o(1) as n → ∞.

Proof Throughout this proof, for any measurable function p, we write

‖p‖1 :=
∞∫

0

|p(x)| dx

for the total variation norm (of the associated signed measure) and

‖p‖∞ := sup
x∈(0,∞)

|p(x)|

for the supremum norm. Furthermore, if p is non-negative, we write D(p | ϕ+) for the
relative entropy as in (2.1). Recall the probability densities ϕn,+ introduced at the end
of Section 2.

Analysis of r∗n,j(x) By (1.9), Fn(0) = O(n−1/2) as n → ∞. Thus,

‖r∗
n, j‖1 = ‖rn, j‖1 ≤

n∑

k=1

Fn−k(0)	
k ≤

n∑

k=1

C1	
k

√
n − k + 1

= O(n−1/2), (3.9)

j = 1, 2. Also, since G±
n−k is concentrated on (−∞, 0],

∞∫

0

x2r∗
n, j (x) dx ≤ 1

n

n∑

k=1

C1	
k

√
n − k + 1

∞∫

−∞
x2qk,2(x) dx,

j = 1, 2. Let Y1, . . . ,Yk be i.i.d. random variables with density q2. Then,

∞∫

−∞
x2qk,2(x) dx = ‖Y1 + · · · + Yk‖22 ≤ k2 ‖Y1‖22,

and we come to the conclusion that

∞∫

0

x2r∗
n, j (x) dx ≤ 1

n

n∑

k=1

C1	
k

√
n − k + 1

∞∫

−∞
x2qk,2(x) dx = O(n−3/2), (3.10)
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j = 1, 2. Clearly, (3.9) and (3.10) imply (a) and (b).
We will now show that if (1.7) holds, then

D
(
r∗
n, j | ϕ+

)
= D

(
n∑

k=1

	k qk,2 ∗ G±
n−k

∣∣∣∣∣ ϕn,+

)
= o(1), (3.11)

j = 1, 2. We provide the details for r∗
n,2 only, the argument for r∗

n,1 being similar.

Note that G−
0 = 0. For k = 1, . . . , n − 1, write G−

n−k(dx) = Fn−k(0) sn−k(x) dx ,
where sn−k(x) := pn−k(x)/Fn−k(0) (x < 0) is a probability density on (−∞, 0).
Also, write q2 = λ+q2,+ + λ−q2,−, where λ+, λ− ≥ 0, λ+ + λ− = 1, and q2,+ and
q2,− are probability densities on (0,+∞) and (−∞, 0), respectively. Then

qk,2 =
k∑

j=0

(k
j

)
λ
j
+ λ

k− j
− q∗ j

2,+ ∗ q∗(k− j)
2,− ,

and it follows by a twofold application of Lemma 2.2 that

D

(
n∑

k=1

	k (qk,2 ∗ G−
n−k)

∣∣∣∣∣ϕn,+

)
= D

(
n−1∑

k=1

	k Fn−k(0) (qk,2 ∗ sn−k)

∣∣∣∣∣ϕn,+

)

≤
n−1∑

k=1

	k Fn−k(0) D
(
qk,2 ∗ sn−k

∣∣∣ϕn,+
)

+
∣∣∣∣∣L

(
n−1∑

k=1

	k Fn−k(0)

)∣∣∣∣∣

≤
n−1∑

k=1

	k Fn−k(0)
k∑

j=1

(k
j

)
λ
j
+ λ

k− j
− D

(
q∗ j
2,+ ∗ q∗(k− j)

2,− ∗ sn−k

∣∣∣ϕn,+
)
+O(log n/

√
n).

For the last step, note that D(q∗k
2,− ∗ sn−k | ϕn,+) = 0 and that

∑n−1
k=1 	k Fn−k(0) =

O(n−1/2) by (3.9). Using Lemma 2.3 with f := q∗ j
2,+ and g := q∗(k− j)

2,− ∗ sn−k , we get

D
(
q∗ j
2,+ ∗ q∗(k− j)

2,− ∗ sn−k

∣∣∣ϕn,+
)

≤ D
(
q∗ j
2,+

∣∣∣ϕn,+
)

+ e−1.

Let μ and σ 2 denote the mean and variance of the probability density q2,+, and let
ϕμ,σ 2 denote the density of the Gaussian distribution with mean μ and variance σ 2.
As a consequence of the entropy power inequality (see e.g. Theorem 4 in Dembo et
al. [11]), we have

D(q∗ j
2,+|ϕ jμ, jσ 2) ≤ D(q2,+|ϕμ,σ 2), j ≥ 1.
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We therefore obtain

D(q∗ j
2,+|ϕn,+) =

∞∫

0

q∗ j
2,+ log

(
q∗ j
2,+

ϕ jμ, jσ 2

ϕ jμ, jσ 2

ϕn,+

)
dx

= D(q∗ j
2,+|ϕ jμ, jσ 2) +

∞∫

0

q∗ j
2,+ log

(
ϕ jμ, jσ 2

ϕn,+

)
dx

≤ D(q2,+|ϕμ,σ 2) + O(log n + j + 1)

=
∞∫

0

q2,+ log

(
q2,+
ϕ+

ϕ+
ϕμ,σ 2

)
dx + O(log n + j + 1)

= D(q2,+|ϕ+) +
∞∫

0

q2,+ log

(
ϕ+

ϕμ,σ 2

)
dx + O(log n + j + 1)

= O(log n + j + 1),

the implicit constants depending only on q2,+. Here, the last step follows from (1.7),
see the remark below Lemma 2.4.

Combining the preceding estimates, it follows that

D

(
n∑

k=1

	k qk,2 ∗ G−
n−k

∣∣∣∣∣ϕn,+

)

≤
n−1∑

k=1

	k Fn−k(0)O(log n + k + 1) + O(log n/
√
n) = O(log n/

√
n),

and the proof of (3.11) is complete.
Analysis of (q∗

n)
±(x) To complete the proof of part (c), we will show that the

relative entropy of the main terms p∗
n and (q∗

n)
+ in (3.8) is only slightly changed by

the addition of the error terms r∗
n,1, r

∗
n,2 and (q∗

n)
−. To begin with, it follows from (3.8)

that

(q∗
n)

+ ≤ p∗
n + r∗

n,2 and (q∗
n)

− ≤ r∗
n,1

and therefore, since ‖p∗
n‖1 = 1 − Fn(0) = 1 + O(1/

√
n) and ‖r∗

n, j‖1 = O(1/
√
n)

( j = 1, 2),

‖(q∗
n)

+‖1 = 1 + O(1/
√
n) and ‖(q∗

n)
−‖1 = O(1/

√
n). (3.12)

Next we will show that

D((q∗
n)

− | ϕ+) = D(q−
n | ϕn,+) = o(1). (3.13)
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Since q1 is bounded by construction, (1−	k)qk,1 is bounded uniformly in k ≥ 1, and
we obtain

‖qn‖∞ = ‖
n∑

k=1

(1 − 	k)qk,1 ∗ Gn−k‖∞ = O
(

n∑

k=1

1√
n − k + 1

)
= O(

√
n).

Since ‖q−
n ‖1 = O(1/

√
n), it follows that

D(q−
n |ϕn,+) =

∞∫

0

q−
n log(q−

n /ϕn,+) dx ≤
∞∫

0

q−
n log(C1

√
n/ϕn,+) dx

= O
( log n√

n

)
+ O

( ∞∫

0

1
n x

2 q−
n (x) dx

)
.

Now, using (3.8) and (3.10), we have

∞∫

0

1
n x

2q−
n (x) dx ≤

∞∫

0

1
n x

2rn,1(x) dx =
∞∫

0

y2r∗
n,1(y) dy = O(n−3/2).

This completes the proof of (3.13).
Using (3.8), (3.11), (3.13) as well as Lemma 2.5, we now obtain

D(p∗
n|ϕ+) = D(p∗

n + (q∗
n)

− + r∗
n,2|ϕ+) + o(1)

= D((q∗
n)

+ + r∗
n,1|ϕ+) + o(1)

= D((q∗
n)

+|ϕ+) + o(1)

as n → ∞, and Lemma 3.1 is proved. ��

4 Proof of Sufficiency in Theorem 1.1

This section contains the main part of the proof of sufficiency in Theorem 1.1. It relies
on two auxiliary results which do not depend on condition (1.7) and whose proof is
postponed to the following sections.

Proposition 4.1 For any ε > 0, there exists a constant C > 0 such that

∞∫

C

x2 p∗
n(x) dx ≤ ε

for all sufficiently large n ∈ N.
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Proposition 4.2 Under the assumptions of Theorem 1.1, there exist signed densities
rn(x) such that ‖rn‖1 = O(1/

√
n), ‖rn‖∞ = O(1) and the following holds:

(a) Uniformly in x ∈ (0,∞),

q∗
n(x) = ϕ+(x) + rn(x) + o(1/x) as n → ∞.

(b) Uniformly in x ∈ (0, e−1),

q∗
n(x) = ϕ+(x) + rn(x) + O(

(log n) ∧ 1√
nx

) + O(| log x |) as n → ∞.

Here, the norms ‖ · ‖1 and ‖ · ‖∞ are defined as in the proof of Lemma 3.1.
Moreover, by the statement that the O-bounds and o-bounds hold uniformly in x , we
mean that for sufficiently large n ∈ N, the error term is bounded by εn/x in part (a),
where (εn)n∈N is a sequence of positive real numbers not depending on x ∈ (0,∞)

such that limn→∞ εn = 0, and by C1
(
(log n) ∧ 1√

nx

) +C2
(| log x |) in part (b), where

C1 and C2 are positive constants not depending on x ∈ (0, e−1). Similar conventions
apply to the error terms in the proof of Proposition 4.2.

Note that Proposition 4.2 may be regarded as a local version of the Erdős-Kac
theorem (1.4). Moreover, part (b) is a refinement of part (a) which yields a better
estimate for the error term for x ≈ 0. Although this estimate is still unbounded, it is
square integrable near the origin. This is the crucial point for our purposes.

It should be mentioned that the proof of Proposition 4.2 closely follows that in
Aleshkyavichene [2], which is based on earlier work by Nagaev [21–23]. Indeed, in
the special case where the X j have a bounded density p(x), we could take

q∗
n(x) := p∗

n(x) and rn(x) := Fn−1(0)
√
n p(

√
n x) (x > 0),

and part (a) specializes to the following result from the literature:

Theorem 4.3 (Aleshkyavichene [2]) If X1, X2, . . . have a bounded density p(x), we
have p∗

n(x) = ϕ+(x) + Fn−1(0)
√
n p(

√
nx) + o(1/x) as n → ∞, uniformly in

x ∈ (0,∞).

Remark In Aleshkyavichene [2] Theorem 4.3 is stated somewhat differently (for any
x0 > 0, the last term is of order o(1) uniformly in x > x0), but a careful analysis of
the proof shows that after some minor modifications (similar to those in the proof of
part (a) of Proposition 4.2 below), it also yields the result stated above.

In the general case, the definition of the signed densities rn(x) is more complicated,
see Eq. (7.5) below.

Proof of Sufficiency in Theorem 1.1 Suppose that (1.7) holds. Recall that p∗
n(x) is the

density of Sn/
√
n (i.e. with the proper rescaling), and ϕ+(x) = √

2/π e−x2/2 (x > 0).
Using (1.9), it is easy to see that

D+(Sn/
√
n | |Z |) → 0 if and only if D(p∗

n | ϕ+) → 0. (4.1)
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Indeed, since Sn/
√
n conditioned to be positive has the density p∗

n(x)/(1 − Fn(0))
(x > 0), it follows from our definitions and Lemma 2.1 that

D(p∗
n | ϕ+) = (1 − Fn(0)) D+(Sn/

√
n | |Z |) + L(1 − Fn(0)),

so that (4.1) follows from (1.9).
Since D+(Sn/

√
n | |Z |) ≥ 0, it also follows from the preceding argument that

lim inf
n→∞ D(p∗

n | ϕ+) ≥ 0 .

Thus, it remains to show that

lim sup
n→∞

D(p∗
n | ϕ+) ≤ 0 .

Recall that q∗
n(x) := √

n qn(
√
n x), where qn is defined in (3.6). By Lemma 3.1 (c),

it is sufficient to show that

lim sup
n→∞

D((q∗
n)

+ | ϕ+) ≤ 0.

Fix ε0 > 0, and let C and c be positive real numbers with 0 < c < 1 < C < ∞. (The
precise choices will be specified below.) Then,

D((q∗
n)

+ | ϕ+) =
∞∫

0

L

(
(q∗

n)
+(x)

ϕ+(x)

)
ϕ+(x) dx = E1 + E2 + E3,

where E1, E2, E3 denote the integrals over the intervals (0, c), (c,C), (C,∞), respec-
tively. (Note that E1, E2, E3 implicitly depend on n.) To complete the proof, we will
show that if C ∈ (1,∞) is sufficiently large and c ∈ (0, 1) is sufficiently small, then,
for each j ∈ {1, 2, 3}, E j ≤ ε0 for all sufficiently large n ∈ N.

Estimating E3. By Proposition 4.2 (a), there exists a constant M > 1 (not depend-
ing on n) such that for n ≥ n0 and x ≥ 1, |q∗

n(x)| ≤ M . It follows that

E3 ≤
∞∫

C

|q∗
n(x)|

(
logM + 1

2 log
π
2 + 1

2 x
2
)
dx ≤ C1

∞∫

C

x2|q∗
n(x)| dx,

whereC1 is a constant depending only onM . By Proposition 4.1, there exists a constant
C > 1 such that

∞∫

C

x2|p∗
n(x)| dx < ε0/C1
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for all sufficiently large n ∈ N. By Lemma 3.1 (b), this implies

∞∫

C

x2|q∗
n(x)| dx < ε0/C1

for all sufficiently large n ∈ N. Thus, for C sufficiently large, we have E3 ≤ ε0 for all
sufficiently large n ∈ N.

Estimating E1. Suppose that c ∈ (0, e−1). Setting

vn(x) := (q∗
n)

+(x) − ϕ+(x)

ϕ+(x)
(x > 0)

and using that L(y) ≤ 0 for y ∈ [0, 1] and L(1 + y) ≤ y + 1
2 y

2 for y ∈ (0,∞),
we get

E1 =
c∫

0

L (1 + vn(x)) ϕ+(x) dx ≤
c∫

0

(
|vn(x)| + 1

2 |vn(x)|2
)

ϕ+(x) dx .

Using Proposition 4.2 (b), it follows that

E1 ≤
c∫

0

|q∗
n(x) − ϕ+(x)| + 1

2 |q∗
n(x) − ϕ+(x)|2/ϕ+(x) dx

≤ C2

( c∫

0

|rn(x)| dx +
c∫

0

(
(log n) ∧ 1√

nx

)
dx +

c∫

0

| log x | dx
)

+ C3

( c∫

0

|rn(x)|2 dx +
c∫

0

(
(log n) ∧ 1√

nx

)2
dx +

c∫

0

| log x |2 dx
)

.

By Cauchy-Schwarz inequality, it remains to estimate the integrals in the last line.
Now, for any fixed c ∈ (0, e−1), we have

c∫

0

|rn(x)|2 dx ≤ ‖rn‖1‖rn‖∞ = o(1) ,

c∫

0

(
(log n) ∧ 1√

nx

)2
dx = log n√

n
+ 1

n
(−c−1 + √

n log n) = o(1),

c∫

0

| log x |2 dx =
∞∫

log(1/c)

y2e−y dy < ∞.
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Thus, for c sufficiently small, we have E1 ≤ ε0 for all sufficiently large n ∈ N.
Estimating E2. Let C ∈ (1,∞) and c ∈ (0, 1) be the constants fixed above. The

same argument as for E1 yields

E2 =
C∫

c

L (1 + vn(x)) ϕ+(x) dx ≤
C∫

c

(
|vn(x)| + 1

2 |vn(x)|2
)

ϕ+(x) dx .

Using Proposition 4.2 (a), it follows that

E2 ≤
C∫

c

|q∗
n(x) − ϕ+(x)| + 1

2 |q∗
n(x) − ϕ+(x)|2/ϕ+(x) dx

≤ C4

( C∫

c

|rn(x)| dx + o(1)

C∫

c

x−1 dx

)

+ C5 exp(C
2/2)

( C∫

c

|rn(x)|2 dx + o(1)

C∫

c

x−2 dx

)

≤ C4

(
‖rn‖1 + o(1)(logC − log c)

)

+ C5 exp(C
2/2)

(
‖rn‖1 · ‖rn‖∞ + o(1)(c−1 − C−1)

)
.

Thus, E+
2 = o(1) as n → ∞.

This completes the proof of sufficiency in Theorem 1.1. ��

5 Some Auxiliary Results

Let us collect some results from the literature, which will be needed for the proofs of
Propositions 4.1 and 4.2.

Let ak := ∫ 0
−∞ x dFk(x) and bk := ∫ 0

−∞ x2 dFk(x), k ≥ 1. It is known that under
our standing moment assumptions, the functions ϕk(t) introduced in (3.4) satisfy the
following estimates:

|ϕk(t)| ≤ 2Fk(0) , (5.1)

|ϕk(t)| ≤ |ak ||t | , (5.2)

|ϕ′
k(t)| ≤ |ak | , (5.3)

|ϕk(t) − (−i tak)| ≤ 1
2 |bk ||t |2, (5.4)

|ϕ′
k(t) − (−iak)| ≤ |bk ||t |, (5.5)

|ϕ′′
k (t)| ≤ |bk |, (5.6)
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(see e.g. [2, Equations (26) and (46)]), where

Fk(0) = O(k−1/2) (5.7)

(see e.g. [2, Equation (39)]),

ak = −(2πk)−1/2 + o(k−1/2) and bk = o(1) (5.8)

(see e.g. [2, Equation (1)]). Let us note that the implicit constants may depend on the
distribution of X1.

Furthermore, we need the following classical approximations for characteristic
functions of sums of i.i.d. random variables and their derivatives:

Given i.i.d. randomvariables X1, X2, X3, . . .withmean 0, variance 1, density p and
characteristic function f , there exist positive real numbersγ, δ1, δ2, δ3, . . . (depending
on the distribution of X1) with limn→∞ δn = 0 such that for n ∈ N, |t | ≤ γ n1/2 and
j = 0, 1, 2,

∣∣∣∣
d j

dt j
( f n(t/

√
n) − e−t2/2)

∣∣∣∣ ≤ δn e
−t2/4.

See e.g. [5, Theorem 9.12]. Replacing n with k and t with t
√
k/n in this estimate,

we obtain, for 1 ≤ k ≤ n, |t | ≤ γ n1/2 and j = 0, 1, 2,

∣∣∣∣
d j

dt j
( f k(t/

√
n) − e−kt2/2n)

∣∣∣∣ ≤ δk (k/n) j/2e−kt2/4n . (5.9)

Furthermore, let η ∈ (0, 1) be a constant such that

|t | ≥ γ ⇒ | f (t)| ≤ η. (5.10)

Such a constant η exists because X1 has a density, which implies that | f (t)| < 1 for all
t �= 0 as well as lim|t |→∞ | f (t)| = 0 (by the Riemann-Lebesgue lemma).

Besides that, we will repeatedly use the fact that for any α > 0 and n ≥ k ≥ 1,

sup
t∈R

(kt2/n)α/2 e−kt2/4n = Oα(1) (5.11)

and +∞∫

−∞
(kt2/n)α/2 e−kt2/4n dt = Oα

(√
n
k

)
, (5.12)

with implicit constants depending only on α.
In addition to that, we will use the following (well-known) Gaussian tail bounds:

For any α > 0 and t > 0, we have
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∞∫

t

e−αx2/2 dx ≤
√

π
2α ∧

(
1
αt e

−αt2/2
)

, (5.13)

∞∫

t

√
αxe−αx2/2 dx = 1√

α
e−αt2/2, (5.14)

∞∫

t

αx2e−αx2/2 dx ≤
√

π
2α ∧

(
1
αt (αt

2 + 1)e−αt2/2
)

. (5.15)

Moreover, we will repeatedly use the fact that

n−1∑

k=1

1√
k(n−k)

= O
⎛

⎝ 1√
n

∑

1≤k≤n/2

1√
k

⎞

⎠ + O
⎛

⎝ 1√
n

∑

n/2≤k≤n−1

1√
n−k

⎞

⎠ = O(1).

(5.16)

A similar decomposition shows that if (tn)n∈N is a sequence of real numbers with
limn→∞ tn = 0, we have

n−1∑

k=1

tk√
k(n − k)

= o(1). (5.17)

Finally, we need the observation that the Fourier transform ϕ̂+(t) of the density
ϕ+(x) := √

2/πe−x2/2 (x > 0) satisfies

ϕ̂+(t) = e−t2/2 + i t√
2πn

n∫

0

e−ut2/2n du√
n − u

(5.18)

for all n ∈ N (see [2, page 452]). It follows from this that for any x > 0,

ϕ+(x) = 1

2π
lim
R→∞

+R∫

−R

e−i t x

⎡

⎣e−t2/2 + i t√
2πn

n∫

0

e−ut2/2n du√
n − u

⎤

⎦ dt (5.19)

(see [2, page 452]).

6 Proof of Proposition 4.1

Recall the constant γ > 0 and the function ϕ̂+(t) introduced in the last section.
Proposition 4.1 will be deduced from the following result:
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Proposition 6.1 For k = 0, 1, 2, we have

dk

dtk

[
E(eit Sn/

√
n) − ϕ̂+(t)

]
= o(1)

as n → ∞, uniformly in |t | ≤ γ n1/2.

Remarks 6.2 (a) TheErdős-Kac theorem is equivalent to the statement thatE(eit Sn/
√
n)

→ ϕ̂+(t) for any fixed t ∈ R. Thus, this theorem follows from Proposition 6.1.
Let us emphasize that we do not need the existence of densities in this section.

(b) For our “application” (namely the proof of Proposition 4.1), the result for the
second derivative is relevant. Indeed, for this application, it would be be sufficient
to prove Proposition 6.1 for t = O(1).

Proof of Proposition 6.1 Similarly as in Aleshkyavichene [2], Naudziuniene [25],
using (3.3) and (5.18), we have the following decomposition:

E(eit Sn/
√
n) − ϕ̂+(t) =

[
f n(t/

√
n) − e−t2/2

]

+
[

i t√
2πn

( n−1∑

k=3

e−kt2/2n 1√
n − k

−
n∫

0

e−ut2/2n du√
n − u

)]

+
[ n−1∑

k=3

(
f k(t/

√
n) − e−kt2/2n

)
ϕn−k(t/

√
n)

]

+
[ n−1∑

k=3

e−kt2/2n
(
ϕn−k(t/

√
n) − (−an−k) i t/

√
n
)]

+
[ n−1∑

k=3

e−kt2/2n
(
(−an−k) − 1√

2π(n−k)

)
i t/

√
n

]

+
[
f 2(t/

√
n)ϕn−2(t/

√
n) + f (t/

√
n)ϕn−1(t/

√
n)

]
.

Denote the expressions in the square brackets by D1(t), . . . , D6(t). (Note that all these
expressions implicitly depend on n.) We will show that for j = 1, . . . , 6, uniformly
in |t | ≤ γ n1/2, Dj (t), D′

j (t), D
′′
j (t) → 0 as n → ∞.

Convention:We always assume that n ≥ 4 and |t | ≤ γ n1/2.O- and o-bounds hold
uniformly in this region (unless otherwise mentioned), and they may depend on the
constants γ, δ1, δ2, δ3, . . . introduced in Sect. 5.

OntheDifferenceD1 For the difference D1(t) and its first twoderivatives, the claim
is immediate from (5.9) (with k = n).

On the Difference D2 For fixed n ∈ N, t ∈ R and β ∈ {0, 1, 2, . . .}, put

hβ(u) := (u/n)β e−ut2/2n 1√
n−u

(0 < u < n).
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Then, for 1 ≤ v ≤ w ≤ n − 1, we have

∣∣hβ(w) − hβ(v)
∣∣ =

∣∣∣∣∣∣

w∫

v

h′
β(u) du

∣∣∣∣∣∣
=

∣∣∣∣∣∣

w∫

v

(
β
u − t2

2n + 1
2(n−u)

)
hβ(u) du

∣∣∣∣∣∣

≤ (w − v)
(

β
v

+ t2
2n + 1

2(n−w)

)
(w/n)β e−vt2/2n 1√

n−w
.

Hence, for the difference D2(t), we get (using the above estimate with β = 0)

∣∣∣∣∣∣
i t√
2πn

( n−1∑

k=3

e−kt2/2n 1√
n − k

−
n∫

0

e−ut2/2n du√
n − u

)∣∣∣∣∣∣

≤ |t |√
2πn

n−2∑

k=3

∣∣∣∣∣∣

k+1∫

k

e−kt2/2n 1√
n−k

− e−ut2/2n 1√
n−u

du

∣∣∣∣∣∣
+ O(n−1/2)

≤ |t |√
2πn

n−2∑

k=3

(
1

(n−k−1)3/2
e−kt2/2n + 1

(n−k−1)1/2
t2
2n e

−kt2/2n
)

+ O(n−1/2)

= O
( n−2∑

k=3

(
1

k1/2(n−k−1)3/2
+ 1

k3/2(n−k−1)1/2

) )
+ O(n−1/2) = O(n−1/2).

Here, we have used the fact that (k/n)1/2 |t | e−kt2/2n and (k/n)3/2 |t |3 e−kt2/2n are
uniformly bounded. In particular, this fact is also used in the first step to absorb the
summand for k = n − 1 and the integral over u ∈ [n − 1, n] into the O(n−1/2)-term.

Furthermore, similar estimates hold for the first two derivatives of D2(t). Indeed,
these derivatives are finite linear combinations of expressions of the form

i tα√
2πn

( n−1∑

k=3

(k/n)βe−kt2/2n 1√
n − k

−
n∫

0

(u/n)βe−ut2/2n du√
n − u

)

(with α, β ∈ {0, 1, 2, 3, . . .} and α ≤ β + 1), and, by similar arguments as above,

∣∣∣∣∣∣
i tα√
2πn

( n−1∑

k=3

(k/n)βe−kt2/2n 1√
n − k

−
n∫

0

(u/n)βe−ut2/2n du√
n − u

)∣∣∣∣∣∣

≤ |t |α√
2πn

n−2∑

k=3

∣∣∣∣∣∣

k+1∫

k

(k/n)βe−kt2/2n 1√
n−k

− (u/n)βe−ut2/2n 1√
n−u

du

∣∣∣∣∣∣
+ Oβ(n−1/2)

≤ |t |α√
2πn

n−2∑

k=3

(
((k+1)/n)β

(n−k−1)3/2
e−kt2/2n + ((k+1)/n)β

(n−k−1)1/2
t2
2n e

−kt2/2n + ((k+1)/n)β

(n−k−1)1/2
β
k e

−kt2/2n
)
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+ Oβ(n−1/2)

= Oβ

( n−2∑

k=3

(
1

k1/2(n−k−1)3/2
+ 1

k3/2(n−k−1)1/2
+ 1

k3/2(n−k−1)1/2

) )
+ Oβ(n−1/2)

= Oβ(n−1/2).

On the Difference D3 For the difference D3(t), the claim follows from (5.9) (with
k < n), (5.2), (5.8) and (5.17), since

n−1∑

k=3

(
f k(t/

√
n) − e−kt2/2n

)
ϕn−k(t/

√
n)

= O
(
n−1∑

k=3

δk (k/n)1/2|t | e−kt2/4n

√
k(n − k)

)
= O

(
n−1∑

k=3

δk√
k(n − k)

)
= o(1).

Similar estimates hold for the first two derivatives. Indeed, using (5.9) (with k < n),
(5.2)–(5.3), (5.6), (5.8) and (5.17), we get

n−1∑

k=3

d

dt

[(
f k(t/

√
n) − e−kt2/2n

)
ϕn−k(t/

√
n)

]

=
n−1∑

k=3

[
d

dt

(
f k(t/

√
n) − e−kt2/2n

)
ϕn−k(t/

√
n)

+
(
f k(t/

√
n) − e−kt2/2n

)
ϕ′
n−k(t/

√
n)/

√
n

]

= O
(
n−1∑

k=3

[
δk (k/n)1/2|t | e−kt2/4n

√
n(n − k)

+ δk e−kt2/4n

√
n(n − k)

])

= O
(
n−1∑

k=3

[
δk√

n(n − k)
+ δk√

n(n − k)

])
= o(1)

as well as

n−1∑

k=3

d2

dt2

[(
f k(t/

√
n) − e−kt2/2n

)
ϕn−k(t/

√
n)

]

=
n−1∑

k=3

[
d2

dt2

(
f k(t/

√
n) − e−kt2/2n

)
ϕn−k(t/

√
n)

+ 2
d

dt

(
f k(t/

√
n) − e−kt2/2n

)
ϕ′
n−k(t/

√
n)/

√
n

+
(
f k(t/

√
n) − e−kt2/2n

)
ϕ′′
n−k(t/

√
n)/n

]
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= O
( n−1∑

k=3

[
δk (k/n) |t |e−kt2/4n

√
n(n − k)

+ δk (k/n)1/2 e−kt2/4n

√
n(n − k)

+ δk |bn−k | e−kt2/4n

n

])

= O
( n−1∑

k=3

[
δk

√
k/n√

n(n − k)
+ δk

√
k/n√

n(n − k)
+ δk |bn−k |

n

])
= o(1).

On the Difference D4 Let (mn)n∈N be a sequence of natural numbers such that
limn→∞ mn = ∞ and limn→∞(mn/n) → 0. Then, by (5.4), (5.2) and (5.8), we have

n−1∑

k=3

e−kt2/2n
∣∣∣ϕn−k(t/

√
n) − (−an−k) i t/

√
n
∣∣∣

≤
n−mn∑

k=3

(t2/n)e−kt2/2n|bn−k | +
n−1∑

k=n−mn

2(|t |/√n)e−kt2/2n|an−k |

= o

(n−mn∑

k=3

(t2/n)e−kt2/2n

)
+ O

⎛

⎝
n−1∑

k=n−mn

1√
k(n − k)

⎞

⎠ .

Since
∑∞

k=3 xe
−kx is uniformly bounded in x > 0, it follows that D4(t) = o(1).

Similar estimates hold for the first two derivatives. Indeed, to this end, we have to
bound, among other terms,

n−1∑

k=3

e−kt2/2n
(
ϕ′
n−k(t/

√
n)/

√
n − (−an−k) i/

√
n
)

and

n−1∑

k=3

e−kt2/2n
(
ϕ′′
n−k(t/

√
n)/n

)
.

(For the other terms, we get similar bounds as for lower-order derivatives but with
extra factors kt/n, which are easily controlled due to the exponential factor e−kt2/2n).
But using (5.5), (5.3), (5.6), and (5.8), we get

n−1∑

k=3

e−kt2/2n
∣∣∣ϕ′

n−k(t/
√
n)/

√
n − (−an−k) i/

√
n
∣∣∣

≤
n−mn∑

k=3

(|t |/n)e−kt2/2n|bn−k | +
n−1∑

k=n−mn

2e−kt2/2n|an−k |/√n

= o

( n−mn∑

k=3

t2 + 1

n
e−kt2/2n

)
+ O

( n−1∑

k=n−mn

1√
n(n − k)

)
= o(1)
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as well as

n−1∑

k=3

e−kt2/2n
∣∣∣ϕ′′

n−k(t/
√
n)/n

∣∣∣ ≤
n−1∑

k=3

(1/n)e−kt2/2n|bn−k | ≤ 1

n

n−1∑

k=3

|bn−k | = o(1).

On the Difference D5 Similarly as above, let (mn)n∈N be a sequence of natural
numbers such that limn→∞ mn = ∞ and limn→∞(mn/n) → 0. Then, using (5.8),
we have

n−1∑

k=3

e−kt2/2n
∣∣∣(−an−k) − 1√

2π(n−k)

∣∣∣
∣∣∣i t/

√
n
∣∣∣

= o

(n−mn∑

k=3

1√
k(n − k)

)
+ O

⎛

⎝
n−1∑

k=n−mn

1√
k(n − k)

⎞

⎠ = o(1).

Again, for the derivatives, we have similar estimates involving lower powers of t
and /or additional factors kt/n.

On the Difference D6 For fixed k, we have

|( f k)(t)| = Ok(1), | d
dt

( f k)(t)| = Ok(1), | d
2

dt2
( f k)(t)| = Ok(1)

(as follows from our assumption EX2
1 < ∞), and as n → ∞,

ϕn(t) = o(1), ϕ′
n(t) = o(1), ϕ′′

n(t) = o(1)

(as follows from (5.1), (5.3) and (5.6) – (5.8)). The claim for the difference D6(t) and
its first two derivatives follows immediately from these relations.

The proof of Proposition 6.1 is complete now. ��

Proof of Proposition 4.1 To deduce Proposition 4.1 from Proposition 6.1, we use that
if X is a real random variable with E(X2k) < ∞, induced distribution PX and char-
acteristic function fX , then, for any T > 0,

∫

[−T,+T ]c
x2k PX (dx) ≤ T

2

+2/T∫

−2/T

(−1)k( f (2k)
X (0) − f (2k)

X (t)) dt.

(See e.g. Lemma 5.1 in Kallenberg [18] for the special case k = 0; the general case is
similar.) Applying this inequality with X = Sn/

√
n and T = C , we get
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∞∫

C

x2 p∗
n(x) dx ≤ C

2

+2/C∫

−2/C

(−1)
(
f ′′
Sn/

√
n
(0) − f ′′

Sn/
√
n
(t)

)
dt

≤ 2 sup
|t |≤2/C

∣∣∣ f ′′
Sn/

√
n
(0) − f ′′

Sn/
√
n
(t)

∣∣∣ .

Using Proposition 6.1, it follows that for any fixed C > 0, we have

∞∫

C

x2 p∗
n(x) dx ≤ 2 sup

|t |≤2/C

∣∣ϕ̂′′+(0) − ϕ̂′′+(t)
∣∣ + o(1).

as n → ∞. Since ϕ̂′′+(t) is continuous at zero, we may conclude that for C = C(ε)

sufficiently large, we have

∞∫

C

x2 p∗
n(x) dx ≤ ε

for all sufficiently large n ∈ N, and the proof of Proposition 4.1 is complete. ��

7 Proof of Proposition 4.2

Write p = (1− 	)q1 + 	q2 as in (3.1), and let g1 and g2 be the Fourier transforms of
q1 and q2, respectively. Then,

f k(t) =
k∑

j=0

(k
j

)
(1 − 	) j	k− j g j

1 (t)g
k− j
2 (t).

For k ≥ 3, put

p̃k(x) :=
k∑

j=3

(k
j

)
(1 − 	) j	k− j

(
q∗ j
1 ∗ q∗(k− j)

2

)
(x)

and

f̃k(t) :=
k∑

j=3

(k
j

)
(1 − 	) j	k− j g j

1 (t)g
k− j
2 (t).

Note that f̃n(t) is the Fourier transform of p̃n(x) and that p̃n(x) can be recovered
from f̃n(t) by means of Fourier inversion. This follows from the fact that g1 ∈ L2

(being the Fourier transform of a bounded probability density) and g2 ∈ L∞ (being
the Fourier transform of a probability measure).
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Using our moment assumptions and the fact that 	 < 1
2 , it is easy to see for k ≥ 3

and t ∈ R,

∣∣∣∣
d j

dt j
(
f k(t/

√
n) − f̃k(t/

√
n)

)∣∣∣∣ = O(n− j/2 2−k), j = 0, 1, 2 .

It therefore follows from (5.9) that for 3 ≤ k ≤ n, |t | ≤ γ n1/2 and j = 0, 1, 2,

∣∣∣∣
d j

dt j
( f̃k(t/

√
n) − e−kt2/2n)

∣∣∣∣ ≤ δk (k/n) j/2 e−kt2/4n + O(n− j/2 2−k). (7.1)

Furthermore, there exist a constant C0 > 0 and a constant η ∈ (0, 1) such that for
k ≥ 3 and |t | ≥ γ ,

| f̃k(t)| ≤
k∑

j=3

(k
j

)
(1 − 	) j	k− j

∣∣∣g j
1 (t)g

k− j
2 (t)

∣∣∣ ≤ C0η
k−2|g1(t)|2, (7.2)

| f̃ ′
k(t)| ≤

k∑

j=3

(k
j

)
(1 − 	) j	k− j

∣∣∣∣
d

dt

[
g j
1 (t)g

k− j
2 (t)

]∣∣∣∣ ≤ C0kη
k−3|g1(t)|2. (7.3)

This follows from the fact that g1 and g2 also satisfy (5.10) (possibly with some
modified constant η) and that g′

1 and g′
2 are bounded and q1 and q2 being probability

measures with finite moments.
Recalling (3.2) and (3.6) and using the non-negative densities p̃k introduced above,

we may write

q∗
n(x) = √

n
n∑

k=3

( p̃k ∗ Gn−k)(
√
n x) + rn(x), (7.4)

where the remainder term rn(x) is given by

rn(x) := √
n

n∑

k=1

(k
1

)
(1 − 	) 	k−1

(
q1 ∗ q∗(k−1)

2 ∗ Gn−k

)
(
√
n x)

+ √
n

n∑

k=2

(k
2

)
(1 − 	)2	k−2

(
q∗2
1 ∗ q∗(k−2)

2 ∗ Gn−k

)
(
√
n x). (7.5)

The functions rn are the signed densities occurring in Proposition 4.2. It is easy to see
that ‖rn‖1 = O(1/

√
n) and ‖rn‖∞ = O(1). Indeed, because q1 and q2 are probability

densities, q1 is bounded and the total variation norm of Gn is of order O(1/
√
n),

we have

‖q∗ j
1 ∗ q∗(k− j)

2 ∗ Gn−k‖1 ≤ C1√
n − k + 1

( j = 1, 2)
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and

‖q∗ j
1 ∗ q∗(k− j)

2 ∗ Gn−k‖∞ ≤ C1√
n − k + 1

( j = 1, 2),

so that the asserted properties of the densities rn follow from the estimate

n∑

k= j

(k
j

)
(1 − 	) j	k− j

√
n − k + 1

≤
n∑

k= j

k j	k− j

√
n − k + 1

= O(n−1/2) ( j = 1, 2).

Observe that all the terms in the big sum in (7.4) contain the “factor” q∗2
1 (

√
n x) and

therefore have Fourier transforms in L1. Hence, similarly as in Aleshkyavichene [2],
using Fourier inversion and (5.19), we obtain the representation, for x > 0,

q∗
n(x) −

√
2
π
e−x2/2 − rn(x)

= 1

2π

∫

R

e−i t x
(
f̃n(t/

√
n) − e−t2/2

)
dt

+ 1

2π
lim
R→∞

+R∫

−R

e−i t x i t√
2πn

( n−1∑

k=3

e−kt2/2n 1√
n − k

−
n∫

0

e−ut2/2n du√
n − u

)
dt

+ 1

2π

∫

R

e−i t x
( n−1∑

k=3

(
f̃k(t/

√
n) − e−kt2/2n

)
ϕn−k(t/

√
n)

)
dt

+ 1

2π

∫

R

e−i t x
( n−1∑

k=3

e−kt2/2n
(
ϕn−k(t/

√
n) − (−an−k) i t/

√
n
))

dt

+ 1

2π

∫

R

e−i t x
( n−1∑

k=3

e−kt2/2n
(
(−an−k) − 1√

2π(n−k)

)
i t/

√
n

)
dt.

Denote the integrals on the right-hand side by I1, . . . , I5. Note that all the integrals
implicitly depend on n and x . We will consider each of them separately.

Convention: We always assume that n ≥ 4 and x ∈ (0,∞) (part (a)) or x ∈
(0, e−1) (part (b)).O- and o-bounds hold uniformly in these regions (unless otherwise
mentioned), and they may depend on the constants γ, δ1, δ2, δ3, . . . introduced in
Sect. 5, on the constants C0 and η in (7.2) and (7.3), and on the L2-norm of the
function g1.

7.1 The proof of part (a)

Throughout this subsection, we assume that n ≥ 4 and x ∈ (0,∞). The proof is very
similar to that of Theorem 1 in Aleshkyavichene [2].
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On the Integral I1 Using integration by parts, we get

|I1| = 1

x

∣∣∣∣∣∣

∫

R

e−i t x d

dt

[
f̃n(t/

√
n) − e−t2/2

]
dt

∣∣∣∣∣∣

≤ 1

x

∫

(−γ
√
n,γ

√
n)

∣∣∣∣
d

dt

[
f̃n(t/

√
n) − e−t2/2

]∣∣∣∣ dt

+ 1

x

∫

(−γ
√
n,γ

√
n)c

∣∣∣∣
d

dt

[
f̃n(t/

√
n) − e−t2/2

]∣∣∣∣ dt.

By (7.1), the first integral on the right is of the orderO(δn+2−n) = o(1). Furthermore,
by (7.3), (5.14) and the fact that g1 ∈ L2, the second integral on the right is of the
order

O
( ∫

(−γ
√
n,γ

√
n)c

(
nηn−3|g1(t/√n)|2(1/√n) + |t |e−t2/2

)
dt

)

= O(nηn−3 + e−nγ 2/2) = o(1).

Thus, I1 = o(1/x).
On the Integral I2 By [2, Equation (24)], we have I2 = O(1/(

√
nx)).

On the Integral I3 For k = 3, . . . , n − 1, let

I3,k :=
∫

R

e−i t x
(
f̃k(t/

√
n) − e−kt2/2n

)
ϕn−k(t/

√
n) dt.

Then, it follows via integration by parts that

|I3,k | = 1

x

∣∣∣∣∣∣

∫

R

e−i t x d

dt

[(
f̃k(t/

√
n) − e−kt2/2n

)
ϕn−k(t/

√
n)

]
dt

∣∣∣∣∣∣

≤ x−1|I3,k,1| + x−1|I3,k,2|,

where I3,k,1 and I3,k,2 denote the integrals over the sets (−γ
√
n, γ

√
n) and

(−γ
√
n, γ

√
n)c, respectively. It follows from (7.1), (5.1) – (5.3), (5.7) and (5.8) that

|I3,k,1| ≤
∫

(−γ
√
n,γ

√
n)

∣∣∣ f̃k(t/
√
n) − e−kt2/2n

∣∣∣
∣∣∣ϕ′

n−k(t/
√
n)(1/

√
n)

∣∣∣ dt

+
∫

(−γ
√
n,γ

√
n)

∣∣∣ ddt
[
f̃k(t/

√
n) − e−kt2/2n

]∣∣∣
∣∣∣ϕn−k(t/

√
n)

∣∣∣ dt
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= O

⎛

⎜⎝
∫

(−γ
√
n,γ

√
n)

[
δk e−kt2/4n

√
n(n − k)

+ 2−k

√
n(n − k)

]
dt

⎞

⎟⎠

+ O

⎛

⎜⎝
∫

(−γ
√
n,γ

√
n)

[
δk(k/n)1/2|t | e−kt2/4n

√
n(n − k)

+ 2−k

√
n(n − k)

]
dt

⎞

⎟⎠

= O
(

δk√
k(n − k)

+ 2−k

√
n − k

)
.

Also, using (5.1), (5.3), (5.7), (5.8), (7.2) and (7.3), the Gaussian tail estimates (5.13)–
(5.15) and the fact that g1 ∈ L2, we get

|I3,k,2| ≤
∫

(−γ
√
n,γ

√
n)c

| f̃k(t/√n)||ϕ′
n−k(t/

√
n)(1/

√
n)| dt

+
∫

(−γ
√
n,γ

√
n)c

| f̃ ′
k(t/

√
n)(1/

√
n)||ϕn−k(t/

√
n)| dt

+
∫

(−γ
√
n,γ

√
n)c

|e−kt2/2n||ϕ′
n−k(t/

√
n)(1/

√
n)| dt

+
∫

(−γ
√
n,γ

√
n)c

|e−kt2/2n(kt/n)||ϕn−k(t/
√
n)| dt

= O
⎛

⎝
ηk−2 + kηk−3 + 1

kγ e
−kγ 2/2 + e−kγ 2/2

√
n − k

⎞

⎠ .

Therefore,

I3,k = O
(
1

x

δk + η̃k√
k(n − k)

)
, (7.6)

where η̃ := 1
2 (1 + max{ 12 , η, e−γ 2/2}) ∈ (0, 1). Hence, using (5.17), we get I3 =

o(1/x).
On the Integral I4 It follows from [2, Equation (47)] that I4 = o(1/x).
For the convenience of the reader, let us briefly sketch the argument from

Aleshkyavichene [2]. For k = 3, . . . , n − 1, let

I4,k :=
∫

R

e−i t x e−kt2/2n
(
ϕn−k(t/

√
n) − (−an−k) i t/

√
n
)
dt.
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Using integration by parts, we get

|I4,k | ≤ 1

x

∫

R

e−kt2/2n
(
k
n |t |

∣∣∣ϕn−k(t/
√
n) − (−an−k) i t/

√
n
∣∣∣

+
∣∣∣ϕ′

n−k(t/
√
n)(1/

√
n) − (−an−k) i/

√
n
∣∣∣
)
dt.

Wenow split the integral at±A(A > 2) and use the bounds (5.4) and (5.5) in the region
(−A,+A) and the bounds (5.2) and (5.3) in the region (−A,+A)c. In combination
with the Gaussian tail estimates (5.13) and (5.15), we obtain

∫

R

e−kt2/2n
(
k
n |t |

∣∣∣ϕn−k(t/
√
n) − (−an−k) i t/

√
n
∣∣∣

+
∣∣∣ϕ′

n−k(t/
√
n)(1/

√
n) − (−an−k) i/

√
n
∣∣∣
)
dt

≤
∫

(−A,A)

|bn−k |e−kt2/2n
(
k
n |t | t2/n + |t |/n

)
dt

+
∫

(−A,A)c

2|an−k |e−kt2/2n
(
k
n |t | |t |/√n + 1/

√
n
)
dt

= O
(
A

|bn−k |√
n
√
k

)

+ O
( |an−k |√

n

[√
nπ

2k
∧ n

kA
e−k A2/2n +

√
nπ

2k
∧ n

kA

(
k

n
A2 + 1

)
e−k A2/2n

])
,

with implicit constants not depending on n or A. Note that the term in the square
brackets is bounded by

√
2πn/k for k ≤ n/A and by (A + 2)e−A/2 for k ≥ n/A.

Thus, using (5.8), it follows that

|I4| = O
(
A

x

n−1∑

k=3

|bn−k |√
n
√
k

)

+ O
⎛

⎝1

x

∑

k≤n/A

1√
k(n − k)

⎞

⎠ + O
⎛

⎝ (A + 2)e−A/2

x

∑

k≥n/A

1√
n(n − k)

⎞

⎠

= o(x−1 A) + O(x−1 A−1/2) + O(x−1 (A + 2)e−A/2).

Letting A ≡ An → ∞ sufficiently slowly as n → ∞, we conclude that |I4| = o(1/x).
On the Integral I5 It is shown in [2, Equation (48)] that I5 = o(1/x).
Clearly, combining the estimates for I1, . . . , I5, we get part (a) of Proposition 4.2.
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7.2 The proof of part (b)

Throughout this subsection, we assume that n ≥ 4 and x ∈ (0, e−1). For these values
of x , we can obtain somewhat better estimates by avoiding the integration by parts
step.

On the Integral I1 We have

|I1| =
∣∣∣∣∣∣

∫

R

e−i t x
[
f̃n(t/

√
n) − e−t2/2

]
dt

∣∣∣∣∣∣

≤
∫

(−γ
√
n,γ

√
n)

∣∣∣ f̃n(t/
√
n) − e−t2/2

∣∣∣ dt

+
∫

(−γ
√
n,γ

√
n)c

∣∣∣ f̃n(t/
√
n) − e−t2/2

∣∣∣ dt .

By (7.1), the first integral on the right is of the order O(δn + √
n 2−n) = o(1).

Furthermore, by (7.2), (5.13) and the fact that g1 ∈ L2, the second integral on the right
is of the order

O

⎛

⎜⎝
∫

(−γ
√
n,γ

√
n)c

(
ηn−2 |g1(t/√n)|2 + e−t2/2

)
dt

⎞

⎟⎠

= O(
√
nηn−2 + 1√

n
e−nγ 2/2) = o(1).

Thus, I1 = o(1).
On the Integral I2 We have alreadymentioned that I2 = O(1/(

√
nx)). Now, using

(5.12) and (5.19), we also have

|I2| =
∣∣∣∣∣∣
lim
R→∞

+R∫

−R

e−i t x i t√
2πn

( n−1∑

k=3

e−kt2/2n 1√
n − k

−
n∫

0

e−ut2/2n du√
n − u

)
dt

∣∣∣∣∣∣

≤
n−1∑

k=3

+∞∫

−∞

|t |√
2πn

e−kt2/2n 1√
n − k

dt

+
∣∣∣∣∣∣
lim
R→∞

+R∫

−R

e−i t x i t√
2πn

n∫

0

e−ut2/2n du√
n − u

dt

∣∣∣∣∣∣

= O
(
n−1∑

k=3

n

k

1√
n(n − k)

)
+ 2πϕ(x)
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= O
( ∑

1≤k≤n/2

1

k

)
+ O

( ∑

n/2≤k≤n−1

1√
n(n − k)

)
+ O(1) = O(log n).

Thus, I2 = O(
(log n) ∧ 1√

nx

)
.

On the Integral I3 For k = 3, . . . , n − 1, we can estimate the integral

I3,k :=
∫

R

e−i t x
(
f̃k(t/

√
n) − e−kt2/2n

)
ϕn−k(t/

√
n) dt.

in two different ways.
On the one hand, using integration by parts, we obtain

I3,k = O
(
1

x

1√
k(n − k)

)
, (7.7)

see (7.6).
On the other hand, similar estimates (without integration by parts) yield

|I3,k | ≤
∫

R

∣∣∣ f̃k(t/
√
n) − e−kt2/2n

∣∣∣
∣∣∣ϕn−k(t/

√
n)

∣∣∣ dt

= O

⎛

⎜⎝
∫

(−γ
√
n,γ

√
n)

[
δk |t | e−kt2/4n

√
n(n − k)

+ 2−k

√
n − k

]
dt

⎞

⎟⎠

+ O

⎛

⎜⎝
∫

(−γ
√
n,γ

√
n)c

∣∣∣ f̃k(t/
√
n)

∣∣∣
∣∣∣ϕn−k(t/

√
n)

∣∣∣ dt

⎞

⎟⎠

+ O

⎛

⎜⎝
∫

(−γ
√
n,γ

√
n)c

∣∣∣e−kt2/2n
∣∣∣
∣∣∣ϕn−k(t/

√
n)

∣∣∣ dt

⎞

⎟⎠

= O
(
n

k

δk√
n(n − k)

+ 2−k
√
n√

n − k

)

+ O
(

ηk−2
√
n√

n − k

)
+ O

(
1

kγ
e−kγ 2/2

√
n√

n − k

)
,

whence

I3,k = O
(
n

k

1√
n(n − k)

)
. (7.8)
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Using (7.7) for k ≤ nx2 and (7.8) for k ≥ nx2 and recalling that x ∈ (0, e−1),
it follows that

I3 = O
⎛

⎝ 1√
nx

∑

1≤k≤nx2

1√
k

+
∑

nx2≤k≤n/2

1

k
+

∑

n/2≤k≤n−1

1√
n(n − k)

⎞

⎠

= O(1) + O(| log x |) + O(1) = O(| log x |).

Thus, I3 = O(| log x |).
On the Integral I4 For k = 3, . . . , n − 1, we can estimate the integral

I4,k :=
∫

R

e−i t x e−kt2/2n
(
ϕn−k(t/

√
n) − (−an−k) i t/

√
n
)
dt

in two different ways. On the one hand, using integration by parts and (5.2), (5.3) and
(5.8), we have

|I4,k | ≤ 1

x

∫

R

2|an−k |e−kt2/2n
(
k
n |t | |t |/√n + 1/

√
n
)
dt = O

(
1

x
√
k(n − k)

)
.

On the other hand, also using (5.2) and (5.8) (butwithout integration by parts), we have

|I4,k | ≤
∫

R

2|an−k |e−kt2/2n
(
|t |/√n

)
dt = O

(
n

k

1√
n(n − k)

)
.

Thus, the same argument as for I3 leads to the conclusion that I4 = O(| log x |).
On the Integral I5 For k = 3, . . . , n − 1, we can estimate the integral

I5,k :=
∫

R

e−i t x e−kt2/2n
(
(−an−k) − 1√

2π(n−k)

)
i t/

√
n dt

in two different ways. On the one hand, using integration by parts and (5.8), we get

|I5,k | = O
⎛

⎝1

x

∫

R

e−kt2/2n
( k

n |t | |t |√
n(n − k)

+ 1√
n(n − k)

)
dt

⎞

⎠ = O
(
1

x

1√
k(n − k)

)
.

On the other hand, using (5.8) (but without integration by parts), we get

|I5,k | = O
⎛

⎝
∫

R

e−kt2/2n
( |t |√

n(n − k)

)
dt

⎞

⎠ = O
(
n

k

1√
n(n − k)

)
.

Thus, the same argument as for I3 leads to the conclusion that I5 = O(| log x |).

123



J Theor Probab (2015) 28:1520–1555 1553

The proof of part (b) of Proposition 4.2 is completed by combining the previous
estimates. ��

8 Proof of Necessity in Theorem 1.1

Let us quote some well-known results from the literature: Suppose that |s| < 1. Recall
that S

+
n = max{Sn, 0}. By Spitzer’s formula (see e.g. [14, p. 618]), we have

1+
∞∑

n=1

snE(eit S
+
n ) = 1

1 − s
exp

⎛

⎝
∞∑

k=1

sk

k

∞∫

0

(eitx − 1) dFk(x)

⎞

⎠ (8.1)

for any t ∈ R. Also (see e.g. [14, p. 416 and p.428]), we have

1+
∞∑

n=1

snP(Sn < 0)=exp

( ∞∑

k=1

sk

k
P(Sk < 0)

)
= 1

1 − s
exp

(
−

∞∑

k=1

sk

k
P(Sk ≥0)

)
.

Thus, Spitzer’s formula (8.1) can be rewritten as

1+
∞∑

n=1

snE(eit S
+
n ) =

(
1+

∞∑

n=1

snP(Sn < 0)

)
exp

⎛

⎜⎝
∞∑

k=1

sk

k

∫

[0,∞)

eitx dFk(x)

⎞

⎟⎠

(8.2)

for any t ∈ R.
Let us note that the preceding results hold without any assumptions on moments

or on densities. However, if the moment assumptions stated at the beginning of the
introduction are satisfied, then there exist positive constants c0 < C0 such that

c0n
−1/2 ≤ P(Sn < 0) ≤ C0n

−1/2 (8.3)

for all n ≥ 1 (see e.g. [14, pp. 414f]). Indeed, more precise information is available.
Expanding the right-hand side of Spitzer’s formula (8.2) into a power series in s

and comparing coefficients, we find that for any n ≥ 1,

E(eit S
+
n ) = Fn(0) + Fn−1(0)

∞∫

0

eitx p1,+(x) dx

+
n∑

m=2

Fn−m(0)
∞∑

l=1

∑

k1,...,kl≥1:
k1+···+kl=m

1

l!
1

k1 . . . kl

∞∫

0

eitx (pk1,+ ∗ . . . ∗ pkl ,+)(x) dx,
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where F0(0) := 1 and, for any k ≥ 1, pk,+(x) := pk(x) for x > 0 and pk,+(x) := 0
for x ≤ 0. Hence, by the uniqueness theorem for Fourier transforms, we have

pn(x) = Fn−1(0) p1(x) + p̃n(x) (8.4)

for almost all x > 0, where p̃n is a certain subprobability density on the positive
half-line.

Now suppose that (1.6) holds. Then, using Lemma 2.1, we have D(p∗
n | ϕ+) < ∞

for all sufficiently large n ∈ N. It is easy to see that this implies D(pn | ϕ+) < ∞ for
all sufficiently large n ∈ N. Therefore, using (8.4), (8.3) and the remark (2.2) below
Lemma 2.4, wemay conclude that D(p | ϕ+) < ∞, which entails (1.7) by Lemma 2.1.

��
9 Proof of Theorem 1.2

Fix ε ∈ (0, 1), and let c ∈ (0, 1) and C ∈ (1,∞) be such that

C∫

c

ϕ+(x) dx > 1 − ε. (9.1)

Then, using Lemma 3.1 (a) and Proposition 4.2 (a), we have

C∫

c

∣∣p∗
n − ϕ+

∣∣ dx ≤
C∫

c

∣∣p∗
n − q∗

n

∣∣ dx +
C∫

c

∣∣q∗
n − ϕ+

∣∣ dx = o(1) (9.2)

as n → ∞, which implies that

C∫

c

p∗
n(x) dx > 1 − ε (9.3)

for all sufficiently large n ∈ N. It follows from (9.1)–(9.3) that

dTV(Sn/
√
n, |Z |)≤

∫

R

|p∗
n − ϕ+| dx≤

∫

(c,C)

|p∗
n − ϕ+| dx +

∫

(c,C)c

(p∗
n + ϕ+) dx<2ε

for all sufficiently large n ∈ N. Since ε ∈ (0, 1) is arbitrary, Theorem 1.2 is proved. ��
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