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Abstract Isoperimetric inequalities are discussed for one-dimensional probability
distributions having log-concave densities with respect to the standard Gaussian
measure.

Suppose that a probability measure � on Rn has a log-concave density f with respect
to the standard n-dimensional Gaussian measure �n, that is,

f .x/ D e� 1
2 jxj2�V.x/; x 2 Rn;

for some convex function V W Rn ! .�1; 1�. One may also say that � is log-
concave with respect to �n. In this case, an important theorem due to D. Bakry and
M. Ledoux [B-L] asserts that � satisfies a Gaussian-type isoperimetric inequality

�C.A/ � '
�
ˆ�1.�.A//

�
; (1)

relating the “size" �.A/ of an arbitrary Borel subset A � Rn to its �-perimeter

�C.A/ D lim inf
"#0

�.A"/ � �.A/

"

(where A" stands for the Euclidean "-neighborhood of A). Here, ˆ�1 denotes the
inverse to the normal distribution function ˆ.x/ D �1..�1; x�/ with density '.x/ D

1p
2�

e� 1
2 x2

(x 2 R). In other words, the isoperimetric function of �,

I�.p/ D inf
�.A/Dp

�C.A/; 0 < p < 1

(called also an isoperimetric profile) dominates the isoperimetric function I.p/ D
'.ˆ�1.p// of the measure �n, i.e., one has

I�.p/ � I.p/ (2)
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for all p. The original proof of (1)–(2) given in [B-L] is based on semi-group
arguments and a functional form proposed in [B2]. As was shown by L. A. Caffarelli
[C], all �’s under consideration represent contractions of �n, so the proof of (1)–(2)
may be reduced to the purely Gaussian case. An alternative localization approach
to the Bakry-Ledoux theorem was later proposed in [B3]; cf. also [B4] for an
extension of (1) to a larger class of probability measures. Another approach unifying
a number of analytic and isoperimetric inequalities of Gaussian type has been
recently developed by P. Ivanisvili and A. Volberg [I-V].

Recently, Raphaël Bouyrie raised the question of whether or not the inequality (2)
is strict, even in dimension one, assuming that � is symmetric and non-Gaussian.
Although we do not know the original motivation, this question seems to be rather
interesting in itself and not so elementary. Here we give an affirmative answer,
involving some arguments from [B3] which were used to prove (1)–(2) in dimension
one. Thus, we have:

Theorem 3 Let � be a symmetric probability measure on R which is log-concave
with respect to the standard Gaussian measure �1. If � is not Gaussian, then its
isoperimetric function satisfies

I�.p/ > I.p/ for all p 2 .0; 1/:

Equivalently, the coincidence I�.p0/ D I.p0/ for some p0 causes � to be
Gaussian. Of course, this is not true at all without the log-concavity hypothesis (with
respect to �1). For example, consider the class of symmetric probability measures
� on R having log-concave densities f with respect to the linear Lebesgue measure
(the class of log-concave measures). In this case, the isoperimetric functions have
the form

J.p/ D I�.p/ D f .F�1.p//; (3)

where F�1 is the inverse to the distribution function

F.x/ D �..�1; x�/ D
Z x

�1
f .y/ dy

restricted to the support interval (cf. [B1]). Here, J may be an arbitrary positive
concave function on .0; 1/, symmetric about the point 1=2. Hence, in this class it
may easily happen that J.p/ � I.p/ on .0; 1/ with equality only at two points p0 and
1 � p0 (or even for one point p0 D 1=2, only). Let us also mention that the property
J � I is another way to say that � represents a Lipschitz transform of �1.

Assuming that V is of class C2 in the representation (1), we find from (3) that

V 00.x/ D �1 �
�

f 0.x/

f .x/

�0
D �1 � .J0.F.x//0

D �1 � J00.F.x//f .x/ D �1 � J00.p/J.p/; p D F.x/:
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Hence, in terms of the isoperimetric function, the log-concavity with respect to �1

is equivalent to the relation

J00.p/J.p/ � �1:

For such functions (that are also symmetric about 1=2), Theorem 3 may be stated as
follows: If J00.p/J.p/ D �1 for some p 2 .0; 1/, then this equality holds true for all
p (in which case, necessarily J D I). It might be natural to try to prove Theorem 3
using this formulation. However, we prefer to choose a different route, which allows
one to avoid the C2-assumption on the density f , and which also suggests a possible
way to quantify the assertion of this theorem. To be more precise, we have:

Theorem 4 Let � be a probability measure supported on the interval .�a; a/ � R
with density e�V.x/ '.x/, where V is an even, convex function, which is differentiable
and increasing on .0; a/. Then the isoperimetric function of � satisfies

I�.p/ � 1

2 ˆ.V 0.x//
e� 1

2 V0.x/2�V0.x/ y '.y/; (4)

where p D �..�1; x�/, x 2 .�a; 0/, and

y D �V 0.x/ C ˆ�1
�
2p ˆ.V 0.x//

�
:

A similar bound also holds for p > 1=2, by using I�.1 � p/ D I�.p/.
One can check that equality in (4) is attained for the family of probability

measures � D �� with densities

'�.x/ D 1

Z
e��jxj '.x/; x 2 R; (5)

where � is an arbitrary positive parameter and Z D Z.�/ is a normalizing constant.
We now turn to the proofs. As a first step, let us verify Theorem 3 in the particular

case of measures �� described in (5).

Lemma 3 Given � > 0, we have I��
.p/ > I.p/ for all p 2 .0; 1/.

Proof According to (3), the isoperimetric function of �� is given by

I��
.p/ D '�

�
ˆ�1

� .p/
�
;

where ˆ� denotes the distribution function of ��. Therefore, we need to show that
ˆ�.y/ D ˆ.x/ ) '�.y/ > '.x/ for all x; y 2 R, where one may additionally
assume that x � 0 (using the symmetry).

The increasing map T.x/ D ˆ�1
� .ˆ.x// pushes forward �1 to ��, so that

ˆ�.T.x// D ˆ.x/. After differentiation we have

'�.T.x//T 0.x/ D '.x/:
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Hence, it is sufficient to see that T 0.x/ < 1 for all x < 0. To this aim, first note that

Z x

�1
e�y '.y/ dy D e�2=2 ˆ.x � �/; Z D 2

Z 0

�1
e�y '.y/ dy D 2e�2=2 ˆ.��/:

Hence, the distribution function of �� is described as

ˆ�.x/ D ��..�1; x�/ D ˆ.x � �/

2ˆ.��/
; x � 0;

and, by the symmetry, ˆ�.x/ D 1 � ˆ�.�x/ for x � 0. It follows that

T.x/ D ˆ�1.˛ˆ.x// C � .˛ D 2ˆ.��/; x � 0/;

so, putting x D ˆ�1.p/, we get

T 0.x/ D ˛'.x/

I.˛ˆ.x//
D ˛I.p/

I.˛p/
:

But the last ratio is smaller than 1, since ˛ < 1 and since I.p/=p is a decreasing
function. The latter property is true for any positive, strictly concave function I on
.0; 1/, which follows from the representation

I.p/

p
D I.0C/

p
C

Z 1

0

I0.ps/ ds: (6)

This proves the lemma.

Lemma 4 Let � be a symmetric probability measure, which is log-concave with
respect to �1 with density f D e�V'. Suppose that V is monotone in some
neighborhood of a point x 2 R, and let p D �..�1; x�/. Then

I�.p/ � I��
.p/ for some � > 0:

Proof We prove a stronger statement: Let a positive finite measure � have
density f .y/ D e�V.y/'.y/ for some convex even function V W R ! .�1; 1�,
finite on the interval .�a; a/. If a point x 2 .�a; 0/ is such that

�..�a; x�/ � p; �..x; 0�/ � 1

2
� p

�
0 < p <

1

2

�
; (7)

and if V is monotone in some neighborhood of x, then f .x/ � I��
.p/ for some � > 0.

To simplify this assertion, let l.y/ D c��y be an affine function which is tangent
to V.y/ at x, with necessarily � > 0 in view of the monotonicity assumption on V .
We extend l from the negative half-axis .�1; 0/ to .0; 1/ to get an even function,
and as a result we obtain a new positive measure �0 with density



On Isoperimetric Functions of Probability Measures Having Log-Concave. . . 581

f0.y/ D Ce��jyj'.y/:

Since l.x/ D V.x/ and l � V everywhere on .�a; a/, we have f � f0, so that
�0..�a; x�/ � p and �0..x; 0�/ � 1

2
� p. Therefore, in our stronger statement we are

reduced to the class of densities of type f D C'�, where C is an arbitrary positive
parameter.

For such densities, we have

�..�1; x�/ D Cˆ�.x/; �..x; 0�/ D C

�
1

2
� ˆ�.x/

�
; f .x/ D C'�.x/;

and involving the assumption (7), we get a constraint on C, namely,

C � C0 D max

�
p

ˆ�.x/
;

1
2

� p
1
2

� ˆ�.x/

	
: (8)

Since C D C0 is the worst situation in our conclusion, it remains to show that

C0 '�.x/ � '�.ˆ�1
� .p// � I��

.p/

with C0 defined in (8). Putting q D ˆ�.x/, this is the same as

max

�
p

q
;

1
2

� p
1
2

� q

	
I��

.q/ � I��
.p/:

If p � q, it holds true, since p
q I��

.q/ � I��
.p/, which in turn follows from the fact

that the function I��
is strictly concave (so that I��

.p/=p is strictly decreasing). In
case p � q, we use

1
2

� p
1
2

� q
I��

.q/ � I��
.p/;

or equivalently, after the change p0 D 1
2

� p, q0 D 1
2

� q,

p0

q0 I��

�
1

2
� q0

�
� I��

�
1

2
� p0

�
:

Here again p0 � q0 and we deal with the concave function QI.p0/ D I��
. 1

2
� p0/ on

the interval .0; 1=2/. Hence, QI.p0/=p0 is strictly decreasing, which is seen from the
general identity (6).

Lemma 4 is proved.

Proof of Theorem 3 If a probability measure � on the line is log-concave with
respect to �1, it has a density

f .x/ D e�V.x/'.x/;
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for some convex even function V on the interval .�a; a/, finite or not, and one may
put V D 1 outside that interval. Since V attains its minimum at zero, necessarily
V.0/ < 0, as long as � is non-Gaussian. In particular, in this case

I�.1=2/ D f .0/ > '.0/ D I.1=2/:

Moreover, let Œ�x0; x0� be the longest interval, where V is constant, so that V.x0�/ D
V.0/. Then similarly

I�.p/ D I�.1=2/ > I.1=2/

for all p 2 Œp0; 1 � p0�, where p0 D �..�a; x0�/.
In case 0 < p < p0, p D �..�a; x�/, the point x necessarily belongs to the

interval .�a; x0/, where V is strictly decreasing. Therefore, one may apply Lemma 4
and combine it with Lemma 3, which then leads to the required assertion I�.p/ �
I��

.p/ > I.p/.
Theorem 3 is thus proved.

Proof of Theorem 4 If an even, convex function V in the representation f D
e�V' for the density of � is differentiable and is increasing on .0; a/, the assumption
of Lemma 4 is fulfilled for all points x ¤ 0 from the supporting interval of the
measure �. In this case, since the tangent affine function in the proof of Lemma 4 is
given by l.y/ D V.x/CV 0.x/.y�x/; necessarily � D �.x/ D �V 0.x/ .�a < x < 0/.
Hence, we obtain that

I�.p/ � I��.x/
.p/; p D �..�a; x�/: (9)

The expression I��.x/
.p/ may be written in a more explicit form. Recall that, for

0 < p < 1=2,

y � ˆ�1
� .p/ D ˆ�1.˛p/ C �; Z D 2e�2=2 ˆ.��/;

where ˛ D 2ˆ.��/, so that

I��
.p/ D 1

Z
e�� jyj '.y/ D 1

2ˆ.��/
e��2=2C�y '.y/:

Hence, (9) turns into (4), thus proving Theorem 4.
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